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Abstract. A c-crossing-critical graph is one that has crossing number at least c
but each of its proper subgraphs has crossing number less than c. Recently, a set of
explicit construction rules was identified by Bokal, Oporowski, Richter, and Salazar
to generate all large 2-crossing-critical graphs (i.e., all apart from a finite set of small
sporadic graphs). They share the property of containing a generalized Wagner graph
V10 as a subdivision.

In this paper, we study these graphs and establish their order, simple crossing num-
ber, edge cover number, clique number, maximum degree, chromatic number, chromatic
index, and treewidth. We also show that the graphs are linear-time recognizable and
that all our proofs lead to efficient algorithms for the above measures.

Keywords. Crossing number, crossing-critical graph, chromatic number, chromatic
index, treewidth.

1 Introduction

The first characterization of planar graphs is due to Kuratowski in 1930: A graph1 is planar if and
only if it neither contains a subgraph isomorphic to a subdivision of the K3,3 nor the K5 [31]. This
result inspired several characterizations of graphs by forbidden subgraphs, which paved paths into
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significantly different areas of graph theory. Extremal graph theory is concerned with forbidding
any subgraph isomorphic to a given graph [11] and maximizing the number of edges under this
constraint. Significant structural theory was developed when forbidden induced subgraphs were
considered instead, for instance several characterizations of Trotter and Moore [49] and the remark-
able weak and strong perfect graph theorems [33,38]. Wagner coined graph minor theory as another
means of characterizing planar graphs [51]. It was later used to extend Kuratowski’s theorem to
higher surfaces: A seminal result by Robertson and Seymour states that all graphs embeddable
into any prescribed surface are characterized by a finite set of forbidden minors [41]. While these
minors are known for the projective plane [2], already on the torus, the number of forbidden minors
reaches into tens of thousands and is as of now unknown [20]. Still, Mohar devised an algorithm to
embed graphs on surfaces in linear time [35], that was later improved by Kawarabayashi, Mohar,
and Reed [28]. Characterizations of graph classes by subdivisions received somewhat less renowned
attention. Early on the above path, Chartrand, Geller, and Hedetniemi pointed at some common
generalizations of forbidding a small complete graph and a corresponding complete bipartite sub-
graph as a subdivision, resulting in trees, outerplanar, and planar graphs [15]. More recently,
Dvořák achieved a characterization of several other graph classes using forbidden subdivisions [19].

Another direction to generalize Kuratowski’s theorem is the notion of c-crossing critical graphs,
i.e., graphs that require at least c ∈ N crossings when drawn in the plane, but each of their
subgraphs requires strictly less than c crossings. Allowing crossings in order to increase the degree
of freedom rather than adding handles to the surface exhibits a richer structure compared to
forbidden minors for embeddability on surfaces. Unlike the latter, it allows infinite families of
topologically-minimal obstruction graphs, as first demonstrated by Širáň [48], who constructed an
infinite family of 3-connected c-crossing-critical graphs for each c > 2. Kochol extended this result
to simple, 3-connected graphs [30], for each c > 1, thus producing the first family of (simple) large
3-connected 2-crossing-critical graphs. Most importantly for our research is Bokal, Oporowski,
Salazar, and Richter’s [10] characterization of the complete list of minimal forbidden subdivisions
for a graph to be realizable in the plane with only one crossing; that is, precisely the 2-crossing-
critical graphs. Bokal, Bračič, Dernar, and Hliněný characterized average degrees for infinite
families of 2-crossing-critical graphs w.r.t. constraining the vertex-degrees that appear arbitrarily
often [7]. For each restriction, the resulting average degrees form an interval. Hliněný and Korbela
showed that if all degrees are prescribed, instead of just the frequent ones, the attainable average
degrees are no longer intervals, but dense subsets of intervals [26]. Based upon [10], Bokal, Vegi-
Kalamar, and Žerak defined a simple regular grammar describing large 2-crossing-critical graphs—
i.e., all 3-connected 2-crossing-critical graphs except for a finite set of (small) sporadic graphs—and
used it for counting Hamiltonian cycles in these graphs [9]. We build upon this grammar to study
the graph theoretic properties of large 2-crossing-critical graphs.

We also briefly discuss recognizing c-crossing-critical graphs. 1-crossing critical graphs are
precisely subdivisions of a K5 or a K3,3; they are thus trivial to recognize. For general c ≥ 2,
the problem is fixed-parameter tractable (FPT) w.r.t. c: Grohe [22] first showed that there is an
algorithm to recognize graphs with cr(G) ≤ c in time O(poly(|V (G)|) · f(c)) for some (at least
doubly exponential but computable) function f . Kawarabayashi and Reed [29] improved this
FPT-algorithm to an only linear dependency on |V (G)|. Despite the fact that these algorithms
are infeasible in practice, they can theoretically be used as a building block to verify cr(G) ≥ c
and cr(G − e) < c, for each e ∈ E(G). Thus c-crossing-critical graphs can be recognized in FPT-
time O(|V (G)| · |E(G)| · f(c)), for some computable function f . We do not know of any further
algorithmic results regarding the recognition problem.
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Table 1: Overview on the properties of large 2-crossing-critical graphs studied in this paper.

property characterization values see

graph size complete – Observation 3.1

maximum degree complete 4, 5, 6 Observation 3.2

clique number complete 2, 3 Corollary 3.5

edge cover number complete ⌈|V (G)|/2⌉ Observation 3.7

simple crossing number complete 2 Theorem 4.2

chromatic number partial 2, 3, 4 Theorems 5.5 & 5.6

chromatic index complete∗ ∆(G) Theorem 6.5

treewidth complete∗ 4, 5 Corollary 7.9

∗ few (finitely many) graphs on only 3 elementary tiles can attain smaller (resp. larger) values for
treewidth (resp. chromatic index). See corresponding sections.

Our Contribution. In Section 2, we recall the formal definition of large 2-crossing-critical
graphs, their construction, and the recently proposed grammar to chiefly describe them. In Sec-
tion 3, we proceed to determine some of their elementary properties, such as order, maximum
degree, clique, and matching number. We also show that large 2-crossing-critical graphs are linear-
time recognizable.

In Section 4, we establish that their simple crossing number is indeed also 2. We propose
sufficient sets of color propagations (defined later) to find their chromatic number and index in
Sections 5 and 6, respectively. Finally, in Section 7, we characterize the graphs’ treewidth via the
appearance of a single minor. Further, in each section, we propose natural linear time algorithms
to compute the respective measures on any given large 2-crossing-critical graph.

Although the graphs under consideration form a structurally rich, yet countable infinite family,
our results underline their structural cohesiveness: all investigated measures reside in a small range,
some are even constant over all such graphs. Table 1 summarizes all considered properties and our
results.

2 Large 2-Crossing-Critical Graphs

For standard graph theory terminology, such as (induced) subgraphs and graph minors, we refer
to [17, 46]. A drawing of a graph G in the plane consists of two injective maps: One assigning
each vertex v ∈ V (G) to a point in R2, the other each edge uv ∈ E(G) to a Jordan curve from u
to v in R2 such that no curve has a vertex in its interior. In the context of crossing numbers, we
typically restrict ourselves to good drawings: Each pair of curves has at most one interior point in
common (if it exists, it is the crossing of this pair), adjacent curves have no common crossing, and
the intersection of any three non-adjacent curves is empty.

Definition 2.1 The crossing number cr(G) of a graph G is the smallest number of crossings over
all of its drawings in the plane. Further, G is c-crossing-critical for some c ∈ N, if cr(G) ≥ c, but
every proper subgraph H ⊂ G has cr(H) < c.

Following this definition, we feel that some intuitive explanation of the context is in place
before we formalize the details in the rest of this section. Note that the above definition defines
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2-crossing-critical graphs, but does not say anything about how they actually look like. For 1-
crossing-critical graphs, this was resolved by Kuratowski’s theorem, which exposed K5 and K3,3 as
the only two 3-connected 1-crossing-critical graphs, and all other 1-crossing-critical graphs as their
subdivisions. As mentioned in the introduction, already 2-crossing-critical graphs—the next step
beyond Kuratowski’s Theorem—exhibit a significantly richer structure, and allow for an infinite
family of 3-connected 2-crossing-critical graphs [30,48]. However, despite being infinite, this family
has a tightly defined structure. The purpose of this section is to describe this structure, i.e., to
use the characterization results of [10] to explain how (almost all) 3-connected 2-crossing-critical
graphs actually look like. All 3-connected 2-crossing-critical graphs with sufficiently many vertices
exhibit this structure; only finitely many do not (the Petersen graph being the most prominent
example). Thus we call the graphs having this structure large 2-crossing-critical graphs.

Let us formally define the construction rules that generate the set of 2-crossing-critical graphs
and give a brief overview of their history. The concept of tiles (to be defined in this section) was
introduced by Pinontoan and Richter to answer a question of Salazar about average degrees of large
families of c-crossing-critical graphs [37, 43]. Over a series of papers, it turned out to be a tool
that gives surprisingly precise lower bounds on crossing numbers of several “tiled” graphs, see [8].
Dvořák, Hliněný, and Mohar showed that tiles form an essential ingredient of large c-crossing-
critical graphs for every c ≥ 2 [18]. In general, further structures (so-called belts and wedges) may
also appear arbitrarily often, together with a bounded small graph that connects them [8]. For
c = 2, however, Bokal, Oporowski, Richter, and Salazar proved that tiles are sufficient to describe
almost all (i.e., all but finitely many) 2-crossing-critical graphs [10]. In fact, belts appear if and
only if c ≥ 3 and wedges if and only if c ≥ 13 [8, 24].

Intuitively, tiles are prespecified small graphs with vertex subsets at which we can glue (pairs
of) tiles together. A tiled graph is a graph arising from cyclically glueing tiles together. Formally,
we adopt the following notation from [43], which is illustrated in Figure 3:

Definition 2.2 A tile is a triple T = (G, x, y), consisting of a graph G and two non-empty se-
quences x = ⟨x1, x2, . . . , xk⟩ and y = ⟨y1, y2, . . . , yl⟩ of distinct vertices of G, with no vertex
appearing in both x and y. The sequence x (sequence y) is T ’s left wall ( right wall, resp.). If
|x| = |y| = k, T is a k-tile.

Definition 2.3 Tiled graphs are joins of cyclic sequences of tiles. We formalize this as follows:

1. A tile T = (G, x, y) is compatible with a tile T ′ = (G′, x′, y′) if |y| = |x′|. Their join T ⊗
T ′ := (G∗, x, y′) is a new tile, where G∗ is obtained from the disjoint union of G and G′ by
identifying yi with x′

i for each i = 1, . . . , |y|.

2. A sequence T = ⟨T0, T1, . . . , Tm⟩ of tiles is compatible if Ti−1 is compatible with Ti for each
i = 1, 2, . . . ,m. The join ⊗T of a compatible sequence T is T0 ⊗ T1 ⊗ · · · ⊗ Tm.

3. For a k-tile T = (G, x, y), the cyclization of T is the graph #T obtained from G by identifying
xi with yi for each i = 1, . . . , k. (Observe that in general, T may itself have arisen from a
join of a compatible sequence.)

With these tools, we are now ready to recall the constructive characterization of 2-crossing-
critical graphs by tiles [10]. Thereby, we focus only on the graphs that belong to the theoretically
relevant infinite family of these graphs. We disregard some finite set of special cases as well as
graphs that are not 3-connected, as they add no relevant structural information. The latter ones
can be trivially obtained from the 3-connected ones, and 3-connectivity is a typical restriction when
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(a) V10 drawn as Möbius ladder. (b) V10 drawn according to definition.

Figure 1: The generalized Wagner graph V10.

studying graphs from a topological perspective, such as crossing numbers. Put chiefly, we provide
the characterization of all (except for finitely many) 3-connected 2-crossing-critical graphs, called
large 2-crossing-critical graphs. In the course of this, we will also describe these graphs’ alphabetic
description [9], which associates unique and coherent names to each such graph.

Again, before we formally define the set C of large 2-crossing-critical graphs, we may give an
intuitive definition. There are 42 planar 2-tiles S to choose from (to be described later). Each
graph in C is a cyclization of a sequence of an odd number of these tiles. But thereby, every second
tile will be used flipped top-to-bottom (which is not so important right now), and we reverse the
order of the final right wall vertices prior to the cyclization. Without this final twist, the resulting
graph would resemble a cyclic planar strip of tiles; due to the twist, the resulting graph becomes
non-planar but can be embedded on the Möbius strip.

Figure 1 shows the general graph structure exhibited by this process: assume each tile is drawn
within a square region, then Figure 1a represents the resulting Möbius strip, where one of the
squares is twisted. The graph that is depicted is in fact a generalized Möbius ladder, also known
as generalized Wagner graph, and it is instrumental in understanding 2-crossing-critical graphs.
Formally, it is defined as the graph V2n, 3 ≤ n ∈ N, obtained from the cycle C2n in which each
pair of antipodal vertices is connected via an additional edge (a spoke of V2n), see Figure 1b. The
smallest Wagner graph V6 is isomorphic to K3,3.

Based on this structure, assuming each tile Ti in the sequence has some unique string si as its
name, it is straight-forward to use the concatenation s1s2 . . . to describe the resulting graph. We
call these strings signatures. The join of our tiles can also be understood such that we cyclically
join tiles (without vertical flipping) by always reversing the order of the right wall vertices. While
this understanding is not very helpful in terms of drawings with low crossing number, it shows that
the graph-defining tile sequence is intrinsically cylic; consequently each graph’s signature can be
cyclically rotated as well, and for a graph with k tiles we obtain k potentially different signatures.

It remains to discuss the fundamental 42 planar 2-tiles themselves, as they are highly structured.
Each tile can be understood to be composed of a frame and a picture within that frame. Formally,
these are graphs, enriched with vertex markings. There are two different frames (Figure 2a), and 21
different pictures (Figure 2b). We will hence compose the signature of a tile as the concatenation of
signatures of its picture and its frame. The names of the pictures arise from the graph structures
along the top and bottom border of the tile (top path and bottom path, respectively) and their
rough similarity to letters; see Figure 2c.

The example graph on five tiles in Figure 3 completes the informal definition of the construction
of large 2-crossing-critical graphs. We will revisit this example graph in later sections to showcase
the investigated properties. We are now ready to formally define our graph class.

Definition 2.4 (based on [10]) Large 2-crossing-critical graphs are defined as the set C in the
following way:
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L

x1

x2

y1

y2
dL

x1

x2

y1

y2

(a) The two frames and their names. Left wall vertices of the tiles obtained from these frames are x1, x2

and right wall vertices are y1, y2.

AA AB AIB AD AV AIV

BA BIA BB BD BV

DA DB DD DV H

VA VIA VB VD VV

(b) The 21 pictures and their names. The black vertices of the pictures are identified with black vertices
of the frames (without additional rotation) to yield tiles in the set S.

A B D V

(c) Explanation for the names of the pictures (except for H where the basis for the name is evident): We
show the top path of the pictures, together with their names. Bottom paths are referred to equivalently
but rotated by 180◦. The amalgamation of these names yield the signatures of the pictures, using the
additional letter I, if a vertex of the top path becomes identified with one of the bottom part.

Figure 2: Composition of tiles by pasting pictures into frames. The black vertices are identified
when inserting a picture into a frame at the gray square. The tile’s wall vertices are labeled.
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a

b

b

a
VIAdL lAALl AAL lDBLl HdL

Figure 3: An example of a large 2-crossing-critical graph; its signature is
VIAdLAALAALDBLHdL; colors represent the individual elementary tiles. On the top,
the graph is drawn on the projective plane, where the labeled vertices are identified according to
their names. On the bottom, the same graph is drawn equivalently but in the plane, resulting in
two explicit crossings when twisting the dark blue HdL-tile.

1. For a sequence x, let x denote the reversed sequence. The right-inverted ( left-inverted) tile
of a tile T = (G, x, y) is the tile T ↕ := (G, x, y) (and ↕T := (G, x, y), respectively).

2. Let S be the set of tiles obtained as combinations of one of the two frames and one of the
21 pictures, shown in Figure 2, in such a way that a picture is inserted into a frame by
identifying the gray area with it; the picture may not be rotated. While disregarding whether
any wall order is reversed, we may call the tiles of S elementary tiles.

3. Let C denote the set of all graphs of the form #(T
↕
0 ⊗ T

↕
1 ⊗ . . .⊗ T

↕
2m) with m ≥ 1 and each

Ti ∈ S.
4. The signature sig(T ) of a tile T ∈ S is the concatenation of the names of its picture

and its frame. A signature of a graph G is based on its tile construction: sig(G) :=
sig(T0)sig(T1) . . . sig(T2m−1)sig(T2m).

Observe that, by cyclic symmetry, the signature of a graph in C is not unique. Given two tiles

Ta, Tb, also observe that T
↕
a ⊗Tb is isomorphic to Ta⊗ ↕Tb. Thus we can rewrite #(T

↕
0 ⊗T

↕
1 ⊗ . . .⊗

T
↕
2m) = #((T0 ⊗ ↕T

↕
1 ⊗ T2 ⊗ . . .⊗ ↕T

↕
2m−1 ⊗ T2m)↕). While the former is formally more appealing

and highlights the intrinsic symmetry, the latter implicitly tells us how to draw the graph with
only 2 crossings: vertically flip every second tile to avoid all crossings until the last tile, where we
require a simple twist.
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Note that Definition 2.4 does not imply that these graphs are actually 2-crossing-critical, but
the following theorem does:

Theorem 2.5 (Characterization by tiles [10, Theorems 2.18 & 2.19]) Each element of C
is 3-connected and 2-crossing-critical. Furthermore, all but finitely many 3-connected 2-crossing-
critical graphs are contained in C, and the set C contains all the 2-crossing-critical graphs that
contain a V10 subdivision.

Note that there may be small graphs of C that are 3-connected 2-crossing-critical, but do not
have a V10 subdivision. Although this is a rather technical challenge, understanding it may simplify
some approaches and the definition of C, hence we pose it as an open problem:

Question 2.6 List graphs of C with smallest number of vertices and edges. List graphs in C that
do not contain a V10 subdivision or show that there are none.

We denote the number of occurrences of a given symbol X∈{A,V,D,B,H, I} in the signature
of a 2-crossing-critical graph G by #X(G). We may omit the parameter G if it is clear from the
context. It is trivial to test in linear time whether a supposed signature indeed describes a large
2-crossing-critical graph.

3 Elementary Properties

Given the characterization of large 2-crossing-critical graphs, we start our study by analyzing their
elementary properties. We will later use these results to facilitate the study of more involved
measures.

Observation 3.1 The number of vertices and edges of a large 2-crossing-critical graph G is ob-
tained using the following matrix-vector multiplication:

[
|V (G)|
|E(G)|

]
:=



3 5

1 2

1 2

1 2

0 1

2 3

2 4

−1 −1



⊺

·



#L

#d

#A

#V

#D

#H

#B

#I


Proof: Considering each elementary tile, we count its number of vertices and edges. Since joining
two tiles reduces the number of vertices by 2, we reduce the number of vertices for each tile by 2
(recall that this join is cyclic). It is straightforward to verify that each tile’s signature generates
the correct number of vertices and edges. 2

Our example graph in Figure 3 with sig(G) = VIAdLAALAALDBLHdL yields the graph-
dependent vector [5, 2, 5, 1, 1, 1, 1, 1]⊺. Thus [|V (G)|, |E(G)|]⊺ = [3 · 5 + 1 · 2 + 1 · 5 + 1 · 1 + 0 · 1 +
2 · 1 + 2 · 1− 1 · 1, 5 · 5 + 2 · 2 + 2 · 5 + 2 · 1 + 1 · 1 + 3 · 1 + 4 · 1− 1 · 1]⊺ = [26, 48]⊺.



JGAA, 26(1) 111–147 (2022) 119

Observation 3.2 The maximum degree ∆ of a large 2-crossing-critical graph G satisfies 4 ≤ ∆ ≤
6. In particular:

� ∆(G) = 6 if and only if there are two consecutive elementary tiles T1, T2, such that T1’s
frame is L, its top path is A or D, as is the bottom path of T2 (these paths are not necessarily
equal).

� ∆(G) = 5 if and only if ∆(G) ̸= 6 and #A+#D > 0.

� ∆(G) = 4 if and only if #A+#D = 0.

Proof: All elementary tiles with a dL-frame have a vertex of degree at least 4 where the frame’s
double edge connects. All elementary tiles with an L-frame have a vertex of at least degree 2 in the
“top right”, which gets identified with a vertex of the next tile with degree at least 2. Therefore,
our graphs always contain vertices of degree at least 4.

Any path of {A,B,D,V,H} increases the degree of vertices it connects to by at most 1. If a tile
has top path A or D, its top right vertex has degree at least 5. The same applies to a tile’s bottom
left vertex, if it has bottom path A or D. Only by having a tile with an L frame and an upper path
A or D followed by a tile with bottom path A or D, the identified vertex’s degree becomes 6. 2

A clique in a graph G is a subgraph of G that is complete. The clique number of G is the order
of the maximum clique.

Observation 3.3 An elementary tile contains a triangle if and only if its signature contains A, V,
or B (cf. Figure 2). Moreover, each triangle in a large 2-crossing-critical graph G whose signature
does not contain A, V, or Bcorresponds to a DDLDD-subsequence of sig(G).

In fact, this observation is sufficient to fully determine the clique number of a large 2-crossing-
critical graph.

Observation 3.4 A large 2-crossing-critical graph contains no K4.

Corollary 3.5 A large 2-crossing-critical graph has clique number 2 if and only if all elementary
tiles of G are one of DDL, DDdL, HL and HdL, and no subsequence DDLDD exists in sig(G).
Otherwise, its clique number is 3.

Corollary 3.6 Given the signature of a large 2-crossing-critical graph, its clique number can be
determined in linear time.

A matching in a graph G is a subset of pairwise non-adjacent edges. It is perfect (near-perfect)
if its cardinality is |V (G)|/2 ((|V (G)|−1)/2, resp.). From the fact that each large 2-crossing-critical
graph contains a Hamiltonian cycle which can be computed in linear time [9], we obtain:

Observation 3.7 Any large 2-crossing-critical graph G has a perfect matching if |V (G)| is even,
and a near-perfect matching otherwise. In both cases, the matching can be computed in linear time
by choosing every second edge of a Hamiltonian cycle.

Definition 3.8 The edge covering number of a graph G is the minimal number of edges F in G
such that each vertex v ∈ V (G) is incident to an edge in F .

Since a perfect matching yields a minimum edge cover, and a near-perfect matching requires only
a single additional edge to become an edge cover, we have:
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Algorithm 1: Large 2-crossing-critical graph recognition algorithm, deducing the signa-
ture in the positive case.

Input: graph G
Output: sig(G) if G is a large 2-crossing-critical graph; ∅ otherwise
Define: G↓v8 is the subgraph of G marked by a breadth-first search of bounded depth 8

starting at vertex v.

1 if ∆(G) > 6 then
2 return ∅ // G is not a large 2-crossing-critical graph
3 choose any vertex v ∈ V (G)
4 let X := {X ⊆ G↓v8 : X is tile-isomorphic to a tile in S}
5 foreach X ∈ X do
6 sig(G) := sig(X)
7 G∗ := G without the edges and non-wall vertices of X
8 wT , wB := the top and bottom right wall vertices of X
9 loop

10 Search for a subgraph Y ⊆ G∗↓x1
8 that is tile-isomorphic to a tile in S using wB as

top left and wT as bottom left wall vertex (note the reversed order) and such that
all edges incident to wB and wT in G∗ are in Y ; prefer one with a dL-frame over
one with an L-frame

11 if ∄ Y then break // continue with next X
12 append sig(Y ) to sig(G)
13 wT , wB := the top and bottom right wall vertices of Y
14 remove from G∗ all edges of Y and vertices of V (Y ) \ {wT , wB}
15 if V (G∗) \ {wT , wB} = ∅ then
16 if wB , wT are the top and bottom left wall vertices of X (note the reversed

order) and #L(sig(G)) is odd then
17 return sig(G) // G is a large 2-crossing-critical graph
18 else break // continue with next X

19 return ∅ // G is not a large 2-crossing-critical graph

Observation 3.9 The edge covering number of any large 2-crossing-critical graph is ⌈|V (G)|/2⌉.

Most importantly, large 2-crossing-critical graph are linear time recognizable. The general idea
of Algorithm 1 is to restrict ourselves to a linear number of constantly sized graphs; in each of
them, finding elementary tiles only requires constant time. In particular, this algorithms allows us
to, in linear time, deduce the signature of a given graph if it belongs to the class; as such it will
be the starting point for all subsequent algorithms to compute graph properties, as they can thus
assume to be given the signature as input.

Theorem 3.10 Algorithm 1 tests in linear-time whether a given graph G is a large 2-crossing-
critical graph and, in the positive case, deduces a signature of G.

Proof: We can reject graphs with maximum degree ∆(G) > 6 in linear time (line 1). We say a
subgraph H of G is tile-isomorphic to a tile T , if H is isomorphic to T , the non-wall vertices of
H have no neighbors other than those described by T , and wall vertices from opposing walls of H
are only adjacent if they are adjacent in T . We compute a subgraph G↓v8 via a breadth-first search
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of bounded depth 8 starting at some arbitrary vertex v. This subgraph has constant size and can
be found in constant time since ∆(G) ≤ 6. Furthermore, as the number |S| of possible tiles is
constant, we can find the (constantly sized) set X of all subgraphs of G↓v8 that are tile-isomorphic
to a tile of S in constant time as well (line 4). The depth 8 is chosen so that, if G is a large
2-crossing-critical graph, it is guaranteed that G↓v8 contains some subgraph H is tile-isomorphic to
a tile of S; thus H ∈ X . The set X thus serves as a candidate list for T . We run the subsequent
test (lines 6–18) for each X ∈ X (for-loop starting at line 5):

We remove X, retaining its wall vertices, and look for the neighboring tile Y to the right.
Thereby, all edges incident to the wall vertices shared between X and Y have to lie in either of
these tiles (in order to not overlook any unwanted incidencies between far-apart wall vertices).
Again, this search only requires constant effort (line 10). In the positive case, after removing all of
Y except its right wall vertices, we can iterate this process to identify all subsequent neighboring
tiles, until we reattach – after an overall odd number of tiles – to the left wall of the initial tile X.
By definition, we have to assure that the subsequent tiles use the common wall vertices in reverse
order. If this process fails at any point, we reject the starting tile X and proceed with the next
iteration of the for-loop, i.e., the next candidate from X . If no iteration of the for-loop succeeds,
we reject G.

In each iteration of the inner loop (lines 9–18) we either terminate the current for-loop iteration
or remove a constant number of edges. Thus, the inner loop runs at most a linear number of times,
each of its iterations requiring only constant time. This establishes the overall linear running time.

It is easy to see that if the algorithm returns a non-empty signature s, the large 2-crossing-
critical graph constructed from s as per Definition 2.4 is isomorphic to G. On the other hand,
suppose G is a large 2-crossing-critical graph and let s be a signature of G, such that v is in the
first elementary tile T ∈ S of s. From the definition of X , it follows that T ∈ X . We only need to
focus on the for-loop iteration in which X = T . If a graph has an elementary tile with a dL-frame
as a subgraph, it also has an elementary tile with the same picture but an L-frame as a subgraph,
but the converse is not true. Also given two elementary tiles with distinct pictures, at most one
of them can be a subgraph that can be a right neighbor of the previously identified tile. Thus, in
line 10, we obtain a unique potential candidate by prefering the new neighboring tile Y to have a
dL-frame if possible. Based on the structure that tiles are cleanly separated by wall vertices (see
Def. 2.3 and 2.4), we consequently have that our algorithm will indeed find signature s. 2

4 Simple Crossing Number

In this section, we prove that the simple crossing number of each large 2-crossing-critical graph
equals its crossing number. To this end, we provide some definitions and briefly discuss their
history. The study of 1-planar graphs was initiated more than half a century ago by Ringel in
the context of graph coloring [39]. Buchheim et al. introduced the simple crossing number, while
engineering the first general exact algorithms for computing crossing numbers [12].

Definition 4.1 A 1-planar drawing of a graph G is a drawing of G in the plane such that each of
its edges crosses at most one other edge. A graph that admits a 1-planar drawing is called 1-planar.
The simple crossing number cr×(G) of G is the minimal number of crossings over all 1-planar
drawings of G; we define cr×(G) = ∞ if no such drawing exists.

Albeit this crossing number variant is also known as 1-planar crossing number, we prefer the
term simple crossing number. This avoids confusion with the k-planar crossing number, k ∈ N, as
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(a) G still drawn as a Möbius strip but with the
double crossing in the VIAdL-tile (red) instead of
the HdL-tile (dark blue), to make it more similar
to the figure to the right.

(b) A drawing showing cr×(G) = 2 by twisting the
left AAL-tile (light blue), as schematized in Fig-
ure 5a. Figure 5b shows how redrawing e.g. the
VIAdL-tile would look like.

Figure 4: The example graph G from Figure 3 in the context of the simple crossing number.

defined by Owens (there, the graph is partitioned into k edge-sets and only the crossings in each
set are counted) [36,45].

By definition, cr(G) ≤ cr×(G). We remark that in general, cr(G) ̸= cr×(G) and there are
graphs G with cr(G) = 2 but cr×(G) > 2 even on as few as 16 vertices [12]. By definition
cr×(G) ∈ O(n2), but for example cr(Kn) ∈ Θ(n4); in fact, already K7 is not 1-planar (see,
e.g., [45, 46]).

Theorem 4.2 Any large 2-crossing-critical graph G has cr×(G) = 2.

Proof: Since 2 = cr(G) ≤ cr×(G), the claim follows if each G admits a 1-planar drawing with 2
crossings.

We achieve this by performing a twist operation at a single elementary tile X: In the natural
drawing on the Möbius strip (cf. Figure 3) each tile is drawn planarly but we cannot identify
the left-most with the right-most wall vertices in a planar fashion. Twisting a tile X within this
drawing means to invert the vertical order of its left or right wall vertices, thereby incurring some
crossings within X. Given this twisted tile, all subsequent tiles can be planarly drawn and we can
now identify the left-most and right-most wall vertices planarly (cf. Figure 4). Thus we do not
need any crossings except for those within X; we will discuss them below.

First, we consider a twisted tile consisting of a dL-frame and a picture without I. Figure 5a
gives an abstract sketch (as well as its twist) of such tiles where the gray area hides crossing-free
picture details. Hence, the twisting of these tiles can be drawn 1-planarly with 2-crossings.

Next, we prove the claim for any twisted tile consisting of a dL-frame and a picture with
identification. To this end, recall that there are only four pictures with identification: VIA, BIA,
AIV, and AIB. We give 1-planar drawings of a twisted VIAdL-tile and a twisted BIAdL-tile
in Figures 5b and 5c. The solutions for AIVdL- and AIBdL-tiles are identical up to mirroring.
Contracting the double edges (3, 4) and/or (7, 8) in the given drawings maintains 1-planarity and
the simple crossing number. Hence, the given drawings can be transformed to tiles with an L-frame.

2
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(a) Twisting a tile without I.
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(b) Twisting a VIAdL-tile.
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(c) Twisting a BIAdL-tile.

Figure 5: Twisting a tile.

5 Chromatic Number

The question whether four colors are sufficient to color a map (in the sense of a separation of
the plane into contiguous regions) such that no two adjacent regions (e.g., countries in a visual
representation of national territories) are colored the same, plagued mathematicians and many
other researchers since the late 19th century. It was finally, but not uncontroversially, positively
answered in 1976 facilitating a computer-assisted proof [1]. Consequently, any planar graph has a
vertex coloring that uses at most four colors. For general graphs however, it is NP-hard to decide
whether a given number k ≥ 3 of colors suffices (the smallest such k is the graph’s chromatic
number) [21] and even constant-factor approximations in polynomial time are impossible (unless
P=NP) [52]. The chromatic number of graphs is of interest in applications like scheduling, register
allocation, and pattern matching [14, 32, 34]. Ringel proved that 1-planar graphs can be colored
using at most seven colors [39].

In this section, we study the chromatic number of large 2-crossing-critical graphs. We start by a
characterization of bipartite, i.e., 2-colorable, such graphs in Theorem 5.5 and proceed to improve
on Ringel’s result by proving that each large 2-crossing-critical graph is 4-colorable, cf. Theorem 5.6.
To show that this bound is tight (at least in some cases), we present an infinite family of large
2-crossing-critical graphs that are not 3-colorable. Finally, this is complemented by an infinite
family of large 2-crossing-critical graphs with chromatic number 3.

Definition 5.1 A (vertex) coloring of a graph G is a function c : V (G) → N+, such that c(v) ̸=
c(w) for every edge vw ∈ E(G). Graph G is k-colorable if it admits a coloring using at most k
colors and we call such a coloring a k-coloring. The chromatic number of G is the smallest k such
that G is k-colorable.

In Figure 6a we can see that each elementary tile of the example graph from Figure 3 can be
colored with at most 3 colors on its own. But if we were to use these exact colorings in the full
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(a) Individual 3-colorings of each elementary tile in the graph. While they are not compatible to each
other as is, they can be thought of as propagations, see text.
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(b) A 3-coloring of the example graph from Figure 3, based on the above propagations.

Figure 6: Using propagations to color a graph.

graph, the colorings of the wall nodes would clash. In the following, while we formally construct
the graphs by joining tiles whose right wall is inverted (see Definition 2.4), it will be helpful to
take the viewpoint already discussed following that definition, that we may vertically invert every
second tile completely. This allows us to (mentally and in the figures) visualize each tile planarly.

We view every coloring of Figure 6a as a 2-propagation (to be formally defined below), and
substitute explicit colors as needed. Intuitively (cf. Figure 6b), start with coloring the VIAdL-tile
as proposed by its individual coloring. As its right wall vertices (with now fixed colors) are the
left wall vertices of the neighboring AAL-tile, we cannot directly color the latter tile as desired
by its individual coloring. Let x1, x2 and y1, y2 denote the two left and right wall vertices of this
AAL-tile (observe that it is drawn as ↕AAL↕ in G), respectively. We are only interested in the
following properties of the AAL-coloring in Figure 6a: c(y1) is distinct from c(x1) and c(x2), and
c(y2) = c(x2). This allows us to substitute the color classes within this tile accordingly and proceed
with the next tile. Put chiefly, a 2-propagation is the notion that, given a coloring of its left wall
vertices, we know about the existence of a tile-coloring yielding certain coloring-properties on its
right wall vertices. This concept can be formalized as follows:

Definition 5.2 Let T = (G, x, y) be a 2-tile. Consider a vertex coloring c of G. The colors of
x1, x2 (y1, y2) are the input colors ( output colors, respectively; each in that order) of T . Two
k-colorings c, c′ of T are equivalent, if (c(v) = c(w))⇔ (c′(v) = c′(w)) for each pair of wall ver-
tices v, w ∈ {x1, x2, y1, y2}. We call the induced equivalence classes (vertex-coloring-)propagations
and denote them by

c(x1)
c(x2)

⇝ c(y1)
c(y2)

,

using some representative coloring c. We may use the term k-propagation to specify that c is a
k-coloring.
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Figure 7: 2-vertex-colorings PDD
L for DDL, PDD

dL for DDdL, PH
L for HL, and PH

dL for HdL.

To aid comprehensibility, whenever we state propagations, we will denote each color by a unique
letter from {a, b, c, d} instead of a number. Observe that, while elementary tiles will yield the base
cases of our propagations, the joins of tiles yield again tiles; therefore we may naturally concatenate
propagations when joining two tiles, requiring only simple color substitutions in the second tile.
Consider the first two tiles in the example graph Figure 6b: their propagations a

b ⇝
c
d and a

b ⇝
c
d

lead to a
b ⇝

c
d⇝

a
b and thus the propagation a

b ⇝
a
b over the first two tiles.

We first consider small odd cycles that arise already when joining two elementary tiles.

Lemma 5.3 Let sig(G) = sig(T0) . . . sig(T2m) be a signature of a large 2-crossing-critical graph G.
Then G is not bipartite if sig(T2m)sig(G) contains an element of {DDdLH,DDLDD,HdLDD,HLH}
as a substring.

Proof: The subgraph corresponding to DDLDD contains a triangle and the subgraphs corre-
sponding to HLH, DDdLH, and HdLDD each contain a 5-cycle. 2

Recall that by Observation 3.3 every tile whose signature contains A, V, or B has a triangle
and is therefore not bipartite.

Let us now consider the last “global” tile T whose cyclization yields a large 2-crossing-critical
graph. We proceed to show that it is bipartite if none of the above local obstructions are present.
Note that in the following lemma, we do not consider the final cyclization just yet.

Lemma 5.4 Let T = T
↕
0⊗T

↕
1⊗. . .⊗T

↕
2m where Ti ∈ S. The tile T is bipartite if sig(Ti)sig(T(i+1) mod (2m+1))

starts with DDdLDD, DDLH, HdLH, or HLDD for each i ∈ N with 0 ≤ i ≤ 2m.

Proof: Figure 7 shows the existence of the following 2-propagations:

PDD
L := a

b ⇝ b
b, for DDL-tiles,

PDD
dL := a

b ⇝
a
b, for DDdL-tiles,

PH
L := a

a⇝ b
a, for HL-tiles,

PH
dL := a

a⇝
a
a, for HdL-tiles.

By assumption each elementary tile is from {DDL,DDdL,HL,HdL} and sig(T ) is a subsequence
of ((DDdL)∗DDL(HdL)∗HL)+ (using standard notation of regular expressions).

First we will look only at the case where each elementary tile of T is either DDL or HL.
Then sig(T ) is a subsequence of (DDLHL)+. Every subsequence DDLHL of the latter admits
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the propagation a
b ⇝ b

b ⇝
b
a by using PH

L and PDD
L (observe that the vertical order reverses in the

second propagation as this tile is vertically inverted w.r.t. the first). Iterating these propagations
yields a 2-coloring.

If we now also allow HdL-tiles, we see that each maximal (HdL)+-subsequence admits the
propagation a

a ⇝
a
a by repeatedly using PH

dL. Therefore each subsequence (HdL)+HL admits the
same overall propagation as an individual HL-tile. Similarly, any (DDdL)+-subsequence admits
the propagation a

b ⇝
a
b by repeatedly using PH

dL, and thus (DDdL)+DDL admits the same overall
propagation as an individual DDL-tile. Thus T is 2-colorable.

2

Finally, we can fully characterize bipartite large 2-crossing-critical graphs.

Theorem 5.5 A large 2-crossing-critical graph G is 2-colorable if and only if its signature can be
written as sig(G) = sig(T0) . . . sig(T2m), where Ti is an elementary tile for 0 ≤ i ≤ 2m, such that:

(i) tile T0 contains an H-picture (defined in Figure 2b), and

(ii) each sig(Ti)sig(T(i+1) mod (2m+1)) starts with DDdLDD, DDLH, HdLH, or HLDD for 0 ≤
i ≤ 2m+ 1; and

(iii) the number of L frames in {T2i}0≤i≤m is odd.

Proof: By Observation 3.3 and Lemma 5.3 each bipartite large 2-crossing-critical graph satisfies
(ii). Moreover, since (DDdL)k for odd k is not bipartite, each bipartite large 2-crossing-critical
graph contains an H-picture, implying (i).

Hence, it only remains to prove that a large 2-crossing-critical graph satisfying (i) and (ii) is
bipartite if and only if it also satisfies (iii). To this end, assume G satisfies (i) and (ii).

By Lemma 5.4, (G′, ⟨x1, x2⟩, ⟨y2, y1⟩) := T
↕
0 ⊗ T

↕
1 ⊗ . . .⊗ T

↕
2m admits a 2-coloring c. Since such

a coloring is unique (up to isomorphism and relabeling of colors), G is bipartite if and only if c
induces a 2-coloring on G, i.e. c(x1) = c(y1) and c(x2) = c(y2).

It follows from (i) that c(x1) = c(x2); by (i) and (ii) we have c(y1) = c(y2). Thus, c induces a
2-coloring on G if and only if c(x1) = c(y1). To this end we look at the parity of a path between
x1 and y1. As G′ is bipartite every such path has the same parity. Our path consists of the direct
path between the (non-inverted) top wall nodes for tiles T2i for 0 ≤ i ≤ m and the direct path
between the (non-inverted) bottom wall nodes of tiles T2i+1 for 0 ≤ i < m. We notice that the
(edgewise) distance between the bottom wall nodes of each of our four elementary tiles is always 2.
The same is the case for the distance between the top wall nodes for dL-framed elementary tiles but
for L-framed elementary tiles the distance between the top wall nodes is 1. Therefore if and only
if property (iii) holds, the distance between x1 and y1 is even and therefore c induces a 2-coloring
on G. 2

In Figure 6, we have already seen a 3-coloring of the example graph. Let us now generalize this
way of coloring to show that, like any planar graph, indeed every large 2-crossing-critical graph
requires at most 4 colors.

Theorem 5.6 Every large 2-crossing-critical graph is 4-colorable.

Proof: It is easy to verify that every elementary tile admits a 4-propagation a
b ⇝

c
d; we list all

these propagations explicitly in Figures 13 and 14 in the appendix. Thus, any tile that consists of
two joined elementary tiles, admits the 4-propagation a

b ⇝
a
b. We use a

b ⇝
a
b on all but 3 consecutive
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Figure 8: The unique 3-coloring of an AIVL-tile (up
to color-substitution and the free choice for ‘x’ ̸= 1).
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Figure 9: A 3-propagation a
a ⇝

a
a

of a BBL-tile.

elementary tiles and show that the join of these 3 tiles has an a
b ⇝ b

a propagation: As also shown in
Figures 13 and 14, each elementary tile also admits the 4-propagation a

b ⇝
c
b. Thus, three such tiles

admit the required 4-propagation (recall that the tile in the middle is drawn vertically inverted
w.r.t. the other two):

a
b ⇝

c
b⇝

c
a⇝ b

a.

2

Next, we present a class of large 2-crossing-critical graphs that are not 3-colorable. This shows
that the bound presented above is tight for an infinite number of cases.

Observation 5.7 Every large 2-crossing-critical graph where every elementary tile is an AIVL-tile
is not 3-colorable.

Proof: With Figure 8 it is straightforward to verify that each 3-propagation of an AIVL-tile is
either P1 = a

b ⇝ b
c or P2 = a

b ⇝ b
b. Since the two vertices on the left wall of an AIVL-tile have to be

colored differently, each elementary tile uses propagation P1. Thus, any join of an even number of
elementary tiles propagates a

b ⇝
a
b. But then the last tile would have to propagate a

b ⇝ b
a ̸= P1. 2

Complementing this, there are also infinitely many large 2-crossing-critical graphs with chro-
matic number 3.

Observation 5.8 Every large 2-crossing-critical graph G where every elementary tile is a BBL-tile
has chromatic number 3.

Proof: By Theorem 5.5, G is not bipartite. On the other hand, Figure 9 shows that a BBL-tile
admits a 3-propagation a

a⇝
a
a that we may use on all tiles. 2

The previous observations point to the following open problem:

Question 5.9 What is the full characterization of 3-colorable large 2-crossing-critical graphs?

Although a graph-theoretic characterization of 3-colorable large 2-crossing-critical graphs is an
open question, we can efficiently decide 3-colorability algorithmically:

Observation 5.10 Using the fact that large 2-crossing-critical graphs have bounded treewidth (see
Corollary 7.9 below), Courcelle’s theorem [16] yields a linear-time algorithm to decide whether a
given large 2-crossing-critical graph is 3-colorable.
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6 Chromatic Index

In this section, we investigate the chromatic index of large 2-crossing-critical graphs. The chromatic
index is the minimum number of colors necessary to color edges of a graph, such that no two edges
incident to the same vertex share a color. A trivial lower bound for the chromatic index is the
maximum degree of the graph. Determining the chromatic index of a general graph is NP-hard [27].
However, there are classes of graphs for which the chromatic index can be shown to be close to
the trivial lower bound. Simple graphs are said to be class 1 if their chromatic index equals the
maximum degree, and class 2 otherwise, see e.g. [13]. However, the situation is more complicated
for graphs that are not simple, as the graph’s density (i.e., maximum ratio between the number
of edges and vertices, over all induced subgraphs) is also a natural lower bound for the graph’s
chromatic index. This motivates the following slightly different definition [13]: a graph is first class
when its chromatic index matches the lower bound given by the maximum degree or the density,
and second class otherwise.

By construction, the density of large 2-crossing-critical graphs is low. In fact, we show that
all large 2-crossing-critical graphs are first class by showing that they require only as many edge
colors as their maximum degree. To this end, we exhibit such edge colorings for elementary tiles
and combine them to a coloring of the full graph.

Definition 6.1 An edge coloring of a graph G is a function c : E(G) → N+ such that c(e) ̸= c(f)
for each pair e, f ∈ E(G) of adjacent edges. A k-edge-coloring is an edge coloring that uses at
most k colors. The chromatic index of G is the smallest k such that a k-edge-coloring of G exists.
In particular, if G admits a ∆(G)-edge-coloring, G is said to be first class.

Similarly to our findings on chromatic numbers, we will use color propagations to investigate
edge colorings. An example can be seen in Figure 10. Figure 10a shows five edge color propagations,
one for each tile. Consider two neighboring tiles T1, T2 (T1 left of T2). For edge color propagations,
the edges in T1 incident to T1’s right wall are of interest, as they form restrictions for the edges in
T2 that are incident to T2’s left wall vertices. Thus, when showing a propagation for tile T2, we
also need to show these incident T1-edges (the input edges of T2), to the left of the wall vertices.
The T2-edges incident to T2’s right wall form the output edges of T2. By substituting colors, we
can now again assign these propagations to a list of joined tiles such that their colors match. Note
that in our example graph we have two distinct color propagations for the two AAL-tiles, since in
the full graph (Figure 10b) their left wall vertex y2 becomes a vertex of degree 6 in the first, and
degree 5 in the second case.

Let T = (G, x, y) be a tile. The edges of T that are incident to vertices on T ’s right wall are the
output edges of T . We observe that each tile T of a large 2-crossing-critical graph has either three
or four output edges, where all but one edge e are pairwise adjacent. We call this edge e, which
is the unique edge incident to the degree-1 vertex of the frame, the single edge of T . Consider an
edge coloring of G, the colors of the output edges of T are its output colors. We denote output
colors by a

b c d, where a refers to the color of the single edge and b, c, d are the colors of the three
adjacent edges (in no particular order). For those tiles that have only two instead of three adjacent
such edges, we instead write a

b c. For a cyclic sequence of tiles that contains T , the output edges
(output colors) of T ’s predecessor are the input edges (input colors, respectively) of T . We employ
the same notation for input and output colors.

Definition 6.2 Two k-edge-colorings c, c′ of a tile T and its input edges are equivalent if c(e) =
c(f) ⇐⇒ c′(e) = c′(f) for each pair e, f ∈ X, where X is the set of input and output edges
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(b) A full edge coloring of maximum vertex degree of the example graph.

Figure 10: Edge color propagations in use.

of T . We call the induced equivalence classes (edge-coloring-k-)propagations and denote them by
A −→ B, where A (B) are the input colors (output colors, respectively) of T .

A tile (in a sequence) that has k + 1 input and ℓ + 1 output colors, is a k-ℓ-tile. We observe
that any large 2-crossing-critical graph is a cyclic sequence of elementary 2-2-, 2-3-, 3-3- and 3-2-
tiles. Given a tile T in a large 2-crossing-critical graph G, we denote its maximum degree in G by
∆G(T ) = maxv∈V (T ) |{e ∈ E(G) | v ∈ e}|.

We know from Observation 3.2 that the maximum degree of a large 2-crossing-critical graph is
4 ≤ ∆(G) ≤ 6. In order to show that all large 2-crossing-critical graphs are first class, we will first
restrict ourselves to those with ∆(G) ≥ 5; thereafter, we will also consider the case ∆(G) = 4.

Lemma 6.3 Consider a (cyclic) sequence Q of elementary tiles corresponding to a large 2-crossing-
critical graph G with maximum degree ∆(G) ≥ 5. Each 2-2-tile of Q admits the following propa-
gation that uses 5 colors:

P2 := 1
1 2 −→ 1

1 2.
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Each other tile T of Q has the below propagations, using at most ∆G(T ) colors:

P23 := 1
1 2 −→ 2

1 2 3 for 2-3-tiles, P3 := 1
1 2 3 −→ 2

1 2 3 for 3-3-tiles,

P32b := 1
1 2 3 −→ 2

1 2 for 3-2-tiles, P32a := 1
1 2 3 −→ 1

1 2 for 3-2-tiles.

Proof: This can (easily but tediously) be shown by demonstrating corresponding colorings for
each elementary tile. Figures 15 to 19 list all cases in the appendix. 2

Note that each elementary tile admits several propagations. In the example graph of Figure 10,
there are two occurrences of AAL. They differ in that their left wall vertex y2 has a degree of 5 or
6. We differentiate them by referring to the first one as a 2-3-tile, and the second as a 3-3-tile.by
referring to the first one as a 2-3-tile, and the second as a 3-3-tile. The full sequence of propagations

used is 1
1 2

P2−→ 1
1 2

P23−−→ 2
1 2 3

P3−→ 3
1 2 3

P3−→ 1
1 2 3

P32a−−−→ 1
1 2. This coloring uses ∆(G) = 6 colors.

We will now use these propagations to obtain an edge coloring of arbitrary large 2-crossing-
critical graphs with ∆(G) ≥ 5 and show that they are indeed first class.

Lemma 6.4 Large 2-crossing-critical graphs G with ∆(G) ≥ 5 are first class.

Proof: Throughout this proof, we only consider propagations using 5 colors for elementary 2-2
tiles and propagations using at most ∆(T ) colors for each other elementary tile T .

First, assume G does not decompose into elementary 3-3-tiles only. Then, we prove the claim
by decomposing G into (not necessarily elementary) tiles admitting a 1

1 2 −→ 1
1 2 propagation.

We decompose G into elementary 2-2-tiles (which allow these via P2) and tiles of the form T =
⊗(T0, . . . , Tk) where T0 is a 2-3-tile, Tk is a 3-2-tile, T1, . . . , Tk−1 are 3-3-tiles, and each Ti is
elementary. We only have to show that such a tile T admits a 1

1 2 −→ 1
1 2-propagation.

Iteratively applying P3 to T1 . . . Tk−1 yields a Po := 1
1 2 3 −→ 2

1 2 3-propagation if k is even and a
Pe := 1

1 2 3 −→ 1
1 2 3-propagation otherwise. We obtain the following propagations for T :

1
1 2

P23−−→ 2
1 2 3

Po−→ 1
1 2 3

P32a−−−→ 1
1 2 and 1

1 2
P23−−→ 2

1 2 3
Pe−→ 2

1 2 3
P32b−−−→ 1

1 2, respectively.

Next, assume that G consists of elementary 3-3-tiles only. Note that using P3, two subsequent
such tiles admit the propagation P 2

3 := 1
1 2 3 −→ 2

1 2 3 −→ 1
1 2 3; and three subsequent such tiles admit

the propagation P 3
3 := 1

1 2 3 −→ 2
1 2 3 −→ 3

1 2 3 −→ 1
1 2 3. Since there is an odd number of elementary

tiles, we can use P 3
3 for three subsequent elementary tiles and P 2

3 for the remaining pairs, obtaining
a ∆(G)-edge-coloring of G. 2

Now that we have shown that large 2-crossing-critical graphs with ∆(G) ≥ 5 are first class, it
remains to prove that those with ∆(G) = 4 are also first class. There is only a constant number
of 2-crossing-critical graphs with 3 elementary tiles with potentially sporadic behavior; we are
interested in the remaining infinite class.

Theorem 6.5 Large 2-crossing-critical graphs G with at least 5 elementary tiles are first class.

Proof: By Lemma 6.4, it remains to consider ∆(G) = 4. Let G consist of the elementary tile
T0, . . . , T2m in this order. Throughout this proof, we only consider propagations using 4 colors
and assume m ≥ 2.
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We can find 4-propagations for all tiles with maximum degree 4 (all corresponding colorings
are depicted in the appendix), in particular they can be categorized as follows:

P2 := 1
1 2 −→ 1

1 2, for BVL and VVdL (see Figure 19), and

Pw := 1
1 2 −→ 3

1 3, for BVL and VVdL (see Figure 20), and

Ps := 1
1 2 −→ 1

1 3, for all other tiles of maximum degree 4 (see Figure 20).

We call the tiles BVL and VVdL whimsical, while the others are sincere. Let us prove the theorem
by constructing a 1

1 2 −→ 1
1 2-propagation for G. To this end, we consider the following three cases:

Case 1: Assume there is an odd number of whimsical tiles. Then the number of sincere tiles is
even. We obtain the claim for G by using 1

1 2
P2−→ 1

1 2 for whimsical tiles, and alternate between two
colorings using Ps.

Case 2: Now, assume there is an even number of whimsical tiles and only a single sincere tile.
We use propagation P2 on all but 3 consecutive whimsical tiles. These remaining whimsical tiles

together propagate 1
1 2

Pw−→ 4
1 4

Pw−→ 3
3 4

Pw−→ 1
1 3. Together with Ps for the sincere tile, we obtain the

claimed propagation.
Case 3: Finally, assume we have an even number of whimsical tiles and at least 3 sincere

tiles. Using P2 for each whimsical tile, we only have to prove that we can construct a 1
1 2 −→ 1

1 2-
propagation for the sincere tiles. This is obtained by applying Ps to all but 3 of these tiles and

using the following propagation on the remaining ones: 1
1 2

Ps−→ 1
1 3

Ps−→ 1
1 4

Ps−→ 1
1 2.

Thus, any sufficiently large 2-crossing-critical graph G can be colored with ∆(G) colors and is
first class. 2

7 Treewidth

Treewidth is a central measure in graph theory and parameterized complexity [6]. It was first
introduced by Bertelé and Brioschi under the term dimension but rediscovered twice in following
years [4, 23, 40]. Robertson and Seymour coined the term treewidth and discovered a profound
theory based on it that spawned a plethora of results. While it is known that the treewidth of
2-crossing-critical graphs is bounded from above by 215 361 − 2 [25], the known bound is far from
optimal. Lower bounds are known for k ≥ 3 only [25].

Definition 7.1 A tree decomposition of a connected graph G is a tree T and a function f : V (T ) →
2V (G) such that

(1) for each edge uv ∈ E(G), there exists a vertex α ∈ V (T ) with {u, v} ⊆ f(α), and

(2) for each vertex v ∈ V (G), the subgraph of T induced by
{
α ∈ V (T ) : v ∈ f(α)

}
is connected.

Each set f(α) is typically called a bag. The treewidth tw(G) is the smallest γ ∈ N, such that there
exists a tree decomposition of G with maxα∈V (T ) |f(α)| ≤ γ + 1.

While the above definition is the classical one by Robertson and Seymour, there are several
equivalent characterizations of treewidth. For our proofs, we use one by Seymour and Thomas that
employs a game of cops and robber [47]: The cops and the robber stand on vertices of the graph
G. The robber may move—at infinite speed—to any other vertex w unless every path from v to
w contains a vertex with a cop located on it. Cops move by “helicopter”, i.e., they are removed
from their vertex and—at a later point in time—are placed on some other vertex. All participants
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know all positions and the graph at all times. The cops win if there exists a strategy such that
after a finite number of cop movements, one of them is placed on the same vertex as the robber,
independent of the robber’s strategy. Otherwise, the robber has a strategy to avoid being caught
indefinitely and wins. The treewidth of G is equal to the maximum number of cops such that the
robber still wins. The intuitive connection between the original treewidth characterization and
this game-theoretic approach is that cops would block all vertices of a bag in the decomposition
tree T , locking the robber in some subtree of T ; then, the cops can iteratively move over to the
adjacent bag that is closer to the robber, essentially pushing the robber towards a leaf-bag, where
he will eventually be catched. If there are too few cops, they will be unable to always lock the
robber within a subtree, and the robber can flee ad infinitum. See [47] for details.

Similarly, since treewidth is minor-monotone, one may characterize graphs of treewidth at most
k, also called partial k-trees, by a set of forbidden minors [3,42]. Since all 2-crossing-critical graphs
are non-planar, it follows from Kuratowski’s theorem that they contain the K4 as a minor and
their treewidth is at least 3 [5].

Definition 7.2 A tile T = (G, x, y) is blocked, if there are cops on G such that the robber—
independent of his position— cannot move from a vertex on T ’s left wall x to a vertex on T ’s right
wall y while using only edges of T , i.e., the graph G[W ] induced by the vertices W of G that are
not occupied by a cop, contains no path from a vertex in x to a vertex in y.

Lemma 7.3 Any large 2-crossing-critical graph G with at least 5 elementary tiles has 4 ≤ tw(G) ≤
5.

Proof: Recall that the generalized Wagner graph V8 is a cubic graph that is constructed from the
cycle on 8 vertices v1, . . . , v8 (in this order) by adding the edges vivi+4, 1 ≤ i ≤ 4 (cf. Figure 1 for
the analogously defined V10). The V8 constitutes one of four obstructions in the characterization
of graphs with treewidth ≤ 3 [3,44]. We obtain tw(G) ≥ 4 since any G with at least 5 elementary
tiles contains the V8 as a .

Let us now describe a strategy for catching a robber on any G with 6 cops: Using 2 cops, we
may block any tile T by placing them on its left wall. Applying this operation iteratively, using
3 sets of 2 such cops each, we can force the robber into a single elementary tile T ′ (essentially
using binary search), such that there is a cop on each wall vertex of T ′. Checking each possible
elementary tile individually, one can see that catching the robber within T ′ is then always possible
with 6 cops. 2

In fact, also the graphs on 3 elementary tiles contain V8 as a minor unless each tile has the
signature στL with σ, τ ∈ {A,D}. A treewidth-3 decomposition for the latter cases is easily
obtained.2 It remains to distinguish the large graphs with treewidth 4 from those with treewidth 5.
Surprisingly, for this we only need to recognize one specific minor ▷◁

3
:

Definition 7.4 The hourglass graph ▷◁ is obtained from two disjoint triangles by identifying one
vertex from the first with one vertex from the second triangle. The graph ▷◁

3
is obtained by cyclically

joining three hourglass graphs, as given in Figure 11.

We now consider a general refined cop strategy that will allow us to use less than 6 cops in
some cases.

2The reader may check the central case sig(G) = AALAALAAL either by hand or, e.g., using ToTo [50]. The
other cases follow since they are minors of this G.
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a

ab

b

Figure 11: Drawing of the minimal forbidden minor ▷◁

3
for treewidth 4 in the projective plane

as indicated by the identification of the same-labeled vertices. Vertices with the same labels are
identified. Internal vertices are gray.

Definition 7.5 Consider a tile T = (G, x, y) in a large 2-crossing-critical graph with cops placed
on some of its vertices. Let W ⊆ V (G) denote the set of vertices occupied by cops. A vertex
v ∈ V (G) is left-blocked ( right-blocked) if G[V (G) \W ] contains no path from v to a vertex of its
left wall (right wall, respectively). A vertex of G is tracked if itself or all its neighbors are occupied
by cops. A sweep of T is a sequence of cop movements such that (1) the cops initially occupy the
left wall, (2) after the sequence, the cops occupy the right wall; and (3) during the cop movements,
each vertex in V (G) enters the three states “left-blocked”, “tracked”, and “right-blocked” in that
order such that each state is entered exactly once and at each point in time, at least one state
applies.

Observe that during a sweep, the respective tile always remains blocked since there is no vertex
that is connected to both its walls. Further, a sweep is in fact applicable in both directions, i.e.,
the reverse sequence allows cops to move from the right to the left wall in the same manner.

Definition 7.6 An elementary tile is messy, if it contains ▷◁ as a minor. An elementary tile T is
neat if there is a sweep of T that uses at most 3 cops.

Lemma 7.7 Each elementary tile is neat or messy.

Proof: We show that elementary tiles with pictures M := {VA,VIA,BA,BIA, H} are messy and
the remaining ones are neat. For this proof, we denote by X ≺̇ Y that picture X is a minor of
picture Y such that X and Y have the same frame vertices.

For the first part, we contract all but the center 4-cycle of each tile’s frame. Picture H be-
comes ▷◁ by contraction of the central edge. Clearly, VIA ≺̇ VA and similarly BIA ≺̇ BA—each
by contraction of a single edge. Also, VIA ≺̇ BIA by contracting the double edge in B. Hence, all
elements of M that are not H contain VIA as a minor that by removal of a single edge becomes ▷◁.

It remains to show that tiles with pictures not in M are neat. These pictures are M :=
{DD,DV,DB,DA,VV,VB,BB,AA}. For the sweep, we may assume to start on the picture’s
vertices as it is trivial to move from any wall-vertex that is not part of the picture to its adjacent
vertex in the picture. Note that we may also omit the mirrored pictures DA and AA since it suffices
to show a sweep of their mirrored counterparts (DV and VV, respectively) that are also in M. The
remaining pictures in M are all minors of BB: DD ≺̇ DV ≺̇ DB and VV ≺̇ DB ≺̇ BB where each
minor-relation, except for the last, is witnessed by contraction of a single edge. Hence, it suffices
to provide a sweep on BB: we label this picture’s vertices as vi starting at the top left with v0 in
counter-clockwise order, see Figure 12. Assuming the cops arrive from the left side, they occupy
v0 and v2. First, we move the 3rd cop to v3. Observe that all neighbors of v1 are now occupied
by cops, i.e., v1 is tracked. The remaining sweep goes as follows: v2 → v7, v0 → v4, v3 → v6. Once
again, v5 is tracked by occupying its neighbors. 2
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v0 v6v7

v5

v1

v2 v3 v4

Figure 12: Picture BB with nodes labeled in counter-clockwise order.

Theorem 7.8 A large 2-crossing-critical graph has treewidth 5 if and only if it contains at least 3
messy tiles, i.e, if and only if it contains ▷◁

3
as a minor.

Proof: If there are no messy tiles, every elementary tile is neat and can be sweeped by 3 cops.
Hence, we may block an arbitrary tile with 2 cops and sweep around the remaining graph with 3
cops. If during the sweep, the robber should remain on a vertex that is tracked by cops occupying
its neighbors, we catch him using one of the first 2 cops.

Similarly, if there are up to two messy tiles, say X and Y , 4 cops are initially placed on X’s
walls. Then, the cops on the left wall of X start to sweep using a 5th cop c until they reach the
wall of Y . Finally, the cops on the right wall of X sweep, again using c, until they reach the other
wall of Y .

If, on the other hand, there are 3 messy tiles in G, then G contains the forbidden minor ▷◁

3
, as

witnessed by contracting all edges that do not belong to the set of 3 messy tiles and contracting
each messy tile to ▷◁. On ▷◁

3
, however, there exists a simple strategy for the robber to win against

5 cops: There are two types of vertices in ▷◁

3
: 6 rim vertices and 3 internal ones, seen in Figure 11

as the (white) top/bottom and (gray) middle ones, respectively. The robber stays on an arbitrary
rim vertex u until the last of its neighbors, say v, is about to be occupied by a cop. It then moves
over v to a new rim vertex that is not adjacent to u.

If v is an internal vertex, it is adjacent to 4 rim vertices: u, a neigbor of u and two other vertices
w1, w2 that are not adjacent to u. Since there are only 5 cops, w1 or w2 is not occupied and the
robber may move to it. Conversely, if v is a rim vertex, the robber will, depending on the position
of the remaining fifth cop, either move another edge along the rim or over the non-occupied internal
vertex to a further rim vertex non-adjacent to u. Since any pair of non-adjacent rim vertices has
exactly two common neighbors, not all neighbors of the new rim vertex are occupied even after
the cop lands on v. 2

Corollary 7.9 Any large 2-crossing-critical graph on at least 5 elementary tiles has treewidth 5
if and only if it contains at least three elementary tiles with pictures from the set {VA,VIA, BA,
BIA,H}. Otherwise, it has treewidth 4.

8 Conclusions

For several graph classes, we have conjectures on their crossing numbers. But there are only very
few classes for which we know their crossing numbers. Then, their structure is mostly rather
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simplistic. The class of 2-crossing-critical graphs seems to be the first graph class with known
crossing numbers that still offers rich and non-trivial structure in terms of other graph measures
as well.

In this paper, after some straight-forward graph properties as building blocks, we successfully
discussed both their chromatic number and index, as well as their treewidth. We propose further
investigation of general graph-theoretic properties of crossing-number related infinite graph fami-
lies, to further the idea of interlinking the concepts of topological graph theory with other aspects of
the field and further discovery of new applications. — On a more specific note, we recall Question
5.9 from above, which asks whether we can fully characterize 3-colorable large 2-crossing-critical
graphs.

In all our proofs, knowing the structure of large 2-crossing-critical graphs was instrumental
to proving the values of the above invariants. For further research, it would be of interest to
obtain these values without referring to the structure of the graphs, possibly by just assuming
the 3-connectivity, 2-crossing-criticality and (should it be needed), presence of a V10 subdivision.
Such approaches to graph invariants on 2-crossing-critical graphs may then be generalizable to c-
crossing-critical graphs for c > 2. Furthermore, there are other graph invariants and problems one
could consider on these graphs, www.graphclasses.org sharing an extensive list. By investigating
these invariants and specifically by obtaining proofs that require no knowledge about the structure
of the underlying 2-crossing-critical graphs, one may find ways to simplify the characterization
theorem of [10], or to identify an approach that would allow to list the finitely many 2-crossing-
critical graphs that contain a V8, but not a V10 subdivision, which is the final open step that would
render their characterization completely constructive.
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[26] P. Hliněný and M. Korbela. On the achievable average degrees in 2-crossing-critical graphs.
Acta Mathematica Universitatis Comenianae, 88(3):787–793, 2019. URL: http://www.iam.
fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1178.

[27] I. Holyer. The NP-completeness of edge-coloring. SIAM Journal on Scientific Computing,
10:718–720, 1981. doi:10.1137/0210055.

[28] K. Kawarabayashi, B. Mohar, and B. A. Reed. A simpler linear time algorithm for embedding
graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In 49th An-
nual IEEE Symposium on Foundations of Computer Science, pages 771–780. IEEE Computer
Society, 2008. doi:10.1109/FOCS.2008.53.

[29] K. Kawarabayashi and B. A. Reed. Computing crossing number in linear time. In D. S.
Johnson and U. Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory
of Computing 2007, pages 382–390. ACM, 2007. doi:10.1145/1250790.1250848.

[30] M. Kochol. Construction of crossing-critical graphs. Discrete Mathematics, 66(3):311–313,
1987. doi:10.1016/0012-365X(87)90108-7.

[31] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae,
15(1):271–283, 1930. URL: https://eudml.org/doc/212352.

[32] R. M. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer, 2016.
doi:10.1007/978-3-319-25730-3.

[33] L. Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory, Series B,
13(2):95–98, 1972. doi:10.1016/0095-8956(72)90045-7.

[34] D. Marx. Graph colouring problems and their applications in scheduling. Periodica Polytech-
nica Electrical Engineering, 48(1–2):11–16, 2004. URL: https://pp.bme.hu/ee/article/
view/926.

https://doi.org/10.1016/j.endm.2005.06.027
https://doi.org/10.1016/j.endm.2005.06.027
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/3-540-45848-4_9
https://doi.org/10.1016/S0095-8956(03)00037-6
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1178
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1178
https://doi.org/10.1137/0210055
https://doi.org/10.1109/FOCS.2008.53
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1016/0012-365X(87)90108-7
https://eudml.org/doc/212352
https://doi.org/10.1007/978-3-319-25730-3
https://doi.org/10.1016/0095-8956(72)90045-7
https://pp.bme.hu/ee/article/view/926
https://pp.bme.hu/ee/article/view/926


138 Bokal et al. Properties of Large 2-Crossing-Critical Graphs

[35] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM
Journal on Discrete Mathematics, 12(1):6–26, 1999. doi:10.1137/S089548019529248X.

[36] A. Owens. On the biplanar crossing number. IEEE Transactions on Circuit Theory, 18(2):277–
280, 1971. doi:10.1109/TCT.1971.1083266.

[37] B. Pinontoan and R. B. Richter. Crossing numbers of sequence of graphs I: general tiles.
Australian Journal of Combinatorics, 30:197–206, 2004. URL: http://ajc.maths.uq.edu.
au/pdf/30/ajc_v30_p197.pdf.

[38] B. A. Reed. A semi-strong perfect graph theorem. Journal of Combinatorial Theory, Series
B, 43(2):223–240, 1987. doi:10.1016/0095-8956(87)90022-0.

[39] G. Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, 29:107–117, 1965. doi:10.1007/BF02996313.

[40] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. Journal of Combi-
natorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

[41] N. Robertson and P. D. Seymour. Graph minors. VIII. A Kuratowski theorem for general
surfaces. Journal of Combinatorial Theory, Series B, 48(2):255–288, 1990. doi:10.1016/

0095-8956(90)90121-F.

[42] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

[43] G. Salazar. Infinite families of crossing-critical graphs with given average degree. Discrete
Mathematics, 271(1–3):343–350, 2003. doi:10.1016/S0012-365X(03)00136-5.

[44] A. Satyanarayana and L. Tung. A characterization of partial 3-trees. Networks, 20(3):299–322,
1990. doi:10.1002/net.3230200304.

[45] M. Schaefer. The graph crossing number and its variants: A survey. The Electronic Journal
of Combinatorics, 2013. doi:10.37236/2713.

[46] M. Schaefer. Crossing Numbers of Graphs. CRC Press, 1st edition, 2017.

[47] P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.

1027.

[48] J. Sirán. Infinite families of crossing-critical graphs with a given crossing number. Discrete
Mathematics, 48(1):129–132, 1984. doi:10.1016/0012-365X(84)90140-7.

[49] W. T. Trotter and J. I. M. Jr. Characterization problems for graphs, partially ordered sets,
lattices, and families of sets. Discrete Mathematics, 16(4):361–381, 1976. doi:10.1016/

S0012-365X(76)80011-8.

[50] R. van Wersch and S. Kelk. ToTo: An open database for computation, storage and retrieval
of tree decompositions. Discrete Applied Mathematics, 217:389–393, 2017. doi:10.1016/j.

dam.2016.09.023.

https://doi.org/10.1137/S089548019529248X
https://doi.org/10.1109/TCT.1971.1083266
http://ajc.maths.uq.edu.au/pdf/30/ajc_v30_p197.pdf
http://ajc.maths.uq.edu.au/pdf/30/ajc_v30_p197.pdf
https://doi.org/10.1016/0095-8956(87)90022-0
https://doi.org/10.1007/BF02996313
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/S0012-365X(03)00136-5
https://doi.org/10.1002/net.3230200304
https://doi.org/10.37236/2713
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.1016/0012-365X(84)90140-7
https://doi.org/10.1016/S0012-365X(76)80011-8
https://doi.org/10.1016/S0012-365X(76)80011-8
https://doi.org/10.1016/j.dam.2016.09.023
https://doi.org/10.1016/j.dam.2016.09.023


JGAA, 26(1) 111–147 (2022) 139
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Figure 17: Edge color propagation P32a for all 3-2-tiles.
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Figure 18: Edge color propagation P32b for all 3-2-tiles.
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Figure 19: Edge color propagation P2 for all 2-edge-tiles. Note that BBL, VVL, BVdL, VBdL
require 5 colors for P2 despite having maximum degree 4.
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Figure 20: Edge color propagations Pw for BVL and VVdL and Ps for all others of maximum
degree 4.
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