
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 26, no. 1, pp. 171–198 (2022)
DOI: 10.7155/jgaa.00587

Upward planar drawings with two slopes

Jonathan Klawitter 1 Tamara Mchedlidze 2

1University of Würzburg, Germany
2Utrecht University, The Netherlands

Submitted: November 2021 Reviewed: March 2022 Revised: April 2022

Accepted: May 2022 Final: May 2022 Published: June 2022

Article type: Regular paper Communicated by: G. Liotta

Abstract. In an upward planar 2-slope drawing of a digraph, edges are drawn as
straight-line segments in the upward direction without crossings using only two different
slopes. We investigate whether a given upward planar digraph admits such a drawing
and, if so, how to construct it. For the fixed embedding scenario, we give a simple
characterisation and a linear-time construction by adopting algorithms from orthogonal
drawings. For the variable embedding scenario, we describe a linear-time algorithm for
single-source digraphs, a quartic-time algorithm for series-parallel digraphs, and a fixed-
parameter tractable algorithm for general digraphs. For the latter two classes, we make
use of SPQR-trees and the notion of upward spirality. As an application of this drawing
style, we show how to draw an upward planar phylogenetic network with two slopes
such that all leaves lie on a horizontal line.

1 Introduction

When we visualize directed graphs (digraphs for short) that model hierarchical relations with
node-link diagrams, we traditionally turn edge directions into geometric directions by letting each
edge point upward. Aiming for visual clarity, we would like such an upward drawing to be planar,
that is, no two edges should cross [14]. If this is possible, the resulting drawing is called upward
planar drawing ; see Figure 1 (a). Interestingly, as Di Battista and Tamassia [15] have shown, every
upward planar drawing can be turned into one where each edge is drawn with a single line segment;
such a straight-line drawing may however require an exponentially large drawing area [17].

Another important class of drawings are (planar) orthogonal drawings, where edges are drawn
as sequences of horizontal and vertical line segments [14]; see Figure 1 (b). This drawing style is
commonly used for schematic drawings such as VLSI circuit design and UML diagrams. Schematic
drawings that allow more than two slopes for edge segments include hexalinear and octilinear
drawings, which find application in metro maps [41]. In general, the use of only few geometric

E-mail addresses: jo.klawitter@gmail.com (Jonathan Klawitter) t.mtsentlintze@uu.nl (Tamara Mchedlidze)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00587
https://orcid.org/0000-0001-8917-5269
https://orcid.org/0000-0002-1545-5580
mailto:jo.klawitter@gmail.com
mailto:t.mtsentlintze@uu.nl
https://creativecommons.org/licenses/by/4.0/

172 Klawitter and Mchedlidze Upward planar drawings with two slopes

(a) (b) (c)

Figure 1: (a) An upward planar drawing; (b) an orthogonal drawing; (c) an upward planar 2-slope
drawing.

primitives (such as different slopes) in a graph drawing facilitates a low visual complexity; a
common quality measure for drawings [47].

In recent years, the interest in upward planar drawings that use only few different slopes has
grown. For example, among other results, Bekos et al. [4] showed that every so-called bitonic
st-graph with maximum degree ∆ admits an upward planar drawing where every edge has at most
one bend and the edges segments use only ∆ distinct slopes. Di Giacomo et al. [19] provided
complementary results by proving that also every series-parallel digraph admits a 1-bend upward
planar drawing on ∆ distinct slopes; their drawings also have optimal angular resolution. Brückner
et al. [9] considered level-planar drawings, that is, upward planar drawings where each vertex is
drawn on a predefined integer y-coordinate (its level), with a fixed slope set. In this paper, we
continue this recent trend. In particular, we study bendless upward planar drawings that use only
two different slopes. An example of such a drawing is shown in Figure 1 (c). Some of our results
can be extended to 1-bend upward planar drawings. We now define these drawing concepts more
precisely and list related work.

Upward planarity. An upward planar drawing of a directed graph G is a planar drawing of G
where every edge (u, v) (i.e., an edge directed from u to v) is drawn as a monotonic upward curve
from u to v. A digraph is called upward planar if it admits an upward planar drawing. Two upward
planar drawings of the same digraph are topologically equivalent if the left-to-right orderings of the
incoming and outgoing edges around each vertex coincide in the two drawings. An upward planar
embedding is an equivalence class of upward planar drawings. An upward planar digraph is called
upward plane if it is equipped with an upward planar embedding.

A necessary though not sufficient condition for upward planarity is acyclicity [5]. Moreover,
Garg and Tamassia [24] showed that testing upward planarity is NP-complete for general digraphs.
While the digraphs used in their reduction contain vertices with in- and outdegree higher than two,
such vertices can be split into mulitple vertices of maximum in- and outdegree at most two without
losing any of the properties required in their proofs. It is thus also NP-complete to test upward
planarity for digraphs with in- and outdegree at most two. On the positive side, there exist
several fixed-parameter tractable algorithms for general digraphs [10, 20, 26] and polynomial time
algorithms for single source digraphs [6], series-parallel digraphs [20], outerplanar digraphs [43],
and triconnected digraphs [5]. Moreover, upward planarity can be decided in polynomial time if
the embedding is specified [5].

JGAA, 26(1) 171–198 (2022) 173

ℓ-bend k-slope drawings. In an ℓ-bend drawing of a graph G each edge is drawn with at most
ℓ+ 1 line segments; equivalently, each edge has at most ℓ bends. An ℓ-bend k-slope drawing of G
is an ℓ-bend drawing of G where every edge segment has one of at most k distinct slopes. From
now on and if not further specified, we refer to bendless (or 0-bend) k-slope drawings simply as
k-slope drawings.

Note that orthogonal drawings are 2-slope drawings without a bound on the number of bends.
Tamassia [49] showed that a planar orthogonal drawing with minimum total number of bends of a
plane graph on n vertices can be computed in O(n2 log n) time. Rhaman et al. [45] gave necessary
and sufficient conditions for a subcubic plane graph to admit a bendless orthogonal drawing. For
drawings of cubic graphs in 3D, Eppstein [23] considered bendless orthogonal graph drawings where
two vertices are adjacent if and only if two of their coordinates are equal.

Given a graph G, the minimum number k of slopes needed for G to admit a k-slope drawing
is called the slope number of G [53]. In the planar setting, this is the planar slope number of G.
Both these numbers have been studied extensively. For example, Pach and Pálvölgyi [42] showed
that the slope number of graphs with maximum degree 5 can be arbitrarily large. Further results,
include bounds on slope numbers of graph classes such as trees, 2-trees, planar 3-trees, outerplanar
graphs [21,33,38,39], cubic graphs [40], and subcubic graphs [18,34]. Determining the planar slope
number is hard in the existential theory of the reals [28].

Upward planar 2-slope drawings. The focus of this paper lies on (bendless) upward planar
2-slope drawings. We consider only the slope set {−π/4, π/4} and denote it by {↖,↗}, since an
upward planar 2-slope drawing on any two slopes can be morphed into an upward planar 2-slope
drawing with the slopes ↖ and ↗ – imagine this as (un)skewing a partial grid; see Figure 2. Note
that a natural lower bound on the upward planar slope number of a graph is given by its maximum
in- and outdegree. Hence, we assume that the graphs considered in this paper have maximum in-
and outdegree at most two.

Figure 2: Two upward planar 2-slope drawings of the same graph on different slope sets – edge
directions are given implicitly. Using an affine transformation one can transform a drawing on any
size-two slope set into one on {↖,↗}.

Bachmaier et al. [1], Brunner and Matzeder [8], and Bachmaier and Matzeder [3] studied
straight-line drawings of ordered and unordered rooted trees on orthogonal grids with k directions
for k ∈ {4, 6, 8}. Some of their drawing styles are also upward planar. A classical result of Crescenzi
et al. [11] shows that any binary tree with n vertices admits an upward planar 2-slope drawing
in O(n log n) area. Concerning more complex graphs, upward planar drawings with few slopes
for lattices have been studied by Czyzowicz et al. [13] and Czyzowicz [12]. As mentioned above,
Bekos et al. [4] and Di Giacomo et al. [19] considered such drawings for st-graph and series-parallel
graphs but also allowed bends. In a companion paper to the current one, Klawitter and Zink [36]

174 Klawitter and Mchedlidze Upward planar drawings with two slopes

study upward planar k-slope drawings for k ≥ 3 and among other results show that it is NP-hard
to decide whether an outerplanar digraph admits an upward planar 3-slope drawing.

Phylogenetic networks. Our interest in upward planar 2-slope drawings also stems from the
problem of visualizing phylogenetic networks. Phylogenetic trees and networks are used to model
the evolutionary history of a set of taxa like species, genes, or languages [22, 31, 48]. The precise
definition of phylogenetic networks and their drawing conventions may vary widely depending on
the particular use case. For instance, vertices may have timestamps that should be represented
in the drawings or leaves may be required to be placed on the same height. In combinatorial
phylogenetics the following definition is commonly used [31]: A phylogenetic network is a rooted
digraph where the leaves are labelled bijectively with a set of taxa. Inner vertices are either
tree vertices that have indegree one and outdegree two or reticulations that have indegree two
and outdegree one; see Figure 3 (a). A network without reticulations is a phylogenetic tree; see
Figure 3 (b,c).

(a) (b) (c)

1 2 3 4 5 6 2 3 4 51 2 3 4 51

Figure 3: (a) A phylogenetic network with two reticulations; (b) a phylogenetic tree drawn as
rectangular cladogram and (c) upward planar with two slopes.

There exist different drawing styles for phylogenetic trees such as rectangular or circular clado-
grams [2, 29]. If the focus is on the topology of the tree (and thus the taxonomy), a common
drawing style is upward planar with 2-slope and all leaves aligned on a line. Theoretical work to
adapt classical drawing styles from phylogenetic trees to phylogenetic networks has been carried
out by Huson et al. [29,31,37]. A different approach has been taken by Tollis and Kakoulis [51], who
propose a drawing style similar to treemaps for a special class of phylogenetic networks. There also
exist several software tools to draw phylogenetic networks [7,30,32,46,52]. Here we are interested
in drawing upward planar phylogenetic networks with two slopes and the additional constraint
that all leaves lie on a horizontal line; see Figure 3 (c).

Contribution. In this paper we investigate the following decision problem. Given a digraph G
of in- and outdegree at most two, decide whether it admits an upward planar 2-slope drawing. We
distinguish the fixed and variable embedding scenario, that is, whether G is already equipped with
an upward planar embedding or not. In the former case, we give a simple characterisation of when
a drawing exists; see Section 3. By making use of orthogonal drawing algorithms, we also show
how to construct a drawing (if it exists) in linear time. In addition, if no upward planar 2-slope
drawing exists, we describe how to obtain an upward planar 1-bend 2-slope drawing of G with
minimum number of bends.

For the variable embedding scenario, we check whether graphs of different graph classes admit
an upward planar 2-slope drawing, based on the results of Section 3. In Section 4.1, we show that

JGAA, 26(1) 171–198 (2022) 175

for a single-source digraph G, checking whether an upward planar 2-slope drawing of G exists can
be done starting from any single upward planar embedding of G. In the affirmative, a suitable
upward planar embedding can be derived and a drawing constructed in linear time. For series-
parallel digraphs (Section 4.3) and general digraphs (Sections 4.4 and 4.5), we derive a quartic-time
and a fixed-parameter tractable algorithm, respectively. These algorithms are based on Didimo et
al.’s algorithms for upward planarity testing [20].

Lastly, we show how to compute 2-slope drawings of upward planar phylogenetic networks,
where all leaves lie on a horizontal line in linear time; see Section 5. We conclude with a short
discussion and open problems.

2 Preliminaries

Let G be an upward plane digraph with maximum in- and outdegree two. We assume, without
loss of generality, that G is connected and let n denote the number of vertices of G or the graph
currently under consideration. We use (u, v) to denote an edge of G that is directed from u to v.
For two vertices u, v ∈ V (G), we say that u precedes v if there is a directed path from u to v.

If a vertex v of G has two incoming edges, then based on the left-to-right ordering of the edges
around v, it is natural to talk about the left and the right incoming edge of v. If an edge e is the
only incoming edge at v, we call e the sole incoming edge of v. The same holds for outgoing edges;
see Figure 4 (a). We say that a vertex v has face f to the left (right) if f is the face left (resp.
right) of v’s leftmost (resp. rightmost) incoming and leftmost (resp. rightmost) outgoing edge (if
they exist).

A 2-slope assignment ϕ is a mapping from the edges of G to the slopes ↗ and ↖, that is,
ϕ : E(G) → {↖,↗}. We say ϕ is a consistent 2-slope assignment if

� every left (right) incoming edge of a vertex is assigned the slope ↗ (resp. ↖), and

� every left (right) outgoing edge of a vertex is assigned the slope ↖ (resp. ↗).

An edge (u, v) that is the sole outgoing edge of u and the sole incoming edge of v may have
either slope. A digraph G together with a consistent 2-slope assignment ϕ forms an upward planar
2-slope representation UG = (G,ϕ). To avoid cumbersome notation, we simply write 2-slope
representation.

Suppose G contains an edge e = (u, v) that is the left outgoing edge of u and left incoming
edge of v. Let f be the face to the right of e; see Figure 4 (b). We then call e a bad edge with
respect to f since e obstructs a consistent 2-slope assignment. Note, however, that e is not a bad
edge with respect to the face f ′ left of e; see again Figure 4 (b). The same holds with “left” and
“right” in reversed roles.

Let UG be a 2-slope representation of G. Let a = (e1, v, e2) be a triplet such that v is a
vertex of the boundary of a face f and e1, e2 are incident edges of v that are consecutive on the
boundary of f in counterclockwise direction. The following definitions follow Bertolazzi et al. [6]
and Didimo et al. [20] though are adjusted to also encapsulate geometric properties induced by UG.
The triplet a is called an angle of f . We can categorise angles into three groups, namely, a is

� a large angle if e1 and e2 span a 270◦ angle in f ,

� a small angle if e1 and e2 span a 90◦ angle in f , or

� a flat angle if e1 and e2 span a 180◦ angle in f

176 Klawitter and Mchedlidze Upward planar drawings with two slopes

w
f

u

(a) (b) (c)

v

u

w

f

v

u

v

f ′

Figure 4: (a) The edge (u, v) is the right outgoing edge of u and left incoming edge of v, the edge
(v, w) is the sole outgoing edge of v; (b) the edge (u, v) is a bad edge with respect to f ; (c) u
is a left-switch spanning a small angle, v spans a flat angle and is thus not a switch, and w is a
sink-switch spanning a large angle.

with respect to the slopes assigned to e1 and e2. A vertex v of G is called a local source with respect
to a face f if v has two outgoing edges on the boundary of f . A local sink is defined analogously.
Furthermore, we call v a switch with respect to f if the slopes of e1 and e2 differ; for example,
every local source is a switch. We further categorise switches by the angle they span and where
they lie on the boundary of f ; see Figure 4 (c). A switch v is a large switch if e1 and e2 span a
large angle at f and a small switch otherwise; note that there can be no “flat” switches. We call v
a source-switch or sink-switch if v is a local sink or local source, respectively. Otherwise, if e1
and e2 have f to the right (left), then v is a left-switch (resp. right-switch). Note that an inner
face f of G contains exactly four small switches more than large switches and that the outer face
contains four large switches more than small switches. An inner (the outer) face f is rectangular
if it contains exactly four small (resp. large) switches.

Assume for now that G is biconnected. The following definitions are illustrated in Figure 5. A
split pair {u, v} of G is either a separation pair or a pair of adjacent vertices. A split component of G
with respect to the split pair {u, v} is either an edge (u, v) (or (v, u)) or a maximal subgraph G′ of G
such that G′ contains u and v and {u, v} is not a split pair of G′. Let G′ be such a split component
with respect to the split pair {u, v}. If G′ is equipped with an upward planar embedding, then we
define the flip of G′ as the change of the embedding of G′ by reversing the edge ordering of every
vertex of G′.

u

v

u

v

u

v

u

v

u

v

(c)(a) (b)

Figure 5: (a) A biconnected digraph with split pair {u, v}, (b) which induces three split compo-
nents; (c) flip of the third split component.

JGAA, 26(1) 171–198 (2022) 177

3 Fixed embedding

In this section we consider the problem of whether an upward plane digraph admits an upward
planar 2-slope drawing under the given fixed embedding. As noted above, a bad edge obstructs
the existence of a consistent 2-slope assignment and thus of a 2-slope representation for G. We
show that the absence of any bad edges is not only necessary but also sufficient.

Since upward planar 2-slope drawings are related to orthogonal drawings, we can make use of
techniques used to construct them. The classical algorithm by Tamassia [49], which constructs
an orthogonal drawing of a plane graph with minimum number of bends, works in three steps;
refer also to Di Battista et al. [14, Chapter 5]. It starts with a plane graph and constructs a
so-called orthogonal representation, a description of the shapes of the faces. The second step,
called refinement, subdivides each face into rectangles. Finally, the third step performs a so-called
compaction – it assigns coordinates to the vertices with the goal to minimize the area of the
drawing. The technique for constructing an orthogonal representation cannot be directly applied
for the construction of an upward planar 2-slope drawing, as it does not preserve the upwardness
of edges. However, assuming a 2-slope representation is already given, we can adopt the refinement
algorithm by Tamassia [49] and the compaction algorithm by Di Battista et al. [14] for our purposes.
In the following lemma we describe a modified version of Tamassia’s algorithm that refines the faces
of a 2-slope representation; we explain how to obtain a 2-slope representation in Theorem 1. For
this, recall that a switch is a triplet (e1, v, e2) consisting of a vertex and its two incident edges
along a face in counterclockwise order where e1 and e2 have different slopes.

Lemma 1 Let G be an upward plane digraph on n vertices with a 2-slope representation UG =
(G,ϕ). Then, in O(n) time, G can be refined into a digraph Ḡ that contains only rectangular faces
and such that G is a topological minor of Ḡ respecting ϕ.

Proof: If every face of G is already rectangular, then we are done and Ḡ = G. Assume that this
is not the case and let f be a non-rectangular inner face of G. We describe how to refine f into
rectangular faces.

First, traverse the boundary of f counterclockwise and store in each switch pointers to its
preceding and subsequent switch. Next, starting at any switch, traverse the circular sequence of
switches in counterclockwise order. Let u be the first encountered large switch that is preceding
a small switch v. Note that such u exists since f is not rectangular but contains at least four
small switches. Without loss of generality, assume that u is a sink-switch. (The cases when u
is a source-, left-, or right-switch work analogously.) Let w be the subsequent switch of v. If
w is a large switch, then add a vertex x and the edges (u, x) and (w, x) with slopes ↗ and ↖,
respectively; see Figure 6 (a). Otherwise, if w is a small switch (and thus a right-switch), then
subdivide the outgoing edge of w with a new vertex x, and add the edge (u, x) with slope↗. Assign
the slope ↖ to the two edges resulting from the subdivision. This ensures that ϕ is respected by G
as topological minor of Ḡ; see Figure 6 (b). In either of the two cases, the result is a rectangular
face f1 and a face f2 with one less small and one less large switch than f . Let f2 now take the
role of f and store the preceding switch of u and the subsequent switch of w as preceding and
subsequent switches of x, respectively. If x is a small switch, continue the traversal with the switch
preceding x instead of with x. Therefore, if a large switch precedes u in f , the process directly
continues with a refinement step without having to potentially traverse the whole circular sequence
first. Stop when only four switches are left and when f is thus rectangular. Note that this process
runs in linear time in terms of the size of f and that it only adds as many new vertices as the
number of large switches that f contains.

178 Klawitter and Mchedlidze Upward planar drawings with two slopes

u w

x

v

u w

x

v

(a) (b)

f1

f2

f1

f2

(c)

x1

x2 x3

x4u2 u1

u4

u3

Figure 6: How to refine non-rectangular faces of G to obtain Ḡ when a large switch is followed
(a) by a small and a large switch or (b) by two small switches. On the right, the large switch u4

precedes the large switch u3 and is thus processed after u3.

Repeat this procedure for every non-rectangular inner face of G. If the outer face f0 of G
is non-rectangular, apply the analogous procedure with the difference that the goal is to remove
all small switches such that f0 only contains four large switches. Further note that here a large
switch u preceding a small switch v exists since f0 being non-rectangular implies that there is at
least one small switch.

Let Ḡ be the resulting digraph where all faces are rectangular. By construction, Ḡ has G
as topological minor and size in O(n). Furthermore, since the boundary of every face of G was
traversed only twice, this refinement algorithm runs in O(n) time. □

We can now prove the main theorem of this section.

Theorem 1 Let G be an upward plane digraph with n vertices. Then the following statements are
equivalent.

(F1) G admits an upward planar 2-slope drawing.

(F2) G admits a 2-slope representation UG.

(F3) G contains no bad edge.

Moreover, there exists an O(n)-time algorithm that tests if G satisfies (F3) and constructs an
upward planar 2-slope drawing of G in the affirmative case.

Proof: Note that (F1) implies (F2) and (F2) implies (F3). We first show that (F3) implies (F2)
and then how to construct a drawing (F1) from (F2).

Whether G contains a bad edge can easily be checked in O(n) time. Suppose it does not and
thus satisfies (F3). Construct a consistent 2-slope assignment for G as follows. Go through all
edges of G (in any order). For an edge e, if it is a left (right) incoming edge, assign to it slope ↗
(resp. ↖). Otherwise, if it is a left (right) outgoing edge, assign to it slope ↖ (resp. ↗). We claim
that since e is not a bad edge, there is no conflict. Assume otherwise, namely, that e = (u, v) gets,
say, slope ↖ from u and slope ↗ from v. However, then u must be the left outgoing edge at u
and the left incoming edge at v, which makes e a bad edge thus contradiction our assumption. If e
is both a sole incoming and a sole outgoing edge, assign it an arbitrary slope, say ↖. Together
with the already given upward planar embedding of G, this slope assignment yields a 2-slope
representation UG of G.

Next, we construct an upward planar 2-slope drawing of G. Use Lemma 1 to obtain a 2-slope
representation UḠ of an upward planar digraph Ḡ in which every face is rectangular in O(n) time.

JGAA, 26(1) 171–198 (2022) 179

Note that rotating Ḡ clockwise by 45◦, makes the slope ↖ vertical and the slope ↗ horizontal and
we get an orthogonal representation of a graph where every face is rectangular. Therefore we can
apply the linear-time compaction algorithm by Di Battista et al. [14, Theorem 5.3]. This algorithm
assigns edge lengths and computes coordinates while handling the vertical and orthogonal direction
of a orthogonal representation independently. Hence, applying the algorithm to UḠ, the edges with
slopes ↗ and ↖ are handled independently and keep their slopes. (Note that a, say, vertical edge
(u, v) with length c in the orthogonal drawing corresponds to v being c units above and to the left
of u in an upward planar 2-slope drawing.) As a result, we get an upward planar 2-slope drawing
of Ḡ, which we can reduce to a drawing of G. Since the three steps run in O(n) time each, the
claim on the running time follows. □

Suppose we have an upward plane digraph G with k bad edges. Since G admits no upward
planar 2-slope drawing, it is natural to ask whether G admits an upward planar 1-bend 2-slope
drawing. In particular, if such a drawing exist, is it enough to bend only the k bad edges? Using
Theorem 1 we can answer this question affirmatively.

Corollary 2 Let G be an upward plane digraph with n vertices, maximum in- and outdegree at
most two, and with k bad edges. Then G admits an upward planar 1-bend 2-slope drawing with k
bends. Moreover, without changing the embedding, this is the minimum number of bends that can
be achieved.

Proof: Subdivide every bad edge once to obtain a graph G′. Then apply Theorem 1 to obtain an
upward planar 2-slope drawing of G′. Since a bad edge e of G is neither a sole incoming nor a sole
outgoing edge, the two edges obtained from e in G′ have different slopes. Hence, by turning every
subdivision vertex into a bend we get an upward planar 1-bend 2-slope drawing of G.

Since even a single bad edge obstructs a 2-slope representation and since bending a non-bad
edge clearly does not eliminate any other bad edges either, it follows that k bends are also necessary.

□

Note that G may admit an upward planar 1-bend 2-slope drawing with less or no bends if the
embedding is changed.

4 Variable embedding

In this section we consider the problem of whether a given upward planar digraph G of a particular
graph class admits an upward planar 2-slope drawing under any upward planar embedding. We
start with two general observations, before we consider the class of single-source digraphs, where
upward planarity can be tested in linear time, and then continue with the more complex classes of
series-parallel digraphs and general digraphs.

Let G be an upward planar digraph with maximum in- and outdegree at most two. Suppose G
contains a leaf ℓ. Note that removing ℓ from G does not change whether G admits an upward
planar 2-slope drawing. Moreover, we may reduce G to a digraph without leaves, obtain a drawing
of the reduced digraph (if possible), and then add the leaves to obtain a 2-slope drawing of G.
Removing and later restoring leaves takes only linear time.

While leaves are no obstruction, transitive edges are. However, note that not all bad edges
have to be transitive edges; see Figure 8.

Observation 3 A transitive edge of an upward planar digraph G is a bad edge in any upward
planar embedding of G.

180 Klawitter and Mchedlidze Upward planar drawings with two slopes

Proof: Let e = (u, v) be a transitive edge of G. By definition, there is a directed path P from u
to v different from e. Since P may not cross e, it enters v from the same side (left or right) as it
leaves u in any upward planar embedding of G and hence e is always a bad edge. □

4.1 Single-source digraphs

For a single-source digraph G, our idea is to first compute an arbitrary upward planar embedding
of G with the linear-time algorithm of Bertolazzi et al. [6]. We then check whether there are any
bad edges and, if so, whether they can be fixed with small changes to the embedding. To this end,
we need the following lemmata.

Lemma 2 An upward planar single-source digraph G contains no bad edge with respect to the
outer face.

Proof: Consider an upward planar embedding of G and suppose e = (u, v) is a bad edge with
respect to the outer face f0; see Figure 7 (a). Let e′ be the second incoming edge of v. Then v is
a local sink of f0 such that if e and e′ would be drawn with slopes ↗ and ↖ accordingly, then f0
would have a small angle at v. However, this implies that there are two local sources (w1 and w2

in Figure 7 (a)) of f0 that are also sources of G. This is a contradiction to G being a single-source
digraph. □

Lemma 3 Let G be an upward planar single-source digraph with maximum in- and outdegree at
most two. Then in any upward planar embedding of G, there are at most two bad edges with respect
to the same face.

Proof: Let G be an upward plane single-source digraph and let f be a face of G. Note that a
bad edge e with respect to f is incident to a local sink v of a face f where v lies between its two
incoming edges in a counterclockwise traverse of the boundary of f . In other words, in an upward
planar drawing of G, f would have a (small) angle of less than 180◦ at v. If there are three or
more bad edges with respect to f , then f contains at least two such local sinks (like v1 and v2 in
Figure 7 (b)). There is then at least one local source u for f that would span a large angle in f ,
i.e., more than 180◦. However, u is also a source of G and since it is not the source for the outer
face, it is not the only source of G. This is a contradiction to G being a single-source digraph.
Figure 7 (c) gives an example of a face with two bad edges. □

(b)
v1

v2

u1 u2

v1

f

v2

uf

(c)(a)

f0

v

u

e

w1

e′

w2

Figure 7: (a) A bad edge with respect to the outer face f0 implies the existence of at least two
sources w1 and w2; (b) a face f that has four bad edges of which two are adjacent to the local
sink v1 of f and two are adjacent to the local sink v2 of f . However, f also contains a source u;
(c) a face f with two bad edges (u1, v1) and (u2, v1) that can be a face of a single source digraph.

JGAA, 26(1) 171–198 (2022) 181

Lemma 4 Let G be an upward plane single-source digraph with maximum in- and outdegree at
most two and with bad edges {e1, e2, . . . , ek}. Let e1 be a bad edge with respect to face f . Deciding
whether G admits an upward planar embedding with bad edges {e2, . . . , ek} can be done in O(|f |)
time.

Proof: Let e1 = e = (u, v), let eu be the second outgoing edge of u, and let ev be the second
incoming edge of v. Note that ev and eu are also on the boundary of f and that by Lemma 2, f
is not the outer face. We claim that e cannot be a bridge. Assume otherwise and let Gu and Gv

be the components of G \ {e} that contain u and v, respectively. Note that both Gu and Gv have
a source each and v cannot be the source of Gv. This implies that G has two sources, which is a
contradiction to G being a single-source digraph. Let f ′ be the second face with e on its boundary,
which exists since e is not a bridge. Without loss of generality, assume that f ′ is to the left and f
to the right of e.

For G to admit an upward planar embedding where e is not a bad edge, it must be possible to
change, without loss of generality, the order of eu and e at u, that is, eu and e need to become the
left and right outgoing edges of u, respectively. If eu is a bridge (and thus has f as left and right
face), then we can swap e and eu at u and flip the component that does not contain u of G \ {eu};
see Figure 8 (a). We can find out whether eu is a bridge with a single traverse of f . Furthermore,
clearly, this flip does not introduce a new bad edge.

f ′ f

v

u

e

(a)

f ′
f

v

u

e f ′ f

v

u

e

w

G′

(b)

f ′ f

v

u

e

w

G′eu eu

Figure 8: Two scenarios where a bad edge e with respect to f in a single-source digraph can be
repaired: (a) eu is a bridge and can be flipped from f to f ′; (b) the digraph G′ between f and f ′

and between the split pair {w, u} can be flipped.

Otherwise, if eu is not a bridge, observe that we need to flip a subgraph G′ of G that contains eu
and that is enclosed by f ′ and f ; see Figure 8 (b). For such G′ to exist, there must be a vertex w
that forms a split pair with u, and that has f to the right and f ′ to the left. It can be seen as a
split pair {u,w′} without this property does not yield a flippable digraph G′ (as in Figure 9 (a))
and if no such a split pair exists at all, then the triconnectedness implies that ev, e, and eu always
lie on the boundary of the same face (as in Figure 9 (b)). Assuming now that such w exists, we
can define G′ as the digraph consisting of all split components of G with respect to {w, u} that
do not contain v. To repair e, we flip G′ as shown in Figure 8 (b), that is, we reverse the order of
incoming and outgoing edges for each vertex in G′ except for w, where we only reverse the order
of the outgoing edges. Note that the flip cannot introduce a new bad edge since w is not a local
sink or local source of f or f ′. Furthermore, note that such w precedes u, since otherwise both G′

and G \G′ would contain a source (that is not w) each, which contradicts G being a single-source
digraph; see Figure 9 (c). Hence, we may find w with a traverse of f .

Lastly, we show that changing the order of e and ev at v is possible only when the case above
applies where the order of e and eu at u can be changed. To begin with, note that ev cannot be a

182 Klawitter and Mchedlidze Upward planar drawings with two slopes

f ′ f

v

u

e

(b)(a)

f ′ f

v

u

e

w′G′

ev

eu

(c)

f ′ f

v

u

e

w
G′

Figure 9: Scenarios where a bad edge e with respect to f in a single-source digraph cannot be
repaired (a) since G′ cannot be flipped or (b) since there is no split pair {w, u}; (c) here G′ can
be flipped, but the digraph is not a a single-source digraph.

bridge, since G is a single-source digraph. Hence, we would need to flip again a digraph G′ that
contains ev and that is enclosed by f and f ′. Such G′ would imply a split pair {w′, v}, where,
however, w′ would also serve as split pair {w′, u} as in Figure 8 (b).

Since we can check whether eu is a bridge or find a suitable w with a single traverse of f , the
claim on the running time holds. □

From Lemma 4, we get that an upward plane single-source digraph admits an upward planar
2-slope drawing (possibly for a different upward planar embedding) if every bad edge can be fixed.
We may thus check every bad edge and perform the necessary flips. Since digraphs to flip may be
nested, executing simply one flip after the other could be costly. We now show how to keep the
running time linear.

Theorem 4 Let G be an upward planar single-source digraph with n vertices. An upward planar
2-slope drawing of G can be computed in O(n) time, if one exists.

Proof: As noted above, we may assume that G does not contain a leaf. A linear-time algorithm to
compute an upward planar 2-slope drawing of G then works as follows. First, compute an upward
planar embedding of G with the algorithm of Bertolazzi et al. [6] in O(n) time. Second, to identify
all bad edges in O(n) time it suffices to traverse the boundary of each face since every bad edge
is bad with respect to exactly one face. Third, for each bad edge e = (u, v) with respect to a
face f , check whether it can be repaired with Lemma 4. To keep track of where we have to flip
the edge order at vertices, we use two types of markers. A green marker at a vertex x indicates
that the outgoing edges of x should be swapped and that both incoming and outgoing edges of
the vertices “above” x should be reversed. We thus mark u green if e can be repaired because the
respective edge eu is a bridge and we mark w green if e can be repaired because of a respective
split pair {w, u}. Furthermore, we mark e red to tells us to stop reversing edge orders. Both the
check and the marking can be done in O(|f |) time. Since by Lemma 3 any face contains at most
two bad edges, this step takes overall also only O(n) time.

Suppose every bad edge can be fixed. Then run a BFS on G that starts at the source. During
the traversal, remember along each path the number of green marked vertices minus the number
of encountered red edges. Then for each vertex v, use the parity of this number to decide whether
its edge orders have to be reversed; if odd, then reverse, and if even, then do not. Vertices marked
green need to be handled appropriately. This takes again only linear time and as a result we get
an upward planar embedding of G that admits a 2-slope representation UG. Finally, apply the
algorithm from Theorem 1 on UG to compute an upward planar 2-slope drawing of G. □

JGAA, 26(1) 171–198 (2022) 183

Note that in Lemma 4, whether a bad edge is bad in any upward planar embedding of G is
independent from whether another edge is bad in any upward planar embedding of G. Hence,
we can also use Theorem 4 and Corollary 2 to minimise the number of bends in a 1-bend 2-slope
drawing of G.

Corollary 5 Let G be an upward planar single-source digraph with n vertices and maximum in-
and outdegree two. An upward planar 1-bend 2-slope drawing of G with the minimum number of
bends can be computed in O(n) time.

4.2 SPQR-trees and upward spirality

Didimo et al. [20] described algorithms to compute upward planar embeddings of biconnected
series-parallel and general digraphs. They then use a result from Healy and Lynch [27] about
combining biconnected blocks of upward planar digraphs to get rid of the biconnectivity condition.
We follow their approach closely. In particular, we also use the notions of SPQR-trees and upward
spirality (with the latter tailored to our needs) on which Didimo et al.’s approach heavily relies on
and tailor them to our needs. We refer to Didimo et al. [20] for the precise definition of SPQR-
trees (for undirected graphs and then derived for digraphs), though recall the main concepts in
this section.

Let G be a biconnected digraph and let e = (s, t) be any edge of G called reference edge.
An SPRQ-tree T of G with respect to e represents a decomposition of G with respect to its
triconnected components [16, 25]. As such, it also represents all planar embeddings of G with e
on the outer face. Starting with the split pair {s, t}, the decomposition is constructed recursively
on the split pairs of G. More precisely, T is a rooted tree where every node is of type S, P, Q, or
R: Q-nodes represent single edges, S-nodes and P-nodes represent series components and parallel
components, and R-nodes represent triconnected (rigid) components; see Figure 10 for an example.
Each node µ in T has associated a biconnected multigraph skel(µ), called the skeleton of µ, in
which the children of µ and its reference edge are represented by a virtual edge. The root of T is
a Q-node representing (s, t). The child of µ is now defined recursively as follows:

Trivial case. If G consists of exactly two parallel edges between s and t, then µ is a Q-node
representing the edge (s, t) parallel to the reference edge and the skeleton skel(µ) is G.

Parallel case. If the split pair {s, t} has three or four split components G1, G2, . . . , Gk (more are
not possible with our degree restrictions), then µ is a P-node. The skeleton skel(µ) consists of
k parallel edges between s and t that represent the reference edge G1 and the components Gi,
2 ≤ i ≤ k.

Series case. If {s, t} induces two split components e = (s, t) and Ḡ, then µ is an S-node. If Ḡ is
a chain of biconnected components G1, . . . , Gk with cut vertices c1, . . . , ck−1 (k ≥ 2), then
skel(µ) is the cycle t, e, s, e1, c1, . . ., ck−1, ek, t where ei represents Gi.

Rigid case. Otherwise µ is an R-node. Let {s1, t1}, . . . , {sk, tk} be the maximal split pairs of G
with respect to {s, t}. Let Gi be the union of split components of {si, ti} except the one
containing e. Then skel(µ) is obtained from G by replacing each subgraph Gi with ei.

The skeleton of the root consists of two parallel edges, e and a virtual edge representing the rest
of the graph. Each node µ of T that is not a Q-node has children µ1, . . . , µk, in this order such
that µi is a child of µ based on Gi ∪ ei with respect to ei. The pertinent graph Gµ for a node µ of

184 Klawitter and Mchedlidze Upward planar drawings with two slopes

T represents the full subgraph of G in the SPQR-tree rooted at µ. The end vertices of ei = (si, ti)
are called the poles of µ, of skel(µ), and of Gµ. Refer to Figure 10 for an example and note that
every edge is represented by a Q-node. We assume that T is in its canonical form, that is, every
S-node of T has exactly two children. The canonical form can be derived from a non-canonical
form in linear time [20].

R P

s

t Q

S

QQQ Q

QQQQ QQ

S S1

9

2

3

4
5

6
7

8

Q

S

3

4

µ

4

5
7

1

4
s

t

1

9

t
9

s
Gµ

G
4

Figure 10: A digraph G and its (non-canonical) SPQR-tree with respect to the reference edge {s, t}.
The skeletons of some nodes are depicted with the virtual edge drawn dashed. The pertinent graph
Gµ of the R-node µ is highlighted in G.

Assume that G is equipped with an st-numbering (based on its underlying undirected graph
and with respect to the reference edge {s, t}). Let µ be a node of T with poles u and v such that
u precedes v in the st-numbering. Then u is the first pole and v is the second pole of µ.

Assume that a pertinent graph Gµ of a node µ of T admits an upward planar 2-slope drawing
and let UGµ

be a 2-slope representation of Gµ. Let u and v be the poles of µ and let w ∈ {u, v}.
The pole category tw of the pole w is the way the edges that lie in the outer face of Gµ are incident
to w and which slopes they got assigned under UGµ . Note that edges incident to w that lie in
the interior of Gµ do not affect the pole category of w. The sixteen possible pole categories of
split components are shown in Figure 11. Two poles w and w′ with pole category tw and t′w,
respectively, are compatible if tw and t′w can be combined into a pole category of higher degree.
For example, combining iR and iL gives iRiL.

Next we define upward spirality, which measures how much a split component is “rolled up”.
The pertinent graph Gµ of a node µ of T may have 2-slope representations with different spirality.
Let UGµ

be a 2-slope representation of Gµ with first pole u and second pole v. Let P be an
undirected path in UGµ

. Two subsequent edges {x, y} and {y, z} of P define a right (left) turn
if P makes a 90◦ clockwise (resp. counterclockwise) turn at y according to UGµ

. Define the turn
number n(P) of P as the number of right turns minus the number of left turns of P . Let Pl and Pr

be the clockwise and counterclockwise paths from u to v along the outer face, respectively. We

define the upward 2-slope spirality σ of UGµ
as σ(UGµ

) = n(Pl)+n(Pr)
2 . See Figure 12 for examples.

Note that the turn number of a path is bounded by its length. Therefore, the number of possible
values for the upward 2-slope spirality of UGµ is in O(n) (and in O(d) where d is the diameter
of UGµ). For technical reasons that become apparent later, when we store the upward 2-slope
spirality of a 2-slope representation, we also store the values n(Pl) and n(Pr).

Let µ be a node of T with first pole u and second pole v. A feasible tuple of µ is a tuple
τµ = ⟨UGµ

, σ, tu, tv⟩ where UGµ
is an upward 2-slope representation of Gµ with pole categories tu

and tv and upward 2-slope spirality σ. Two feasible tuples of µ are spirality equivalent if they have

JGAA, 26(1) 171–198 (2022) 185

iL iR oL oR iRiL oLoR oRiR iLoL

iLoR oRiL iRoL oLiR

iRoR iLiR oRoL oLiL

Figure 11: Pole categories in a 2-slope representation; gray areas indicate where the interior of the
graph lies.

the same upward 2-slope spirality and pole categories. A feasible set Fµ of µ is a set of all feasible
tuples of µ such that there is exactly one representative tuple for each class of spirality equivalent
tuples of µ.

4.3 Series-parallel digraphs

Let G be a biconnected series-parallel digraph, that is, an SPQR-tree (or rather SPQ-tree) of G
contains no R nodes. Our goal is to test the existence of an upward planar embedding that does
not contain a bad edge and thus the existence of a 2-slope representation of G. The idea of the
algorithm is as follows. Pick a reference edge e and construct the respective SPQR-tree T of G.
In a post-order traversal of T , compute the feasible set of each node. This is straightforward for

v
u

u
v

Pl

Pl

Pr

Pr

(a) (b)

Figure 12: Two different 2-slope representations of the same digraph for different upward planar
embeddings: (a) The paths Pl and Pr have turn number 1 and 0, and so the upward 2-slope
spirality is 0.5; (b) the paths Pl and Pr have turn number −3 and −4, and so the upward 2-slope
spirality is −3.5

186 Klawitter and Mchedlidze Upward planar drawings with two slopes

G1

v

u u v

UG1

UG2

(a) (b)

G2

v2

v1, u2

u1

e1l
e1r

e2r

e2l

u

UG1

UG2

(c)

v2
u2

v

U ′
G2

Figure 13: Illustration of a series composition of split components G1 and G2: (b) UG1
and UG2

are compatible and the upward 2-slope spirality can be computed based on σ(UG1
), σ(UG2

), and
the turns at e1l and e2l and at e1r and e2r; (c) UG1

and U ′
G2

are not compatible.

Q-nodes. For an S- or P-node µ, try to combine feasible tuples of the children of µ to feasible tuples
of µ. The pole categories and upward 2-slope spirality values make it easier to check whether a
composition admits an upward planar 2-slope representation. If this leads to a non-empty feasible
set for the root of T , we can construct a drawing. Otherwise, we try again with another reference
edge.

Let µ be a Q-node of T with first pole u and second pole v and suppose Gµ is the edge
(u, v); the case where Gµ is (v, u) is handled analogously. Then there are only two upward 2-slope
representation of Gµ, namely when (u, v) is assigned the slope ↖ or the slope ↗. Therefore, Fµ

has size two. The following two lemmata show how to compute the feasible set of an S-node and
a P-node of T .

Lemma 5 Let G be a biconnected digraph with n vertices and T be an SPQR-tree of G. Let µ be
an S-node of T with children µ1 and µ2. Given the feasible sets Fµ1

and Fµ2
, the feasible set Fµ

can be computed in O(n2) time.

Proof: To compute a feasible tuple τ of Fµ we check for all pairs τ1 ∈ Fµ1 and τ2 ∈ Fµ2

whether they can be combined. More precisely, let u be the first and v the second pole of µ;
refer to Figure 13. Let ui be the first and vi be the second pole of µi, i ∈ {1, 2}. Without
loss of generality, assume that u = u1, v1 = u2, and v2 = v. For each pair of feasible tuples
τ1 = ⟨UGµ1

, σ1, tu1
, tv1⟩ ∈ Fµ1

and τ2 = ⟨UGµ2
, σ2, tu2

, tv2⟩ ∈ Fµ2
check whether tv1 and tu2

are
compatible. In other words, check whether Gµ1 and Gµ2 can be plugged together at v1 = u2 under
the slope assignments of UGµ1

and UGµ2
and with the reference edge on the outer face.

If the pole categories are compatible, the feasible tuple τ = ⟨UGµ
, σ, tu, tv⟩ is given by tu = tu1

,
tv = tv2 , UGµ

as the series composition of UGµ1
and UGµ2

at the common vertex u2 = v1, and

where σ can be computed as follows. For i ∈ {1, 2}, let eil and eir be the edges of UGµi
that are

incident to u2 = v1 and lie on the clockwise and counterclockwise path from u to v along the
outer face, respectively; see Figure 13 (b). Note that eil may coincide with eir. For j ∈ {l, r},
let αj be −1, 1, or 0 depending on whether e1j and e2j make a left, right, or no turn, respectively.

The upward 2-slope spirality of UGµ
is σ = σ1 + σ2 +

αl+αr

2 (compare to Lemma 6.4 by Didimo
et al. [20]). Store τ in Fµ if Fµ contains no feasible tuple with spirality equivalent to τ . Since Fµ1

and Fµ2
have O(n) tuples, Fµ can be computed in O(n2) time. □

Lemma 6 Let G be a biconnected digraph with n vertices and T be an SPQR-tree of G. Let µ be a
P-node of T with children µ1, . . . , µk with k ≤ 4. Given the feasible sets Fµ1

, . . . ,Fµk
, the feasible

set Fµ can be computed in O(n) time.

JGAA, 26(1) 171–198 (2022) 187

Proof: Let u be the first and v the second pole of µ (and its children). Since u and v have at
most degree four in G, µ has at most four children (but at least two). We first consider the case
where µ has three children. The cases where µ has two or four children are discussed at the end
of this proof.

For i ∈ {1, 2, 3}, let Gi be the pertinent digraph of µi. Note that u and v have degree one
in Gi. We can thus define ei and e′i as the edges of Gi incident to u and v, respectively. (If µi is a
Q-node, then ei = e′i.) Let eu and ev be the edges of G incident to u and v, respectively, that lie
outside of Gµ. (Note that eu = ev is only possible in the final composition, where eu is then also
the reference edge.) We want to construct a 2-slope representation of Gµ such that the order of
e1, e2, e3, eu at u is the reverse order of e′1, e

′
2, e

′
3, ev at v; see Figure 14 (a). Furthermore, the half

edges representing eu and ev have to be on the outer face.

Suppose we pick a feasible tuple τ1 = ⟨UG1
, σ1, tu1

, tv1⟩ ∈ Fµ1
. Then tu1

and tu2
restrict the

choices of pole categories of compatible upward 2-slope representations of G2 and G3. Likewise,
σ1 restricts these choices further; see Figure 14 (b) and (c). More precisely, we observe that the
upward 2-slope spirality σ2 and σ3 of compatible UG2 and UG3 differ from σ1 by at least two and
at most six (compare to Lemma 6.6 by Didimo et al. [20]). Therefore, when trying all possible
permutations of G1, G2, and G3, we only have to consider O(1) feasible tuples in Fµ2

and Fµ3

instead of iterating over complete sets. Storing the feasible tuples in a hash table based on the
spirality and pole categories we can find compatible τ2 and τ3 in constant time. Similar to the
series-composition, we can compute the upward 2-slope spirality of the resulting upward 2-slope
representation UGµ based on its categories and σi, i ∈ {1, 2, 3}. More precisely, for this purpose we
not only stored each σi but also the respective values n(Pl) and n(Pr) to compute them. Therefore,
we can take the appropriate values from the two 2-slope representations of UGi

, i ∈ {1, 2, 3}, that
are on the outer face. Overall, we get that by iterating once over Fµ1

we can construct all feasible
tuples of Fµ in O(n) time.

The case where µ has four children is only possible in the final composition with the reference
edge e. Here the algorithms works along the same line with the difference that the half edges
eu and ev are replaced with e. The case where µ has two children, works analogously with the
difference that for some feasible tuples of UG1

there can now be more compatible upward spirality
values for UG2 than above. However, these are still O(1) many and the running time is thus not
affected. □

G2G1 G3

v

u
u

v

u

v

UG3
UG2

(a) (b) (c)

UG1
UG1

Figure 14: Illustration of a parallel compositions with three children and how picking an upward
2-slope representation of G1 enforces the spirality of representation of G2 and G3.

Lastly, for the root composition we check in O(n) time whether the root of T , which is a Q-node
representing e, can be combined with a feasible tuple of its child. In the affirmative case, we obtain

188 Klawitter and Mchedlidze Upward planar drawings with two slopes

an upward 2-slope representation of G. With all compositions described, we can now prove the
main theorem of this section.

Theorem 6 Let G be a biconnected series-parallel digraph with n vertices. There exists an O(n4)-
time algorithm that tests if G admits an upward planar 2-slope drawing and, if so, that constructs
such a drawing.

Proof: Let e be an edge of G. Compute the (canonical) SPQR-tree T with respect to e of G,
which can be done in O(n) time [20, 25]. In a post-order traversal of T , the algorithm computes
the feasible set for every node of T . If the algorithm arrives at a node with an empty feasible set,
its starts with another reference of G. Otherwise, the algorithm stops when it has constructed a
feasible tuple for G. We can then use Theorem 1 to construct an upward planar 2-slope drawing.
For one reference edge, this takes at most O(n2) time per node by Lemmas 5 and 6. and since the
size of T is linear in n, at most O(n3) time in total. The total running time is thus in O(n4). □

In Section 4.5 we explain how to handle non-biconnected series-parallel digraphs.

4.4 Biconnected digraphs

We extend the algorithm for biconnected series-parallel digraphs to general biconnected digraphs
following again Didimo et al. [20]. The upward planarity check is again combined with finding
a 2-slope representation. Let G be a biconnected digraph. Let T be the SPQR-tree of G with
respect to a reference edge e. The algorithm computes again the feasible sets of the nodes of T in a
post-order traversal. For Q-, S-, or P-nodes this works as before. Recall that to compute a feasible
tuple of an S-node or P-node it suffices to look at the pole categories and upward spirality of its
children. For R-node this connection is not as clear and we rely thus on a brute-force approach.
More precisely, we compute the feasible set by considering all possible combinations of tuples for
each virtual edge of skel(µ) to construct UGµ

. If substitutions are successful, we have to check
upward planarity and the existence of bad edges.

Lemma 7 Let G be a biconnected digraph with n vertices and T be an SPQR-tree of G. Let µ
be an R-node of T with children µ1, . . . , µk. Let d be the diameter of Gµ. Given the feasible sets
Fµ1

, . . . ,Fµk
, the feasible set Fµ can be computed in O(dkn2) time.

Proof: Note that since skel(µ) is triconnected, it has a unique planar embedding (up to mirroring),
which we can compute in O(n) time. Note that, by Theorem 1, if skel(µ) contains a bad edge with
respect to three non-virtual edges, then Fµ is empty. Moreover, then G admits no upward planar
2-slope drawing and the main algorithm can stop. So suppose no such bad edge exists.

Construct a 2-slope representation of Gµ by substituting virtual edges with the respective
2-slope representations. More precisely, for all i ∈ {1, . . . , k}, substitute ei with the 2-slope repre-
sentation UGµi

of a feasible tuple in Fµi
. Let U ′

Gµ
denote the partial upward 2-slope representation

of Gµ during this process, that is, U ′
Gµ

consists of an embedding of Gµ and the 2-slope assignment

for all edges of the UGµi
, for i ∈ {1, . . . , k}. At each pole of a child µi in U ′

Gµ
check whether

the 2-slope representations of the substituted parts are conflicting. If this check fails, backtrack
and try another feasible tuple. Suppose that it is successful for all poles of all µi. Then test the
upward planarity of U ′

Gµ
with the flow-based upward planarity algorithm for triconnected digraphs

by Bertolazzi et al. [5] where the assignment of switches to faces is given for the substituted parts
(derived from U ′

Gµ
). This flow-based algorithm runs in O(n2) time.

JGAA, 26(1) 171–198 (2022) 189

If U ′
Gµ

is upward planar, check whether U ′
Gµ

contains any bad edge and, if not, extend U ′
Gµ

to

a 2-slope representation UGµ
of Gµ (compare to Lemma 8.2 by Didimo et al. [20]). Suppose there

is an edge (x, y) on the outer face of UGµ
that is the sole outgoing edge of x and the sole incoming

edge of y. Note that the choice of slope for (x, y) does not influence the spirality of UGµ , since the
angles formed at x and y always add up to the same value; see Figure 15. Lastly, compute the
upward 2-slope spirality of UGµ

in O(n) time to obtain a feasible tuple for Fµ. By backtracking
and trying the remaining feasible tuples of the µi, we complete the computation of Fµ.

f
fx

y y

x

Figure 15: In an R-node µ, the slope choice for an edge (x, y) that is the sole outgoing edge at x
and sole incoming edge at y along the outer face does not effect the upward spirality UGµ

.

Note that d is an upper bound on the upward 2-slope spirality of a split component and thus
each µi has O(d) feasible tuples. Therefore the algorithm tries at most O(dk) combinations of
feasible tuples of the k children of µ. Hence the feasible set of an R-node µ can be computed in
O(dkn2) time, where the factor O(n2) comes from the flow based upward planarity test. □

Let d denote the maximum diameter of a split component of G and let t denote the number of
nontrivial triconnected components of G, i.e., series components, parallel components, and rigid
components. Didimo et al. [20] have shown that in Lemma 7 we can also bound the running time
with O(dtn2) and further, in total, compute the feasible sets of all R-nodes in O(dttn2) time.
Recall that the time needed to compute the feasible set of an S-node is bounded by the square of
possible spirality values and is thus in O(d2). Since we use the canonical form of SPQR-trees there
are O(n) S-nodes. Therefore, we can compute the feasible sets of all S-nodes of T in O(d2n) time.
Similarly, the feasible sets of all P-nodes of T can be computed in O(dt) time. Lastly, iterating
over all SPQR-trees of G for the different choices of reference edges adds another factor of O(n).
If a 2-slope representation of G has been found, we apply again Theorem 1 to compute a drawing.
Hence, we get the following theorem.

Theorem 7 Let G be a biconnected digraph with n vertices. Suppose that G has at most t non-
trivial triconnected components, and that each split component has diameter at most d. Then there
exists an O(dttn3 + dtn + d2n2)-time algorithm that tests if G admits an upward planar 2-slope
drawing and, if so, that constructs such a drawing of G.

4.5 General digraphs

So far we have seen how to test whether a biconnected digraph admits a 2-slope representation.
For a general digraph G, even if each of its biconnected components, called a block, has a 2-slope
representation we may not be able to join the blocks; see Figure 16. In fact, even if all blocks of G
being upward planar does not imply that G is upward planar [27]. Nonetheless, following Healy
and Lynch [27], our strategy is to test for each block if its admits a 2-slope representation under
some special conditions and, in the affirmative, join these representations.

When we want to merge the representations of two blocks, we have to take two things into
consideration. Namely, we have to test whether their joined cut vertex c is on the outer face for

190 Klawitter and Mchedlidze Upward planar drawings with two slopes

cc c

G(a) (b)

Figure 16: G does not admit a 2-slope representations (a), even though its blocks do (b).

one of the two blocks and whether their 2-slope representations fit together at c (just like poles
and their pole categories). Before we get into detail on this, we recall what a block-cut tree is and
explain how it gives a suitable order to process the blocks.

Block-cut tree. The block-cut tree T of G contains a vertex for each block and for each cut
vertex, and an edge between a cut vertex c and each block that contains c. For G to admit a
2-slope representation, we must be able to root T at a block (with all edges oriented towards this
root block) such that an edge {B, c} between a block B and cut vertex c is oriented towards c only
if B admits a 2-slope representation where c is on the outer face (see Figure 17 and compare to
Lemma 3 by Chan [10]). Note that if we can root T at a block B′, then any other block B has
exactly one outgoing edge and B′ has only incoming edges. For a block B with outgoing edge to a
cut vertex c, we say B is a block with respect to c. Note that multiple blocks can be a block with
respect to the same cut vertex.

c1
B1

B2B3
B5

B4

B6

B1

B3

B2

B4 B5

B6

c1

c2 c3

c4

c2 c3

c4

(a) (b)

Figure 17: A digraph with six blocks and 2-slope representation (a) and the corresponding rooted
block-cut tree (b).

Suppose we would know how to root T . With a post-order traversal of T , we could then try
to find a 2-slope representation for each block B with respect to c of T that has c on the outer
face. However, a priori we do not know at which block to root T . Hence, our algorithm works as
follows.

JGAA, 26(1) 171–198 (2022) 191

Algorithm. Given G, we can find its cut vertices and blocks and construct its block-cut tree T
in O(n) time [50]. Since we do not know what block can function as root of T yet, we start at the
leaves of T and work “inwards”. Note that a leaf block B has only one edge {B, c} in T to a cut
vertex c (unless B = G) and we can thus provisionally direct {B, c} to c. This yields a block with
respect to a cut vertex – B with respect to c. Furthermore, during the algorithm, for at least one
non-leaf block B either all or all but one of its neighboring blocks have been handled. We then
direct each edge {B, c′}, where all other blocks adjacent to c′ have been handled, towards B. If no
undirected edge incident to B remains, then all neighboring blocks of B have been handled and B
is the root. Otherwise, there remains exactly one undirected edge {B, c}. Therefore, during this
ad hoc post-order traversal of T , we can ensure that we always have at least one block B that is
the root or for which we can provisionally direct the last undirected edge incident to B towards a
cut vertex c in T i.e., B becomes a block with respect to c.

To process a block B with respect to c, we check whether B has a 2-slope representation UB

with (i) c on the outer face and (ii) additional constraints on the angles formed at all other cut
vertices of B, which we describe in detail below. If this is the case, then we can finalize the direction
of the edge {B, c} towards c. Otherwise, if B does not admit such a 2-slope representation, then B
has to be the root of T . We then orient all edges of T towards B and continue in the remaining
part of T . If we later find that another block also needs to be the root of T , then G does not
admit a 2-slope representation. Furthermore, when we arrive back at B, we have to test whether B
admits a 2-slope representation at all.

Note that for a block B with respect to c, where c has to be on the outer face of the 2-
slope representation UB , the algorithms from the previous two sections only have to consider an
SPQR-tree with an edge incident to c as reference edge.

Angles of cut vertices. We now describe the additional constraints that have to be checked
for a block B at all of B’s cut vertices. More precisely, let B be a block with respect to c (or the
root) and let c′ be any other cut vertex of B if it has any. Depending on the degree of c (and c′)
in B and in the neighboring blocks of B, we have the following extra conditions on the angles at
c and c′ in UB of B.

� Suppose c (or c′) has degree one in B. Then B is a single edge, c is automatically on the
outer face in any 2-slope representation of B, and the angle at c in UB is insignificant.

� Suppose c has degree two in B and c has degree two in another block B1; see Figure 18 (a).
Then c has to have a large angle on the outer face in UB , since otherwise it would not be
able to attach to UB1 such that B1 is in the outer face of B. If the same case applies to c′,
then c′ has to have a large angle in UB , but not necessarily on the outer face.

� Suppose c has degree two in B and c has degree one in two other blocks B1 and B2. Then
we first test if B admits a 2-slope representation where c has a large angle on the outer face;
see Figure 18 (b). In this case, both B1 and B2 lie in the outer face of B. Otherwise, if c
has indegree one and outdegree one in B, we test whether B admits a 2-slope representation
where c forms a flat angle on the outer face; see Figure 18 (c). We test once such that B1 lies
on the outer face of B and once for B2. In the former case, B2 would lie in the interior of B
and thus {B2, c} would be directed as (B2, c); in the latter case, B1 would lie in the interior
of B and thus {B1, c} would be directed as (B1, c). If neither is possible, then B has to be
the root. For c′ there are no restrictions under these conditions.

192 Klawitter and Mchedlidze Upward planar drawings with two slopes

� The case where c (or c′) has degree two in B and degree one in exactly one other block is
similar to the previous case but simpler.

� Suppose c has degree three in B; see Figure 18 (d). Then c has to have a flat angle at c on
the outer face. Otherwise B has to be the root. There are again no restrictions for c′ under
these conditions.

B1c′
c

B

B2

c
B

B2

(a) (b)

c
B

(d)(c)

c
B

B2

B1 B1
B1

c′

B3 B4

Figure 18: Conditions on the angles at c and c′ in UB for block a B with respect to c.

These conditions are clearly necessary and, following Healy and Lynch [27], also sufficient.
Furthermore, they can easily be tested by the algorithms from the previous sections, where we
(as observed above) can use an edge e incident to c as reference edge. More precisely, if c has
degree two in B, then its two incident edges are merged in the root composition. Hence, at this
step we only allow a merge with the desired angle at c, that is, we check if there there is 2-slope
representation of the child node of e with suitable upward spirality. Otherwise, if c has degree
three in B and has to form a flat angle, we take the sole outgoing or sole incoming edge of c in B
as the reference edge for the SPQR-tree. In the root composition we then only allow a merge when
there is the desired flat angle at c on the outer face.

Result. The total running time for our algorithm to test whether a general digraph admits a
2-slope representation and thus an upward planar 2-slope drawing is given by (i) a linear amount
for the computation of T , (ii) the sum of the checks for each block, and (iii) a linear amount for
merging. Because each cut vertex lies in at most four blocks, the running time for (ii) is at most as
much as if we tested a biconnected graph of the same size as G once. Hence, we get the following
results.

Theorem 8 Let G be a series-parallel digraph with n vertices. There exists an O(n4)-time algo-
rithm that tests if G admits an upward planar 2-slope drawing and, if so, that constructs such a
drawing.

Theorem 9 Let G be a digraph with n vertices. Let t be the maximum number of nontrivial
triconnected components of a block of G, and d be the maximum diameter of a split component of
a block of G. Then there exists an O(dttn3 + dtn+ d2n2)-time algorithm that tests if G admits an
upward planar 2-slope drawing and, if so, that constructs such a drawing of G.

5 Phylogenetic networks

Recall from Section 1 that a phylogenetic network is a single-source digraph whose sinks are all
leaves and whose non-sink, non-source vertices have degree three. In this section we show how to

JGAA, 26(1) 171–198 (2022) 193

find an upward planar 2-slope drawing of a phylogenetic network N such that its leaves lie on a
horizontal line – if N admits such a drawing. Since we want that all leaves are on the outer face,
we first merge them into a single vertex and then apply the linear-time algorithm of Bertolazzi
et al. [6] to test whether the resulting digraph N ′ is upward planar. Clearly, N ′ is upward planar
if and only if N admits a desired upward planar embedding. In the affirmative case, let N now be
an upward plane phylogenetic network such that its k leaves lie on the outer face. Further assume
that N contains no bad edge or, in this case equivalently, no transitive edge (unlike the network
in Figure 20 (a)).

In Section 3, we constructed an upward planar 2-slope drawing by implementing the refinement
step, which augments all faces to rectangular faces, and by applying a compaction algorithm [35]. In
order to obtain a drawing where all leaves lie on the same horizontal line, we apply this algorithm
to the following augmentation N̄ of N . Let l1, l2, . . . , lk be the leaves of N in clockwise order
around the outer face. Add new vertices v1, v2, . . . , vk−1 and edges ei = (li, vi) and e′i = (li+1, vi),
i ∈ {1, . . . , k − 1}; see Figure 19 (a). Then apply Theorem 1 to N̄ to obtain an upward planar
2-slope drawing of N̄ in O(n) time.

s s

l1
l2

(b)

v1
e1

e′1

(c)

l1
l4

v1
v2
v3l2

l3

e1
e′1

(a) t1 t2 t3

s s

(d) t1 t2 t3

+1

+1

Figure 19: (a) The augmentation N̄ of an upward planar phylogenetic network N ; (b) an upward
planar 2-slope drawing where l1 and l2 have different y-coordinates; (c) the dual flows Gl (red)
and Gr (blue); (d) Propagating the length difference of e1 and e′1 through Gl.

We observe from Figure 19 (b) that two vertices li and li+1 of N̄ (neighboring leaves of N)
have different y-coordinates if and only if ei and e′i have different lengths. This can be fixed
by propagating these length differences through the drawing in the following way (Figure 19 (c–
d)). Let G be the dual graph of N̄ . Furthermore, define Gl and Gr as the two subgraphs of G
with V (G) = V (Gl) = V (Gr) and where E(Gl) and E(Gr) are the dual edges of primal edges with
slope ↖ and ↗, respectively. In other words, Gl is the dual graph of N̄ restricted to edges with
slope ↖. Direct every edge e∗ in E(Gl) (E(Gr)) with primal edge e from the left (resp. right)
face of e to the right (resp. left) face of e. Assign to each dual edge flow equal to the length of
its primal edge. Split the vertex corresponding to the outer face of N̄ into a source s and k − 1
sinks t1, t2, . . . , tk−1 such that ti has as incoming edges the dual edges of the primal edges ei and e′i;
see Figure 19 (c). These dual graphs can be constructed in linear time.

Next, to adjust the heights of the leaves of N , for every pair ei and e′i, i ∈ {1, . . . , k − 1},
if, say, e′i is shorter than ei, propagate the difference as flow backwards towards s through Gl;
see Figure 19 (d). With one DFS on Gl and Gr each, all leaves can be handled simultaneously
and in linear time. Lastly, since some edge lengths have been changed, update the coordinates of
all vertices in N̄ and remove the vertices vi, i ∈ {1, . . . , k}, to obtain an upward planar 2-slope
drawing of N . The following theorem summarises this section.

194 Klawitter and Mchedlidze Upward planar drawings with two slopes

Theorem 10 Let N be a phylogenetic network with n vertices and no transitive edge. If N admits
an upward planar drawing with all its leaves on the outer face, then N admits and upward planar
2-slope drawing such that all its leaves lie on a horizontal line. Moreover, such a drawing can be
constructed in O(n)-time.

2 1

(a) (b)

1 3 4 5 2 3 4 5

u

v

u

v

Figure 20: (a) A phylogenetic network with a transitive edge (u, v) does not admit an upward
planar 2-slope drawing, (b) however, it admits an upward planar 1-bend 2-slope drawing.

Note that by Corollary 5 a phylogenetic network with m transitive edges admits a upward
planar 1-bend 2-slope drawing with at most m bends; see Figure 20.

6 Concluding remarks

When considering the number of slopes in a graph drawing, one typically asks how many different
slopes are necessary for a graph of certain graph class. Here we instead constrained the number of
slopes to two and asked what digraphs can then be drawn upward planar. Our digraphs are thus
limited to those that contain no transitive edges and have a small maximum degree. Beyond that,
the difficulty of the problem depends on whether or not an upward planar embedding is given and
on the complexity of the digraph.

We have shown that if the embedding is fixed then the question can be answered and, in the
affirmative, a drawing constructed in linear time. In this case the problem boils down to whether
there is a bad edge for the given embedding and, if not, to adapt algorithms for orthogonal
drawings. However, even if there are bad edges present, allowing each of them to bend once is
enough to obtain an upward planar 1-bend 2-slope drawing with the minimum number of bends.
We conjecture that it is NP-hard to minimize the drawing area of an upward planar 2-slope drawing
just like it is for orthogonal drawings [44]. It would be interesting to see a proof for this and how
compaction algorithms for orthogonal drawings can be applied to upward planar drawings.

If a given digraph is not embedded yet, we first have to check whether the digraph is upward
planar. For single-source digraph, we have seen that it suffices to find one upward planar em-
bedding, which may then be altered to one without bad edges if it exists. For series-parallel and
general digraphs we reused an approach by Didimo et al. [20] based on SPQR-trees and upward spi-
rality to find a quartic time and a fixed-parameter tractable algorithm, respectively. An important
difference is that our algorithm does not only compute upward planar embeddings for nodes of the
SPQR-tree but also 2-slope representations. Through the degree restrictions the algorithm became
simpler and can thus also consider other properties. It would be interesting to see whether the
algorithm that computes an upward planar embedding of a single-source digraph can be modified
to directly compute a 2-slope representation.

JGAA, 26(1) 171–198 (2022) 195

This research was motivated by drawings of phylogenetic networks. While we here assumed
that a given phylogenetic network is upward planar, this is not a biologically motivated property
of phylogenetic networks. One may argue that phylogenetic networks often have few reticulations
(vertices with indegree two or higher), but even just two reticulations suffice to obstruct upward
planarity. Hence, it would be interesting to have algorithms that can also draw non-upward planar
phylogenetic network with two slopes.

The biggest challenges remain for drawings with more than two slopes. Our feeling is that
while the complexity of developing algorithms to draw graphs with two slopes is manageable, three
or more slopes increase the geometric interdependence dramatically. While the companion paper
by Klawitter and Zink [36] started to investigate this, we would be happy to see more results on
upward planar slope numbers of graphs.

Acknowledgements

We thank the reviewers for their helpful comments and suggestions.

References

[1] C. Bachmaier, F. J. Brandenburg, W. Brunner, A. Hofmeier, M. Matzeder, and T. Unfried.
Tree drawings on the hexagonal grid. In I. G. Tollis and M. Patrignani, editors, Graph Drawing,
pages 372–383. Springer, 2009. doi:10.1007/978-3-642-00219-9_36.

[2] C. Bachmaier, U. Brandes, and B. Schlieper. Drawing phylogenetic trees. In X. Deng and
D.-Z. Du, editors, Algorithms and Computation, pages 1110–1121. Springer, 2005. doi:10.

1007/11602613_110.

[3] C. Bachmaier and M. Matzeder. Drawing unordered trees on k-grids. Journal of Graph
Algorithms and Applications, 17(2):103–128, 2013. doi:10.7155/jgaa.00287.

[4] M. A. Bekos, E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. Universal Slope
Sets for Upward Planar Drawings. In T. Biedl and A. Kerren, editors, Graph Drawing and
Network Visualization, pages 77–91. Springer International Publishing, 2018. doi:10.1007/

978-3-030-04414-5_6.

[5] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings of triconnected
digraphs. Algorithmica, 12(6):476–497, 1994. doi:10.1007/BF01188716.

[6] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal Upward Planarity
Testing of Single-Source Digraphs. SIAM Journal on Computing, 27(1):132–169, 1998. doi:
10.1137/S0097539794279626.

[7] A. Boc, A. B. Diallo, and V. Makarenkov. T-REX: a web server for inferring, validating and
visualizing phylogenetic trees and networks. Nucleic Acids Research, 40(W1):W573–W579,
2012. doi:10.1093/nar/gks485.

[8] W. Brunner and M. Matzeder. Drawing ordered (k-1)-ary trees on k-grids. In U. Brandes
and S. Cornelsen, editors, Graph Drawing, pages 105–116. Springer, 2011. doi:10.1007/

978-3-642-18469-7_10.

https://doi.org/10.1007/978-3-642-00219-9_36
https://doi.org/10.1007/11602613_110
https://doi.org/10.1007/11602613_110
https://doi.org/10.7155/jgaa.00287
https://doi.org/10.1007/978-3-030-04414-5_6
https://doi.org/10.1007/978-3-030-04414-5_6
https://doi.org/10.1007/BF01188716
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1093/nar/gks485
https://doi.org/10.1007/978-3-642-18469-7_10
https://doi.org/10.1007/978-3-642-18469-7_10

196 Klawitter and Mchedlidze Upward planar drawings with two slopes

[9] G. Brückner, N. D. Krisam, and T. Mchedlidze. Level-planar drawings with few slopes. In
D. Archambault and C. D. Tóth, editors, Graph Drawing and Network Visualization, pages
559–572, 2019. doi:10.1007/978-3-030-35802-0_42.

[10] H. Chan. A Parameterized Algorithm for Upward Planarity Testing. In S. Albers and
T. Radzik, editors, Algorithms – ESA 2004, pages 157–168. Springer, 2004. doi:10.1007/

978-3-540-30140-0_16.

[11] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for
upward drawings of binary trees. Computational Geometry, 2(4):187–200, 1992. doi:

10.1016/0925-7721(92)90021-J.

[12] J. Czyzowicz. Lattice diagrams with few slopes. Journal of Combinatorial Theory, Series A,
56(1):96–108, 1991. doi:10.1016/0097-3165(91)90025-C.

[13] J. Czyzowicz, A. Pelc, and I. Rival. Drawing orders with few slopes. Discrete Mathematics,
82(3):233–250, 1990. doi:10.1016/0012-365X(90)90201-R.

[14] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall, 1999.

[15] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.
Theoretical Computer Science, 61(2):175–198, 1988. doi:10.1016/0304-3975(88)90123-5.

[16] G. Di Battista and R. Tamassia. Incremental planarity testing. In 30th Annual Symposium
on Foundations of Computer Science, pages 436–441, 1989. doi:10.1109/SFCS.1989.63515.

[17] G. Di Battista, R. Tamassia, and I. G. Tollis. Area Requirement and Symmetry Display
of Planar Upward Drawings. Discrete & Computational Geometry, 7:381–401, 1992. doi:

10.1007/BF02187850.

[18] E. Di Giacomo, G. Liotta, and F. Montecchiani. Drawing subcubic planar graphs with four
slopes and optimal angular resolution. Theoretical Computer Science, 714:51–73, 2018. doi:
10.1016/j.tcs.2017.12.004.

[19] E. Di Giacomo, G. Liotta, and F. Montecchiani. 1-bend upward planar slope number of SP-
digraphs. Computational Geometry, 90:101628, 2020. doi:10.1016/j.comgeo.2020.101628.

[20] W. Didimo, F. Giordano, and G. Liotta. Upward Spirality and Upward Planarity Testing.
SIAM Journal on Discrete Mathematics, 23(4):1842–1899, 2010. doi:10.1137/070696854.

[21] V. Dujmović, D. Eppstein, M. Suderman, and D. R. Wood. Drawings of planar graphs with
few slopes and segments. Computational Geometry, 38(3):194–212, 2007. doi:10.1016/j.

comgeo.2006.09.002.

[22] M. Dunn. Language phylogenies. In C. Bowern and B. Evans, editors, The Routledge Handbook
of Historical Linguistics, chapter 7. Routledge, 2014. doi:10.4324/9781315794013.ch7.

[23] D. Eppstein. The Complexity of Bendless Three-Dimensional Orthogonal Graph Drawing.
Journal of Graph Algorithms and Applications, 17(1):35–55, 2013. doi:10.7155/jgaa.00283.

https://doi.org/10.1007/978-3-030-35802-0_42
https://doi.org/10.1007/978-3-540-30140-0_16
https://doi.org/10.1007/978-3-540-30140-0_16
https://doi.org/10.1016/0925-7721(92)90021-J
https://doi.org/10.1016/0925-7721(92)90021-J
https://doi.org/10.1016/0097-3165(91)90025-C
https://doi.org/10.1016/0012-365X(90)90201-R
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1007/BF02187850
https://doi.org/10.1007/BF02187850
https://doi.org/10.1016/j.tcs.2017.12.004
https://doi.org/10.1016/j.tcs.2017.12.004
https://doi.org/10.1016/j.comgeo.2020.101628
https://doi.org/10.1137/070696854
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.4324/9781315794013.ch7
https://doi.org/10.7155/jgaa.00283

JGAA, 26(1) 171–198 (2022) 197

[24] A. Garg and R. Tamassia. On the Computational Complexity of Upward and Rectilin-
ear Planarity Testing. SIAM Journal on Computing, 31(2):601–625, 2001. doi:10.1137/

S0097539794277123.

[25] C. Gutwenger and P. Mutzel. A Linear Time Implementation of SPQR-Trees. In J. Marks,
editor, Graph Drawing, pages 77–90. Springer, 2001. doi:10.1007/3-540-44541-2_8.

[26] P. Healy and K. Lynch. Two fixed-parameter tractable algorithms for testing upward planarity.
International Journal of Foundations of Computer Science, 17(05):1095–1114, 2006. doi:

10.1142/S0129054106004285.

[27] P. Healy and K. Lynch. Building blocks of upward planar digraphs. Journal of Graph Algo-
rithms and Applications, 11(1):3–44, 2007. doi:10.7155/jgaa.00135.

[28] U. Hoffmann. On the Complexity of the Planar Slope Number Problem. Journal of Graph
Algorithms and Applications, 21(2):183–193, 2017. doi:10.7155/jgaa.00411.

[29] D. H. Huson. Drawing Rooted Phylogenetic Networks. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 6(1):103–109, 2009. doi:10.1109/TCBB.2008.58.

[30] D. H. Huson and D. Bryant. Application of Phylogenetic Networks in Evolutionary Studies.
Molecular Biology and Evolution, 23(2):254–267, 2005. doi:10.1093/molbev/msj030.

[31] D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms
and Applications. Cambridge University Press, 2010.

[32] D. H. Huson and C. Scornavacca. Dendroscope 3: An Interactive Tool for Rooted Phyloge-
netic Trees and Networks. Systematic Biology, 61(6):1061–1067, 2012. doi:10.1093/sysbio/
sys062.

[33] V. Jeĺınek, E. Jeĺınková, J. Kratochv́ıl, B. Lidický, M. Tesař, and T. Vyskočil. The Planar
Slope Number of Planar Partial 3-Trees of Bounded Degree. Graphs and Combinatorics,
29(4):981–1005, 2013. doi:10.1007/s00373-012-1157-z.

[34] P. Kindermann, F. Montecchiani, L. Schlipf, and A. Schulz. Drawing Subcubic 1-Planar
Graphs with Few Bends, Few Slopes, and Large Angles. In T. Biedl and A. Kerren, editors,
Graph Drawing and Network Visualization, pages 152–166. Springer, 2018. doi:10.1007/

978-3-030-04414-5_11.

[35] G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison of orthogonal compaction
algorithms. In J. Marks, editor, Graph Drawing, pages 37–51. Springer, 2001. doi:10.1007/
3-540-44541-2_5.

[36] J. Klawitter and J. Zink. Upward planar drawings with three and more slopes. In H. C.
Purchase and I. Rutter, editors, Graph Drawing and Network Visualization, pages 149–165.
Springer, 2021. doi:10.1007/978-3-030-92931-2_11.

[37] T. H. Kloepper and D. H. Huson. Drawing explicit phylogenetic networks and their integration
into splitstree. BMC Evolutionary Biology, 8(1):22, 2008. doi:10.1186/1471-2148-8-22.

[38] K. Knauer, P. Micek, and B. Walczak. Outerplanar graph drawings with few slopes. Compu-
tational Geometry, 47(5):614–624, 2014. doi:doi.org/10.1016/j.comgeo.2014.01.003.

https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.7155/jgaa.00135
https://doi.org/10.7155/jgaa.00411
https://doi.org/10.1109/TCBB.2008.58
https://doi.org/10.1093/molbev/msj030
https://doi.org/10.1093/sysbio/sys062
https://doi.org/10.1093/sysbio/sys062
https://doi.org/10.1007/s00373-012-1157-z
https://doi.org/10.1007/978-3-030-04414-5_11
https://doi.org/10.1007/978-3-030-04414-5_11
https://doi.org/10.1007/3-540-44541-2_5
https://doi.org/10.1007/3-540-44541-2_5
https://doi.org/10.1007/978-3-030-92931-2_11
https://doi.org/10.1186/1471-2148-8-22
https://doi.org/doi.org/10.1016/j.comgeo.2014.01.003

198 Klawitter and Mchedlidze Upward planar drawings with two slopes

[39] W. Lenhart, G. Liotta, D. Mondal, and R. I. Nishat. Planar and Plane Slope Number of Partial
2-Trees. In S. Wismath and A. Wolff, editors, Graph Drawing, pages 412–423. Springer, 2013.
doi:10.1007/978-3-319-03841-4_36.

[40] P. Mukkamala and D. Pálvölgyi. Drawing Cubic Graphs with the Four Basic Slopes. In
M. van Kreveld and B. Speckmann, editors, Graph Drawing, pages 254–265. Springer, 2012.
doi:10.1007/978-3-642-25878-7_25.

[41] M. Nöllenburg and A. Wolff. Drawing and labeling high-quality metro maps by mixed-integer
programming. IEEE Transactions on Visualization and Computer Graphics, 17(5):626–641,
2011. doi:10.1109/TVCG.2010.81.

[42] J. Pach and D. Pálvölgyi. Bounded-degree graphs can have arbitrarily large slope numbers.
Electronic Journal of Combinatorics, 13(1):N1, 2006. doi:10.37236/1139.

[43] A. Papakostas. Upward planarity testing of outerplanar dags. In R. Tamassia and I. G. Tollis,
editors, Graph Drawing, pages 298–306. Springer, 1995. doi:10.1007/3-540-58950-3_385.

[44] M. Patrignani. On the complexity of orthogonal compaction. Computational Geometry,
19(1):47–67, 2001. doi:10.1016/S0925-7721(01)00010-4.

[45] M. S. Rahman, M. Naznin, and T. Nishizeki. Orthogonal Drawings of Plane Graphs Without
Bends. Journal of Graph Algorithms and Applications, 7(4):335–362, 2003. doi:10.7155/

jgaa.00074.

[46] K. Schliep, M. Vidal-Garćıa, L. Biancani, F. H. Diaz, E. Ada, and C. Soĺıs-Lemus. tang-
gle: Visualization of phylogenetic networks in a ggplot2 framework, 2021. URL: https:
//klausvigo.github.io/tanggle/articles/tanggle_vignette.html.

[47] A. Schulz. Drawing graphs with few arcs. Journal of Graph Algorithms and Applications,
19(1):393–412, 2015. doi:10.7155/jgaa.00366.

[48] M. Steel. Phylogeny: Discrete and Random Processes in Evolution. Society for Industrial and
Applied Mathematics, 2016. doi:10.1137/1.9781611974485.

[49] R. Tamassia. On Embedding a Graph in the Grid with the Minimum Number of Bends. SIAM
Journal on Computing, 16(3):421–444, 1987. doi:10.1137/0216030.

[50] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

[51] I. G. Tollis and K. G. Kakoulis. Algorithms for Visualizing Phylogenetic Networks. In
Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization, pages 183–
195. Springer, 2016. doi:10.1007/978-3-319-50106-2_15.

[52] T. G. Vaughan. IcyTree: rapid browser-based visualization for phylogenetic trees and net-
works. Bioinformatics, 33(15):2392–2394, 2017. doi:10.1093/bioinformatics/btx155.

[53] G. A. Wade and J.-H. Chu. Drawability of Complete Graphs Using a Minimal Slope Set. The
Computer Journal, 37(2):139–142, 1994. doi:10.1093/comjnl/37.2.139.

https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1007/978-3-642-25878-7_25
https://doi.org/10.1109/TVCG.2010.81
https://doi.org/10.37236/1139
https://doi.org/10.1007/3-540-58950-3_385
https://doi.org/10.1016/S0925-7721(01)00010-4
https://doi.org/10.7155/jgaa.00074
https://doi.org/10.7155/jgaa.00074
https://klausvigo.github.io/tanggle/articles/tanggle_vignette.html
https://klausvigo.github.io/tanggle/articles/tanggle_vignette.html
https://doi.org/10.7155/jgaa.00366
https://doi.org/10.1137/1.9781611974485
https://doi.org/10.1137/0216030
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-50106-2_15
https://doi.org/10.1093/bioinformatics/btx155
https://doi.org/10.1093/comjnl/37.2.139

	Introduction
	Preliminaries
	Fixed embedding
	Variable embedding
	Single-source digraphs
	SPQR-trees and upward spirality
	Series-parallel digraphs
	Biconnected digraphs
	General digraphs

	Phylogenetic networks
	Concluding remarks
	References

