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Abstract

Enabling the user of a graph drawing system to preserve the mental
map between two different layouts of a graph is a major problem. In
this paper we present methods that smoothly transform one drawing of a
graph into another without any restrictions to the class of graphs or type
of layout algorithm.
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1 Introduction

Graphs are a common way to communicate information. In many applications
these graphs are not static but change their structure and layout according to
user and application actions. Preserving the mental map during these changes
has been identified to be crucial for the usability of a system [2]. There are two
possible approaches to this problem: either develop graph drawing algorithms
that try to minimize changes [3], or to communicate the changes in the form of
an animation [7, 9, 10], that is, a smooth transition from the old drawing to the
new drawing.

While specialized algorithms work quite well in practice, general animation
techniques tend to fail to actually improve usability in many situations. Figure 1
shows an example of a bad animation1.

1 2

3

http://www.it.usyd.edu.au/~carsten/gd00/a.mpg

Figure 1: Example of a bad animation. The nodes from the drawing on the
left are moved to their new position in the drawing on the right using a linear
interpolation. The drawing in the middle is a snapshot of the animation where
nodes lie very close to each other. Individual node movements are difficult to
follow at this stage.

We introduce requirements for animations of graph drawings and methods
which partially satisfy these requirements. These techniques have been imple-
mented in the Marey system which will also be briefly introduced.

1All examples, in the form of mpeg videos, and a free MPEG player for Windows-NT/95/98
as well as references to free players for Unix are available from http://www.it.usyd.edu.au/

~carsten/gd00/.

http://www.it.usyd.edu.au/~carsten/gd00/a.mpg
http://www.it.usyd.edu.au/~carsten/gd00/mpg2w11b.zip
http://www.it.usyd.edu.au/~carsten/gd00/
http://www.it.usyd.edu.au/~carsten/gd00/
http://www.it.usyd.edu.au/~carsten/gd00/
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2 Model for a good animation

An animation is a sequence of images called frames. This sequence is character-
ized by subtle but highly structured changes between consecutive frames over
space and over time. The changes are perceived as movement of the correspond-
ing objects in the image by the human brain. A detailed analysis of perceptional
mechanisms is beyond the scope of this paper. For an introduction to human
perception of moving pictures see, for example, [1, 5, 15].

In the case of a graph animation, the frames are drawings of graphs. The
changes in the drawings are changes in the positions of the nodes and edges.

The animation should help the user to maintain the mental map of a chang-
ing graph. Major changes to the drawing of a graph usually occur when the
user applies a layout algorithm which provides a different view of the graph or
when the structure of the graph changes in a way which makes it necessary to
recompute the layout. Examples of structural changes in graphs are collapsing
or expanding sub graphs in clustered graphs, navigation in infinite graphs2 or
graphs such as graph A of the 1999 Graph Drawing Contest [4] which represents
the changes in the cast of a soap opera.

2.1 Criteria for a good animation

We try to achieve the following goals with animation between two graph layouts.

1. Preserve the mental map

2. Communicate the structural changes in the graph.

Firstly the system needs to tell the user that the graph has changed.
Secondly, the system needs to indicate the nature of the change.

The following aesthetic criteria have been identified to be critical to achieve
these goals.

2.1.1 The movements of nodes and edges should be easy to follow.

2.1.2 The movements of the graph should be structured.

The human brain contains highly optimized mechanisms for recognizing and
interpreting certain special kinds of movements. These movements include

• Uniform movement.

If the relative position of nodes in the initial frame is similar to those in
the final frame, then it should be so in the intermediate frames.

• Symmetrical movement.

As with static images the brain shows a predisposition for conceiving sym-
metry in movement.

2For example www-based graphs
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• Two-dimensional projections of movements of three-dimensional rigid ob-
jects.

Humans can see three-dimensional movement in a two-dimensional moving
image. Although humans are able to perceive three-dimensional images
directly using stereo vision, the loss of the third dimension hardly poses
any problems for us in everyday live. Even in situations where we only
have access to a two-dimensional projection of the world around us, for
example if using only one eye, or on a TV or computer screen, we have no
problems identifying three-dimensional objects and their movement in all
three dimensions. For a detailed discussion of these effects see [14].

The more we can exploit these mechanisms for which the brain is optimized,
the easier it is for the user to preserve the mental map of the graph.

2.1.3 The transition from source to destination should be smooth.

The movements should be performed in small steps and adequately quickly to
help the human brain to perceive and interpret the movement.

2.1.4 Display of non-existing structures should be avoided.

An often neglected problem in graph drawing is the case where the drawing
suggests some structure which does not exist in the graph [17]. Figure 2 shows
an example for two layouts of the same graph, where the second layout could lead
the user wrongly to assume that the graph is a simple path. Similar problems
can occur easily during an animation, as the human brain tends to be quite
imaginative when it tries to interpret moving images [14].

Figure 2: Example of a misleading layout

2.1.5 The individual frames should satisfy the classical aesthetic cri-
teria for good graph drawings

such as minimizing edge crossings, maximizing the smallest angle, etc; see [2]
for details.
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2.2 Measures for a good animation

To be able to actually evaluate how well an animation matches our criteria we
derived the following possible measures.

2.2.1 Minimize temporary edge crossings.

Edge crossings in a graph drawing generally reduce readability. It seems that
this is also valid for animations. If the animation avoids introducing unnecessary
edge crossings on the way then it is easier for the user to follow the movements.

2.2.2 Maintain a minimal distance between nodes which do not move
uniformly.

If nodes lie close to each other, it is more difficult to follow their individual
movements than if they are further apart. Of course, if two nodes lie next to
each other in the source drawing and in the target drawing, it would be better
to move them uniformly close to each other to their destination than to separate
them first.

2.2.3 Maximize structured movements.

• Maximize uniform movement

Maximizing uniform movement can be done by measuring how much the
relative positions of a nodes change from the initial to the final frame.

• Maximize symmetry

Symmetry in a drawing helps the user to understand the structure of a
graph. In an animation symmetry of movement makes it easier to under-
stand the structure of the movement. A formal measure for symmetric
node movement can be derived by extending the model in [11].

• Maximize movement interpreted as movement of a rigid object

The human is very good at interpreting two dimensional projections of
movements of three dimensional rigid objects in IR3. We should therefore
try to do as much of the animation as possible in such a way. A detailed
description of how to do this follows below.

2.2.4 Minimize the length of the path of a node.

A node which moves on a straight line between its source and destination clearly
moves a minimal distance. However some criteria may prevent straight line
movement. In such cases we require a minimum distance movement to help the
user to follow and anticipate the node movement.
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2.2.5 Provide smooth transitions and adequate speed.

Smooth transitions and an adequate speed are obvious criteria for a good an-
imation. If the transition steps are too big then the user is no longer able to
perceive a movement. If the speed is too slow the user will become impatient
and stop following the animation. If it is too fast the user will not be able to
keep track of the nodes and comprehend the movements.

Formal metrics can be derived from the above. For example it is possible to
count the number of temporary edges or compute the length of the node paths.

Formalizations of some of these metrics are NP hard to optimize and often
not all criteria can be achieved in one solution. For example it might be nec-
essary to move nodes along a non-optimal path to avoid edge crossings, or it
might be preferable to accept some edge crossings instead of watching the graph
untangle in a complex and confusing way.

3 The animation process

The animation process we propose here splits the animation into two main
stages.

In the first stage we try compute an animation which moves the graph as
close as possible to its destination in a way that is perceived as the motion of a
rigid three-dimensional object in space.

We then move the nodes the rest of the way in a direct linear interpolation.
In addition we also animate changes in the structure of the graph and changes

to graphical attributes like color or visibility.
To make the animation process as independent as possible to a specific appli-

cation we only require a very small and general set of information to be available
from the embedding system. This information consists of the coordinates of the
nodes in the first and final frame, how graphical attributes such as color and
visibility change, as well as how the structure of the graph changes.

The animation consists of the following steps.

1. Hide vanishing nodes and edges

2. The rigid motion stage

3. The linear interpolation stage

4. Show newly visible elements

3.1 Hide vanishing nodes and edges

Nodes and edges which do not exist in the final frame because they were either
deleted or became invisible are hidden at the beginning. Various effects, for
example fade out, are used to do this.
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3.2 The rigid motion stage

In this stage we move the nodes and edges as close as possible to the final frame
using only movements which are perceived as if the graph was moving as a rigid
object in three-dimensional space.

3.2.1 Computing the rigid transformation.

Projecting tree-dimensional movements of rigid objects on two dimensions is
identical to applying the operations translation, rotation, scaling and shearing
in IR2 to the projection of the object. We interpret a shearing angle α of more
than 90 degree as a flip followed by a shear of α− 90 degree.

This set of operations is precisely the set of two dimensional affine linear
transformations.

As these movements are very easy to understand for humans we try to do
as much of the total animation as possible in this stage.

We use linear regression to find the best affine linear transformation of the
graph between the first and final frame. This can be done in linear time as
follows.

Given a graph G and the coordinates (xv, yv) for each node v ∈ G the linear
transformation has the general form

f(v) =
(

a11 a12

a21 a22

) (
xv

yv

)
+

(
a13

a23

)
In order to determine the linear function which transforms the graph as

close as possible to the final frame we have to determine the aij which minimize
the distance between the positions in the final frame and the positions after
the linear transformation. We use the average the error between the individual
node distances as a good approach in respect to the goal of preserving the mental
map; that is we minimize the sum of the squared Euclidean distances.

Given (x′
v, y′v) as the original coordinates of a node v we aim to minimize

the error function

e =
∑
v∈G

|f(v)− (x′
v, y′v)|

with || being the squared Euclidean norm, that is

e =
∑
v∈G

(a11 ∗ xv + a12 ∗ yv + a13 − x′
v)2 + (a21 ∗ xv + a22 ∗ yv + a23 − y′v)2

(1)
Since (1) is always non negative, minimizing this quadratic function is done

by deriving with respect to the aij and setting the resulting expressions to equal
0. We solve the system of equations for the aij . Assuming at least 3 non co-
linear pairs of node coordinates this will give us a unique solution for each aij :
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Let

denom = (
∑
v∈G

x2
v) ∗ (n ∗

∑
v∈G

y2
v − (

∑
v∈G

yv)2)− n ∗ (
∑
v∈G

xv ∗ yv)2 + (
∑
v∈G

xv)∗

(2 ∗ (
∑
v∈G

yv) ∗
∑
v∈G

xv ∗ yv − (
∑
v∈G

xv) ∗
∑
v∈G

y2
v).

Then

a11 = −(
(
∑

v∈G xv ∗ yv) ∗ (n ∗
∑

v∈G x′
v ∗ yv − (

∑
v∈G x′

v) ∗
∑

v∈G yv)
denom

+

(
∑

v∈G x′
v ∗ xv) ∗ ((

∑
v∈G yv)2 − n ∗

∑
v∈G y2

v)
denom

+

(
∑

v∈G xv) ∗ ((
∑

v∈G x′
v) ∗

∑
v∈G y2

v − (
∑

v∈G yv) ∗
∑

v∈G x′
v ∗ yv)

denom
),

a12 =
(
∑

v∈G x2
v) ∗ (n ∗

∑
v∈G x′

v ∗ yv − (
∑

v∈G x′
v) ∗

∑
v∈G yv)

denom
+

(
∑

v∈G xv ∗ yv) ∗ ((
∑

v∈G x′
v) ∗

∑
v∈G xv − n ∗

∑
v∈G x′

v ∗ xv)
denom

+

(
∑

v∈G xv) ∗ ((
∑

v∈G yv) ∗
∑

v∈G x′
v ∗ xv − (

∑
v∈G xv) ∗

∑
v∈G x′

v ∗ yv)
denom

,

a13 =
(
∑

v∈G x2
v) ∗ ((

∑
v∈G x′

v) ∗
∑

v∈G y2
v − (

∑
v∈G yv) ∗

∑
v∈G x′

v ∗ yv)
denom

−

(
∑

v∈G x′
v) ∗ (

∑
v∈G xv ∗ yv)2

denom
+

(
∑

v∈G xv ∗ yv) ∗ ((
∑

v∈G yv) ∗
∑

v∈G x′
v ∗ xv + (

∑
v∈G xv) ∗

∑
v∈G x′

v ∗ yv)
denom

−

(
∑

v∈G xv) ∗ (
∑

v∈G y2
v) ∗

∑
v∈G x′

v ∗ xv

denom
. (2)

We can obtain a21, a22, and a23 from the solutions for a11, a12, and a13

respectively by replacing x′
v with y′v.

3.2.2 Quality of the transformation

The sum of the Euclidean squares is known to be statistically biased and to
over-emphasize outlying samples. Other distance functions are much harder
to minimize on the other hand [8, 13]. To increase statistic stability different
approaches are imaginable. The median or centroid of the drawings could be
added to the node set with a weight factor. Another promising approach would
be to compute different transformations using random subsets of the nodes and
using the best one.
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3.2.3 Animating the affine linear transformation

After computing the affine linear transformation we have to generate an anima-
tion for the graph. The easiest approach would be to do a linear interpolation
of each matrix entry from the identity matrix to the computed matrix. How-
ever the result would not produce the desired effect of being perceived as the
movement of a rigid object in all cases.

This can easily be seen in the case of a 180 degree rotation of the graph.
The transformation matrix would be

tm =
(
−1 0
0 −1

)
interpolating the entries from (

1 0
0 1

)
to tm will produce the matrix (

0 0
0 0

)
at some stage collapsing the graph to one point. This does not happen in a 180
degree rotation.

Shoemake and Duff [16] show that the rotation part of the transformation is
the only part not compatible with linear entry interpolation and propose polar
matrix decomposition as an efficient way to separate the rotational part from
the transformation. For a 2× 2 matrix3 the decomposition takes constant time.

We can now generate an animation by interpolating the rotation over the
angle and at the same time do a linear interpolation of the matrix entries of the
non-rotational part.

3.2.4 Adjusting the center of rotation

Using the approach described above still has a small problem. The rotation
we compute is always done in respect to the coordinates (0, 0), generating a
smaller or bigger arc depending on how the graph lies to the origin. To avoid
this we modify our linear transformation before the decomposition to move
the center of the graph to the origin at the beginning and back to the former
position afterwards. This can easily done by multiplying the corresponding
transformation matrices to each side of our matrix. The graph will now rotate
around its center. Several definitions of center are possible, for example the
center of the bounding box, or the barycenter. In our experience the decision of
which definition to use had little influence on the overall animation. Computing
the center takes linear time.

3For this purpose we can ignore the translation part
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3.2.5 Complexity

The following computations have do be done:

• The aij in (2) can be computed in one iteration over all nodes and is
therefore linear in time.

• The polar decomposition is done in constant time.

• Adjusting the center of rotation takes again linear time to compute the
center.

All computations have to be done once at the start of the animation. The
overall cost of this stage is therefore linear.

3.3 Move nodes to their final positions

For the final movements several algorithms are available. The easiest approach
is to move the nodes the remaining way to their new positions on a linear path.
Alternatively these movements can be restricted to certain general directions at
a time or broken up into uniform movements. For example, we can first move
to the x-positions and then to the y-positions. The advantage of these simple
approaches is that the movements can be computed very fast. The disadvantage
is that none of our criteria for a good animation is enforced.

However more sophisticated approaches are more appropriate in some cases.
We have developed an adaptation of the force directed layout approach described
in [6] to move the nodes to their final positions. The repulsive forces are similar
to the static version, whereas instead of attracting edges, nodes are attracted to
their destination. This approach provides a minimal distance between nodes at
all times in most cases and thereby increases traceability. Problems with this
approach are to update the forces fast enough to be able to provide a fast and
smooth animation and secondly to guarantee an efficient movement of the nodes
to their final destination.

3.4 Show newly visible elements

The last step adds graph elements to the drawing which did not exist or were
invisible at the start of the animation. As for the first step this can be done
within one step or using a slower fade-in.

4 Examples

The following examples show typical use cases of the animation module. The
static pictures in this section try to capture the animation process. Of course
this is only possible to a certain degree. All examples are available as mpeg
videos on the following web site:

http://www.it.usyd.edu.au/~carsten/gd00

http://www.it.usyd.edu.au/~carsten/gd00
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Note that some freely available mpeg display programs do not support the
features necessary to play the movies. References to free and working mpeg-
players for Windows NT and Unix are provided on this page.

4.1 Applying a new layout

The first example shows the animation between two force directed layouts. The
structure of the drawing does not change much apart from a rotation of the
graph of about 180 degree. A direct movement of the nodes from the source to
the target would result in a confusing animation as shown in figure 1. Figure
3 shows how algorithm breaks up the movement into a rotation and a final
movement of the nodes.

1 2

3 4

http://www.it.usyd.edu.au/~carsten/gd00/b.mpg

Figure 3: The order of the frames is upper left corner, upper right corner, lower
left corner, lower right corner. The animation is broken into a rotation of the
graph and a subsequent movement of the node to their final position.

http://www.it.usyd.edu.au/~carsten/gd00/b.mpg
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The second example shows the transition from a hierarchical type layout to
an force directed layout of a graph. Snapshots of the animation are shown in
figure 4.

1 2

3 4

http://www.it.usyd.edu.au/~carsten/gd00/c.mpg

Figure 4: The order of the frames is upper left corner, upper right corner, lower
left corner, lower right corner. Morphing between a hierarchical layout and a
force directed layout using a linear interpolated path for the nodes.

4.2 Sub-graph expansion

The example in figure 5 shows a clustered graph. The center node, which
represents a group of nodes is expanded and a new layout is computed using a
force directed algorithm. The animation shows the change from the old layout
to the new layout.

4.3 Adding visual clues

The example in figure 6 shows an animation with added visual effects. The
modification of the canvas increases the impression of a movement of a rigid
object. After the rigid motion stage the nodes are moved to their final position
in the new layout using linear interpolation.

http://www.it.usyd.edu.au/~carsten/gd00/c.mpg
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1 2

3 4

5 6

http://www.it.usyd.edu.au/~carsten/gd00/expand.mpg

Figure 5: Sub-graph expansion. The order of the frames is upper row from left
to right, then lower row from left to right. The node in the middle of the first
image is expanded to a sub-graph. The sequence shows how the node is faded
out, how the remaining nodes are moved to their new position, and how the
new nodes are faded in.

http://www.it.usyd.edu.au/~carsten/gd00/expand.mpg


Friedrich and Eades, Graph drawing in motion, JGAA, 6(3) 353–370 (2002)366

http://www.it.usyd.edu.au/~carsten/gd00/clue.mpg

Figure 6: Adding visual effects can increase the impression of the graph moving
as a rigid object in space.

http://www.it.usyd.edu.au/~carsten/gd00/clue.mpg
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5 Architecture of Marey

The methods described above were implemented as a Java package of the name
Marey and integrated in our experimental graph drawing tool JJGraph. The
architecture of the system was developed following object oriented design pat-
terns.

The graph itself, the layout algorithms, the graph modifying algorithms, and
the animation engine are implemented as separate modules. They exchange
information and trigger actions using a defined API.

In a typical use case the user invokes some action which results in ma-
jor changes in the graph drawing, for example applying a layout algorithm or
changing the graph structure followed by a layout algorithm. Figure 7 shows
the data-flow for these cases.

update graph

Graph Modifier Layout Algorithm

forward modificationsforward modifications

layout modified graph

trigger aciton

User

Graph

     Marey

Figure 7: Architecture

Note that there is typically no need for the user to directly access the ani-
mation module. In our prototype the user is able to access the Marey module to
take snapshots of graphs and generate an animation between them. Figure 8 on
the next page shows the control panel of the Marey module.

A special Java class is used to store the changes which should be animated4.
4Currently only node movements and visibility of nodes and edges can be animated. The

system is easily extensible and more features are currently being developed
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Figure 8: Control Panel

Modules can either provide instances of that class to the animation module
or tell the animation module to take a snapshot of the current state of the graph
and compute the differences to the last snapshot.

6 Future Plans

Our main focus currently is on developing more sophisticated methods for the
non-structured part of the animation, incorporate mechanisms for handling
edges with bends, especially the case where the number of bends varies be-
tween the initial and the final frame, as well as trying to identify and animate
non-linear structured movements.

At the same time we try to extend the Marey system to incorporate these
new developments and finally release it as a publicly available Java package. A
prototype is currently integrated into the InVision framework[12].
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