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Abstract. In the classical partial vertex cover problem, we are given a graph G and
two positive integers k1 and ka. The goal is to check whether there is a subset V'’ of V' of
size at most ki, such that V' covers at least ky edges of G. The problem is NP-hard as
it includes the Vertex Cover problem. Previous research has addressed the extension of
this problem where one has weight-functions defined on sets of vertices and edges of G.
In this paper, we consider the following version of the problem where as the input we
are given an edge-weighted bipartite graph G with weights from N, and three positive
integers k1, ko and k3. The goal is to check whether G has a subset V' of vertices of G
of size at most k1, such that the edges of G covered by V' have weight at least ks and
they include a matching of weight at least k3. In the paper, we address this problem
from the perspective of fixed-parameter tractability and algorithms. We present some
W]{1]-hardness, paraNP-hardness results for our problem. On the positive side, we show
that the problem is fixed-parameter tractable with respect to certain parameters. One
of our W[1]-hardness results is obtained via a reduction from the bi-objective knapsack
problem, which we show to be W[1]-hard with respect to one of the parameters. We
believe that this problem might be useful in obtaining similar results in other situations.
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1 Introduction

In the present paper, we study an extension of the classical vertex cover problem (VC). We address
this problem from the perspective of parameterized complexity theory and algorithms. It deals
with the partial vertex cover problem (PVC). In PVC the goal is to cover a certain number of edges
(not necessarily all the edges of the input graph as in VC) using the minimum number of vertices.
In our problem, which we call matching version of PVC (see [35]), we have one more constraint
where we require a certain lower bound for the size of the maximum matching in the covered
edges. We also consider the weighted variants of this problem. Our main goal is to investigate
this problem in bipartite graphs. In this case, we refer to it as the matching version of the partial
vertex cover problem in bipartite graphs (M-PVCB). Some applications of the partial vertex cover
problem in bipartite graphs and related problems are given in [9, 11].

In the matching version of edge-weighted partial vertex cover problem (M-EPVC), we are given
a graph G = (V, E), a weight-function p : E — N, and three positive integers k1, ko and k3. The
goal is to check whether there is a subset V/ C V of cardinality at most ki, such that the total
weight of edges covered by V' is at least ko, and the covered edges include a matching of weight
at least ks.

In the present paper, we study the fixed-parameter tractability of M-EPVC in bipartite graphs
(M-EPVCB). By obtaining a W[1]-hardness result for so called multi-objective knapsack problem,
we show that M-EPVCB is W[l]-hard with respect to k1. We also obtain similar results for
other interesting parameters. In case of some parameters we are able to show that M-EPVCB is
Fixed-Parameter Tractable (FPT) with respect to the parameter under consideration.

The paper is organized as follows: Main notations and definitions are given in Section 2. The
formal statements of the problems studied in the paper are given in Section 3. Section 4 presents
the related approaches in the literature. In Section 5, we obtain hardness results for the so-called
multi-objective knapsack problem and some of its restrictions. These results are used later in
Section 6 where the main results of the paper are obtained. We conclude the paper in Section
7, by summarizing our results and presenting some open problems that we feel deserve further
investigation.

2 Main Notations and Definitions

Let X = {z1,...,2} be a set and w : X — Z be a function. For any Xy C X, define w(Xy) =
ZmEXO w(x)

In the paper, we consider finite, undirected graphs that do not contain loops or parallel edges.
The degree of a vertex is the number of edges of the graph that are incident to it. The maximum
degree of the graph G, denoted by A(G), is the maximum of all degrees of vertices of G. For a
positive integer k, we let Vi, and V>, be the sets of vertices of G that have degree k and at least k,
respectively. Let rad(G) and diam(G) be the radius and diameter of G (see [16]). If P is a path
of length k in G, then we will say that P is a k-path.

If I is a subset of vertices of a graph G, then [ is called an independent set if any two vertices
of T are not adjacent in G. Let a(G) be the cardinality of the largest independent set of G. A
subset M of edges of G is called a matching, if no two edges of M are incident to the same vertex
of G. A matching M of G is called an induced matching if G contains no path of length three,
such that its first and third edge belong to M. Let v(G) be the size of a largest matching of G,
and let v;,4(G) be the size of a largest induced matching of G. Clearly, in any graph G we have

Vind(G) < v(G) < |L2\ If w: E(G) — N is a weight-function defined on edges of G and X C E(G),
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then let v,,(X) be the maximum weight (with respect to w) of a matching M, such that M C X.
In particular, when X = F(G), instead of writing v,,(F(Q)), we will write v, (G).

A graph G = (V, E) is bipartite, if its vertex set V' can be partitioned into two independent
sets V1 and V5. Usually, V; and V5 are called the bipartition of G. If G is a bipartite graph with a
bipartition V7 and Vs, such that any vertex of V; is adjacent to any vertex of V5, then G is called
a complete bipartite graph. We will denote such a bipartite graph as Ky, | |vs|-

Given a graph G = (V, E), and a set Vj C V of vertices, an edge (u,v) € E is covered by V}
ifueVyorvely Let E(Vy) be the set of edges of G that are covered by Vj. The classical
vertex cover problem (VC) is defined as finding a smallest set Vj of vertices of the input graph
G = (V,E), such that E(V) = E. We will denote the cardinality of such set V; as 7(G). The
vertex cover problem is a well-known NP-complete problem [25].

If IT is an algorithmic problem and ¢ is a parameter, then the pair (I, ¢) is called a parameterized
problem. The parameterized problem (II,¢) is fixed-parameter tractable (or II is fixed-parameter
tractable with respect to the parameter t) if there is an algorithm A that solves II exactly, whose
running-time is g(t) - poly(size). Here g is some (computable) function of ¢, size is the length of the
input and poly is a polynomial function. Usually, such an algorithm A is called an FPT algorithm
for (II,t). Sometimes we will say that A runs in FPT(¢) time. If T is an instance of II, then let
t(I) denote the value of the parameter ¢ in I.

A parameterized problem is called paraNP-hard, if it remains NP-hard even when the param-
eter under consideration is a constant. In the classical complexity theory, there is the notion of
NP-hardness that indicates that a certain problem is less likely to be polynomial-time solvable.
It relies on the assumption P # N P. The classical Satisfiability problem is an NP-hard problem
and any problem such that Satisfiability can be reduced to it is NP-hard, too. Similarly, in pa-
rameterized complexity theory there is the notion of W[1]-hardness, which indicates that a certain
parameterized problem is less likely to be fixed-parameter tractable. It relies on the assumption
FPT # WIJ1], which says that not all problems from W[1] are fixed-parameter tractable. The
Maximum Clique problem where the parameter under consideration is k - the size of the clique
that we are looking for, is an example of a W[1]-hard problem, and any problem such that the
maximum clique with respect to k& can be FPT-reduced to it, is also W[1]-hard. Recall that an
FPT reduction between two parameterized problems (II1,¢;) and (Ilg,¢3) is an algorithm R that
maps instances of II; to those of Ily, such that

(i) for any instance I} € II;, we have I; is a “yes”-instance of II; if and only if R(I;) is a
“yes”-instance of Ils,

(i) there is a computable function h, such that for any instance Iy € I t2(R(I1)) < h(t1(11)),
(iii) there is a computable function g, such that R runs in time g(t1) - poly(size).

The reader can learn more about this topic from [15], that can be a good guide for algorithmic
concepts that are not defined in this paper.
3 Formal Statement of Main Problems

In this paper, we study the following variants of the VC problem:

(a) The partial vertex cover problem (PVC)
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Definition 1 Given a graph G = (V, E) and two positive integers k1, and ko, check whether
there is a subset Vo of V', such that |Vo| < ki and |E(Vp)| > ks.

The weighted partial vertex cover problem (WPVC)

Definition 2 Given a graph G = (V, E), weight-functions ¢ : V. — N and p : E — N, two
positive integers k1 and ko, check whether there is a subset Vy of V', such that Zuevo c(v) <k
and EeeE(Vg)p(e) > ko ?

The partial vertex cover problem on bipartite graphs (PVCB) — This is the restriction of the
partial vertex cover problem (PVC) to bipartite graphs.

The weighted partial vertex cover problem on bipartite graphs (WPVCB) — This is the restric-
tion of the weighted partial vertex cover problem (WPVC) to bipartite graphs.

The VPVCB problem, a special case of the WPVCB problem, where all the edge weights are
set to 1,

The EPVCB problem, a special case of the WPVCB problem, where all the vertex weights are
set to 1.

The PVCB problem, a special case of the WPVCB problem, where all the vertex and edge
weights are set to 1.

The partial vertex cover problem with a matching constraint (M-PVCB) — This is a variant
of the PVCB problem, in which we are given a third parameter ks and the goal is to find a
vertex subset of cardinality at most ki, covering at least ko edges, such that the covered edges
include a matching of size at least k3.

The edge-weighted partial vertex cover problem with a matching constraint (M-EPVCB) —
This is a variant of the EPVCB problem, in which we are given a third parameter k3 and
the goal is to find a vertex subset of cardinality at most ki, such that the covered edges have
weight at least ks and they include a matching of weight at least ks.

The main contributions of this paper are the following:

W]1]-hardness of the bi-objective knapsack problem and its two restrictions with respect to the
budget B.

. Reduction of the parameterized problem (M-EPVCB, k) to instances in which k1 < k3 < ka <

ks - A(G).
W]1]-hardness of the M-EPVCB problem with respect to k;.

NP-hardness of M-EPVCB in complete bipartite graphs K;; and the paraNP-hardness of this
problem with respect to some parameters.

Hardness of M-EPVCB with respect to |V| — 2v4,4(G) under the assumption FPT # W][1].
Hardness of M-EPVCB in paths and cycles under the assumption FPT # W[1].

Fixed parameter tractability of M-EPVCB with respect to |V>q| and some other parameters.

Note that all our FPT algorithms depend on a single parameter.
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4 Related Work

PVC represents a natural theoretical generalization of VC. It has some practical applications.
Flow-based risk-assessment models in computational systems can be viewed as instances of PVC
[9]. In particular, PVC has applications to computer security when the input is a bipartite graph
[11].

VC is polynomial-time solvable in bipartite graphs. However, the computational complexity
of PVC in bipartite graphs remained open until it was recently shown to be NP-hard by several
authors [4, 11, 10, 23].

VC has been intensively studied from the perspective of approximation algorithms. There are
many 2-approximation algorithms for VC (see, for example, [39]). Karakostas [24] provides an
approximation algorithm for the VC problem which has a factor (2 — 6( \/liﬂ)) This is the best-

known result for now. The VC problem is shown to be APX-complete in [36]. Moreover, it cannot
be approximated within a factor of 1.3606 under the assumption P # NP [17]. Recently, in [26],
this lower bound was improved to (v/2—e¢) for any € > 0. If Khot’s unique games conjecture is true,
then VC cannot be approximated within any constant factor smaller than 2 [27]. Kénnemann et
al. [32] provide a (% + €)-approximation algorithm for WPVC when the input graph is bipartite.
Here € > 0 is any constant.

All hardness results for the VC problem directly apply to the PVC problem because the PVC
problem extends the VC problem. The PVC problem and the partial-cover variants of related
graph problems have been extensively studied [7, 8, 29, 33, 31, 30]. For example, there is an
O(n -logn + m)-time 2-approximation algorithm for PVC based on the primal-dual method [33].
Moreover, there is a combinatorial 2-approximation algorithm [6]. Both of the two algorithms are
for a more general soft-capacitated version of PVC. There are several 2-approximations resulting
from other approaches [5, 8, 22, 20]. Finally, note that the WPVC problem for trees is studied
in [34]. The paper provides an FPTAS for the problem. Additionally, the paper provides a
polynomial-time algorithm for the case of unweighted vertices (edges may have weights).

Another problem with a tight relationship to WPVC is the so-called budgeted maximum cov-
erage problem (BMC). In the BMC problem one tries to find a min-cost subset of vertices, such
that the profit of covered edges is maximized. It can be easily shown that the two problems are
equivalent from the perspective of exact solvability. The BMC problem for sets (not necessarily
graphs) admits a (1 — 1)-approximation algorithm as shown in [28]. However, special cases that

beat this bound are rare. The pipage rounding technique gives a 3-approximation algorithm for

1
the BMC problem on graphs [1]. This is improved to % for bipartite graphs in [3]. In [11, 10],
an %—approximation algorithm for the problem is presented when the input graph is bipartite

and the vertices are unweighted (edges may have weights). The result is based on the natural
linear-programming formulation of the problem. The constant % matches the integrality gap of the
linear program used in the formulation. Recently, in [37], V. Paschos presented a polynomial-time
approximation scheme for the edge-weighted maximum coverage problem on bipartite graphs.

Another problem with a close relation to the BMC and PVC problems is the profit cover
problem (PC). Like in the BMC and PVC problems, the PC problem does not require a solution
that covers all the edges of a graph. However, instead of minimizing the number of vertices that
cover a given number of edges or maximizing the number of edges covered by a fixed number of
vertices, the goal in the PC problem is to maximize the profit. It is defined as the difference
between the number of covered edges and the number of vertices in the cover. The PC problem
has been considered in [38]. There, it is shown that there exists a O(p - n 4+ 1.1517) algorithm for
the PC problem. Here p is the desired profit.
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The 2-PVCB problem studied in [35] is closely related to the constrained minimum vertex
cover problem on bipartite graphs (MIN-CVCB). In the MIN-CVCB problem, we are given two
parameters k4 and kg, and the goal is to find a cover of the bipartite graph G = (A, B, E) (with
a bipartition A and B) using at most k4 vertices from A and at most kp vertices from B. The
MIN-CVCB problem is NP-complete and can be solved by a fixed parameter tractable algorithm
that runs in time O(1.2654%*2 + (k4 + kp) - |G|) as demonstrated in [14]. The 2-PVCB problem
is a generalization of the MIN-CVCB problem in which one does not need to cover all the edges
of the input graph G. In [35], it is shown that this generalization makes the problem no longer
fixed-parameter tractable in k4 and kp under the assumption FPT # W][1].

In this paper, we address our problems from the perspective of fixed-parameter tractability.
From this point of view, PVC is in some sense more difficult than VC. For example, PVC is W[1]-
hard with respect to k; (that is, the number of vertices in the cover) [15]. On the other hand, VC
is FPT [15, 21].

In [2] the decision version of WPVCB is considered. There, the authors show that this problem
is FPT with respect to the vertex budget k1, when the vertices and edges of the bipartite graph
are unweighted. In [35], by extending the result of Amini et al. [2], it is shown that the decision
version of WPVCB is FPT with respect to kp, if the vertices have cost one, while the edges may
have arbitrary weights. On the other hand, the problem is W[1]-hard for arbitrary vertex weights,
even when edges have profit one [35]. Mkrtchyan et al. [35] prove that for bounded-degree graphs
WPVC is FPT with respect to k;. Similar conclusion holds for WPVC with respect to ko. Finally,
Mkrtchyan et al. [35] show that M-PVCB is FPT with respect to the budget k;. Terms and
concepts that we do not define in the paper can be found in [15].

5 The multi-objective knapsack problem

In this section, we consider the multi-objective version of the classical knapsack problem. We
present some hardness results for this version.

Recall that in the ordinary version of the problem, as the input we are given n items A =
{a1,...,an}, a cost function ¢ : A — N, a profit function p : A — N and two constants S and 7.
The goal is to check whether there is a subset Ay of A, such that ¢(Ap) < S and p(Ap) > T. This
problem is NP-complete. It is natural to consider the following extension of this problem where
as the input we have many cost functions and many profit functions. The goal in this new version
is to check whether there is a subset of items whose cost with respect to any of the cost functions
is at most some given bound, and its profit with respect to any of the profit functions is at least
some other bound. This version of the problem is called the multi-objective knapsack problem.

In this paper, we will need only the case of this problem where as the input we have one cost
function that is identically one and two profit functions. Let us formulate this version precisely:

Problem: We are given a set of items A = {ay,...,a,}, a constant B (that we will call a bud-
get), two constants P; and Py, and two profit functions pr; : A — N and pry : A — N. The goal is
to check whether there is a subset S C A with |S| < B, such that pri(S) > Py and pra(S) > Ps.

In this paper, we call this problem bi-objective knapsack problem or BKP for short. Below we
are going to obtain some W[1]-hardness results for BKP and its restrictions.

In the “compendium of parameterized problems” (page 92 of [12]), SubSet Sum problem is
defined, which is the following: we are given a set of integers X = {1, ..., 2, }, an integer s and a
positive integer k. The goal is to check whether X has a subset X’ of cardinality & such that the
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sum of numbers in X’ is exactly s. In [12] it is stated that this problem is W[1]-hard with respect
to k. The reference given there is [18] where the authors proved the W[1]-hardness of Sized SubSet
Sum (see page 123 of the paper) which is the same problem except that all numbers involved are
positive integers. Clearly the hardness of Sized SubSet Sum implies the hardness of SubSet Sum
as the latter is just an extension of the former.

Now, let us use this in order to obtain a reduction for the multi-objective knapsack problem
where the weight functions can take negative values too. Assume that we have an instance of the
SubSet Sum problem. Consider elements A = {a1,...,an}. Let pri(a;) = x; and pra(a;) = —z;.
Define B = k, Py = s and P, = —s. Then we have that there is X', [X'| = ksuch that ) v, = s
if and only if Y v, # > sand ) .y, (—x) > —s. The latter is true if and only if there is Y C A
with |Y'| = B such that pri(Y) > Py and pra(Y) > Ps.

Thus, this version of the problem is W{[1]-hard with respect to B. This proof has two drawbacks.
First, we required that |Y| = B. This is not a problem if the weights are non-negative, however,
when they can be negative, then conditions |Y| = B and |Y| < B are not the same. Second, the
weights can take negative values which we did not assume in our initial formulation of BKP.

We can fix the above two drawbacks as follows. Let us FPT-reduce the above mentioned variant
of the knapsack problem with negative weights to the case when everything is positive. If this is
achieved, as a side effect, we will also solve the issue over |Y| = B and |[Y]| < B.

Theorem 1 BKP is W[1]-hard with respect to B.

Proof: Assume that A = {a1,...,an}, 1 < B < n, pri,pro: A — Z and Py, P, € Z are given. Let
us reduce this to the case when everything is positive. For ¢ = 1,2 define:

Qi=1+Y_ |pri(x)],
z€A
and for any x € A let
pri(z) = pri(z) + Qi,
P/=P,+B-Q.
Observe that @; > 0 and prj(z) > 0. We can assume that —Q; < P; < @, as if P, > Q;, then
we have a trivial “no”-instance, and if P; < —@Q); we have a trivial “yes”-instance. Thus, P/ > 0.

Let us show that there is Y C A, with |Y'| = B such that pr;(Y) > P, if and only if prj(Y) > P;.
By our definitions, we have

pri(Y) =pri(Y)+ Y| - Qi =pri(Y) + B - Q;.

Hence, pri(Y) > P/ = P, + B - Q; if and only if pr;(Y) > P,.
Thus, this is a reduction. Moreover, observe that it is a polynomial-time reduction. Since the
value of B is unchanged, we have an FPT reduction. The proof is complete. O

Now, we are going to show that BKP remains WJ[1]-hard even if we have some additional
restrictions on the profit functions. We will need these results in order to obtain some of our main
results in the next section.

Theorem 2 BKP remains W/[1]-hard with respect to B even if pri(z) — pra(x) < pro(z) < pri(z)
for any = € A.
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Proof: We reduce BKP to itself when this additional constraint is satisfied. Assume that A =
{a1,..,an}, 1 < B <m,pri,pra: A— N and P;, P, € N are given. First let us show that we can
assume that for any x € A we have pro(x) < pri(z). For this purpose, define

Q = 1+ max [prz(x)w .

z€A | pri(z)

Let pri(z) = Q - pri(x), pri(z) = pra(z), Pl = Q - Py and Py = P,. Let the budget B remain
unchanged. We have that there is Y C A with |Y| = B such that pri(Y) > P/ if and only if
pri(Y) > P, (since everything is unchanged or multiplied by the same constant). Clearly, the
new instance can be obtained in polynomial time. Let us show that the new instance satisfies
pri(z) < pri(x) for any x € A. The inequality prj(z) < pri(z) is equivalent to pra(z) < Q- pri(x)
or g:?gg < Q. The latter we always have by the definition of Q.

Thus, in the very beginning we can assume that for any € A we have pra(z) < pri(x). Let
us show that we can assume the other inequality as well. For a given instance define:

Py = max{1, meaf)x((prl () — 2pra(z))}.
Observe that Py > 1 by definition. For any x € A and ¢ = 1,2 define:
pri(x) = pri(z) + Po,

P/ =P, +B-P,

As we have added the same number to every profit, we have for any = € A prj(x) < pri(z). Since
in the problem we were looking for |Y| = B, we can prove similarly (see the proof of Theorem 1)
that there is such Y C A with |Y| = B, such that pr;(Y) > P; if and only if prj(Y) > P/. Thus
we have a reduction. Moreover, it is a polynomial-time reduction and the value of the budget is
not changed. Thus, all we are left is to show that for any « € A we have pri(x) < 2-pri(z). By
definition, the last inequality is the same that

pri(z) + Py <2 (pra(z) + Po),
or equivalently,
pri(z) — 2 - pra(x) < Py.

However, the last one is always true because of the definition of Py. The proof is complete. a

Theorem 3 BKP remains W/[1]-hard with respect to B even if pri(z) — pra(x) < pra(z) < pri(z)
for any x € A and 377" [pri(a;) — pra(a;)] < minge 4 pra().

Proof: By the previous theorem, we know that BKP with the first condition satisfied remains
W]1]-hard with respect to B. Let us reduce these instances to ones when the second condition in
the theorem is satisfied, too.

Start with an instance of BKP with the first condition and let

T= Z[pﬁ (ai) — pra(as)].

i=1
Now, let us define new profit functions and new lower bounds for our parameters in the following
way:

pri(x) = pri(z) + (T + 1),
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and
P/ =P+ B(T +1).

As before, we can show that this established a reduction. Moreover,
0 < pri(z) — pry(z) < pri(z) < pri(z),

All we are left is to show that our new constraint is true in the new instances as well. We have:

n n
> Ipriai) = pri(a)] = > [pri(ai) — pra(ai)] < T +1 < pri(2)
i=1 i=1
for any item z. Thus, our new condition is satisfied. The proof is complete. a

6 Main results

In this section, we obtain our main results. Some of our proofs rely on the hardness results
established in the previous section. We start with the following observation that will allow us to
obtain some restrictions for the values of k.

Observation 1 The instances of M-EPVCB, in which k1 > 7(G) = v(G) can be solved in time
O(IVI-|EP + [V|*log [V).

Proof: Since G is bipartite, we can find a smallest vertex cover in it with the classical Edmonds-
Karp maximum flow algorithm in time O(|V| - |E|?). Because of our assumption, G contains at
most k1 vertices in this vertex cover. Thus, in order to solve the instance, it suffices to check
whether w(E) > ko and whether the weight of maximum weighted matching is at least k3. Clearly,
this can be done in time O(|V| - |E| + |V |*log |[V|) by the maximum weighted matching algorithm
from [19]. The proof is complete. O

Observation 2 The instances of M-EPVCB, in which ko < k3 can be solved in time O(|V|- |E| +
[V[?log V).

Proof: Assume that we have an instance with ks > ko. We claim that (G, w, k1, ko, k3) is a “yes”-
instance if and only if (G, w, k1, ks, ks) is a “yes”-instance. Let us assume that (G, w, k1, ko, k3)
is a “yes”-instance. Then since the covered edges include a matching of w-weight at least k3, we
have that the covered edges are of weight at least k3. Thus, (G, w, k1, k3, k3) is a “yes”-instance.
On the other hand, if (G,w, ky, k3, k3) is a “yes”-instance. Then for any ko < k3, we have that
(G,w, k1, ko, k3) is a “yes”-instance. Thus, the instances with k3 > ko can be reduced to those
with kg = kg.

Theorem 4.6 of [13] implies that one can find a maximum weighted k;-matching (if it exists) in
time O(k1-(|E|+|V|log|V])). In the paper, a k1-matching is defined as a matching of cardinality k.
Thus, in order to solve the case ko = k3 of our problem, we just need to find a maximum weighted
ki-matching and check whether its weight is at least k. Hence, combined with the previous
paragraph and taking into account that k1 < |V, we have that the instances with ky < ks are
solvable in time O(|V| - |E| + [V |*log|V]). The proof is complete. 0

The next proposition allows us to reduce the solution of some instances of M-EPVCB to in-
stances of EPVCB. Since EPVCB is FPT with respect to k1 [35], these instances can be solved in
FPT(ky) time.
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Proposition 1 Let (G,w, ki, ko, k3) be an instance of M-EPVCB with % > A(G). Then it is a
“yes”-instance if and only if (G, w,k1,ks) is a “yes”-instance of EPVCB.

Proof: One direction is trivial. Let us assume that (G, w, k1, k2) is a “yes”-instance of EPVCB
and V' is the corresponding partial cover. Since G is a bipartite graph, we have that the graph
G[Evy] is a bipartite subgraph of G with maximum degree at most A(G). By Konig’s theorem [16],
the edge-set of any bipartite graph of maximum degree A can be partitioned into A matchings.
Thus, we can write

E(G[E(V/)]) =MU..U MA(G)-

Here My, ..., Ma (¢ are matchings of G[E(V”)]. Then:

> ks.

w(BCEWV))) _
o wMy) = == 2 R

Thus, (G, w, k1, ke, k3) is a “yes”-instance of the edge-weighted version of the matching problem.
The proof is complete. a

Theorem 4 The instances of M-EPVCB, in which ks < ky can be solved in time O((2k;)* -log k; -
[viewm).

Proof: We follow the proof of Theorem 5 from [35]. Let EPVCB(A, B) be the FPT(A) algorithm
that solves EPVCB (see Theorem 1 of [35]). Its running-time is O((24)4 - [V|°(). Let R be the
smallest integer for which EPVCB(R, k2) is feasible. Let J be the set of edges of the input graph
that can be covered with its R vertices. We have w(J) > ks.

We can assume that R < k;. Let H be the spanning subgraph of our graph whose edge-set is J.
By the classical Konig theorem we have v(G) = 7(G) for any bipartite graph G. By Observation
1, we can assume that k; < 7(G).

Observe that we can assume that R < k3 < ky < 7(G). If R > kg, then clearly H can be
covered with at most k; vertices, it has weight at least ko, and it has a matching of size R > ks
hence of weight at least k3. Since 7(H) = R < k3 < 7(G), we have that E(H) # E(G). Thus,
there is as an edge e lying outside H. Add e to H. If 7(H) has increased by adding e, define
R := R+ 1, otherwise let R be the same. Repeat this process of adding edges outside H. Since
T(H) = R < k3 < 7(G) and at each step 7 can increase by at most one, at some point we will
arrive at H such that R = 7(H) = k3 < k1. Observe that H can be covered with at most k;
vertices, it has weight at least ko and it contains a matching of size k3, hence of weight at least k3.
Thus, the problem is a “yes”-instance.

The running time of the above algorithm is O((2k;)** - logk; - [V|(M). In order to see this,
just observe that with the standard binary search approach we can have at most logk; calls of
EPVCB(R, ks). The proof is complete. ]

The four statements proved above imply the following

Corollary 1 When parameterizing M-EPVCB with respect to ki, one can focus on instances in
which k1 < k3 < ko < k3 - A(G)

In [35], it is shown that M-PVCB is FPT with respect to k;. On the other hand, in the
same paper it is proved that VPVCB and WPVCB are W|[1]-hard with respect to k;. Thus, their
matching extensions are W[1]-hard with respect to k1, too. It is interesting to wonder whether
M-EPVCB is FPT with respect to k. Our next result addresses this question.
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Theorem 5 M-EPVCB is W/[1]-hard with respect to k.

Proof: By Theorem 2, BKP remains W[1]-hard even if for any item x € A we have

pri(z) — prao(z) < pra(z) < pri(z).

Let us reduce this problem to M-EPVCB. For each item z € A = {ay, ...,a, } put a 2-path (a path
of length two) with edge-weights w(e) = pri(x) — pra(z) and w(e) = pro(z) for edges e of the
2-path (Figure 1). Observe that we have an edge-weighted bipartite graph. Let k1 = B, ks = P,
and k3 = Pg.

pri(a1) — pra(a1) pri(az) —wrz(az) pra(az) pri(an pra(an)

Figure 1: The bipartite graph obtained after the reduction from BKP.

Let us show that we have a reduction. Observe that we can always avoid taking the degree-
one vertices in our cover as we can simply take the degree-two vertex instead of it. Thus, we
have a bijection among subsets of items and subsets of degree-two vertices of our bipartite graph.
Moreover, for any subset S C A, we have

w(B(S)) = Y _[(pri(z) = pra(x)) + pra(e)] = pri(S),

zeS

and

v (E(S)) = Y max{pri(z) — pra(x), pra(z)} = pra(9),

€S
as we were considering the restriction of the multi-objective knapsack problem in which prq(z) —
pro(x) < pro(z) for any x € A. Thus,
pr1(S) > Py if and only if w(E(S)) > ke,
and
pra(S) > P» if and only if v, (E(S)) > ks.

Thus, we have a polynomial-time reduction. Observe that k; = B, thus we have an FPT reduction.
The proof is complete. a

In the reduction presented above, we have bounded maximum degree. Actually, it is two. Thus,
we have

Corollary 2 Under the assumption FPT # W[1], M-EPVCB is not FPT with respect to A(G).

Since A(G) = 2 in the above reduction we have that M-EPVCB is W[1]-hard with respect to
k1 4+ A(G). On the other hand, because of Observation 1, we can always assume that k; < 7(G) =
v(G). Thus, one may wonder whether M-EPVCB is FPT with respect to v(G) + A(G). Since by
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Konig’s theorem, E(G) can be partitioned into A(G) matching, we have that |E| < A(G) - v(G).
Thus, M-EPVCB is FPT with respect to the mentioned parameter.

Though M-EPVCB is W[1]-hard with respect to ki, it is easy to show that it is FPT with
respect to the complementary parameter |V| — k1. In order to see this, in the given instance we
can check whether V| — ky > |L2/\ If it holds, then |V| < 2- (V]| — k1). In this case, we can
generate all subsets X of V, and for each X, we check that |X| < kq, it has coverage at least
ko and the includes a matching of weight at least k3. These conditions can be checked in time
O(|V|-|E| + |[V|?1log |V]) [19]. Thus, this case we can overcome in time

2V O(IV] - 1B + |V log [V]) < OWY =R (V- |E| + V] log [V])).

On the other hand, if |[V|—k; < %, then ky > \2L| Since in any bipartite graph G 7(G) < %
(just take the smallest set in the bipartition of G), we have 7(G) < kj. Observation 1 implies
that these instances can be solved in time O(|V| - |E|? + |[V|?log|V|). In conclusion, the total
running-time of our algorithm is O(4!VI=%1 . (|V| - |[E|? + |V|?log |V])).

PVCB and its weighted extensions considered in this paper are NP-hard. Below we show that
M-EPVCB remains hard for very restricted subclass of regular bipartite graphs.

Theorem 6 M-EPVCB is NP-hard in complete bipartite graphs Ky ;.

Proof: We reduce M-EPVCB to its restriction in complete bipartite graphs. For a given weighted
bipartite graph, define C' = |V|2. First, let us embed our bipartite graph G into a bipartite
A(G)-regular graph G’ in a standard way. That is, we add isolated vertices to the smallest
set in the bipartition of G, so that two sets have equal size. Then we start adding edges so
that the graph remains bipartite and becomes regular. The number of added edges is less than
(V] —=1)? < |V]? = C as the size of larger part of G is at most |V| — 1 and minimum degree we
can assume to be at least 1 and maximum degree is at most |V| — 1. Next, we define the weight
function on G’ as follows: w'(e) = C-w(e) for edges of G and w’(e) = 1 for edges from E(G")\E(G).
Finally, for a given k1, ko, ks define &k = k1, k), = Cke and k4 = Cks. Since log C' < poly(size),
we have that we have increased the parameters polynomially. Observe that the reduction can be
performed in polynomial time.

Let us show (G,w, ki, ko, k3) is a “yes”-instance if and only if (G',w’, ki, kb, k%) is a “yes”-
instance. If in G we have a feasible solution, then clearly it is feasible in G’ as everything is
multiplied by C. Now, assume that Vp is a feasible set in G'. Let Ey = E(G")\E(G). We have
w' (E(Vy)) > kb = Cke and v (E(Vp)) > ki = Cks. Hence

w/(E(VQ)\E1) > Cky — |E1‘ > Cky — |V|2 =Cky—C = O(ka — 1)
and similarly
v (E(Vo)\E1) > Ckz — |E1| > Cks — |V|* = Cks — C = C(k3 — 1).

Thus,
w(B(Vo) N E(G)) = w(E(V)) > ks — 1
and
v (E(Ve) N E(G)) = v (B(Ve)) > ks — 1.

Thus, w(E(Vy)) > ko and v, (E(Vp)) > k3. We have reduced the edge-weighted matching problem
in bipartite graphs to its restriction in bipartite regular graphs in polynomial time. Thus, the
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problem is NP-hard in bipartite regular graphs. Now, in order to complete the proof of the
theorem, observe that if we want to obtain a complete bipartite graph in the reduction, we only
need to continue adding edges of weight 1. The proof is complete. a

Remark 1 Observe that the vertices of V(G )\V(G) in the reduction do not play a role since they
do not cover the old edges. Hence if we have a coverage greater than C(ka—1) in G', then all these

edges will be covered with vertices from V(G). Thus, they will give rise to a coverage larger than
ko — 1 in G with vertices of G.

The proved hardness result has some consequences. In order to state them, recall that a
matching M of G is called an induced matching, if G contains no path of length three, such
that its first and third edge belong to M. Let v;,4(G) be the size of a largest induced matching
of G. In complete bipartite graphs K;;, we have that v;,q(G) = 1, the domination number is 2,
2a(G)—|V] = 0 (a(G) is the size of the largest independent set in G) and A(G)-v(G)—|E(G)| =0
(this is true for any bipartite regular graph). Thus, M-EPVCB is paraNP-hard with respect to
these parameters. Below we obtain a hardness result with respect to |V| — 2v,4(G).

Theorem 7 Under the assumption FPT # W[1], M-EPVCB cannot be FPT with respect to |V| —
2Vind(G)'

Proof: We reduce from the restriction of BKP from Theorem 3. For a given instance of BKP from
this theorem, consider the disjoint 2-paths from the proof of Theorem 5. Now, from each 2-path
take one vertex of degree 1, and identify these n vertices in order to get the tree G’ (see Figure 2).
The resulting vertex z in G’ has degree n. Observe that |V(G')| — 2v;nq(G') = 1.

Figure 2: The tree G’ obtained after the reduction from BKP.

Let us show that the instance of BKP is a “yes”-instance if and only if the instance of M-
EPVCB is a “yes”-instance. Forward direction is trivial. Let us prove the converse statement.
Assume that the instance of M-EPVCB is a “yes”-instance. It suffices to show that there is a
feasible set that does not take z. Assume that we have a feasible set V) in M-EPVCB. We can
assume that z € Vj. If all neighbors of z are in V[, then we can remove it without losing feasibility.
Thus, we can assume that at least one neighbor of z does not belong to V. Replace z with this
neighbor in order to obtain a set V7. Observe that because of the condition

;[Prl(ai) —pra(a;)] < g?leigpr2($)

we have the same lower bounds for the coverage and the maximum weighted matching of covered
edges. Thus, we have a feasible set that avoids z. The proof is complete. a
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In the previous theorem we showed that M-EPVCB is hard already when |V| — 2v;,4(G) = 1.
One may wonder what happens when |V| — 2v;,4(G) = 0. In this case, we have an induced perfect
matching in G. Thus, G is 1-regular. Therefore, by taking k; edges of maximum weight, we can
check whether these edges have coverage at least ko and k3. If they do, we have a “yes”-instance.
Otherwise, it is a “no”-instance. Clearly, this can be done in time O(|V| - log|V]).

Theorem 8 Under the assumption FPT # W[1], M-EPVCB is not polynomial-time solvable in
paths and cycles.

Proof: In Theorem 5, we have shown that M-EPVCB is W[1]-hard with respect to k; in vertex-
disjoint 2-paths. Now, we are going to reduce these instances to cycles and paths in polynomial-
time. Clearly, this will prove the statement.

Figure 3: The path/cycle obtained from vertex disjoint 2-paths.

We follow the strategy of the proof of Theorem 6. Assume that G is a vertex union of 2-paths.
Let us take a constant C' = |V|? and define the new values of parameters as we did in the proof
of Theorem 6. Now, in order to obtain cycles or paths, we add edges of weight 1 (see Figure 3).
Since G is of maximum degree two, this is always possible. As in Theorem 6, one can prove that
the original instance is a “yes”-instance if and only if the new instance is a “yes”-instance. The
proof is complete. a

Recall that rad(G) and diam(G) denote the radius and diameter of G. For more information on
them, the reader can refer to [16]. In Theorem 7, we proved that M-EPVCB remains hard in a class
of trees of radius two and diameter four. This implies that under the assumption FPT # W/1],
M-EPVCB cannot be FPT with respect to diam(G) and rad(G). One may ask question about the
parameters |V| — diam(G) and |V| — rad(G). Observe that in paths, we have that |V| — diam(G)
is constant. Thus, under the assumption FPT # W([1], M-EPVCB cannot be FPT with respect to
it. On the other hand, for any graph G, we have rad(G) < % Thus, |V| — rad(G) > ‘QLl Thus,
M-EPVCB is FPT with respect to |V|—rad(G). Finally, let us note that in paths |V|—2-rad(G) is
constant, too. Thus, under the assumption FPT # W[1], M-EPVCB cannot be FPT with respect
to it, too.

Observe that M-EPVCB is hard with respect to |V;] as cycles demonstrate. In these instances,
we have V1] = 0. Also, observe that the problem is hard with respect to |V>3| as paths demonstrate.

Theorem 9 M-EPVCB is FPT with respect to |V>a|. It can be solved with an algorithm running
in time O (22" (V]2 |E| + |V - log| V) ).
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Proof: For a given instance of M-EPVCB, we consider two cases. If log|V| < |V>s|, then |V| is
bounded in terms of our parameter. Thus, we can solve these instances in FPT(|V>2]) time. More
precisely, there are

2|V| < 22“/22‘
subsets of vertices. We can generate all of them and check each of them for feasibility. It can be
done in time O(|V| - |E| + |[V|?log|V]) [19]. Thus the running-time of this case is

[V>al
02> =" - (V|- |E| + V| - log [V])).

Now assume that log |V| > |V>2|. Observe that our graph can be represented as the vertices of
V>o that may or may not be joined to some vertices of Vi, plus we may have isolated edges (we
can ignore isolated vertices), see Figure 4.

A

Figure 4: The way G looks from the perspective of V>,. We can ignore isolated vertices in G.

Observe that if our problem is a yes-instance, then there is a solution that takes some vertices
from V>2 plus some independent vertices from the vertices of these isolated edges. Thus, we can
consider the following simple algorithm: let us generate all subsets X of V>, that have size at
most k1. We have 2/V=2l < |V| possibilities. For each of these choices we add k; — | X| independent
vertices from isolated edges that have the largest coverage. We can do this in time O(|V|-log [V]).
We test the resulting set for feasibility in time O(|V|-|E|+|V|?log |V]) [19]. Clearly, this algorithm
solves our problem exactly. Moreover, in this case its running time is

22l (O(V]-1og |V]) + O(V- |E| + [VI* - log [V])) = O(IV|* - |E| + [V]* - log |[V]).

Combining the two cases, we have that M-EPVCB is FPT with respect to |V>3], and the running-
time of the corresponding algorithm is

O (22" (VP |B+ VP - log V1) )

The proof is complete. a

7 Future Work

In this paper, we have shown that M-EPVCB is W[1]-hard or paraNP-hard with respect to many
parameters. We also observed that in case of some parameters the problem is FPT. There are
questions that deserve further investigation. Below we present some of them.

We have observed that M-EPVCB is FPT with respect to |V| — k1. It would be interesting to
investigate its hardness with respect to |V| —2 - k;.

In Theorem 5, we have shown that M-EPVCB is W[1]-hard with respect to k;. It would be
interesting to strengthen this result and show

Conjecture 1 M-EPVCB is W[1]-hard with respect to min{|X|, [Y]}.
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Here X and Y denote the two sets in the bipartition of the input graph. In other words, the
vertex-set of the input graph is X UY and any edge connects a vertex from X to a vertex from Y.

In Corollary 2, we have shown that M-EPVCB is less likely to be FPT with respect to A(G).
We suspect that

Conjecture 2 M-EPVCB is W[1]-hard with respect to |V| — A(G).

We can show that Conjecture 1 implies Conjecture 2. It suffices to present an FPT reduction
from M-EPVCB considered with respect to min{|X|,|Y|} to M-EPVCB considered with respect
to |V| — A(G). Assume that we have G and let (X,Y) be the bipartition of G. Assume that
Y| < |X]|. Add a new vertex z to Y and add k = |V(G)] vertices to X. Finally join z to all
vertices of X both old and new. Let H be the resulting bipartite graph. Observe that its size is
polynomial in terms of G. Moreover, as we did in the proof of Theorem 6, we can multiply the
weights of edges of G with a big constant C' and define the new edges of H to have weight one.
As in the proof of this theorem, we define the parameters k1, ko and k3 in the same way. One can
show that originally we had a “yes”-instance if and only if the new instance is a “yes”-instance.
Moreover, observe that this reduction is polynomial-time. It remains to bound the parameters.
Observe that

VH)| = V(G +1+k

and
A(H) = |X|+ k.

Thus,
[V(H) —AH) =Y+ 1=min{|X],|Y]} + 1.

Thus, this reduction is an FPT-reduction. We finish the discussion with the following

Observation 8 The hardness of M-EPVCB with respect to min{|X|, |Y'|} is equivalent to that of
M-EPVCB with respect to v(G).

Proof: Since v(G) < min{|X]|,|Y|}, one direction is trivial. Assume that the problem is hard
with respect to min{|X|,|Y|}. Let us show that it is hard with respect to ¥(G). Let us embed
G = (X,Y,E) into a complete bipartite graph K Ix|,|y|- As previously, we multiply edge-weights
of old edges with a big, but polynomially bounded constant (see Theorem 6). The weights of
new edges are one. As before, we have a polynomial-time reduction. Thus, the two conditions of
FPT-reductions are satisfied. It suffices to show that v(K|x|y|) is bounded in terms of a function
of min{|X|, |Y|}. We have

v(K|x),y)) = min{| X, [Y]}.

Thus, the described reduction is an FPT reduction. The proof is complete. O
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