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Abstract. We provide an algorithm requiring only O(N2) time to compute the
maximum weight independent set in an N -vertex interval filament graph. This implies
an O(N4)-time algorithm to compute the maximum weight induced matching in such
graphs. Both algorithms significantly improve upon the previous best complexities for
these problems. Previously, the maximum weight independent set and maximum weight
induced matching problems required O(N3) and O(N6) time respectively.

1 Introduction

In this article, we provide an improved algorithm for finding maximum weight independent sets in
interval filament graphs. This implies an improved algorithm for finding maximum weight induced
matchings in interval filament graphs. Interval filament graphs were characterised by Gavril in 2000
[3] and again in 2007 [4]. They include co-comparability graphs and polygon-circle graphs [3].

Gavril later generalized the definition to 3D interval filaments [4]. In the process, Gavril and
others have given several definitions of interval filament graphs. These definitions all characterize
interval filaments differently, however, they all give rise to the same underlying class of intersection
graph.

Definition 1 (Gavril’s first definition from [3]) An interval filament is defined by a curve C
in the xy-plane which has a left endpoint ℓ and a right endpoint r such that both endpoints define
an interval on the x-axis. Also, each point in C lies on or above the x-axis. If the intervals of two
interval filaments are disjoint, their curves do not intersect.

An interval filament graph is the intersection graph of a family of interval filaments.
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In Definition 1, Gavril does not specify the nature of the curve. Since Gavril’s findings hold if
the curve is continuous but otherwise unconstrained, we assume this most general definition.

Definition 2 (Gavril’s second definition from [4]) Take Definition 1 and constrain each curve
C such that it is the union of continuous interval curves, which are each described by functions.
This implies that it stays in the interval [ℓ, r] on the x-axis (see [4] for more details).

Cameron gives an additional definition.

Definition 3 (Cameron’s definition from [2]) Take Definition 1 and constrain each curve C
such that it stays in the interval [ℓ, r] on the x-axis, but no further restrictions on the curves (see
[2] for more details).

We use Definition 1 since it includes all other definitions. We formalise it as follows.

Definition 4 (Interval Filament) Consider an interval described by ℓ, r ∈ R, with ℓ ≤ r. A
(possibly self-intersecting) continuous curve C ⊂ R2 is an interval filament with endpoints ℓ and r
if:

� (ℓ, 0) ∈ C, (r, 0) ∈ C, and

� y ≥ 0 for all (x, y) ∈ C

Definition 5 (Interval Filament Graph) An interval filament graph is the intersection graph
of a set of interval filaments (from Definition 4) such that if two interval filaments have disjoint
intervals, then their curves do not intersect.

See Figure 1 for an example interval filament graph.

Figure 1: An example interval filament graph. The left depicts a family of interval filaments. The
right shows the resulting intersection graph. Note that vertices 2 and 4 are not adjacent although
the interval of vertex 4 is contained in the interval of vertex 2.

An independent set is a subset of vertices in a graph such that no two share an edge. If each
vertex has an associated weight, then a maximum weight independent set (MWIS) is the independent
set with the largest weight over all independent sets in a graph. An induced matching is a subset
of edges in a graph that is a matching such that the induced subgraph on that matching is exactly
that matching. A maximum weight induced matching (MWIM) is an induced matching that has
the largest weight of edges over all induced matchings in the graph. Both MWIS and MWIM are
NP-hard to compute [5, 6].
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Independent sets are related to both matchings and induced matchings. First, the line graph
L(G) of a graph G is constructed by making a vertex for each edge in G and connecting these
vertices if the corresponding edges in G share a vertex. A matching of G is a set of edges such
that no two edges share an endpoint. In L(G), a matching in G corresponds to a set of vertices in
L(G) such that no two of these vertices are adjacent (i.e., they form an independent set in L(G)).
Second, let’s consider the square G2 of a graph G, which is constructed by adding edges that do not
already exist between vertices connected by a path of length two. Consider an edge e in an induced
matching of G. No edge e′ sharing an endpoint with e can be in the matching. Furthermore, no
edge e′′ whose endpoints are adjacent (connected by an edge) to an endpoint of e can be in the
induced matching (otherwise, that edge connecting e with e′′ would be in the induced graph).
Thus, all edges in an induced matching correspond to vertices that are at least distance 2 from one
another in L(G), which tells us that an induced matching in G corresponds to an independent set
in [L(G)]2. Overall, this gives us a one-to-one relationship between independent sets in L(G) and
matchings in G, as well as between independent sets in [L(G)]2 and induced matchings in G.

Previous Algorithms and Our Contribution

Gavril [3] gives an O(|V |3)-time algorithm for finding a MWIS in an interval filament graph
G = (V,E). Importantly, Gavril’s algorithm finds the clique in the complement graph rather than
using the interval filaments directly. We improve MWIS in interval filament graphs to O(|V |2)
using the interval filaments directly.

Cameron [2] noted that interval filament graphs have properties that imply a polynomial-time
algorithm to find a MWIM in interval filament graphs given a polynomial-time algorithm to find
a MWIS in interval filament graphs. In particular, the square of the line graph [L(G)]2 for an
interval filament graph is also an interval filament graph. The MWIS in [L(G)]2 are in one-to-one
correspondence with the MWIM in G. This, in conjunction with Gavril’s O(|V |3)-time algorithm,
implies an O(|E|3)-time algorithm for the MWIM problem. We are able to use Cameron’s result to
reduce the time needed to compute an MWIM in interval filament graphs to O(|E|2).

In our complexity analysis below, we do our computations in terms of S, the set of interval
filaments, rather than the actual graph, G, to emphasize our algorithm’s reliance on the underlying
interval filaments.

2 From Interval Filaments to a Graph

A family of interval filaments and their intersections define an interval filament graph. To get the
graph model containing the set of edges, the intersections between the interval filaments must be
computed. Previous work did not address this problem and assumed that the graph model and
corresponding interval filaments are given together [3, 4]. For completeness, we give a fast algorithm
for obtaining the graph model given the interval filaments.

Creating the intersection graph from the interval filaments is highly dependent on the repre-
sentation of the interval filaments. For example, if the interval filaments are arbitrary curves (as
in Figure 1), determining if two interval filaments intersect can be quite tricky, and a completely
separate problem.

In a simple case, where each interval filament is a polyline with no self-intersections, we have
the following.
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Figure 2: A visual representation of (P1), (P2), and (P3) from left to right.

Theorem 1 Let S = {P1, P2, . . . , PN} be a set of polylines that are not self-intersecting, where Pi

contains ti line segments. If T =
∑

ti and K is the total number of intersections of the T line
segments, then the intersection graph of S can be computed in O(min(K + T log T,N · T log T ))
time.

Proof: The key is to apply Balaban’s algorithm [1] in two separate ways. Given a set of
M line segments, Balaban’s algorithm determines all intersections of the M line segments in
O(K ′ +M logM) time, where K ′ is the total number of intersections. Balaban’s algorithm can be
slightly modified to determine if two non self-intersecting polylines intersect in O(M logM) time
by simply exiting once an intersection is found. We will run both of the following algorithms in
parallel, terminating both when one of them completes.

The first application of Balaban’s algorithm is to determine all intersections of the line segments
P1 ∪ P2 ∪ · · · ∪ PN . This takes O(K + T log T ) time. This first application is fast if K is relatively
small. However, K can be as large as Θ(T 2).

The second application of Balaban’s algorithm is simply used to determine if Pi intersects with
Pj for i ̸= j. For each pair (i, j), we can determine if Pi intersects with Pj in O((ti + tj) log(ti + tj))
time. Each of the ti + tj line segments involved contributes O(log(ti + tj)) = O(log T ) time. Since
each line segment is involved in N − 1 tests, each line segment contributes O(N log T ) time to the
run time of the algorithm. Thus, in total, we spend O(N · T log T ) time in this second application
of Balaban’s algorithm. □

If each pair of interval filaments intersect in O(1) places, then K is O(|E|) in Theorem 1. Thus,
we can find the intersection graph in O(|E|+ T log T ) time.

For the remainder of the article, we will assume that the intersection of two curves has previously
been determined, so we may look it up in O(1) time.

3 Maximum Weight Independent Set

The maximum weight independent set of a set of interval filaments will be computed using only
three properties of interval filaments. Let F1, F2, F3 be interval filaments with endpoints ℓi ≤ ri for
i ∈ {1, 2, 3}. These properties are visualized in Figure 2.

(P1) If ℓ1 ≤ r1 < ℓ2 ≤ r2, then F1 and F2 do not intersect.

(P2) If ℓ1 ≤ ℓ2 ≤ r1 ≤ r2, then F1 and F2 do intersect.

(P3) If ℓ1 < ℓ2 < ℓ3 ≤ r3 < r2 < r1, F1 does not intersect with F2, and F2 does not intersect with
F3, then F1 does not intersect with F3.

We now state our main result:
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Theorem 2 Let S be a set of weighted interval filaments (with their intersections known). The
maximum weight independent set of the intersection graph defined by S can be computed in O(|S|2)
time and space.

Proof: For convenience, we will add the infinite interval filament ⊓ with weight 0 to S:

(−∞, 0)− (−∞,∞)− (∞,∞)− (∞, 0).

Sort the |S| left endpoints of the interval filaments based on their x-value (breaking ties arbitrarily)
and index each interval filament by the corresponding order from 1 to |S|, left-to-right. Note
that the infinite interval filament will have index 1. Furthermore, let after(i) be the index of the
interval filament whose left endpoint comes immediately to the right of the right endpoint of interval
filament i. If there is no interval filament whose left endpoint is to the right of interval filament i,
then define after(i) = |S|+ 1. This setup takes O(|S| log |S|) time to sort the interval filaments and
O(|S|) time to compute the after values if we sweep the endpoints from right to left.

With this setup, we may describe the algorithm. For simplicity, we say that an interval filament
x (with endpoints ℓx and rx) is strictly under interval filament y (with endpoints ℓy and ry)
if ℓy < ℓx ≤ rx < ry and x does not intersect y. Let F (ℓ, c) be the maximum weight of an
independent set that only contains interval filaments that are strictly under interval filament ℓ and
does not contain interval filaments 1, 2, . . . , c− 1. Note that F (1, 2) is the maximum weight over all
independent sets of the graph.

To compute an arbitrary F (ℓ, c), we only have three situations to deal with:

(i) If c = |S|+ 1, then F (ℓ, c) = 0, since we have eliminated all interval filaments from considera-
tion.

(ii) If interval filament c is not strictly under interval filament ℓ, then F (ℓ, c) = F (ℓ, c+ 1) by the
definition of F .

(iii) Otherwise, we must try both including interval filament c and not including interval filament
c in our independent set and take the better answer between these options. If we choose
to not include interval filament c, then F (ℓ, c) = F (ℓ, c + 1). If we choose to include
interval filament c, then any other interval filaments included in the independent set must
lie strictly under interval filament c or fully to the right of interval filament c. (Recall that
interval filaments to the left of c are not taken into account by F (ℓ, c).) So in this case,
F (ℓ, c) = F (c, c+ 1) + F (ℓ, after(c)) + weight(c). In total,

F (ℓ, c) = max {F (ℓ, c+ 1), F (c, c+ 1) + F (ℓ, after(c)) + weight(c)} .

At every step in the algorithm, F (ℓ, c) is only used when we are considering a case where interval
filament ℓ is in an independent set we are constructing. This allows us to prove correctness just
based on (P1), (P2), and (P3). Adding an interval filament c to the independent set cannot possibly
intersect with other interval filaments already included without either intersecting another curve
that is strictly under ℓ, but completely to the left of c, (this would violate (P1)) or intersecting
an interval filament that is not strictly under interval filament ℓ (this would violate (P3)). The
interval filaments added to the independent set from “F (c, c + 1)” cannot intersect those from
“F (ℓ, after(c))” by (P1) and (P2).

The weight of the MWIS of the graph is F (1, 2). We can use dynamic programming (DP) to
store the values of F . Since F only depends recursively on DP values with a strictly larger second
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argument, we can fill the DP table bottom-up sweeping c from large to small and ℓ in any order (or
use memoization). This DP solution takes O(|S|2) time and space. □

If we would like to actually find a MWIS, we can re-traverse the DP states, taking the optimal
choice at each step. Given the corresponding interval filament graph, this algorithm runs in O(|V |2)
time. This improves the running time of the previous best algorithm, which required O(|V |3) time
[3].

4 Maximum Weight Induced Matching

Maximum weight induced matching for interval filament graphs can be solved in essentially the
same way as the maximum weight independent set. Cameron [2] showed that the square of the
line graph [L(G)]2 of an interval filament graph is also an interval filament graph. Because an
independent set in [L(G)]2 is a maximum induced matching in G, Cameron showed that having a
polynomial-time algorithm for finding a maximum independent set in an interval filament graph
implies a polynomial-time algorithm for the maximum induced matching problem.

We use similar observations to solve the maximum weight induced matching problem. However,
we give a simpler construction to that used by Cameron. The key observation is that the union of
two intersecting interval filaments (with the new endpoints being the leftmost left endpoint and
the rightmost right endpoints of the two interval filaments) also follows (P1), (P2), and (P3) from
Section 3. This allows us to reuse our algorithm from the previous section.

Theorem 3 Let S be a set of weighted interval filaments (with their intersections known). The
maximum weight induced matching of the intersection graph defined by S can be computed in O(|S|4)
time and space.

Proof: Let
S′ = {a ∪ b : a, b ∈ S, a ̸= b, a ∩ b ̸= ∅}.

All elements in S′ satisfy the properties needed in Section 3, so we may run that algorithm in
O(|S′|2) time, which is O(|E|2) in the corresponding interval filament graph. Note that S′ can have
|S|2 elements, so the time complexity is O(|S|4) in the worst case. □

This improves the running time of the previous best algorithm, which required O(|S|6) time [2].

5 Final Remarks

We have described an O(|S|2)-time algorithm that takes a set S of interval filaments with their
intersections and finds a MWIS in the corresponding interval filament graph. This improves the
previous best complexity, O(|S|3), for the problem [3]. The improvement largely comes from
operating directly on the interval filaments. Further, we show that our findings imply a faster
algorithm, O(|S|4), for the MWIM problem in interval filament graphs, which improves the previous
best complexity from O(|S|6) [2].

Lower bounds on the time needed to solve these problems are open questions. There are
interval filament graphs that make our algorithms run in Θ(|S|2) time for MWIS and Θ(|S|4) time
for MWIM (see Figure 3). For circle graphs, which are a subset of interval filament graphs, an
O(|V |2)-time algorithm for MWIS exists [7] and an O(|V |3)-time algorithm exists for MWIM [8].
Also, we wonder if faster algorithms exist for the unweighted variants of the problems.
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Figure 3: Worst case for our algorithm. The outer interval filaments will be ℓ once for every inner
interval filament as c in the MWIS algorithm. Similarly, every pair of outer interval filaments will
be ℓ once for every pair of inner interval filaments as c in MWIM.
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