
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 26, no. 1, pp. 75–80 (2022)
DOI: 10.7155/jgaa.00582

A short proof of the non-biplanarity of K9
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Abstract. Battle, Harary, and Kodama (1962) and independently Tutte (1963)
proved that the complete graph with nine vertices is not biplanar. Aiming towards
simplicity and brevity, in this note we provide a short proof of this claim.

1 Introduction

An embedding (or drawing) of a graph in the Euclidean plane is a mapping of its vertices to distinct
points in the plane and its edges to smooth curves between their corresponding vertices. A planar
embedding of a graph is a drawing of the graph such that no two edges cross. A graph that admits
such a drawing is called planar. A biplanar embedding of a graph H = (V,E) is a decomposition of
H into two planar graphs H1 = (V,E1) and H2 = (V,E2) such that E1 ∪E2 = E and E1 ∩E2 = ∅,
together with planar embeddings of H1 and H2. In this case, H is called biplanar. In other words,
a graph is called biplanar if it is the union of two planar graphs; that is, if its thickness1 is 1 or
2. The complete graph with n vertices, denoted by Kn, is a graph that has an edge between every
pair of its vertices. Let G be a subgraph of Kn that has n vertices. The complement of G, denoted
by G, is the graph obtained by removing all edges of G from Kn.

As early as 1960 it was known that K8 is biplanar and K11 is not biplanar. There exist several
biplanar embeddings of K8; see e.g. [2] for a self-complementary drawing. The non-biplanarity of
K11 is easily seen, since it has 55 edges while a planar graph with eleven vertices cannot have more
than 27 edges, by Euler’s formula. Finding the smallest integer n, for which Kn is non-biplanar,
was a challenging question for some time [7]. The question was answered by Battle, Harary, and
Kodama ([1], 1962) and independently by Tutte ([15], 1963) who proved that K9 is non-biplanar.
Both proofs involve an exhaustive case analysis. Battle, Harary, and Kodama gave an outline of a
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proof through six propositions. Some of these propositions require detailed case analysis, which is
not given in the original paper. For example, the authors write: “There are several cases to discuss
in order to establish Propositions 4 and 5. In each case, we can prove that G contains a subgraph
homeomorphic to K3,3 or K5.” A detailed proof of these propositions appeared in the master’s
thesis of Hearon [9]. Tutte’s proof is a 13-page paper, and enumerates all simple triangulations
(with no separating triangles) with up to 9 vertices and verifies that the complement of each
triangulation is nonplanar (the connection to triangulations will become clear shortly). It seems
that Harary was not quite satisfied with any of these proofs as he noted in his Graph Theory book
[8] that “this result was proved by exhaustion; no elegant or even reasonable proof is known.” See
[10] for a different proof approach. In the next section we present a short proof of this result.

The non-biplanarity of K9 has the same flavor as the well-known theorem of Kuratowski on
non-planar graphs (stated in Theorem 1). The biplanar crossing number of a graph is the minimum
number of crossings over all drawings of the graph in two planes [3]. It is known that K9 can be
drawn in two planes with one crossing (see e.g. [6]). This and Theorem 3 imply that the biplanar
crossing number of K9 is 1. Determining biplanar crossing numbers of Kn for small values of n is
important as they lead to better bounds for biplanar crossing numbers of Kn for large values of n;
see e.g. [3, 4, 13], and [6, 14] for more recent progress.

2 Our proof

In this section we present a short proof of the non-biplanarity of K9. Our proof is complete,
self-contained, and only relies on the theorem of Kuratowski [5, 11] that “a finite graph is non-
planar if and only if it contains a subgraph that is a subdivision of K5 or K3,3.” The following is
an alternative characterization of non-planarity of a graph based on K5 and K3,3 minors, due to
Wagner (1937) [16] (see also [15]).

Theorem 1 A graph G is nonplanar if one of the following conditions hold: (i) G has six disjoint
connected subgraphs A1, A2, A3, B1, B2, B3 such that for each Ai and Bj there is an edge with one
end in Ai and the other in Bj. (ii) G has five disjoint connected subgraphs A1, A2, A3, A4, A5 such
that for each Ai and Aj, with i ̸= j, there is an edge with one end in Ai and the other in Aj.

Towards our proof of the non-biplanarity of K9, we first use Theorem 1 to help show that a
particularly restricted drawing of K8 cannot be biplanar (see the figure to the right).

Theorem 2 Let H be an embedded planar graph with eight vertices such
that the boundary of its outer face is a 5-cycle and there are no edges between
the three vertices that are not on the outer face. Then the complement of H
is nonplanar.

Proof. Let the 5-cycle C = (a1, a2, a3, a4, a5) be the boundary of the outer face of H, and let u,
v, and w be the three vertices that are not on the outer face, i.e., lie on internal faces of H. By
the statement of the theorem uv, uw, and vw are edges of the complement graph H. Except for
the three pairs (u, v), (u,w), (v, w), if a pair of vertices lie on the same internal face of H and are
not connected by an edge, then we transfer the corresponding edge from H to H and connect the
two vertices by a curve in the face. After this operation H remains planar. Repeating this process
makes H edge-maximal (in the above sense).

Let H ′ be the embedded planar subgraph of H that is induced by the five vertices of C. The
graph H ′ consists of the cycle C together with zero, one, or two chords as in Figure 1.
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Claim 1. If an internal face f of H ′ contains u, v, or w then one of them
is connected to all boundary vertices of f in H. The shaded region in the
figure to the right represents f . To verify the claim, first observe that (by
edge-maximality of H) one of the vertices in f , say v, is connected to at
least three boundary vertices of f , i.e., v’s degree in H is at least three.
We argue that v should be connected to all boundary vertices of f . For a
contradiction assume that v is not connected to some vertex ai on f . Let
aj and ak be the neighbors of v on f that are visited first while walking
on boundary of f in clockwise and counterclockwise directions starting from ai. Since v is not
connected to other vertices in the interior of f , we could have moved the edge ajak from H to H
and draw it in f . This means that H is not edge-maximal, which is a contradiction. This proves
the claim.

Since H ′ is induced from the restricted planar graph H by the vertices of the 5-cycle C, it has
zero, one, or two chords. We consider these cases separately and in each case we show that H is
nonplanar. Recall that in all cases, the vertices u, v, and w lie in internal faces of H ′.
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Figure 1: (a)-(c) the graph H where bold edges belong to H ′ (dashed edges belong to H); red
and blue points/components represent subgraphs Ai and Bi in Theorem 1. (a)-(c) black edges
represent the K5 and K3,3 minors in H that correspond to (a)-(c), respectively.

� H ′ has no chords. Let v be the vertex of H that (by Claim 1) is connected to each ai; see
Figure 1(a). By planarity of H and the fact that u and w lie in internal faces of H ′, each of
u and w can only be adjacent to two consecutive vertices of C. Hence there exists a vertex of
C (say a1) that is adjacent to neither u nor w. In this setting, regardless of the locations of u
and w, the five connected subgraphs u, w, a1, {a2, a4} and {a3, a5} from H satisfy condition
(ii) of Theorem 1; these subgraphs are colored red in Figure 1(a). Thus H is nonplanar.

� H ′ has one chord. After a suitable relabeling assume that this chord is (a2, a5). Let f denote
the face of H ′ whose boundary is the 4-cycle (a2, a3, a4, a5); this face is shaded in Figure 1(b).
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This face contains some vertices of {u, v, w} because otherwise H ′ should have a chord in f
(by edge-maximality of H) which contradicts our assumption that H ′ has one chord. Let v
be the vertex in f that (by Claim 1) is connected to all its boundary vertices. By planarity
of H and the fact that u and w lie in internal faces of H ′, each of u and w can only be
adjacent to two consecutive vertices of f . Therefore, the six connected subgraphs u, w, a1,
v, {a2, a4}, and {a3, a5} from H (partitioned into {u,w, a1} and {v, {a2, a4}, {a3, a5}}, and
colored blue and red in Figure 1(b), respectively) satisfy condition (i) of Theorem 1. Thus
H is nonplanar.

� H ′ has two chords. Let a1 be the vertex that is incident to the two chords as in Figure 1(c).
By planarity of H and the fact that u, v and w lie in internal faces of H ′, each of u, v,
and w can only be adjacent to one vertex in {a2, a4} and to one vertex in {a3, a5}. Thus,
the five connected subgraphs u, v, w, {a2, a4}, and {a3, a5} from H satisfy condition (ii) of
Theorem 1; these subgraphs are colored red in Figure 1(c). Thus H is nonplanar. □

The following lemma will come handy in the proof of Theorem 3. A triangulation is a maximal
planar graph, i.e. a graph to which no more edges can be added without violating its planarity.
The boundary of every face of a triangulation is a triangle (i.e. a 3-cycle).

Lemma 1 Let G be a triangulation with nine vertices and suppose that its complement is planar.
Then at least one vertex on the outer face of G has degree larger than four.

G
G′

Proof. We prove this lemma by contradiction. Assume that all three
vertices on the outer face of G are of degree at most 4. The removal of
these three vertices from G results in a 6-vertex graph G′. The region,
that is between the boundaries of the outer face of G and the outer face
of G′ is a polygon with a hole, that is triangulated by at most six edges
of G (because every vertex on the outer face of G has at most two edges
in the interior of this polygon). The boundary of the outer face of G′, i.e.
the hole, has three vertices because otherwise (if it has at least four vertices) the polygon would
require at least seven edges to be triangulated, as in the figure to the right; this can be verified by
a simple counting argument using Euler’s formula for planar graphs, see also [12, Proof of Lemma
5.2]. Thus the outer face of G′ is a 3-cycle. In this case the other three vertices of G′ which are
in the interior of this 3-cycle together with the three removed vertices from G form a K3,3 in the
complement of G, which contradicts its planarity. □

Having Lemma 1 and Theorem 2 in hand we are ready to give a succinct new proof of the
following fundamental theorem due to Battle, Harary, Kodama ([1], 1962) and Tutte ([15], 1963)
which implies that K9 is non-biplanar.

Theorem 3 Every planar graph with at least nine vertices has a nonplanar complement.

Proof. Consider a planar graph G with nine vertices. For the sake of contradiction assume that
its complement G is also planar. Fix a planar embedding of G and a planar embedding of G. For
convenience we use G and G for referring to planar graphs and to their planar embeddings. If there
are two vertices in G that lie on the same face and are not connected by an edge, then we transfer
the corresponding edge from G to G and connect the two vertices by a curve in that face. After
this operation both G and G remain planar. Repeating this process converts G to a triangulation.
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By Lemma 1, at least one vertex, say r, on the outer face of G has degree k ≥ 5. Remove
r from G and G and denote the resulting graphs by H and H, respectively. Notice that (H,H)
is a biplanar embedding of K8. Let f and f be the faces of H and H, respectively, that contain
the removed vertex r, as in Figure 2. Notice that f is the outer face of H. Since (G,G) was a
biplanar embedding of K9, in which r was connected to all other 8 vertices, we have the following
observation.

Observation 1. Every vertex of the resulting graph K8 lies on f or on f .
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Figure 2: Illustration of the proof of Theorem 3.

Since G was a simple graph (no multiedges and no loops), all faces in its embedding including
f have at least three vertices; these vertices are not necessarily connected in H. Since G was a
triangulation, the boundary of the outer face f of H is a k-cycle. If k > 5 then let s be a vertex of
f that also lies on f ; such a vertex exists because f has at least three vertices and we have eight
vertices in total. Let x and y be the neighbors of s on f . If xy is an edge of H then draw it as a
curve in f . If xy is not an edge of H then transfer it from H to H and draw it in f , as in Figure 2.
Now, the new outer face f of H has k − 1 vertices. Repeat the above process until the outer face
of H has exactly five vertices.

At this point f has five vertices. Let u, v, w be the vertices of K8 that are not on f . These
three vertices lie on f , because of Observation 1 and our choices of s (for the case k > 5). If any
of the edges uv, uw, and vw are not in H then transfer them from H to H and draw in f without
crossing other edges. We obtain a planar graph H that satisfies the constraints of Theorem 2 and
so that its complement H is planar. This contradicts Theorem 2. □

3 Conclusions

For any integer k ≥ 1 let ν(k) be the smallest integer for which the (edges of the) complete graph
with ν(k) vertices cannot be drawn in k planes without creating a crossing. As the maximum
number of (noncrossing) edges that can be drawn in a plane is 3ν(k)− 6 and the number of edges

of the complete graph is
(
ν(k)
2

)
, a counting argument implies that

ν(k) ≤

⌊
6k + 1 +

√
36k2 − 36k + 1

2

⌋
+ 1.

This bound implies that ν(1) ≤ 5, and ν(2) ≤ 11, however for k ∈ {1, 2} we already know that
ν(1) = 5 and ν(2) = 9. It would be interesting to find exact value of ν(k) for larger values of k, in
particular for non-triplanarity (k = 3) for which the above counting formula gives ν(3) ≤ 17.
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