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Abstract. The visibility graph of a polygon corresponds to its internal diagonals
and boundary edges. For each vertex on the boundary of the polygon, we have a vertex
in this graph and if two vertices of the polygon see each other there is an edge between
their corresponding vertices in the graph. Two vertices of a polygon see each other if
and only if their connecting line segment completely lies inside the polygon. Recog-
nizing visibility graphs is the problem of deciding whether there is a simple polygon
whose visibility graph is isomorphic to a given graph. Another important problem is
to reconstruct such a polygon if there is any. These problems are well known and
well-studied, but yet open problems in geometric graphs and computational geometry.
However, they have been solved efficiently for special cases where the target polygon
is known to be a tower or a spiral polygon. In this paper, we propose a linear time
algorithm to solve these recognizing and reconstruction problems for another type of
polygons, named anchor polygons.

1 Introduction

The visibility graph, G(V,E), of a simple planar polygon is a graph in which there is a vertex for
each vertex of the polygon and for each pair of visible vertices of the polygon there is an edge
between their corresponding vertices in this graph. Two points in a simple polygon are visible
from each other if and only if their connecting segment completely lies inside the polygon. In this
definition, each pair of adjacent vertices on the boundary of the polygon are assumed to be visible
from each other. This implies that we have always a Hamiltonian cycle in a visibility graph which
determines the order of vertices on the boundary of the corresponding polygon. We use the term
“see” to address the visibility throughout this paper.
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1.1 Related Works

Computing the visibility graph of a given simple polygon has many applications in computer
graphics [14], computational geometry [11] and robotics [4]. There are several efficient polynomial
time algorithms for this problem [11].

This concept has been studied in reverse as well: Is there any simple polygon whose visibility
graph is isomorphic to a given graph and if there is such a polygon, is there any way to reconstruct
it (finding positions for its vertices on the plain)? The former problem is known as recognizing
visibility graphs and the latter one is known as reconstructing polygon from visibility graph. Both
these problems are widely open. The only known result about the computational complexity of
these problems is that they belong to PSPACE [7] complexity class and more specifically belong
to the class of existential theory of the reals [12]. This means that it is not even known whether
these problems are NP-Complete or can be solved in polynomial time. Even if we are given the
Hamiltonian cycle of the visibility graph, which determines the order of vertices on the boundary
of the target polygon, the exact complexity class of these problems is still unknown.

However, these problems have been solved efficiently for special cases of tower and spiral poly-
gons. In these special cases, we know that the given pair of the graph and the Hamiltonian cycle
corresponds to a tower or a spiral polygon. A tower polygon consists of two concave chains on
its boundary who share one vertex, and the other end points are connected by a segment (see
Figure 1.a). A spiral polygon has exactly one concave and one convex chain on its boundary (see
Figure 1.b). The recognizing and reconstruction problems have been solved for tower polygons in
linear time in terms of the size of the graph [5]. It has been shown in [5] that a given graph is
the visibility graph of a tower polygon if and only if after removing the edges of the Hamiltonian
cycle from the graph, an isolated vertex and a connected bipartite graph are obtained and the
bipartite graph has strong ordering following the order of vertices in the Hamiltonian cycle. A
strong ordering on a bipartite graph G(V,E) with partitions U and W is a pair of <V and <W

orderings on respectively U and W such that if u <U u′, w <W w′, and there are edges (u,w′)
and (u′, w) in E, the edges (u′, w′) and (u,w) also exist in E. Graphs with strong ordering are
also called strong permutation graphs. The recognizing and reconstruction problems have also been
solved efficiently for spiral polygons [8]. Since we need this method in our algorithm, we describe
it in more details in Section 2.

Although there is a bit progress on recognizing and reconstruction problems, there have been
plenty of studies on characterizing visibility graphs. In 1988, Ghosh introduced three necessary
conditions for visibility graphs and conjectured their sufficiency [9]. These conditions are mainly
based on the definition of blocking vertices. A blocking vertex for a non-visible pair ⟨a, b⟩ refers to
a vertex p, that its existence blocks the visibility of the vertices between a and p in the boundary
of the polygon to all of the vertices between p and b. In 1990, Everett proposed a graph that
rejects Ghosh’s conjecture [7]. He also refined Ghosh’s third necessary condition to a new stronger
one [10]. In 1992, Abello et al. built a graph satisfying Ghosh’s conditions and the stronger version
of the third condition which was not the visibility graph of any simple polygon [3] disproving the
sufficiency of these conditions. In 1997, Ghosh added his forth necessary condition and conjectured
that this condition along with his first two conditions and the stronger version of the third condition
are sufficient for a graph to be a visibility graph. Finally, in 2005 Streinu proposed a counterexample
for this conjecture [13]. Independently in 1994, Abello et al. proposed the notion of q-persistant
graphs, that includes visibility graph and blocking vertex assignment. A Blocking vertex assigment
is a proper function from non-visible ordered pairs to a blocking vertex that satifies four conditions.
In this definition, blocking vertex assigment assigns each non-visible ordered pair ⟨a, b⟩ to one of
its blocking vertices which is visible from a. They proved that each visibility graph has at least one
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blocking vertex assigment. They conjectured that these constraints are verifiable efficiently [1].
But, the computational complexity of verifying the existence of a blocking vertex assigment or
finding such a function in a visibility graph, are not known to be solvable in polynomial time. Later
in 1995, Abello et al. showed that, these constraints, along with another constraint are sufficient
for recognizing and reconstruction of 2-spiral polygons1, i.e. given a graph, its Hamiltonian cycle
and a blocking vertex assigment, they solved the recognizing and reconstruction problems for 2-
spiral polygons, efficiently [2]. But by now, there is no efficient algorithm for obtaining a blocking
vertex assignment for 2-spiral polygons from which the recognizing and reconstruction problems
could be solved efficiently for this type of polygons.

A

B C

A

B

A

B C

(a) (b) (c)

Figure 1: a) Tower polygon, b) Spiral polygon, c) Anchor polygon.

1.2 Our Result

In this paper, we consider these problems for another type of polygons called anchor polygons.
The boundary of an anchor polygon is composed of two concave chains and a convex one (see
Figure 1.c). We characterize these polygons with a set of efficiently realizable constraints and
show that both recognizing and reconstruction problems for a given pair of visibility graph and
Hamiltonian cycle belonging to an anchor polygon can be solved in O(|E|) time or equivalently,
linear in terms of the size of the input.

In the remainder of this paper, we first introduce the algorithm of solving reconstruction and
recognizing problems for spiral polygons in Section 2. Also, in this section we present some pre-
liminaries and definitions used in next sections. In Section 3, we give an overview of our method
and extract key features from the graph, used in our reconstruction algorithm. In Section 4 we
present our recognizing and reconstruction algorithms. We analyze their efficiency in Section 5.

2 Preliminaries and Definitions

We first briefly describe the recognizing and reconstruction algorithm for spiral polygons in Sec-
tion 2.1. We need these details in some parts of our algorithm. Then, we introduce required
notations and definitions in Section 2.2, and basic facts and properties in Section 2.3 used in the
rest of the paper.

1polygons with at most 2 concave chains
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2.1 Spiral Polygons

Assume that a pair of visibility graph and Hamiltonian cycle is given. Everret and Corneil proposed
an efficient method to test whether such a pair belongs to a spiral polygon and reconstruct it if
the test passed [8]. Here, we briefly describe their method.

The visibility graph of a spiral polygon is a limited subclass of interval graphs [8]. This means
that any interval graph satisfying a certain necessary condition corresponds to the visibility graph
of a spiral polygon and vice versa (For the sake of brevity we skip describing this extra condition).

In such an interval graph, and equivalently in the visibility graph of a spiral polygon, there are
at least two vertices which form cliques with all their neighbors, called joint vertices. Moreover, by
removing one of these vertices, the remaining graph is still an interval graph. In a spiral polygon
the joint vertices that connect the convex and concave chains have this property (form a clique with
their neighbors) and by removing one of these vertices the residual graph will be another spiral
polygon. Performing this elimination scheme from one of the joint vertices toward the other one
will finally give us an ordered sequence of removed vertices and a subset of vertices which is a clique
composed of the other joint vertex and its neighbors. During this process the Hamiltonian cycle
H corresponding to the boundary of the realized spiral polygon, is computed as well. Denote the
vertices of the convex and concave chains as convex and concave vertices, respectively. Note that
a concave vertex blocks the visibility of its adjacent vertices. Therefore, a vertex whose adjacent
vertices see each other must be a convex vertex.

Assume that < v1, v2, ..., vk > is the ordered sequence of the removed vertices in the above
procedure and {vk+1, ..., vn} is the set of remaining vertices, which is a clique. Assume that vn is
the joint vertex and vk+1 is the only concave vertex in this set. There is only one concave vertex
in this clique (which is the one adjacent to vn) because two non-adjacent vertices on a concave
chain are non-visible and do not exist in the clique. The visibility graphs of all convex polygons
with the same number of vertices are isomorphic, i.e. they are complete graphs. Therefore, we
put {vk+1, ..., vn} on the boundary of an arbitrary convex polygon with respect to their order
in H (see Figure 2). Then, the position of the vertices < v1, v2, ..., vk > are located in reverse
order inductively as follows: For an arbitrary vertex vl in < v1, v2, ..., vk >, assume that vc is the
last located convex vertex before vl, and vr is the last located concave vertex before vl. For the
induction base step, we set vl = vk+1, vr = vn and vc = vk+2. To locate the position of vl−1 in
an inductive step, assume that vt is the closest convex vertex to vr which sees vl−1. By closest
we mean that vt is the first vertex on the Hamiltonian cycle when we move from vr along the
reconstructed part of the concave chain and continue along the reconstructed part of the convex
chain (see arrows in Figure 2). If vl is a convex vertex, vl−1 is located somewhere inside the angle
̂v′tvrv′t−1 (see Figure 2.a) where vrv

′
t (resp. vrv

′
t−1) is the half line from vl along vrvt (resp. vrvt−1)

and in opposite side of vt (resp. vt−1) and in such a way that the new boundary does not cross
itself. To add this vertex to the constructed polygon we remove the edge between vr and vl and
add two new edges connecting vr to vl−1 and vl to vl−1. Otherwise (if vl is a concave vertex),

vl−1 is located somewhere inside angle ̂v′tvlv′t−1 (see Figure 2.b) where vlvt and vlvt−1 half-lines
are defined similarly. This is done by removing the edge vcvl and adding edges vlvl−1 and vcvl−1.

An important feature of this reconstruction algorithm is that starting from the initial convex
polygon vk+1, ..., vn, the remainder of the spiral polygon can be reconstructed in an arbitrary small
area close to the concave vertex of this convex polygon. We use this feature in our reconstruction
algorithm.
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Figure 2: The reconstruction algorithm for spiral polygons

2.2 Definitions

In an anchor polygon, there are three specific vertices joining the three chains on the boundary of
such a polygon. As shown in Figure 1.c, the joint vertex between the concave chains is named A
and the other joint vertices are named B and C. Without loss of generality, we assume that we
have a left concave chain from A to B and a right concave chain from A to C and an underneath
convex chain from B to C. We may refer to A as top joint vertex and to B and C as the left and
right joint vertices, respectively. These names are consistent in all figures and inside the text to
help readers having better perspective about the target anchor polygon.

We denote by pqi the ith vertex on the boundary of the polygon when we move from vertex p
to vertex q, which both lies on the same chain. For example, AB0 is the joint vertex A and AB1

is the first vertex after A on the left concave chain. We also use xy(p) as the closest vertex to x
on chain xy which is visible to vertex p. In this notation, x and y may be any of the joint vertices
A, B or C. Figure 3 illustrates the definitions.
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Figure 3: Illustrating the definitions
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2.3 Basic Facts

From the convexity or concavity of the chains we have the following basic observations. Note that
the first two observations are only based on the properties of convex and concave vertices, so are
valid on spiral polygons as well.

Observation 1 Adjacent vertices (in the given Hamiltonian cycle) of a vertex a /∈ {A,B,C} of
concave chains are non-visible.

Observation 2 Two vertices of the convex chain BC see each other if and only if no vertex of
the concave chains blocks their visibility.

Observation 3 If a vertex vi on the convex chain sees another vertex vj on this chain, all vertices
from vi to vj on this chain see each other. Moreover, if a vertex vi on the convex chain does not
see another vertex vk on this chain and vi is closer to B on chain BC, then none of the vertices
from B to vi see any one of the vertices from vk to C (see Figure 4).

b

C

A

B

vi

vj

vk

Figure 4: Visibility of the vertices on the convex chain

3 Determining Joint Vertices

We propose a constructive algorithm to solve both recognizing and reconstruction problems for
anchor polygons. In this algorithm, we first determine the three chains on the given Hamiltonian
cycle. During this process, some necessary conditions of the recognizing algorithm are verified.
Then, the area of the target polygon is decomposed into four sub-polygons: a tower polygon, a
convex polygon and two spiral polygons. The tower polygon is reconstructed first. Then, the convex
polygon is constructed under the base edge of the built tower, and, finally the spiral polygons are
built and attached to the sides of the constructed tower and convex polygon (see Figure 8). During
this reconstruction process, the necessary conditions of the given visibility graph are checked to
have a recognizing algorithm as well as the reconstruction one.
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The details of the decomposition and reconstruction phases are described in Section 4. Here,
we give a method for identifying the joint vertices A, B and C from which the three chains on the
boundary of the target polygon are obtained. To do this, we first assume that we know the joint
vertex A and propose an algorithm for finding vertices B and C. Then, we propose a method for
identifying candidate vertices for A.

3.1 Finding joint vertices B and C

We begin this section with two observations:

Observation 4 The vertices AB1 and AC1 are always visible from each other.

Observation 5 At least one of the pairs of vertices ⟨BC1, BA1⟩ and ⟨CB1, CA1⟩ are visible from
each other (Figure5a provides an instance in which BC1 and BA1 are non-visible).

Proof: The blocking vertices of ⟨BC1, BA1⟩ must lie on chain AC and blocking vertices of
⟨CB1, CA1⟩ must lie on chain AB. If BC1 and BA1 are non-visible, then none of the vertices of
the chain AB can block the visibility of CB1 and CA1. □

When we move from A on the Hamiltonian cycle in both directions, observations 1 and 5 imply
that we can find at least one of the joint vertices B or C. This is the first visited vertex in these
walks whose adjacent vertices in the Hamiltonian cycle see each other. Our algorithm for finding
the other vertex is exactly the same: Walk along the Hamiltonian cycle from A in both directions
until a vertex with this property (its adjacent vertices in Hamiltonian cycle see each other) is found
in each direction. This algorithm will successfully find correct vertices as B and C if both pairs
⟨BA1, BC1⟩ and ⟨CA1, CB1⟩ are visible from each other. But, in some cases one of these pairs are
non-visible. Then, it seems that, our algorithm fails to find joint vertex B or C.

We assume that both concave chains have at least one vertex other than the joint vertices.
Otherwise, the target polygon will be a spiral one and can be recognized and reconstructed by the
algorithm proposed by Everett and Corneil [8]. Assume that G(V,E) and H are the given pair of
visibility graph and Hamiltonian cycle. The following theorem shows that if G(V,E) and H belong
to an anchor polygon, the joint vertices B and C (obtained from the above algorithm) along with
A are the joint vertices of an anchor polygon whose visibility graph and Hamiltonian cycle are
equivalent to the given pair of G(V,E) and H.

Theorem 1 Assume that for a given visibility graph G(V,E) and Hamiltonian cycle H and a
vertex A, the vertices B′ and C ′ are the first visited vertices on H when we walk from A in both
sides whose adjacent vertices see each other. Then, G and H correspond to an anchor polygon P
with top vertex A, if and only if there is an anchor polygon P ′ with joint vertices A, B′ and C ′

whose visibility graph and Hamiltonian cycle are respectively isomorphic to G and H.

Proof: Trivially, if P ′ exists we can consider it as P as well which implies the theorem in one
direction. For the other direction, if the joint vertices B and C of P are respectively equal to B′

and C ′, then theorem is true by considering P = P ′.
Therefore, it is enough to prove the theorem for the cases where G and H belong to an anchor

polygon P with joint vertices A, B and C and either B ̸= B′ or C ̸= C ′. For these cases, we must
prove that there exists another anchor polygon P ′ with joint vertices A, B′ and C ′ whose visibility
graph and Hamiltonian cycle are respectively isomorphic to G and H. According to Observation 5
and without loss of generality, assume that C = C ′ and B ̸= B′. This means that B′ lies on the
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convex chain of P , and equals to a vertex BCi for some i > 0, while B = BC0 in the anchor
polygon P .

We complete the proof of the theorem by showing that if BA1 and BC1 do not see each other
in P , we can consider the joint vertex B as a vertex of the left concave chain and BC1 as the
left joint vertex, and build an anchor polygon, whose visibility graph and Hamiltonian cycle are
respectively isomorphic to G and H. This has been shown in Figure 6 where (a) is the original
polygon and (b) is the new one with BC1 as a joint vertex. Then we can repeat this process i
times and the result is a new anchor polygons with joint vertices A, C and BCi whose visibility
graph and Hamiltonian cycle are respectively isomorphic to G and H.

B BC1

BA1

C

AC(B)

AC(BC1)

CA(B)

CA(BC1)

A

B

BC1

BA1

C

AC(B)

AC(BC1)

CA(B)
CA(BC1)

A

(a) (b)

Figure 5: Considering BC1 as a joint vertex in (b) when BC1 and BA1 are non-visible in (a).

Therefore, it is enough to show that it is always possible to locate BC1 on the left con-
cave chain of some anchor polygon without disturbing the visibility graph constraints. This
is done in two steps. In the first step, we prove that the induced visibility graph on vertices
U = ⟨A,AB1, ..., B,BC1⟩ and W = ⟨A,AC1, ..., CA(BC1)⟩ have strong ordering with partitions
U and W and, then, we can build a tower polygon on these vertices in which B is a concave vertex
on the left chain and BC1 is the last vertex on this concave chain. In the second step we prove that
it is possible to extend the concave chain W by adding vertices ⟨CA(BC2), ..., C⟩ and locating the
vertices ⟨BC2, ..., C⟩ on a convex chain from BC1 to C satisfying the visibility graph constraints.

For the first step, we know from P that the induced visibility graph on U ′ = ⟨A,AB1, ..., B⟩
and W ′ = ⟨A,AC1, ..., CA(B)⟩ have strong ordering. Then, it is enough to consider the pairs
⟨BC1, w⟩ and ⟨u,w′⟩, where w,w′ ∈W and w <W w′, w is visible from BC1, and u ∈ U is visible
from w′ and prove that both (u,w) and (BC1, w′) exist in the visibility graph. Since w′ is a vertex
on chain AC between vertices w and CA(BC1), it must be visible from BC1, which means that
(BC1, w′) exists in the graph. On the other hand, all vertices of AC from w′ to w are visible from
B. Thus, if u = B, this means that (u,w) exists in the visibility graph and otherwise, if u ̸= B,
the visibility of u and w is derived from strong ordering on U ′ and W ′ (existence of (B,w) and
(u,w′) implies existence of (u,w)). This completes the existence of the strong ordering on U and
W .

For the second step, we show that after building the tower polygon on U and W , we can add
the remained vertices to build an anchor polygon with A, BC1 and C as its joint vertices with the
same visibility graph as P . These remaining vertices are the vertices of the right concave chain of
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P from C to CA(BA1) and the vertices of convex chain from C to BC1. We add the first set as
a concave chain of a spiral polygon starting from CA(BC1) and above the line passing through
vertices BC1 and CA(BC1). This is consistent with the visibility graph because none of these
vertices see any vertex of the tower (see Figure 5.b). However, these vertices must be located in
such a way that support the visibility relations with vertices of the the convex chain. The convex
vertices from C to BC1 = B′ are divided into three parts:

� (V1) The visible vertices from B (they are also visible from B′)

� (V2) The visible vertices from B′ which are non-visible to B

� (V3) The vertices which are non-visible from B′

It is simple to check that none of these vertices are visible from BA1. According to Figure 6,
assume that d1 is the line passing through BA1 and CA(BA1), d2 is the line from B to CA(B)
and d3 is the line from B′ to CA(B′). The vertices of V1 ∪ V2 ∪ V3 are put on a convex chain from
B′ to C in such a way that vertices of V1, V2 and V3 lie inside α, β and γ, respectively. As the
slope of d3 is higher than the slope of d2 and the slope of d2 is higher than the slope of d1, both
α, β and γ are non-empty. Therefore, by considering these constraints, our placement supports
visibility edges between vertices of the left chain and convex vertices. We must be careful only
about the visibility edges between the right chain and the convex vertices. As shown in Figure 6,
all of the vertices of the right chain from A to CA(BA1) except CA(BA1), are non-visible to the
vertices of the convex chain. Hence, by placing convex vertices above d1 (which includes both
regions α and β) these non-visibilities are satisfied. On the other hand, all vertices of the right
concave chain lie above the line through B′ and CA(B′) which means that all visible vertices to
B′ from the convex chain (V1 ∪ V2) are also visible to CA(B′). Therefore, for any convex vertex
p ∈ V1 ∪ V2, p sees all vertices of the right chain from CA(B′) to CA(p). Moreover, CA(p) blocks
the visibility of p and all vertices of the right chain from A to CA(p). For such a vertex p define the

line through CA(p)A
1
and CA(p) as dp and the line through CA(p) and CA(p)C

1
as d′p. Hence,

p must be placed somewhere above the line dp and below the line, d′p (see Figure. 6). For any
p′ ∈ V1 (resp. p′ ∈ V2), which is closer to C than p, the slope of dp′ is greater than slopes of dp
and d1 (resp. d2) and is less than the slope of d2 (resp. d3) and the slope of d′p′

is higher than the
slope of d′p and all these lines intersect each other above d3. Therefore, we can place the vertices
of V1 ∪ V2 on an arbitrary convex curve from B′, which completely lies below d3 and intersects d1,
d2 and dCB(B′) strictly below d3, according to their order in the Hamiltonian cycle, in such a way
that for each vertex p ∈ V1 ∪ V2, p is located above the line dp and below the line d′p, while they
support the visibility edges of the induced visibility graph on vertices of the sub-chain from A to
CA(B′) and vertices of V1 ∪ V2.

The convex vertices from B′ to C and the concave vertices from CA(B′) to C build a spiral poly-
gon and we have already built a convex sub-polygon of it with boundary vertices {B′, CA(B′)} ∪
V1 ∪ V2 (with B′ as one of its joint vertices, and other vertices as neighbors of B′). The remain-
ing vertices of this spiral polygon (equivalently, the remaining vertices of the anchor polygon) are
reconstructed according to the method described in Section 2 in a close neighborhood of CA(B′)
in such a way that its boundary does not intersect the built part of the right concave chain of the
anchor polygon. Note that this reconstruction forces the vertices of V3 to be located above d3.
This completes our proof, when considering BC0 as a concave vertex and BC1 as a joint vertex.

As said before, we can repeat this process i times to obtain an anchor polygon with A, BCi

and C joint vertices and G and H as its visibility graph and Hamiltonian cycle, respectively.
□
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Figure 6: Lines d1 and d2, parts α and β and other constraints

3.2 Determining joint vertex A

As an important part of our recognition algorithm, we describe a method for identifying the joint
vertex A. If one of the concave chains AB or AC has only one edge (two vertices), the target
polygon will be a spiral one and recognizing and reconstruction problems can be solved in such
cases using the method proposed by Everett and Corneil [8]. Therefore, we assume that both
chains AB and AC have at least one non-joint vertex. Then, the following observation is true for
the joint vertex A.

Observation 6 The pairs ⟨A,AB2⟩ and ⟨A,AC2⟩ do not see each other.

From this observation we have necessary conditions to find candidate vertices for A. We use
these conditions in the first phase of our algorithm by moving along the Hamiltonian cycle and
finding those vertices whose adjacent vertices see each other, but such that the two vertices at
distance 2 in the Hamiltonian cycle do not see these vertices. Then, we use our algorithm for
finding other joint vertices (B and C) corresponding to any one of the candidate vertices for A.
Clearly, for any candidate vertex p for A we must find corresponding joint vertices Bp and Cp

where chain BpCp is convex. Each pair of visible vertices in convex chain BpCp must satisfy
Observation 3. We show that there are at most three candidate vertices for A which satisfy the
above conditions.

Assume that the given pair of visibility graph and Hamiltonian cycle belongs to an anchor
polygon P with joint vertices AP , BP and CP .

Theorem 2 If our algorithm finds another candidate vertex A′ for the top joint vertex A other
than AP , BP and CP , then A′ and its corresponding other joint vertices BA′ and CA′ must lie on
the convex chain BPCP of P . This means that both chains APBP and APCP must lie on the
convex chain BA′CA′ of the candidate top joint vertex A′.
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Proof: Assume that a vertex A′ satisfies all conditions we check in our algorithm for finding
candidate vertex A. By Observation 4, the adjacent vertices of A′ must see each other and it must
be located on the chain BC. On the other hand, our algorithm finds the other joint vertices BA′

and CA′ with respect to A′, as the first vertices whose adjacent vertices are visible. In addition,
both pairs adjacent to BP and CP are visible. Therefore, both vertices BA′ and CA′ lie on the
convex chain BPCP of P which proves the theorem. In addition, both chains APBP and APCP

must lie on the convex chain BA′CA′ of the candidate top joint vertex A′. □

Theorem 3 Our algorithm finds at most one candidate vertex A′ for the top joint vertex A out
of {AP , BP , CP }. Moreover, if any one of the joint vertices BP and CP is a candidate vertex for
A, there can be no more candidate vertex on the convex chain BPCP out of BP and CP .

Proof: For the sake of a contradiction, assume that our algorithm finds two candidate vertices A1

and A2 for the top joint vertex A out of {AP , BP , CP }. By Theorem 2, both these vertices and
their corresponding other joint vertices must lie on the convex chain BPCP in P . Without loss
of generality, assume that A2 lies between BP and A1 on this convex chain (see Figure 7). From
the definition of joint vertices B and C and conditions for the top joint vertex, A2 and A2BP

2

must not be visible and BPAP
1 and BPCP

1 must be visible pairs. This forces that there must be
at least one vertex between BP and A2 which means that A2BP

1 cannot be equal to BP . While
A2 and A2BP

2 are a non-visible pair on the convex chain of P , there must be a blocking vertex b
on APBP or APCP chains and visible to A2 preventing their visibility. Recall that our algorithm
for finding joint vertices of a top joint vertex seeks for the first vertices whose adjacent vertices
see each other. Both pairs of adjacent vertices to A2 and CP are visible. Therefore, both of the
corresponding joint vertices of the top joint vertex A1 (according to our algorithm) lie between
vertices A2 and CP on the convex chain of P . This implies that all vertices of the chain BPCP

from A2 to BP and vertices of the chains APBP and APCP in P lie on the convex chain of the
candidate top joint vertex A1. From Observation 3, when two vertices A2 and b on this convex
chain see each other, all vertices from A2 to b, including A2BP

2, must also see each other and form
a clique which is a contradiction.

By the same argument we can prove that if the joint vertex CP (or BP ) is a candidate for the
top joint vertex, there cannot be any other candidate vertex for the top joint vertex on the convex
chain BPCP out of {BP , CP }. □

From the above theorems, we conclude that according to our algorithm there will be at most
three candidates for the top joint vertex A. Precisely, if there was any other candidate other than
A, either it is a vertex A′ on BPCP (A′ /∈ {BP , CP }) or we have at most two candidates from B
and C.

4 The Reconstruction Algorithm

In this section, we assume that we are given a pair of visibility graph, G(V,E) and Hamiltonian
cycle, H, and three joint vertices A, B and C and the goal is to obtain an anchor polygon G(V,E)
corresponding to these graph and cycle with A, B and C as its top, left and right joint vertices,
respectively. Moreover, we assume that the visibility graph and the joint vertices satisfy conditions
described in previous observations and conditions of previous algorithms (the joint vertices have
been obtained by the algorithms described in Section 3). From the previous section, we know that
there are at most three options for these joint vertices and the adjacent vertices to each of these
joint vertices are visible. Therefore, to solve the recognizing algorithm we may run the following
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AP

BP

CP

A1
A2

A2BP
1

BPAP
1

b

A2BP
2

Figure 7: A2 and A2BP
2 must not be visible and A2BP

1 and A2CP
1 must be visible pairs.

algorithm at most three times and if one of these runs leads to an anchor polygon it will be returned
as a solution otherwise, if none of them produces a polygon it means that G(V,E) and H do not
belong to an anchor polygon.

Our reconstruction algorithm consists of two phases. Initially we decompose the target polygon
into at most four regions and then these regions are reconstructed to build the final anchor polygon.

4.1 Anchor polygon decomposition

We define a line d as a bi-tangent line for chains AB and AC if it passes through vertices M
and M ′ on AB and AC, respectively, and both chains lie completely on the same side of it (see
Figure 8). The existance and position of this bi-tangent is identified by the following observation
to simplify next references.

Observation 7 Each anchor polygon has exactly one bi-tangent line and this bi-tangent line passes
through M as the last vertex of chain AB, which is visible from some vertex of AC chain, and M ′

as the last vertex of chain AC, which is visible from some vertex of AB chain.

According to the above observation, this bi-tangent line can be computed from the visibility
graph as follows: Let M (resp. M ′) be the furthest vertex from A in AB (resp. AC) that sees a
vertex of AC (resp. AB). Then, there is no edge from vertices of AM (resp. AM ′) to vertices of
M ′C (resp. MB) except the edge MM ′. Notice that the polygon with boundary ⟨M, ..., A, ...,M ′⟩
is a tower polygon.

Let N = BC(M ′) and N ′ = CB(M) be respectively the first (starting respectively from B and
C) visible vertices from M ′ and M on chain BC (see Figure 8). We find N (resp. N ′), by simply
searching for the furthest vertex from B (resp. C) in BC, which is visible to M ′ (resp. M). As
we stated before, the polygon with boundary vertices ⟨M, ..., A, ...,M ′⟩ is a tower polygon and the
polygon with boundary vertices ⟨M,N, ..., N ′,M ′⟩ is convex and both polygons with boundaries
⟨M, ..., B, ..., N⟩ and ⟨M ′, ..., C, ..., N ′⟩ are spiral polygons (see Figure 8).

Observation 8 The definition of vertices {M,M ′, N,N ′} forces that there is no edge between a
vertex of any one of these spiral polygons to a vertex of the other spiral polygon or to a vertex of
the tower sub-polygon, except edges with an end point in {N,N ′,M,M ′}.
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M
M ′

N ′
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Figure 8: Decomposition of an anchor polygon

Some of the vertices of these spiral sub-polygons may see some of the vertices of the convex
one. We extend boundary of these two spiral sub-polygons to ⟨M, ..., B, ..., N, ..., N ′,M ′⟩ and
⟨M ′, ..., C, ..., N ′, ..., N,M⟩, respectively (clearly both of them are spiral polygons yet). These
extensions are done to enforce the visibility constraints between the vertices of the convex sub-
polygon and the spiral sub-polygons during their reconstruction. The visibility graph of any one
of these sub-polygons must satisfy the sub-polygon conditions. Precisely, the induced sub-graph
of G on vertices of the tower polygon (resp. spiral polygons) must have necessary conditions of
the visibility graph of a tower polygon (resp. spiral polygon) with these boundary vertices, and,
the induced sub-graph of G on the convex sub-polygon must be a complete graph. Otherwise, we
report that the pair G(V,E) and H does not belong to an anchor polygon with the given joint
vertices A, B and C.

4.2 Reconstructing sub-polygons

Now, we are ready to propose the final step of our constructive algorithm for solving both recogniz-
ing and reconstruction problems. If we consider the union of the tower and convex sub-polygons as
a single polygon, it will be an anchor polygon as well. But, this anchor polygon has this property
that its bi-tangent passes through its non-top joint vertices B and C. We call such anchor polygons
simple anchor polygons. The visibility graph of a simple anchor polygon with joint vertices A, B
and C has the following properties.

Observation 9 The bi-tangent line of an anchor polygon passes through its joint vertices B and
C if and only if B and C see each other. In other words, the bi-tangent line passes through B and
C if M = B and M ′ = C, i.e. the polygon is a simple anchor polygon. In these cases, the convex
chain BC lies completely on the opposite side of the bi-tangent line with respect to A and all of
the vertices of this convex chain are visible from each other, so, they form a clique in the visibility
graph.
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Observation 10 As it holds for an anchor polygon, each concave vertex of a simple anchor polygon
sees one continuous sub-chain of the convex chain.

Observation 11 The joint vertices B and C of a simple anchor polygon see the whole convex
chain.

Observation 12 For each concave vertex v of a simple anchor polygon, the vertices of the convex
chain which are visible to vA1 are a subset of the vertices visible from v.

Observation 13 If both convex vertices p and vB1 of a simple anchor polygon lie on the right
side of the line through A and AB1, the set of visible concave vertices from p is a subset of this set
for pB1 (see Figure 9.a). Symmetrically, this is true for p and pC1 if both lie on the left side of
the line through A and AC1.

Observation 14 Assume p as a convex vertex on the left side of the line through A and AC1 in
a simple anchor polygon and q = AB(p). Then, none of the vertices of the sub-chain from A to

s = AC(q)A
1
is visible from p and all vertices of the sub-chain from C to t = AC(qB1) are visible

from p (see Figure 9.b). This means that AC(p) must be one of the vertices of the right concave
chain from AC(q) to t.

Symmetrically, for a convex vertex p lieing on the right side of the line through A and AB1

where q = AC(p), AB(p) must be one of the vertices of the left concave chain from AB(q) to
AB(qC1).

B

A

C
B

A

C

(a) (b)

p

pB1

p

q = AB(p)qB1

AC(p)

AC(q)

AC(q)A1 = s

AC(qB1) = t

Figure 9: a) Visible vertices from p is a subset of the visible vertices from pB1 b) Visible and
non-visible vertices of concave chain AC from p

Trivially, all above properties must be satisfied on the visibility graph induced to the vertices
of the tower and convex sub-polygons in our decomposition algorithm presented in Section 4.1.
The details of the verification algorithm for these observations are discussed in Section 5. If these
conditions hold, we reconstruct simple anchor polygon which corresponds to the obtained tower
and convex sub-polygons.
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To reconstruct a simple anchor polygon, we first reconstruct the tower polygon using the method
presented in [5] (we use the method as a black-box procedure). Then the vertices of the convex
chain are put on a convex curve from B to C supporting their order on the Hamiltonian cycle and
the visibility graph constraints. To do this, we divide these vertices into three groups: The first
group, called VA, contains those vertices that see all vertices of both concave chains. From the
above observations, these vertices must lie on the convex curve between the lines passing through
A and AB1, and A and AC1 (See Figure 10.a). The other groups are the sets VB and VC as shown
in Figure 10a. To locate an arbitrary vertex v ∈ VB it must satisfy two conditions: assume that
p = AB(v) and q = AC(v). According to the visibility graph constraints, v must lie on the left
of the line through p and pA1 and to the right of the line through p and q. Moreover, v does not
see qA1 and p is a blocking vertex for this non-visibility. Therefore, if qA1 is visible from p then
v must lie to the left of the line through p and qA1. Otherwise, as v lies to the left of the line
through p and pA1, the vertex p will block the visibility of v and qA1 and there is no need to add
more constraint to restrict position of v on the convex curve. Therefore, the intersection of the
convex curve and this region must be non-empty. If this happens, we can put v on an arbitrary
point of this part of the convex curve and for all points v that must be located in this region, we
put them according to their order in the Hamiltonian cycle. As the last point of our algorithm, we
must show that the intersection of the convex curve and the constructed region for v is not empty.
The region is restricted to lines d1 and d2 or lines d2 and d3 (See Figure 10c). It is simple to show
that in both cases q is visible from p and in the latter one qA1 is visible from p and lies above q.
This implies that in both cases the region, and consequently, the intersection is not empty. The
vertices of VC are located on the convex curve, symmetrically.

B

A

C

(a)

B

A

C

(b)

v

p
qB1

q
qA1

AC1AB1

VC
VB

VA

v

p

q

B

A

C

(c)

v

p
qB1

q

qA1

d2

d1
d3

d2

d1

d3

Figure 10: a) VA, VB and VC b) v and qA1 are non-visible c) non-visibility of v and qA1 does not
force more contraint on the position of v

After reconstructing the simple anchor polygon of the tower and the convex sub-polygons,
we must build and attach the spiral sub-polygons to the sides of this simple anchor polygon.
Recall that the boundary of the right and left sub-polygons are ⟨M, ..., B, ..., N, ..., N ′,M ′⟩ and
⟨M ′, ..., C, ..., N ′, ..., N,M⟩, respectively. Moreover, remember that in these polygons there is no
edge between the vertices of ⟨M, ..., B, ..., N⟩ and ⟨M ′, ..., C, ..., N ′⟩ except edges that have an
end point in {N,N ′,M,M ′}. This helps to build these parts independently. Note that we can
apply this independency by locating the remained vertices of these spiral polygons above the line
through M and M ′. We describe how to build the left spiral polygon and the right one can be built
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symmetrically. If we apply the elimination scheme (described in Section 2) starting from the joint
vertex B, we find a sequence of removed vertices, which includes all vertices of the left spiral polygon
except vertices of the convex sub-polygon, i.e. the elimination scheme on the left spiral sub-polygon
stops when the only remaining vertices are the vertices of the convex sub-polygon (which form a
clique). Moreover, the remained vertices of this spiral polygon (which make a convex sub-polygon
with respect to the Hamiltonian cycle) are the vertices of our convex sub-polygon ⟨M,M ′, N ′, N⟩,
which has been already reconstructed. The spiral polygon reconstruction algorithm described in
Section 2 says that we can start from an arbitrary convex polygon for the remained vertices and
the sequence of the removed vertices can be put in an arbitrary small neighborhood of the only
concave vertex (here it is M). This means that, by considering the convex sub-polygon as the
starting convex polygon, we can reconstruct the left spiral polygon arbitrary close to M without
intersecting the constructed tower polygon.

5 Complexity Analysis

In this section we analyze the time complexity of our algorithm for recognizing and reconstruction
of an anchor polygon from its visibility graph and Hamiltonian cycle.

We use p(i) for the ith vertex after a vertex p in the Hamiltonian cycle and deg(p) for the degree
of vertex p in the visibility graph. In order to do the recognition efficiently, for each vertex we
need to know its maximal cliques with its previous and successor vertices according to their order
in the Hamiltonian cycle, separately. For each vertex p, let C+(p) (resp. C−(p)) be the maximum
size of a subset of vertices consecutively after (resp. before) p, that with p makes a clique in the
visibility graph. We calculate these values in O(|E|) time steps, for all vertices using a Dynamic
Programming [6] algorithm. For this purpose, as shown in Algorithm 1, we begin with calculating
C+(v) for a given vertex v as a pivot. This is done by searching for the first vertex v(i), which is

not in a clique with vertices between v and v(i). This search takes O(
∑C+(v)+1

i=1 deg(v+)) = O(|E|)
which is overally done by checking all the edges between the vertices from v(1) to v(C

+(v)+1).

Assume that we know the value of C+(v) for all vertices between v and v(current index) in
the Hamiltonian cycle, except v(current index) itself. Clearly, C+(v(current index)) is at least i =
C+(v(current index−1)) − 1 and we only need to know the maximum size of the set of vertices

consecutively after v(C
+(v(current index−1))−1), which make a clique with the set of vertices from

v(current index) to them on the Hamiltonian cycle. We calculate and store the size of this maximal
clique, which is C+(v), iteratively for each vertex v(current index) lieing between v(1) and v(|V−1|).

During the execution of Algorithm 1, each edge is checked at most twice, which means that
the values of C+(u) for all vertices u ∈ V are computed in O(|E|) steps. The values of C−(v) are
computed similarly in O(|E|) steps.

We denote by D+(p) (resp. D−(p)) the distance between p and the first vertex which is visible
to p after (resp. before) its maximal clique. To compute this value for a vertex v, we search for
the first vertex after v(C+(v)), which is visibile to v. These values can be calculated in O(deg(v))
steps for a vertex v and O(|E|) steps for all vertices of G.

At the begining of our recognition algorithm, we check whether the given pair of visibility graph
and Hamiltonian cycle belongs to a spiral or tower polygon. These checks needs O(|E|) steps [8, 5].
If it belongs to a tower (resp. spiral) polygon we reconstruct it with the method introduced by
Colley et al. [5](resp. Everett and Corneil [8]).
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Algorithm 1 Calculating C+

1: function CalcC+(v,G,H)(An arbitrary vertex v, visibility graph G and its Hamiltonian cycle
H)

2: i← 1
3: is clique← true
4: while i < |V | and is clique = true do
5: if v(i) is non-visible to a vertex from v to v(i−1) then
6: is clique← false
7: end if
8: i← i+ 1
9: end while

10: C+(v)← i− 1;
11: current index← 1
12: while current index < |V | do
13: is clique← true
14: i← C+(v(current index))− 1
15: while i < |V | and is clique = true do
16: if v(current index+i) is non-visible to a vertex from v(current index) to

v(current index+i−1) then
17: is clique← false
18: end if
19: end while
20: C+(v(current index))← i− 1;
21: current index← current index+ 1;
22: end while
23: return C+(v)
24: end function

Otherwise, in the first part of our algorithm, we find candidate vertices for the top joint vertex
A, formally described in Algorithm 2.

This algorithm iterates on all vertices of H and verify observations 4 and 6 on each of the
vertices of G and puts those vertices satisfying these observations in a list, List, according to their
order in the Hamiltonian cycle (lines 2-11). This part of the algorithm needs O(|E|) steps because
we meet each edge of the visibility graph at most twice. For each vertex A in this list, we call
Algorithm 3 to find its corresponding other joint vertices BA and CA. Observation 1 implies that
BA lies between A and the next vertex after A in List. Therefore, in all calls of Algorithm 3, each
vertex is processed at most twice. Therefore, all these calls of Algorithm 3 are done in time O(|E|).
In order to verify Observation 3 for a top joint vertex A, we start from v = BA toward CA. If
v(D

+(v)) or v(−D−(v)) belongs to BACA for a vertex v, then Observation 3 is not verified and A is
not a candidate for top joint vertex. If we find a vertex v like that, we stop checking other vertices
and reject A (lines 19-33).
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Algorithm 2 Finding top joint vertex candidates

1: function FindA(Visibility graph G and its Hamiltonian cycle H)
2: PreList← an empty list
3: v ← an arbitrary vertex in V (G)
4: for i from 0 to |V | do
5: if (v(i+1), v(i−1)) ∈ E(G) then
6: if (v(i+1), v(i+2)) /∈ E(G) and (v(i−1), v(i−2)) /∈ E(G) then
7: Add v(i) to the end of PreList
8: end if
9: end if

10: end for
11: List← PreList as an array
12: n← Number of elements in List
13: if n = 0 then return {}
14: end if
15: Cadidates← an empty list
16: c← 1
17: A← List[1]
18: LastChecked← A(2)

19: repeat
20: A← List[c]
21: c← c+ 1
22: i← 0
23: (BA, CA)← FindBC(A)
24: if LastChecked lies between A and BA then
25: LastChecked← BA

26: end if
27: valid← true
28: while B

(i)
A ̸= CA do

29: if D+(LastChecked) lies before CA or D−(LastChecked) lies after CA then
30: valid← false
31: end if
32: LastChecked← LastChecked(1)

33: i← i+ 1
34: end while
35: if valid = true then
36: Add (A,BA, CA) into Candidates
37: end if
38: until c ≤ n
39: return Candidates
40: end function

In line 20 we assign List[c] to the variable A. At this point, assume that A′ is the next vertex
in List after A, i.e. List[c+ 1]. Therefore, it will be checked for whether it can be a candidate for
top vertex in the next iteration of the loop after A. Line 23 computes the joint vertices BA and
CA for the given candidate for top vertex A. Assume that in the iteration of the loop, BA′ and
CA′ are going to be computed as the joint vertices of A′. Observe that if we reject A because of a
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vertex LastChecked in line 29, we do not need to check vertices between BA and LastChecked to
see, whether they satisfy Observation 3, and we only need to check vertices between LastChecked
and BA′ . Therefore, we check each vertex of V (G) in the process of verifying Observation 3 at
most once and this part of the algorithm is done in O(|E|) steps and we find candidate vertices
for top joint vertex and their corresponding joint vertices in O(|E|) steps. It remains to verify
observations 7 to 14 to complete the recognition.

Algorithm 3 Finding joint vertices BA and CA of a top joint vertex A

1: function FindBC(An arbitrary vertex A, visibility graph G and its Hamiltonian cycle H)
2: i← 1
3: while i < |V | and (A(i−1), A(i+1)) /∈ E(G) do
4: i← i+ 1
5: end while
6: j ← −1
7: while (−j) < |V | and (A(j−1), A(j+1)) /∈ E(G) do
8: j ← j − 1
9: end while

10: return (A(i), A(j))
11: end function

The algorithm in Section 4.1 takes at most O(|E|) steps to verify observations 7 and 8 to find the
bi-tangent line and decompose polygon into a simple anchor polygon and two spiral polygons. The
simple anchor polygon must satisfy observations 10 to 14. To verify this, we first compute AC(v),
CA(v), AB(v), BA(v), BC(v) and CB(v) for a vertex v in O(deg(v)) steps. We can compute these
values for all vertices in O(|E|) steps from which, observations 10 to 14 can be verified in O(|E|)
steps. Then, the tower polygon of the simple anchor polygon is reconstructed in O(|E|) steps [5]
and its convex chain is reconstructed as described in Section 4.2 and depicted in Fig 10 in O(|E|)
steps as well. Finally, recognizing and reconstruction of each spiral polygon requires O(|E|) steps
[8] steps. Therefore, our algorithm will recognize and reconstruct an anchor polygon in O(|E|)
steps. All the steps in our method are composed of basic arithmetic and constant time operations.
Therefore, our algorithm will recognize and reconstruct an anchor polygon in O(|E|) time which
is linear in terms of the input size.

6 Conclusions

In this paper, we proposed a method for recognizing and reconstructing an anchor polygon from
its visibility graph and Hamiltonian cycle. This was done in linear time in terms of the input size.
As the problem is still open for general simple polygons, this result along with previous results
for tower and spiral polygons are steps toward attacking the main problem. Other that trying to
solve this problem for general polygons, other future research directions are extending these results
to other special polygons like 2-spiral or polygons with constant number of chains, and trying to
relate the complexity of the problem to the number of chains on the polygon boundary.
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