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Abstract. A matching is compatible to two or more labeled point sets of size n with
labels {1, . . . , n} if its straight-line drawing on each of these point sets is crossing-free.
We study the maximum number of edges in a matching compatible to two or more
labeled point sets in general position in the plane. We show that for any two labeled sets
of n points in convex position there exists a compatible matching with ⌊

√
2n+ 1− 1⌋

edges. More generally, for any ℓ labeled point sets we construct compatible matchings
of size Ω(n1/ℓ). As a corresponding upper bound, we use probabilistic arguments to
show that for any ℓ given sets of n points there exists a labeling of each set such that
the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(log n)
copies of any set of n points are necessary and sufficient for the existence of labelings of
these point sets such that any compatible matching consists only of a single edge.
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1 Introduction

For plane drawings of geometric graphs, the term compatible is used in two rather different
interpretations. In the first variant, two (planar) graphs are embedded as plane straight-line
drawings on the same set P of points. The two drawings are called compatible (to each other with
respect to P ) if their union is plane (see e.g. [6, 22]). Note that this is different from simultaneous
planar graph embedding, as it is required not only that the two drawings are plane, but also that
their union is crossing-free.

In the second setting, which is the one that we will consider in this work, one planar graph G is
drawn straight-line on two or more labeled point sets, where each point set has the same label set.
We say that G is compatible to the point sets if there exists a injective mapping from the vertex
set of G to the label set such that the resulting drawings of G are plane. Note that the labelings of
the point sets can be predefined or part of the solution.

In the remaining work we say a point set is a convex point set if its points are in convex position.
Further, we call a point set with n points an n-point set.

Motivation and related work

The study of the type of compatibility considered in this work (the second type from above) is
motivated by applications in morphing [8, 19, 20], 2D shape animation [14], or cartography [26].

Compatible triangulations were first introduced by Saalfeld [26] for labeled point sets. He
pointed out that for pairs of labeled point sets, compatible triangulations do not always exist and
studied the construction of compatible triangulations using (possibly exponentially many) Steiner
points. Aronov et al. [11] and Babikov et al. [13] showed that O(n2) Steiner points are always
sufficient, while Pach et al. [25] showed that Ω(n2) Steiner points are sometimes necessary. Aronov
et al. [11] also showed that for two labeled polygons, the existence of a compatible triangulation
without Steiner points can be determined in polynomial time. The computational complexity
question for labeled point sets or polygons with holes is still open. For polygons with holes, Lubiw
and Mondal [24] showed NP-hardness of deciding the existence of a compatible triangulation with
at most k Steiner points.

The compatible triangulation conjecture [4] is as follows: For any two sets P1 and P2 with the
same number of points and the same number of points on the boundary of the convex hull, there is
a labeling of the two sets such that there exists a triangulation which is compatible to both sets, P1

and P2. In other words, it conjectures that – in contrast to labeled point sets – two unlabeled point
sets (in general position and with the same number of extreme points) can always be compatibly
triangulated without using Steiner points. To date, the conjecture has only been proven for point
sets with at most three interior points [4]. Krasser [23] showed that more than two point sets
cannot always be compatibly triangulated. Danciger et al. [18] considered compatibly triangulating
two or more unlabeled point sets by using few Steiner points.

Concerning compatible paths, Hui and Schaefer [21] showed that it is NP-hard to decide whether
two labeled point sets admit a compatible spanning path. Arseneva et al. [12] presented efficient
algorithms for finding a monotone compatible spanning path, or a compatible spanning path inside
simple polygons (if they exist). Czyzowicz et al. [17] showed that any two labeled convex point
sets admit a compatible path of length at least

√
2n and also presented an O(n2 log n) algorithm

to find such a path. In a similar direction, results from Czabarka and Wang [16] imply a lower
bound of (

√
n− 2 + 2)/2 on the length of the longest cycle compatible to two convex point sets. In

a related but different direction, Alon [9] showed that there exists a set Π of permutations of n
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elements such that for any permutation π1 there exists a permutation π2 ∈ Π where the longest
ascending common subsequence of π1 and π2 has length O(n2/3). This implies that there exists a
pair of labeled convex point sets such that the longest compatible cycle has length O(n2/3). Note
that this does not imply the existence of a pair of labeled convex point sets such that the longest
compatible matching (or path) has length O(n2/3) since matchings (and paths) do not have to
admit an ascending subsequence in any pair of labeled convex point sets.

In this paper we will focus on compatible matchings. To the best of our knowledge, previous
results on (geometric) matchings study only compatibility of the first type, that is, where two
matchings are embedded on the same point set. A well-studied question in this setting is whether any
two perfect matchings can be transformed into each other by a sequence of steps such that at every
step the intermediate graph is a perfect matching and the union of any two consecutive matchings
is plane. Aichholzer at al. [6] proved that such a sequence of at most O(log n) steps always exists.
Questions of whether any matching of a given point set can be transformed into any other and how
many steps it takes (that is, the connectivity of and the distance in the so-called reconfiguration
graph of matchings, as well as its other properties) have been investigated also for matchings on
bicolored point sets and for edge-disjoint compatible matchings, see for example [5, 10, 22].
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Figure 1: (a) There is no perfect matching compatible to the two labeled sets. (b) Every possible
pair of matching edges crosses in exactly one of the three sets.

Our results

We study the second type of compatibility for matchings on two or more point sets. This is a
setting for which no previous comprehensive theory appears to exist. Throughout this paper, we
denote unlabeled point sets with P and labeled point sets with P (both mostly with added indices
to distinguish between different point sets). In this paper, a labeled point set with n points is a
point set where each point has a label of {1, . . . , n} and any two points have different labels.

We start by considering convex point sets: Given two unlabeled convex point sets P1, P2, both
with n points, we study the largest guaranteed size ccm(n) of a compatible matching across all
pairs of labelings of P1 and P2. More formally, ccm(n) is the minimum over all pairs of labelings of
the maximum compatible matching size for the accordingly labeled n-point set pairs. The largest
compatible matching for two labeled point sets is not necessarily perfect, see Figure 1(a). In
Section 2, we present upper and lower bounds on ccm(n). In particular, for any n that is a multiple
of 10, we construct two labeled convex point sets P1,P2 of n points each, for which the largest
compatible matching has 2n/5 edges. Using probabilistic arguments, we obtain an upper bound of
ccm(n) = O(n2/3). For the lower bound, we show that for any pair of labeled convex point sets
P1, P2 there exists a compatible matching consisting of ⌊

√
2n+ 1 − 1⌋ edges. This implies that

ccm(n) = Ω(
√
n).

We further extend our study to consider ℓ point sets in general position instead of just two point
sets in convex position. Given ℓ unlabeled sets P1, . . . , Pℓ, each consisting of n points in general



228 Aichholzer et al. On Compatible Matchings

position, we denote by cm(n;P1, . . . , Pℓ) the largest guaranteed size of a compatible matching across
all ℓ-tuples of labelings of P1, . . . , Pℓ. We remark that the size n of the point sets is included in the
notation only for the sake of clarity (since our bounds depend on n). In Section 3 we give bounds
on cm(n;P1, . . . , Pℓ) for any sets P1, . . . , Pℓ of n points in general position. Building on the ideas
of the proofs for two convex point sets, we show that cm(n;P1, . . . , Pℓ) = O(n2/(ℓ+1)) and that
cm(n;P1, . . . , Pℓ) = Ω(n1/ℓ).

Finally, we investigate the question of how many labeled copies of a given unlabeled point set
are needed so that the largest compatible matching consists of a single edge. Already for four points
in convex position, three different sets are needed (and sufficient, see Figure 1(b)). In Section 4 we
prove that for any given set of n ≥ 5 points in general position, Θ(log n) (unlabeled) copies of the
point set are necessary and sufficient for the existence of labelings of these point sets forcing that
the largest compatible matching consists of a single edge.

For brevity, a plane matching that consists of k edges is called a k-matching.

2 Two convex point sets

Throughout this section we consider two labeled convex point sets P1, P2, each consisting of n
points. Without loss of generality we assume that P1 is labeled (1, 2, . . . , n) in clockwise order and
that P2 is labeled (π(1), π(2), . . . , π(n)) in clockwise order for some permutation π : [n] → [n]. Note
that for convex point sets, the compatible matching question is a purely combinatorial one, in the
sense that it only depends on the two cyclic orders of (1, 2, . . . , n) given by the labelings rather
than on the concrete positions of the points. Using this fact, we determined ccm(n) for small values
of n by computing the largest compatible matching for each possible pair of labelings. The results
of those computations are listed in Table 1.

n 4 5 6 7 8 9 10 11 12 13 14 15 16
ccm(n) 2 2 2 3 3 4 4 4 5 5 6 6 6

Table 1: The values of ccm(n) for n = 4, . . . , 16.

In the following, we present lower and upper bounds on the largest guaranteed size ccm(n) of a
compatible matching of any two such sets. Starting with lower bounds, we present four pairwise
incomparable results (Theorem 1), each of them giving rise to a polynomial-time algorithm for
constructing a compatible k-matching with k = Ω(

√
n) edges. The results are ordered by the size

of the obtained compatible k-matching, where the last one gives ccm(n) ≥
√
2n+ 1− 1, while the

three other results yield compatible matchings of some special structure. The second result can be
generalized to any number of (not necessarily convex) point sets (Theorem 3). We remark that the
results in [17] imply a lower bound of

√
2n/2 for the size of the largest compatible matching. In

other words, for n ≥ 2k2 there exists a compatible k-matching for any two labeled convex point
sets of n points, which is already weaker than the second result.

Before stating the theorem, we introduce the notion of a shape of a matching on a convex point
set which, informally stated, captures “how the matching looks”. Consider a labeled point set P
and a plane matching M on P. Let PM ⊆ P be the points of P that are incident to an edge of
M . The shape of M is the combinatorial embedding1 of the union of M and the boundary of the
convex hull of PM . Further, M is called non-nested if its shape is a cycle, that is, all edges of M lie

1The combinatorial embedding fixes the cyclic order of incident edges for each vertex.
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on the boundary of the convex hull of PM . Note that the shape of M also determines the number
of its edges (even though some or all of the edges might be “hidden” in the boundary of the convex
hull of PM ) since the shape of M is spanned by PM and M is a perfect matching on PM . We say
that two matchings have the same shape, if their shapes are identical, possibly up to a reflection.

Theorem 1 (Lower bound for two convex point sets) For any two labeled convex point sets
P1, P2 of n points each, it holds that:

(i) If n ≥ (2k − 2)2 + 2 then for any shape of a k-matching there exists a compatible k-matching
having that shape in both P1 and P2.

(ii) If n ≥ k2 + 2k − 1 then any maximal compatible matching consists of at least k edges.

(iii) If n ≥ k2 + k then there exists a compatible k-matching that is non-nested in both P1 and P2.

(iv) If n ≥ 1
2k

2 + k then there exists a compatible k-matching.

Proof:

(i) By the circular Erdős-Szekeres Theorem [16], the permutation π contains a monotone
subsequence σ having length 2k. The sequence S = {xi|i ∈ σ} of points whose labels
belong to σ has the same cyclic order in both sets P1, P2 (possibly once clockwise and once
counter-clockwise), hence any plane matching on S in P1 is also plane in P2 and has the
same shape.

(ii) Every matching consisting of one edge is a compatible matching. Suppose we have already
found a compatible matching M consisting of m ≤ k − 1 edges. This leaves at least
n− 2m ≥ k2 + 1 points yet unmatched. The unmatched points are split by the m matching
edges into at most m + 1 ≤ k subsets, both in P1 and in P2. Since there are at most k2

different ways to choose one such subset from P1 and one from P2, there exist two yet
unmatched points x, y that lie in the same subset in P1 and in the same subset in P2. Hence
xy can be added to the matching M .

(iii) This claim is equivalent to Problem 5 given at IMO 2017.2 For completeness we sketch a
proof (see Figure 2): split the perimeter of P2 into k contiguous blocks B1, . . . , Bk consisting
of k+1 points each (that is, block B1 consists of points labeled π(1), . . . , π(k+1) and so on).
We aim to draw one matching edge per block. We process points xi in order i = 1, . . . , n in
which they appear in P1. Once some block, say B⋆, contains two processed points, say xu

and xv, we draw edge xuxv, discard other already processed points and discard other points
in B⋆. In this way, any time we draw an edge in some block, we discard at most one point
from each other block. After drawing e edges, there are k − e blocks which do not contain
an edge, and each of them contains at least k + 1− e unprocessed points. So there exists a
block containing at least 2 unprocessed points until we the matching contains k edges. The
produced matching contains one edge per block, hence it is non-nested in P2. Since points xi

are processed in order i = 1, . . . , n, the matching is also non-nested in P1.

(iv) The idea is to find two points xi, xj that are close to each other in the cyclic order in both
P1 and P2. The bound is then established by drawing the edge xixj , omitting all points on
the shorter arcs of xixj in both P1 and P2, and proceeding recursively.

2https://www.imo-official.org/problems/IMO2017SL.pdf, Problem C4.

https://www.imo-official.org/problems/IMO2017SL.pdf
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Figure 2: Theorem 1, Claim (iii): Illustration with n = 12 points and k = 3 blocks (grey). After
drawing an edge we switch the color of processed points (red to green to blue). Claim (iv): The
permutation matrix Π and two 2-balls (yellow). A 2-ball centered at [5, 7] would intersect a 2-ball
at [7, 9], so drawing the edge between points labeled 7, 9 forces us to discard at most 2 other points
(6 and 8).

Consider the permutation matrix Π given by π, that is, an n× n matrix such that Πi,j = 1 if
π(i) = j and 0 otherwise. Given an integer r > 0 and a cell Πi,j containing a digit 1, the r-ball
centered at Πi,j is a set B(Πi,j , r) = {Πu,v : |i− u|+ |j − v| ≤ r} of cells whose L1-distance
from Πi,j is at most r, where all indices are considered cyclically modulo n (see Figure 2).
Note that an r-ball contains 2r2 + 2r + 1 cells.

Now suppose n and r satisfy n ≤ 2r2+2r and consider r-balls centered at all n cells containing
a digit 1. The balls in total cover n · (2r2+2r+1) > n2 cells, hence some two r-balls intersect
and their centers Πi,π(i), Πj,π(j) have L1-distance at most 2r. This means that the shorter
arcs between points labeled π(i) and π(j) contain, together in both point sets P1 and P2, at
most 2r − 2 other points. Drawing an edge π(i)π(j) and removing these 2r − 2 other points
leave convex point sets in both P1 and P2 whose convex hulls do not intersect the matched
edge π(i)π(j).

The rest is induction. The claim holds for k ∈ {1, 2}. Suppose that k = 2r is even and that
n = 1

2k
2 + k = 2r2 + 2r. By the above argument, find a “short” edge xixj and remove up

to 2r − 2 other points. This leaves n − 2r (< 2r2 + 2r) points, so find another edge xuxv

and remove up to 2r − 2 other points. This leaves 2r2 − 2r = 2(r − 1)2 + 2(r − 1) points
and the induction applies. Last, note that the above shows that having 2r2 points implies
a (2r − 1)-matching. Since 2r2 = ⌈ 1

2 (2r − 1)2 + 2r − 1⌉, the case of k = 2r − 1 odd and
n = ⌈ 1

2 (2r − 1)2 + 2r − 1⌉ is also settled.

□

The following corollary follows directly from Theorem 1.

Corollary 1 For any two labeled convex point sets P1,P2 of n point each, there exists a compatible
matching of size ⌊

√
2n+ 1− 1⌋.

Proof: Given two labeled convex point sets P1,P2 of n point each. By Theorem 1(iv), there exists
a compatible matching of size k if n ≥ 1

2k
2 + k.

n ≥ 1

2
k2 + k ⇔ 2n+ 1 ≥ k2 + 2k + 1 ⇔

√
2n+ 1− 1 ≥ k.
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So there exists a compatible matching of size ⌊
√
2n+ 1− 1⌋. □

In the remainder of this section, we consider upper bounds on the size of compatible matchings
for pairs of convex point sets.

We first describe an explicit construction of two labeled point sets Pid and Pπ, where n is a
multiple of 10, the set Pid is labeled (1, 2, . . . , n) in clockwise order, and the set Pπ is labeled
(π(1), π(2), . . . , π(n)) in clockwise order, by defining a specific permutation π : [n] → [n]. We will
show that any compatible matching of Pid and Pπ misses at least n/5 of the points.

Our building block for π is the permutation (2, 4, 1, 5, 3) of five elements. For labeling the n = 5k
points of Pπ (with k ≥ 2 even) we use the permutation

π = (2, 4, 1, 5, 3, 7, 9, 6, 10, 8, . . . , 5(k − 1) + 2, 5(k − 1) + 4, 5(k − 1) + 1, 5(k − 1) + 5, 5(k − 1) + 3)

that yields k blocks of 5 points each in both P1 and P2 (see Figure 3).

2
4
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Pid Pπ
. . .

2
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Figure 3: The two labeled point sets Pid and Pπ for the permutation π.

Proposition 1 (Constructive upper bound for two convex point sets) The largest compat-
ible matching of the two labeled n-point sets Pid and Pπ defined above contains 2

5n edges.

Proof: Consider any compatible matching M of Pid and Pπ. We show that any compatible
matching misses at least one point within each of the k blocks. This gives n

5 unmatched points and
thus at most 2

5n edges in any compatible matching.
We classify the edges of any compatible matchingM into two types: those that connect two points

in one block (that is, edges with both labels in {i + 1,
i+2, i+3, i+4, i+5} for some 0 ≤ i ≤ k − 1; we call them short edges) and all other edges,
which connect two points from different blocks (we call them long edges). To show that M misses
at least one point of each block B, we distinguish two cases:

Case 1: B contains at least one short edge.

We show that there is at least one unmatched point in B. Without loss of generality, let
B be the block with labels 1, . . . , 5. For each of the possible

(
5
2

)
= 10 short edges, we will

verify that if we include it, then we inevitably obtain a point of B that can not be matched
in either P1 or P2 (see Figure 3). We argue by contradiction: suppose M matches all points
of B and B contains a short edge. First, if a short edge cuts off an odd number of points in
B in either P1 or P2, then one of these points is unmatched. This is the case for the edges
(1, 3), (1, 5), (2, 4) and (3, 5) in P1 and for the edges (1, 2), (2, 3) and (4, 5) in P2. So none of
these edges can be a short edge in B such that all points of B are matched. Second, if B
contains the edge (1, 4), then the edge (2, 3) has to be in M due to P1 and is therefore also a
short edge in B. This is a contradiction since the edge (2, 3) cannot be a short edge in B.
Third, if B contains the edge (2, 5), then the edge (3, 4) has to be in M due to P1. This is a
contradiction since the edges (2, 5) and (3, 4) are not compatible due to P2. And finally, if B
contains the edge (3, 4), then the edge (1, 5) has to be in M due to P2 and is therefore also a
short edge in B. This is a contradiction since the edge (1, 5) cannot be a short edge in B.
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This completes the proof that if B contains a short edge, then M does not match all points
of B.

Case 2: All five points in B are matched by a long edge.

We argue that, under the assumption that all five points in B are matched (by a long edge),
all those five edges in fact must go to the same block (which we call B′), which we then show
to be impossible. Consider a pair of numbers a, b that lie in the same block whose relative
position within that block is different in P1 and in P2 (for example, 1 and 2 but not 1 and 3).
Suppose b is matched to b′. Then a has to be matched to a point on the same side of the line
bb′ as a, in both P1 and P2. This is impossible unless a is matched to a point in the same
block as b′ that moreover happens to lie on the correct side of b′ in both P1 and P2. Hence
for any such pair a, b, the points a and b are matched to the same block. It remains to notice
that (2, 1), (1, 4), (4, 3), (3, 5) are all eligible (a, b) pairs, hence all five edges go to the same
block B′. However, there is only one non-crossing perfect matching of B and B′ in P1 and
we easily check that it is not compatible with P2.

To see that the bound is tight, note that within each block of Pπ we can match the first two
points and the next two points. This yields a compatible matching of Pid and Pπ with 2k = 2

5n
edges consisting only of short edges. □

The above construction yields an upper bound of ccm(n) ≤ ⌈ 2
5n⌉. However, this bound is not

tight. We next show with counting and the pigeonhole principle that there exists a permutation
π : [n] → [n] for which the largest compatible matching consists of k = O(n2/3) edges. In Section 3,
we will extend this approach to any number of point sets, not necessarily in convex position
(Theorem 4).

Theorem 2 (Probabilistic upper bound for two convex point sets)
Fix n and let k ≥ 4n2/3. Then two convex point sets P1, P2 of n points each can be labeled such
that the largest compatible matching consists of fewer than k edges.

Proof: Let P1 be P1 with labeling (1, 2, . . . , n) in clockwise order and let P2 not yet be labeled.
The idea for this proof is that for large n there are more ways to label P2 than there are ways to
draw a compatible k-matching.

For any k ≤ n, let f(k) be the number of plane k-matchings of Pi, i ∈ {1, 2} (that is, matchings
leaving n− 2k points unmatched). As there are

(
n
2k

)
ways to select the 2k points to be matched

and the number of plane perfect matching on those points is 1
k+1

(
2k
k

)
(the k-th Catalan number),

we obtain

f(k) =

(
n

2k

)
· 1

k + 1

(
2k

k

)
≤ n!

(n− 2k)! · k! · k!
.

Given two plane k-matchings, one of P1 and one of P2, there are exactly g(k) = (n− 2k)! · k! · 2k
labelings of P2 for which those two matchings constitute a compatible k-matching: there are
(n− 2k)! ways to label the unmatched points of P2, k! ways to pair up the matching edges and 2k

ways to label their endpoints.
Therefore, (f(k))2g(k) is an upper bound for the number of labelings π of P2 such that there

is a compatible k-matching for P1 and P2 (P2 with labeling π). On the other hand, there are n!
labelings of P2 in total.

Our goal is to show that (f(k))2 · g(k) < n!. If we succeed, then there exists a labeling π of P2

such that there is no compatible k-matching for P1 and P2 (P2 with labeling π). Canceling some of
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the factorials and using standard bounds (n/e)n < n! < nn on the remaining ones (where e denotes
Euler’s number), we obtain

(f(k))2 · g(k)
n!

≤ n! · 2k

(n− 2k)! · (k!)3
≤ n2k · 2k

(k/e)3k
=

(
2e3n2

k3

)k

.

For k ≥ 4n2/3, the above expression is less than one (we have 2e3 < 43), which completes the proof.
□

3 Generalized and Multiple Sets

In this section we generalize our results in two ways, by considering point sets in general position
and more than two sets. We again start with lower bounds. Theorem 3, which is a generalization
of the second result of Theorem 1, implies that for any ℓ-tuple of point sets P1, . . . , Pℓ we have
cm(n;P1, . . . , Pℓ) = Ω(n1/ℓ).

Theorem 3 (Lower bound for multiple sets) Let P1,P2, . . . ,Pℓ be labeled sets of n points
each. If n ≥ kℓ + 2k − 1, then any maximal compatible matching consists of at least k edges.

Proof: We extend the idea from the proof of Theorem 1, part (ii): suppose we have already found
a compatible matching M consisting of m ≤ k − 1 edges. This leaves at least kℓ + 2k − 1− 2m ≥
kℓ + 2k − 1− 2(k − 1) = kℓ + 1 points yet unmatched. Imagine the ℓ point sets live in ℓ different
planes. We process the m matching edges one by one. When an edge is processed, we extend it
along its supporting line in both directions until it hits another matching edge or an extension of a
previously processed edge (in all ℓ planes). In this way, the m line segments partition each plane
into m+ 1 ≤ k convex regions. There are at most kℓ different ways to choose one region from each
of the ℓ planes. By pigeonhole principle (kℓ + 1 > kℓ), there exist two yet unmatched points x, y
that lie in the same region in each of the ℓ planes. Hence xy can be added to the matching M . □

Regarding upper bounds, the following theorem implies that for any fixed ℓ and any ℓ-tuple of
point sets P1, . . . , Pℓ, we have cm(n;P1, . . . , Pℓ) = O(n2/(ℓ+1)).

Theorem 4 (Probabilistic upper bound for multiple sets)
Fix n and ℓ, and let k = 125 · n2/(ℓ+1). Then any ℓ sets P1, . . . , Pℓ of n points each, where each
Pi is in general position, can be labeled such that the largest compatible matching consists of fewer
than k edges.

This theorem can be proven by extending the idea from the proof of Theorem 2 and combining
results of Sharir, Sheffer and Welzl [28] and Sharir and Sheffer [27] on the number of triangulations
and plane perfect matchings.

Proof: Let P1 be P1 with labeling (1, 2, . . . , n) from the leftmost point to the rightmost point
and suppose that the remaining ℓ− 1 sets are not yet labeled. Let k ≤ n and let fi(k), 1 ≤ i ≤ ℓ,
be the number of k-matchings of Pi. Sharir, Sheffer and Welzl showed in [28] that the number of
plane perfect matchings of any set P of k points in general position is at most 8 · (3/2)(k/4) · tr(P ),
where tr(P ) denotes the number of triangulations of P . Sharir and Sheffer also showed in [27] that
the number of triangulations of P is at most 30k. This implies that there are at most 8 · 33.21k



234 Aichholzer et al. On Compatible Matchings

different perfect matchings of P . By using this upper bound for every possible k-point subset of Pi,
we obtain

fi(k) ≤
(
n
2k

)
· 8 · 33.21k.

Next, consider an ℓ-tuple (M1, . . . ,Mℓ) of matchings on P1, . . . , Pℓ, respectively, consisting of k
edges each. Notice that any such ℓ-tuple forms a compatible matching for

g(k) =
(
(n− 2k)! · k! · 2k

)ℓ−1

combinations of labelings for P2, . . . , Pℓ. On the other hand, there are (n!)ℓ−1 such combinations of
labelings for P2, . . . , Pℓ in total. It suffices to show that(

ℓ∏
i=1

fi(k)

)
· g(k) < (n!)ℓ−1

for guaranteeing the existence of a combination of labelings for P2, . . . , Pℓ such that there is no
compatible k-matching for the resulting labeled sets P1, . . . ,Pℓ. As before, we expand the binomial
coefficients into factorials, cancel some of them and use standard bounds (n/e)n < n! < nn on the
remaining ones (where e again denotes Euler’s number) to obtain(∏ℓ

i=1 fi(k)
)
· g(k)

(n!)ℓ−1
≤

(
(
n
2k

)
· 8 · 33.21k)ℓ((n− 2k)! · k! · 2k)ℓ−1

(n!)ℓ−1

≤ (n!)ℓ · 8ℓ · 33.21kℓ · ((n− 2k)!)ℓ−1 · (k!)ℓ−1 · 2k(ℓ−1)

((2n− k)!)ℓ · ((2k)!)ℓ(n!)ℓ−1

≤ n! · (8 · 33.21k)ℓ(k!)ℓ−1(2k)ℓ−1

(n− 2k)!((2k)!)ℓ

≤ 8ℓ · n!

(n− 2k)!

(2 · 33.21)kℓ(k!)ℓ−1

((2k)!)ℓ

≤ 8ℓ · n2k · 66.42
kℓkk(ℓ−1)

( 2ke )2kℓ

≤ 8ℓ
n2k · (66.42ℓ)k(kℓ−1)k(e2ℓ)k

((2k)2ℓ)k

≤ 8ℓ
[
(66.42 · e2)ℓ · n

2kℓ−1

22ℓk2ℓ

]k
≤ 8ℓ

[
(16.605 · e2)ℓ · n2

kℓ+1

]k
.

When k = 125 · n2/(ℓ+1), then also k ≥ 125 holds. Further, the expression inside the brackets is less
than 1

1.018ℓ
(we have 16.605 · e2 < 125

1.018 ). Since 8 < 1.018125 ≤ 1.018k, this completes the proof. □

We remark that the upper bound of 33.21k for the number of plane perfect matchings of any
set of k points in the plane in general position is by far not tight. Actually, Sharir and Welzl [29]
showed that this number can be bounded by O(10.05k). However, for the above proof, we require
an explicit upper bound that holds for any value of k ≥ 125 and hence we did not use this result.
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4 Forcing a single-edge compatible matching

In this section we consider the following question: Given an unlabeled point set P with n points, is
there an integer ℓ such that there exist ℓ labelings of P for which every compatible matching has at
most one edge? If such an ℓ exists, we denote as force(n;P ) the minimum number ℓ of copies of P
such that cm(n;P, . . . , P ) = 1 (where P appears ℓ times). Otherwise, we set force(n;P ) = ∞. In
other words, we are asking for the existence (and minimal number) of labelings of the set P so that
any pair of labeled edges crosses for at least one labeling. We remark that, again, the size n of the
point sets is included in the notation only for the sake of clarity.

Note that force(n;P ) = ∞ if and only if the straight-line drawing of Kn on P does not contain
any crossing. Hence force(n;P ) is finite for any set P of n ≥ 5 points. More specifically, if
the straight-line drawing of Kn on P contains at least one crossing, then force(n;P ) is at most
3
(
n
4

)
= O(n4). This bound is due to the fact that, if we focus on one crossing edge pair, then

there are
(
n
4

)
possible 4-tuple of labels for the four vertices of the two edges. Given the 4-tuple,

there exist three labelings of the four vertices with these labels, such that any matching on the
four vertices crosses in one of the three labelings. Figure 1(b) illustrates the three labelings of the
four vertices with labels 1, 2, 3 and 4. If the straight-line drawing of Kn on P contains exactly one
crossing, then 3

(
n
4

)
is tight: In this case, each pair of labeled edges must be mapped to the unique

crossing edge pair, as otherwise, that pair of labeled edges would be compatible. Hence, any point
set P4 of 4 points in convex position has force(4;P4) = 3 and any point set P5 of 5 points with
triangular convex hull has force(5;R5) = 15.

We first focus on upper bounds and on the case when P is in convex position. We denote by
cforce(n) the minimum number of copies of a convex point set with n points that need to be labeled
so that the largest compatible matching consists of only a single edge.

Let b(n) = ⌈log2 n⌉, which is the number of bits that are needed to represent the integers 1 to
n. We construct a family of 3

2b(n)
2 labeled convex n-point sets such that all pairs of edges cross in

at least one set. First, consider three labeled convex point sets, which are obtained by partitioning
the set of labels into four blocks A, B, C, D, and combining those blocks in different orders and
orientations as depicted in Figure 4. The order within a block is arbitrary, but identical for all
three sets (up to reflection; those block orientations are indicated by arrows).

A

C

B

D
(a)

A

D

C

B
(b)

A

B

D

C
(c)

Figure 4: Three labeled point sets obtained from different orders and orientations of four blocks A,
B, C, and D.

Lemma 1 Let P1 be a labeled convex point set and a partition A, B, C, and D of its label set.
Denote with A−, B−, C−, and D− their respective reversed sets, e.g. A− has the same labels as
A but in reversed order. Let P2 be labeled AC−D−B and P3 be labeled ADB−C−, as depicted in
Figure 4. Then any pair of independent3 edges, where none of them has both labels in one of the

3Two edges are independent if they do not share an endpoint.
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blocks A, B, C, and D, forms a crossing in at least one of P1, P2, and P3.

Proof: We consider three cases, depending on the number x of blocks containing endpoints of the
edges e and f .

Case x = 2: Then e and f are spanned by the same two subsets. As any pair of blocks shows up
in the same and in reverse orientation in at least one of the three drawings, this guarantees
a crossing. For example, let the two subsets be A and B. They have the same orientation
in Figure 4(a) and 4(b), but reverse orientation in Figure 4(c). An analogous property holds
for the remaining five combinations.

Case x = 3: e and f have both one point in a common subset, but their other endpoints in different
subsets. There are 12 possible configurations of one common and two disjoint subsets, and it
is straightforward to check that each situation shows up in both possible orientations with
respect to the common set. For example, let the common set be A, and the other sets C and
D. The orientation of A is the same in all three labeled point sets, but the order of C and D
is reversed in Figure 4(a) and 4(c). If the common set is B and the two other sets are again
C and D, then order of the three sets is the same in all three drawings, but the orientation
of the common set B is inverted in Figure 4(a) and 4(c). Thus, in both cases a crossing is
guaranteed.

Case x = 4: In this case, the orientation of the blocks is not relevant. There are only three possible
combinations of such edges (A−B with C −D, A−C with B −D, and A−D with B −C)
and the three labeled point sets cover one case each.

□

We next identify a small number of 4-partitions of the label set {1, 2, . . . , n} such that each
edge pair fulfills the condition of Lemma 1 in at least one of the partitions (when the four subsets
form blocks). This yields the following constructive upper bound for cforce(n).

Proposition 2 (Constructive upper bound on cforce(n)) For any n ≥ 4 and for b(n) =

⌈log2 n⌉, we can define 3
(
b(n)
2

)
labeled convex point sets of n points such that the largest matching

compatible to all of them consists of a single edge.

Proof: Given a convex point set of n points, we construct
(
b(n)
2

)
4-partitions of the labels and

use each such partition to obtain three labeled point sets as depicted in Figure 4. We look at the
labels in binary representation. For any two bit positions i, j, 0 ≤ i ̸= j < b(n), of the binary
representation of the labels, partition the label set {1, 2, . . . , n} so that A contains all labels where
those two bits are zero, B those where the bits are zero-one, C those with one-zero, and finally D
the ones with both one. This gives

(
b(n)
2

)
different partitions.

Now consider two arbitrary edges e and f . Then there is a bit position in which the two
endpoints of e have different values, and the same is true for f . Let i and j, respectively, be those
positions. If this would give i = j, then choose j arbitrarily but not equal to i. By Lemma 1, the
edges e and f cross in one of the three labeled point sets for the partition generated for i and j. □

The upper bound O(log2 n) of cforce(n) from Proposition 2 is constructive but it is not asymp-
totically tight. Next we present a probabilistic argument which shows that we actually have
force(n;P ) = O(log n) for any point set P of n ≥ 5 points.



JGAA, 26(2) 225–240 (2022) 237

Lemma 2 (Probabilistic upper bound on force(n;P )) Given a set P of n ≥ 5 points in
general position, there exists a constant cP ≥ 15/14 such that force(n;P ) ≤ logcP (3

(
n
4

)
) = O(log n).

Proof: Fix P and let αP ∈ (0, 1) be the proportion of 4-tuples of points in P that are in convex
position. Note that since any 5-tuple of points contains at least one 4-tuple in convex position, we
have αP ≥ 1/5 (here we use n ≥ 5).

There are r = 3
(
n
4

)
pairs of independent edges. Fix one of them, say ac and bd. Note that when

P is labeled uniformly at random, the edges ac, bd intersect with constant probability αP /3: indeed,
the edges intersect if their 4 endpoints form a convex quadrilateral whose corners are labeled abcd
or adcb in clockwise cyclic order along the boundary of the quadrilateral (those are two out of the
six possible labelings in clockwise cyclic order).

Now set cP = (1−αP /3)
−1 ≥ 15/14 and consider ℓ > logcP (r) copies of P labeled independently

and uniformly at random. A pair of independent edges is compatible (with respect to the ℓ labeled
point sets) if it is non-crossing in all ℓ point sets. As the labelings are chosen independently and
uniformly at random, any fixed pair of edges is compatible with probability ρ = (1− αP /3)

ℓ < 1/r.
By linearity of expectation, the expected number of compatible pairs of edges is r · ρ < 1. Therefore
there exists a labeling of the ℓ point sets for which no pair of edges is compatible. In such a labeling,
the largest compatible matching consists of a single edge. □

We remark that for a fixed set P , one can often obtain a better lower bound on the parameter
αP used in the proof and thus a better lower bound on cP , which then gives a constant factor
improvement on force(n;P ). Specifically, finding the constant α := limn→∞ infP,|P |≥n{αP } is a topic
of high relevance in connection with the rectilinear crossing number of the complete graph, see [2] for
a nice survey of this area. The currently best known bounds are 0.37997256 < α < 0.38044919 [1, 7].
Moreover, when P is in convex position we have αP = 1 and thus the above proof implies
cforce(n) ≤ log3/2(3

(
n
4

)
). On the other hand, none of these observations leads to an asymptotic

improvement on the upper bound of force(n;P ) or cforce(n). In the following we show that any
such asymptotic improvement is in fact impossible.

Lemma 3 (Lower bound on force(n;P )) Fix k ≥ 1 and let P be any set of n = 2k + 3 points
in general position. Then force(n;P ) ≥ k + 2 = Ω(log n).

Proof: We use a similar argument as the one used in Theorem 3. Denote by P1, . . . ,Pk+1 any k+1
labeled copies of P . Take an arbitrary edge ab on the convex hull of Pk+1. The line containing ab
divides each of P1, . . . ,Pk into two parts (one possibly empty). Since there are n− 2 = 2k + 1 > 2k

unmatched points, there exist two points, say x, y, that lie in the same part, for each i = 1, . . . , k.
Thus the two edges xy and ab form a compatible 2-matching implying that force(n;P ) ≥ k + 2. □

Combining upper and lower bounds for force(n;P ) from Lemmata 2 and 3, we obtain the
following conclusion:

Theorem 5 For every set P of n ≥ 5 points in general position, it holds that

force(n;P ) = Θ(log n).

5 Conclusion and open problems

In this work we studied the size of compatible matchings. A natural open problem is the computa-
tional complexity of finding compatible matchings of a certain size or even deciding their existence:
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Open Problem 1 How fast can it be decided, whether two (or more) given (general or convex)
labeled point sets have a perfect compatible matching (or a compatible matching of size k)?

We showed that for any ℓ labeled n-point sets, there is always a compatible matching of size
Ω(n1/ℓ). On the other hand, for any ℓ unlabeled n-point sets, there exist labelings of these ℓ point
sets such that the largest compatible matching has size O(n2/(ℓ+1)). Even for only two sets, these
bounds are currently the best ones known. It would be interesting to close this gap, even if the new
bounds only hold for a special point set.

Open Problem 2 What is the tight lower bound for the size of a matching which is compatible to
ℓ labeled sets?

While the proof for the upper bound of the largest compatible matching uses counting arguments,
we did not manage to modify it to give the expected size of the largest matching which is compatible
to ℓ randomly labeled point sets.

Open Problem 3 What is the expected size of the largest matching which is compatible to ℓ
randomly labeled sets? Is the expected size also O(n2/(ℓ+1))?

Furthermore, for two convex point sets, we only have an explicit labeling such that the largest
compatible matching has 2n/5 matching edges. This leads to the following open problems:

Open Problem 4 Construct a family of explicit labelings of ℓ (general or convex) point sets that
allow only small compatible matchings.

It would also be nice to have a construction that matches the probabilistic bound, even if the
construction only works for special point sets. Note that the second problem is also open if we only
look at convex point sets.

Further we studied how many labeled copies of a point set are needed such that any compatible
matching only contains one edge. We showed that Θ(log n) point sets are sufficient and that this
bound is tight. We constructed a labeling of roughly 3

2 log
2 n labeled convex point sets that obtain

this property. This leads to the following question:

Open Problem 5 Find a construction of a family of Θ(log n) (maybe convex) labeled point sets
such that any compatible matching only contains one edge.

Finally, as a game version of this problem, consider the following game: Two players alternately
add an edge which must neither cross nor be adjacent to any previously added edge. The last player
who is able to add such an edge wins. It is not hard to see that for a single set of points in convex
position, this is the well-known game Dawson’s Kayles, see e.g. [15]. This game can be perfectly
solved using the nimber theory developed by Sprague-Grundy, see also [15] for a nice introduction
to the area. An interesting generalization of Dawson’s Kayles occurs when the players use two (or
more) labeled (convex) point sets and add compatible edges.
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[3] O. Aichholzer, A. Arroyo, Z. Masárová, I. Parada, D. Perz, A. Pilz, J. Tkadlec, and
B. Vogtenhuber. On compatible matchings. In R. Uehara, S.-H. Hong, and S. C. Nandy,
editors, WALCOM: Algorithms and Computation, pages 221–233. Springer, 2021. doi:https:
//doi.org/10.1007/978-3-030-68211-8_18.

[4] O. Aichholzer, F. Aurenhammer, F. Hurtado, and H. Krasser. Towards compatible trian-
gulations. Theoretical Computer Science, 296(1):3–13, 2003. doi:10.1016/S0304-3975(02)
00428-0.

[5] O. Aichholzer, L. Barba, T. Hackl, A. Pilz, and B. Vogtenhuber. Linear transformation distance
for bichromatic matchings. Computational Geometry: Theory and Applications, 68:77–88, 2018.
doi:10.1016/j.comgeo.2017.05.003.

[6] O. Aichholzer, S. Bereg, A. Dumitrescu, A. Garćıa, C. Huemer, F. Hurtado, M. Kano,
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