
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 25, no. 1, pp. 481–512 (2021)
DOI: 10.7155/jgaa.00568

On Strict (Outer-)Confluent Graphs

Henry Förster 1 Robert Ganian 2 Fabian Klute 3 Martin Nöllenburg 2

1University of Tübingen, Tübingen, Germany
2Algorithms and Complexity Group, TU Wien, Vienna, Austria

3Utrecht University, Utrecht, The Netherlands

Submitted: December 2020 Reviewed: April 2021 Revised: July 2021

Accepted: August 2021 Final: August 2021 Published: September 2021

Article type: Regular Paper Communicated by: W. Evans

Abstract. A strict confluent (SC) graph drawing is a drawing of a graph with ver-
tices as points in the plane, where vertex adjacencies are represented not by individual
curves but rather by unique smooth paths through a planar system of junctions and
arcs. If all vertices of the graph lie in the outer face of the drawing, the drawing is
called a strict outerconfluent (SOC) drawing. SC and SOC graphs were first considered
by Eppstein et al. in Graph Drawing 2013. Here, we establish several new relationships
between the class of SC graphs and other graph classes, in particular string graphs and
unit-interval graphs. Further, we extend earlier results about special bipartite graph
classes to the notion of strict outerconfluency, show that SOC graphs have cop number
two, and establish that tree-like (∆-)SOC graphs have bounded cliquewidth.

1 Introduction

Confluent drawings of graphs are geometric graph representations in the Euclidean plane, in which
vertices are mapped to points, but edges are not drawn as individually distinguishable geometric
objects. Instead, an edge between two vertices u and v is represented by a smooth path between
the points of u and v through a crossing-free system of arcs and junctions. Since multiple edge
representations may share some arcs and junctions of the drawing, this allows dense and non-planar
graphs to be drawn in a plane way. An example is shown in Figure 1. Hence confluent drawings
can be seen as theoretical counterpart of heuristic edge bundling techniques, which are frequently
used in network visualizations to reduce visual clutter in layouts of dense graphs [3, 38, 56].

Robert Ganian acknowledges support by the Austrian Science Fund (FWF, projects P31336 and Y1329). A

preliminary version of this manuscript appeared in the Proceedings of the International Symposium on Graph
Drawing and Network Visualization 2019.

E-mail addresses: foersth@informatik.uni-tuebingen.de (Henry Förster) rganian@ac.tuwien.ac.at (Robert Ganian)
f.m.klute@uu.nl (Fabian Klute) noellenburg@ac.tuwien.ac.at (Martin Nöllenburg)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00568
https://orcid.org/0000-0002-1441-4189
https://orcid.org/0000-0002-7762-8045
https://orcid.org/0000-0002-7791-3604
https://orcid.org/0000-0003-0454-3937
mailto:foersth@informatik.uni-tuebingen.de
mailto:rganian@ac.tuwien.ac.at
mailto:f.m.klute@uu.nl
mailto:noellenburg@ac.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0/

482 Förster et al. On Strict (Outer-)Confluent Graphs

(a) A rather complex circular layout. (b) The clearer strict outerconfluent diagram.

Figure 1: A straight line circular drawing and a strict outerconfluent diagram of the same graph.
The gray circle is only added for illustration purposes and does not represent edges.

More formally, a confluent drawing D of a graph G = (V,E) consists of a set of points repre-
senting the vertices of G, a set of junction points, and a set of smooth arcs, such that each arc
starts and ends at either a vertex point or a junction, no two arcs intersect (except at common
endpoints), and all arcs meeting in a junction share the same tangent line in the junction point.
There is an edge uv ∈ E if and only if there is a smooth path from u to v in D not passing through
any other vertex.

Eppstein et al. [22] defined the class of strict confluent (SC) drawings, which require that every
edge of the graph must be represented by a unique smooth path and that there are no self-loops.
They showed that for general graphs it is NP-complete to decide whether an SC drawing exists. An
SC drawing is called strict outerconfluent (SOC) if all vertices lie on the boundary of a (topological)
disk that contains the SC drawing. For graphs with a given cyclic vertex order, Eppstein et al. [22]
presented a constructive efficient algorithm for testing the existence of an SOC drawing. Without
a given vertex order, neither the recognition complexity nor a characterization of such graphs is
known. We approach the characterization problem by comparing the SOC graph class with a
hierarchy of classes of geometric intersection graphs. Since confluent drawings make heavy use
of intersecting curves to represent edges in a planar way, it seems natural to ask what kind of
geometric intersection models can represent a confluent graph.

In our first result we show that all S(O)C graphs are in fact (outer-) string graphs [44], giving
a first class of geometric intersection graphs that contains all strict (outer-)confluent graphs. We
also show that every unit interval graph can be drawn as a strict confluent diagram and that every
bipartite permutation graph without dominos (two C4 glued at an edge) can be drawn as a strict
outerconfluent graph. In fact, our drawing keeps the bipartite sets of the graph on two parallel
lines and draws the confluent arcs between these lines. This is similar to the technique used by
Hui et al. [41]. Following their naming scheme, we call our drawings strict bipartite-outerconfluent
drawings. We also prove that excluding induced domino graphs is really necessary by showing
that there are bipartite permutation graphs that cannot be drawn strict outerconfluent if we allow
induced domino graphs. We furthermore show that many natural subclasses of outer-string graphs

JGAA, 25(1) 481–512 (2021) 483

are incomparable to SOC graphs. More specifically, we show among others that circle [26], circular-
arc [40], series-parallel [50], chordal [29], co-chordal [7], and co-comparability [33] graphs are all
incomparable to SOC graphs. This list may help future research by excluding a series of natural
candidates for sub- and super-classes of SOC graphs. Inspired by earlier work of Gavenčiak et
al. [28], we examine the cop-number of SOC graphs and show that it is at most two, suggesting
that SOC graphs are in fact more comparable to interval-filament graphs [28, 30]. Finally, our last
result shows that the clique-width of so-called tree-like ∆-SOC graphs is bounded by a constant,
generalizing a previous result of Eppstein et al. [21]. A graphical overview of the results in this
paper is presented in Figure 2.

Related work Confluent drawings were introduced by Dickerson et al. [16], who identified classes
of graphs that admit or do not admit confluent drawings. Subsequently, the notions of strong and
tree confluency have been introduced [41], as well as ∆-confluency [21]. Confluent drawings have
further been used for drawings of layered graphs [20] and Hasse diagrams [23].

As mentioned above confluent drawings can be seen as a theoretical counterpart to heuristic
edge bundling techniques. Holten [38] introduced the first algorithm for bundling edges. His
approach can be used for graph-data that observes some form of hierarchy between sets of vertices.
Later, Holten and van Wijk [39] also introduced force directed bundling, in which the edges are
attracted and repelled from each other. This technique is similar to a force directed graph layout
computed, for example, by a spring embedder [42]. Other heuristic techniques have been developed
since then. A summary of such techniques was presented by Zhou et al. [57]. We also recommend
the introduction to Bach et al. [3] for a good overview of general bundling techniques.

Commonly, these techniques have a certain degree of ambiguity when it comes to determining
the adjacency relations. Bach et al. [3] proposed to use techniques inspired by confluent graph
layouts for practical edge bundling in which edges that cannot be bundled unambiguously are
allowed to cross at sharp angles. Recently, Zheng et al. [56] improved Bach et al.’s approach. These
recent publications show that confluent edge bundling has potential for practical applications,
extending beyond the theoretical interest of researchers in graph drawing. Their techniques make
use of so-called power graphs. There, the idea is to find groups of vertices that have similar sets
of adjacent vertices. The edges between these groups can then be drawn as bundled connections.
This technique has been used in the analysis of proteins [49]. A later user study by Dwyer et al. [19]
showed that the shortest path task can be solved faster than in regular node-link visualizations.
Dwyer et al. [18] later presented an efficient heuristic approach to compute such layouts.

Confluent drawings are not the only theoretical model to conceptualize edge bundling. Recent
years have seen several results on bundled crossings and the bundled crossing number of a graph.
Given a graph G = (V,E) the bundled crossing number is defined as the minimum number of
bundled crossings over all drawings of G. A bundled crossing is simply a set of crossings between
edges E′ ⊆ E that is such that the contributing edges in E′ can be partitioned into two sets
E′

1, E
′
2 ⊆ E′ with the property that no two edges in E′

1 or E′
2 cross inside a polygonal region

around the crossings of edges in E′. Originally this concept was defined by Fink et al. [25] and
studied by Alam et al. [2] in the same year. Their results show that computing the bundled crossing
number is, unsurprisingly, NP-hard in general and also in embedded graphs. Some constant-factor
approximation algorithms are presented as well. Recently, Chaplick et al. [11] proved that for
circular drawings the problem is fixed-parameter tractable in the number of bundled crossings. The
bundled crossing number is also closely related to block crossings in storyline visualizations [52, 53].

484 Förster et al. On Strict (Outer-)Confluent Graphs

trapezoid

unit interval

circular arc comparability

co-comparability polygon-circle

strict bipartite outerconfluent

string

subtree-filament

∆-confluent

bipartite permutation
∩ domino-free

domino-free

BW3-free

co-chordal

interval-filament

tree-like
∆-confluent

Wheel free

Thm. 1

Thm. 2

T
h
m

.
3

Thm. 5

Thm. 6

T
h
m

.
8

Cor. 2Lem. 12

Bounded
Clique-width

[28]

D

D

D

[21]

D

〈600〉; 〈600〉;D; 〈1752〉

D

D D

D

D D

〈1388〉D D

[51]

[55]

D; 〈1348〉

〈600〉, 〈1450〉

D

D

D

[6]

[9],[14]

[45],[47]

[34]

D

[15][4
5
],[4

7
]

Cop-number ≤ 15

Cop-number ≤ 2

Cop-number = 1

chordal ∪
co-chordal

D

circle

outer-string

distance-
hereditary

bipartite permutation

circle-trapezoidseries-parallel chordal pseudo-split

strict confluent

strict outer-
confluent

Figure 2: Inclusions among graph classes related to SOC graphs. Arrows point from sub- to super-
class, where edge label ‘D’ marks an inclusion by definition. Fat arrows are inclusions shown in this
paper and are labelled with the corresponding theorem. Green boxes are confluent graph classes.
Red boxes are classes that are incomparable to SOC graphs. Many of these incompatibilities are
new results and proven in Theorem 7. Orange boxes are classes that are potential superclasses of
SOC graphs. Formal arguments why these classes are not included in the SOC graphs are given in
Corollary 3. Blue boxes are potential subclasses of the SOC graphs. The numbers in ⟨·⟩ indicate
references of graphclasses.org. Numbers separated by ’;’ are the references for the corresponding
classes in a grey box from left to right.

graphclasses.org

JGAA, 25(1) 481–512 (2021) 485

u

v

w

x

y

j
i

k
`

p

Figure 3: A strict outerconfluent diagram representing K5. Nodes are disks, junctions are squares.

Our results After introducing basic definitions and properties in Section 2, we show in Section 3
that SC and SOC graphs are, respectively, string and outerstring graphs. Section 4 shows that
every unit interval graph [48, 54] can be drawn strict confluent. In Section 5, we consider the strict
bipartite-outerconfluent drawings and show that they coincide with the bipartite permutation
graphs when excluding induced dominos. We examine the cop-number of SOC graphs in Section 6
and show that it is at most two. Section 7 contains our series of non-inclusion results as well as the
counterexample for the existence of strict outerconfluent drawings for general bipartite permutation
graphs. In Section 8, we show that the clique-width of so-called tree-like ∆-SOC graphs is bounded
by a constant. Finally, we conclude in Section 9 and discuss open problems and future research
directions with respect to strict (outer-)confluent graphs.

2 Preliminaries

A confluent diagram D = (N, J,Γ) in the plane R2 consists of a set N of points called nodes, a
set J of points called junctions and a set Γ of simple smooth curves called arcs whose endpoints
are in J ∪ N . Further, two arcs may only intersect at common endpoints. If they intersect in a
junction they must share the same tangent line. We illustrate this in Figure 3.

Let D = (N, J,Γ) be a confluent diagram and let u, v ∈ N be two nodes. A uv-path p =
(γ0, . . . , γk) in D is a sequence of arcs γ0 = (u, j1), γ1 = (j1, j2), . . . , γk = (jk, v) ∈ Γ such that
j1, . . . jk are junctions and p is a smooth curve. In Figure 3 the unique uy-path passes through
junctions i, j, k. If there is at most one uv-path for each pair of nodes u, v in N and if there are
no self-loops, i.e., no uu-path for any u ∈ N , we say that D is a strict confluent diagram. The
uniqueness of uv-paths and the absence of self-loops imply that every uv-path is actually a path
in the graph-theoretic sense, where no vertex is visited twice. We further define P (D) as the set
of all smooth paths between all pairs of nodes in N . Let p ∈ P (D) be a path and j ∈ J a junction
in D, then we write j ∈ p, if p passes through j.

As observed by Eppstein et al. [22], we may assume that every junction is a binary junction,
where exactly three arcs meet such that the three enclosed angles are 180◦, 180◦, 0◦. In other words
two arcs from the same direction merge into the third arc, or, conversely, one arc splits into two
arcs. A (strict) confluent diagram with higher-degree junctions can easily be transformed into an

486 Förster et al. On Strict (Outer-)Confluent Graphs

equivalent (strict) one with only binary junctions.
Let j ∈ J be a binary junction with the three incident arcs γ1, γ2, γ3. Let the angle enclosed

by γ1 and γ2 be 0◦ and the angle enclosed by γ3 and γ1 (or γ2) be 180◦. Then we say that j
is a merge-junction for γ1 and γ2 and a split-junction for γ3. We also say that γ1 and γ2 merge
at j and that γ3 splits at j. Given two nodes u, v ∈ N and a junction j ∈ J we say that j is a
merge-junction for u and v if there is a third node w ∈ N , a uw-path p and a vw-path q such that
j ∈ p and j ∈ q, the respective incoming arcs γp = (jp, j) and γq = (jq, j) are distinct and the suffix
paths of p and q from j to w are equal. Conversely, we say that a junction j ∈ J is a split-junction
for a node u ∈ N if there are two nodes v, w ∈ N , a uv-path p, and a uw-path q such that j ∈ p
and j ∈ q, the prefix paths of p and q from u to j are equal and the respective subsequent arcs
γp = (j, jp) and γq = (j, jq) are distinct. In Figure 3, junction i is a merge-junction for u and v,
while it is a split junction for each of w, x, y. Two junctions i, j ∈ J are called a merge-split pair if
i and j are connected by an arc γ and both i and j are split-junctions for γ; in Figure 3, junctions
i and j form a merge-split pair, as well as junctions ℓ and p.

We call an arc γ ∈ Γ essential if we cannot delete γ without changing adjacencies in the
represented graph. We call a confluent diagram D reduced, if every arc is essential. Notice that
this is a different notion than strictness, since it is possible that in a reduced confluent diagram we
find two different paths between a pair of nodes. Without loss of generality we can assume that
the nodes of an outerconfluent diagram are placed on a circle with all arcs and junctions inside
the circle. We can infer a cyclic order π from an outerconfluent diagram D by walking clockwise
around the boundary of the unbounded face and adding the nodes to π in the order they are
visited.

From a confluent diagram D = (N, J,Γ) we derive a simple, undirected graph GD = (VD, ED)
with VD = N and ED = {uv | ∃uv-path p ∈ P (D)}. We say D is a confluent drawing of a graph
G if G is isomorphic to GD and that G is a (strict) (outer-)confluent graph if it admits a (strict)
(outer-)confluent drawing.

3 Strict (Outer-)Confluent ⊂ (Outer-)String

The class of string graphs [44] contains all graphs G = (V,E) which can be represented as the
intersection graph of open curves in the plane. We show that they form a superclass of SC graphs
and that every SOC graph is an outer-string graph [44]. Outer-string graphs are string graphs
that can be represented so that strings lie inside a disk and intersect the boundary of the disk in
one endpoint. Note that strings are allowed to self-intersect and cross each other more than once.

Let D = (N, J,Γ) be a strict confluent diagram. For every node u ∈ N we construct the
junction tree Tu of u, with root u and a leaf for each neighbor v of u in GD. The interior vertices
of Tu are the junctions which lie on the (unique) uv-paths. The strictness of D implies that Tu is
a tree. Observe that every internal node of Tu has at most two children. Further, every merge-
junction for u is a vertex with one child in Tu, and every split-junction for u has two children. For
every junction j in Tu we can define the subtree Tu,j of Tu with root j.

Lemma 1 Let D = (N, J,Γ) be a strict confluent diagram, let u, v ∈ N be two nodes and let i, j
be two distinct merge-junctions for u, v. Then i is neither an ancestor nor a descendant of j in Tu

(and, by symmetry, in Tv).

Proof: Assume i, j would be two such junctions, where i is an ancestor of j in Tu. Then there are
two distinct smooth paths from v to j in D: one passing through i and then following the path to
j in Tu, the other one merging into Tu in junction j. This contradicts the strictness of D. □

JGAA, 25(1) 481–512 (2021) 487

t(u)

t(v) t(u)

t(v)

i i

w

t(w)

w

t(w)

Figure 4: Two possible configurations for inserting a new trace t(u) that meets an existing trace
t(v) at a merge junction i; t(v) is cut and re-routed.

To create a string representation of an SC graph we trace the paths of a strict confluent diagram
D = (N, J,Γ), starting from each node u ∈ N and combine them into a string representation.
Figure 4 shows an example. We traverse the junction tree for each u ∈ N on the left-hand side
of each arc (seen from its root u) and create a string t(u), the trace of u, with respect to Tu as
follows.

Start from u and traverse Tu in left-first DFS order. Upon reaching a leaf ℓ make a clockwise
U-turn and backtrack along the left-hand side of the arc (as seen from the root) to the previous
split-junction of Tu. When returning to a split-junction we have two cases. (a) coming from the
left subtree: cross the arc from the left subtree at the junction and descend into the right subtree.
(b) coming from the right subtree: cross the arc to the left subtree again and backtrack upward in
the tree along the existing trace to the previous split-junction of Tu.

Finally, at a merge-junction i with at least one trace from the other arc merging into i already
drawn: Let v ∈ N be such that u and v merge at i and t(v) has already traced the subtree
Tu,i = Tv,i. In this case we temporarily cut open the part of trace t(v) closest to t(u), route t(u)
through the gap and let it follow t(v) along Tu,i until it returns to junction i, where t(u) passes
through the gap again. Since Tu,i = Tv,i this is possible without t(u) intersecting t(v). Now it
remains to reconnect the two open ends of t(v), but this can again be done without any new
intersections by winding t(v) along the “outside” of t(u). See Figure 4 for an illustration. If there
are more than two traces merging at i, they can all be treated as a single “bundled” trace within
Tu,i.

Theorem 1 Every SC graph is a string graph.

Proof: Given an SC graph G = (V,E) with a strict confluent drawing D = (N, J,Γ) we construct
the traces as described above for every node u ∈ N . In the following let u, v be two nodes of D.
We distinguish three cases.

Case 1 (uv-path in P (D)): We draw t(u) and t(v) as described above. Since there is a uv-path
in P (D) we have to guarantee that t(u) and t(v) intersect at least once. We introduce crossings at
the leaves corresponding to u and v in Tv and Tu when t(u) and t(v) make a U-turn; see how the
trace t(u) intersects t(w) near the leaf w in Figure 4. Since we only need to guarantee at least one
crossing, we can introduce the crossings at both leaves without problem. Moreover, note that it is
not an issue that routing the traces like this forces other traces to also make a crossing at the leaf,

488 Förster et al. On Strict (Outer-)Confluent Graphs

since a trace is only present at a leaf if the corresponding path exists in P (D). See for example
trace t(v) in Figure 4 which intersects t(w) at w.

Case 2 (No uv-path in P (D) and u, v share no merge-junction): In this case Tu and Tv are
disjoint trees. Traces can meet only at shared junctions and around leaves, but since t(u) and t(v)
trace disjoint trees, intersections are impossible.

Case 3 (No uv-path in P (D) and u, v share a merge-junction): First assume u and v share a
single merge-junction i ∈ J and assume t(v) is already drawn when creating trace t(u). We have
to be careful that t(v) and t(u) do not intersect. If we route the traces at the merge-junction i as
depicted in Figure 4, they visit the shared subtree Tu,i = Tv,i without intersecting each other.

Now assume u and v share k > 1 merge-junctions j1, . . . , jk ∈ J and u and v merge at each
ji. Consequently, we find k shared subtrees T 1, . . . , T k. By Lemma 1, however, we know that the
intersection of these subtrees is empty. Hence, we can treat every merge-junction and its subtree
independently as in the case of a single merge-junction.

These are all the cases for how two junction trees can interact. Hence, the traces t(u) and
t(v) for nodes u, v ∈ N intersect if and only if there is a uv-path in P (D) and, equivalently, the
edge uv ∈ ED. Further, every trace is a continuous curve, so this set of traces yields a string
representation of G. □

A construction following the same principle can in fact be used to show:

Theorem 2 Every SOC graph is an outer-string graph.

Proof: Let G = (V,E) be an SOC graph with a strict outerconfluent drawing D = (N, J,Γ).
Construct traces exactly as in the proof of Theorem 1 for the SC graphs. Since for each node
u ∈ N the trace t(u) starts at the position of u in D we immediately know that every trace starts
on the boundary of the enclosing disk of D. Further, every trace is a continuous curve and does
not leave the enclosing disk of D by construction. Hence, the constructed set of traces immediately
yields an outer-string representation of G. □

4 Unit Interval Graphs and Strict Confluent Diagrams

In this section we consider so-called unit interval graphs. Let G = (V,E) be a graph, then G is
a unit interval graph if there exists a unit-interval layout ΓUI of G, i.e. a representation of G
where each vertex v ∈ V is represented as an interval of unit length and edges are given by the
intersections of the intervals.

Theorem 3 Every unit-interval graph is an SC graph.

Proof: Consider a unit interval graph G with a unit-interval layout ΓUI of G. In ΓUI , every vertex
v is represented by an interval [ℓ(v), r(v)] such that r(v)− ℓ(v) = u for some constant u, and two
vertices v, w are connected by an edge, if and only if ℓ(w) ∈ [ℓ(v), r(v)] or r(w) ∈ [ℓ(v), r(v)]. We
can assume that all intervals have distinct endpoints, as otherwise the following modification is
possible: Let v1, . . . , vk be k vertices such that ℓ(v) := ℓ(v1) = . . . = ℓ(vk) and let ε > 0. Then we
assign new interval coordinates, such that ℓ(vi) := ℓ(v) + i · ε. Clearly, since all vertices v1, . . . , vk
had the same neighborhood before, we can chose ε sufficiently small to retain the incidencies. Let
O = (v1, . . . , vn) denote the ordering of V such that for vertex vi it holds that ℓ(vi) < ℓ(vj) for all
j > i. We call such an ordering O a left-to-right-ordering.

We first indentify subcliques C1, . . . , Ck of G such that each vertex is part of exactly one Ci

as follows. We say that a vertex vi is a leader in a left-to-right-ordering O if and only if there

JGAA, 25(1) 481–512 (2021) 489

C1

C3

v1
v2

v3
v4

w1
w2

w3
w4

C2

w5
x1

x2

Figure 5: A unit interval graph G with a decomposition of its vertices into a set of cliques as
described in the proof of Theorem 3.

exists no vertex vj with j < i and ℓ(vi) < r(vj) such that vj is leader. Note that by definition v1
is always a leader. The second leader is the first vertex vi such that r(v1) < ℓ(vi) and so on. Let
L = (l1, . . . , lk) ⊆ V denote the left-to-right-ordered set of leaders. It is easy to see that L is a set
of disjoint intervals. We say that vj is leader of vertex vi or vj = lead(vi) if j ≤ i, vj is a leader
and there exists no leader vh for j < h < i. Observe that every vertex v has a uniquely defined
leader which is the interval, in which ℓ(v) is located. Since all intervals have unit size, there always
exists an edge between vertices with the same leader. Hence, all vertices with the same leader
form a clique and we define Ci = {v ∈ V |lead(v) = li}. Further, if li is leader of vertex v, since
all intervals are unit and leaders are disjoint, r(v) ∈ (r(li), r(li+1)), that is, vertex v can only be
connected to two leaders. For an illustration of such a decomposition refer to Figure 5.

Next, we describe how to produce a strict confluent diagramD of G. For an example illustration
that follows the notation of the proof, refer to Figure 6. Let C = (C1, . . . , Ck) denote the left-to-
right-ordered (according to their leaders) set of cliques. We draw each clique Ci = (Vi, Vi×Vi) ∈ C
with the following SOC layout: Let Vi = (v1, . . . , vk) be the left-to-right-ordered set of vertices.
We position v1, d2, . . . , dk−1, vk from left to right on a horizontal line H, and we position vi below
di for 2 ≤ i ≤ k − 1, where di is a junction connecting vi with the two neighbors of di on H.
Note that each of these junctions can be drawn such that they smoothly link each pair of the three
incident arcs. We order the drawings of all Ci ∈ C from left to right along H, that is, the drawing
of Ci appears between the drawings of Ci−1 and Ci+1. Note that all vertices can be reached from
below.

It remains to describe how to realize edges from vertices in Ci ∈ C to vertices in Ci+1. Let
Ci = (Vi, Vi×Vi) and let Vi = (v1, . . . , vk) be the left-to-right-ordered set of vertices of Ci. Consider
edge vℓw ∈ E for vℓ ∈ Vi and w ∈ Vi+1. Since vℓw exists, in ΓUI , it holds that ℓ(vℓ) < ℓ(w) < r(vℓ).
For all vj ∈ Vi with j ≥ ℓ, it obviously holds that ℓ(vj) ∈ (ℓ(vℓ), ℓ(w)). Therefore, also (vj , w) ∈ E.
Further, for vℓ it clearly holds that its neighbors W ∈ Vi+1 are consecutive in the left-to-right-
order of vertices defined by ΓUI . This allows us to realize the bundle of edges going from Vi to
a consecutive set of vertices W ∈ Vi+1 as follows. Let W ⊆ Vi+1 such that vℓ is the leftmost
neighbor of each w ∈ W . We add a binary junction bℓ in between dℓ and dℓ−1 (or v1 if ℓ = 2)
such that bℓ is a split junction for dℓ and a merge junction for dℓ−1 and the root br of a tree Tb

of binary junctions. In Tb, each junction is a split junction for its ancestor and each leaf of Tb is
connected to a pair of vertices in W . We position Tb below W and route the segment between br
and bℓ first above the drawing of Ci, then let it cross line H and finally route it below the drawing
of Ci+1. Since we use this scheme for all Ci, we avoid intersections of segments between different
pairs of consecutive cliques. Also, since we directly connect to vertices W via Tb, we realize all
edges exactly once, yielding a strict drawing of G. □

490 Förster et al. On Strict (Outer-)Confluent Graphs

v1

v2 v3

v4 x1 x2

d2 d2

b2

H
d3 d3 d4

b3 b4
w1

w2 w3 w4

w5b4b3

br

Figure 6: A strict confluent layout of G computed by the algorithm described in the proof of
Theorem 3.

5 Strict Bipartite-Outerconfluent Drawings

Let G be a bipartite graph with bipartite sets (X,Y). An outerconfluent drawing of G is bipartite-
outerconfluent if the vertices in X (and hence also Y) occur consecutively on the boundary. Graphs
admitting such a drawing are called bipartite-outerconfluent. The bipartite permutation graphs are
just the graphs that are bipartite and permutation graphs, where a permutation graph is a graph
that has an intersection model of straight lines between two parallel lines [46].

Theorem 4 (Hui et al. [41]) The class of bipartite-permutation graphs is equal to the class of
bipartite-outerconfluent graphs.

It is natural to consider the idea of bipartite drawings also in the strict outerconfluent setting.
We call a strict outerconfluent drawing D of G bipartite if it is bipartite-outerconfluent and strict.
The graphs admitting such a drawing are called strict bipartite-outerconfluent graphs. In this
section we extend Theorem 4 to the notion of strictness.

Given a graph G = (V,E) and a circular ordering of the vertices, we say a crossing between
edges uv,wx ∈ E in the resulting straight line circular layout is representable if G[{u, v, w, x}] has
a K2,2 subgraph. We are also going to use the domino graph extensively which is just the graph
resulting from gluing two 4-cycles together at an edge.

The next lemmas are required in the proof of our theorem.

Lemma 2 Let D be a strict outerconfluent diagram, GD the graph represented by D, and π the
order inferred from D. If we use π to create a circular straight-line layout of GD, then every
crossing is representable.

Proof: Let ac, bd ∈ ED be two edges that have a crossing in a circular layout of GD with order π.
Let p, q ∈ P (D) be two paths corresponding to these edges in D. Since the order of the vertices
and nodes is the same we know there exist two junctions i, j ∈ J such that either a, b merge at i
and c, d at j or a, d merge at i and c, b at j. This means that the edges (a, b) and (c, d) or (a, d)
and (b, c) exist as well, so for every crossing we find that it is part of a K2,2. □

It is clear that a graph can only have a strict outerconfluent drawing if it has a circular layout
with all crossings representable. This is not sufficient though, as there are such graphs that have
no strict outerconfluent drawing. We obtain two 6-vertex obstructions for strict outerconfluent
drawings, namely a K3,3 with an alternating vertex order, illustrated in Figure 7, and a domino
graph in bipartite order, illustrated in Figure 8.

Lemma 3 Let G = (V,E) be a graph isomorphic to K3,3, X ∪ Y = V the corresponding bipartite
sets, and π the cyclic order of V in which vertices from X and Y alternate. Then there is no strict
outerconfluent diagram D = (N, J,Γ) with order π and GD = G.

JGAA, 25(1) 481–512 (2021) 491

z

u
v

x
y

w

z

u
v

x
y

wj

i

Figure 7: Forbidden alternating order of K3,3.

u v

w

z

x

y

u v

w

z

x

y

i1
j1

i2

j2

Figure 8: Forbidden domino order.

Proof: Let G = (V,E) and π as above. Draw G in a circular layout with the edges as straight
lines. We then find the vertices and edges drawn as in Figure 7.

For contradiction assume that there exists a strict outerconfluent diagram D of G and that no
series of arcs in D forms a closed simple curve. We illustrate the argument in Figure 7. Since D is
strict we find exactly one path in D for each edge of G. Let ux ∈ E and vy ∈ E be two edges that
intersect in the above straight-line drawing as showin in Figure 17. Then, the ux-path and vy-path
intersect in D and consequently there has to exist a merge-junction i ∈ J and a split-junction j ∈ J
of u such that y and u merge at i. Conversely, the nodes v and x merge at j. Moreover, there
exists a wz-path in D that has to intersect the uv-path or the xy-path in D. Without loss of
generality assume it intersects the uv-path. Then, starting from i we can follow the uv-path, then
the wz-path, and finally again the uv-path to return to i, a contradiction to the assumption that
no simple closed loop exists in D. Moreover, none of the arcs on this loop can be removed without
either disconnecting u and v or w and z. □

Lemma 4 Let G = (V,E) be a graph isomorphic to the domino graph, X ∪ Y = V be the cor-
responding bipartite sets, and π the cyclic order of V in which the vertices in X and in Y are
contiguous, respectively. Then there is no strict outerconfluent diagram D = (N, J,Γ) with order
π and GD = G.

Proof: The situation and names of the vertices are shown in Figure 8. Each of the two crossings
has to be replaced by a series of confluent arcs and junctions. Assume this could be done without
two distinct uv-paths existing in the final strict outerconfluent diagram D. Since there need to
be paths from u and w to x and v and from u and y to v and z, there exists a merge-split pair
i1, j1 ∈ J on the uv-path such that w and u merge at i1 and v and x merge at j1. Symmetrically,
there exists another merge-split pair i2, j2 ∈ J on the uv-path such that u and y merge at i2 and
v and z merge at j2. Since either i1 is before i2 and j2 or i2 is before i1 and j1 we find that either
there exists an wz- or an yx-path in D, but neither wz ∈ E nor yx ∈ E.

□

Given that a strict outerconfluent drawing implies a strict outerconfluent drawing for each
induced subgraph we find that no strict outerconfluent drawing can contain an induced domino
graph or K3,3 and its vertices ordered as described in Lemmas 3 and 4, respectively.

Lemma 5 Suppose that a reduced confluent diagram D = (N, J,Γ) with |N | ≥ 6 contains two
distinct uv-paths. Then we can find in GD = (VD, ED) a set V ′ ⊆ VD such that G[V ′] is isomorphic
to C6 with at least one chord.

492 Förster et al. On Strict (Outer-)Confluent Graphs

u v

x y

i j

u v

x y

Figure 9: A circular path with only two merge-split pairs can be redrawn without change of the
node order.

Proof: Let p, q ∈ P (D) be two distinct uv-paths in a reduced confluent diagram D = (N, J,Γ).
We find two minimal distinct sub-paths p′ of p and q′ of q between two junctions i, j of p and q.

First we assume that i is a split-junction of p, q and j a merge-junction of p, q. We claim that
each of p′ and q′ must contain at least two junctions that form a merge-split pair. The argument
is symmetric, so we focus on p′. If p′ passes through no junction, the arc of p′ can be removed
since q′ achieves the same connectivity, but this contradicts that D is reduced. If p′ passes through
exactly one junction i1, then the arc of p′ that does not split at i1 can be removed without changing
any node adjacencies in GD. So p′ must contain at least two junctions i1 and i2. Assume there
would be no merge-split pair. This means, coming from i path p′ passes through a sequence of
split-junctions followed by a sequence of merge-junctions. But in that case the arc connecting the
last split-junction with the first merge-junction can be removed. So there must be a merge-split
pair on p′ and similarly on q′.

Next we follow each arc of these two merge-split pairs that does not lie on p′ and q′ towards
some reachable node. This yields four nodes x, y, w, z ∈ N that together with u and v form a
domino subgraph as in Lemma 4, which is in fact a C6 with a chord.

Assume there are no two uv-paths as in the first case. Then i is a merge-junction of p, q and
j is a split-junction of p, q, see Figure 9. In this case, one of the paths, say q′ contains a cycle
and visits i and j twice. Clearly, all arcs of p′ are essential as removing them would disconnect
u and v. By the same arguments as before, there must be at least one merge-split pair on q′ as
otherwise we can delete an arc of q′. However, if there is a single minimal merge-split pair i1, i2
on q′ (i.e., two directly adjacent junctions), then one can reroute the arcs joining q′ in i1 and i2
towards i and j, respectively and remove two arcs from q′, see Figure 8. Hence, there must be at
least two merge-split pairs on q′. Consequently, we can find six nodes that form a K3,3 subgraph
as in Lemma 3, which is again a C6 with at least one chord. □

Theorem 5 The (bipartite-permutation ∩ domino-free)-graphs are exactly the strict bipartite-
outerconfluent graphs.

Proof: Every bipartite graph on four or five vertices is clearly domino-free as the domino graph
contains six verticces. Moreover, they can all be drawn strict bipartite-outerconfluent as they
either have an outerplanar drawing with the bipartite sets drawn as desired or they are isomorphic

JGAA, 25(1) 481–512 (2021) 493

u1

u2

u3

v1

v2

v3

u1

u2

u3

v1

v2

v3

Figure 10: Redrawing a K3,3 minus an edge. The blue dotted edge is missing. Since the graph is
bipartite, we find that for every path using one of the thick green arcs on the left, we can redraw
it such that it merges into the path coming from u3 at the green marker in the middle without
creating any wrong adjacencies.

to a cycle on four vertices, K2,3 minus an edge, or K2,3. All these graphs admit straight-forward
strict bipartite-outerconfluent drawings as shown in Figure 11.

Let G = (V,E) with |V | ≥ 6 be a (bipartite-permutation ∩ domino-free) graph. By Theorem 4
we can find a bipartite-outerconfluent diagram D = (N, J,Γ) which has GD = G. Now assume
that D is reduced but not strict. In this case we find six nodes N ′ ⊆ N corresponding to a vertex
set V ′ ⊆ VD in GD such that GD[V ′] = (V ′, E′) is a C6 with at least one chord by Lemma 5. In
addition, since D (and hence also GD) is bipartite and domino-free, we know there are two or three
chords. But then GD[V ′] is just a K3,3 minus one edge e ∈ E′ or K3,3. In a bipartite diagram
these can always be drawn in a strict way.

Let V ′ = {u1, u2, u3, v1, v2, v3} where the ui are on one side of the diagram and the vi on
the other; they are ordered by their indices from top to bottom. First, observe that since G is a
bipartite permutation graph and the algorithm by Hui et al. [41] uses the strong ordering on the
vertices, we get that in a K3,3 minus an edge the missing edge is either u1v3 or u3v1. Further we
can assume that the non-strict doubled path is between u2 and v2 since D is reduced. If this was
not the case we would find two merge-split pairs with their vertices all below or above u2, v2 in D,
but then one of these pairs has junctions with both uv-paths and we can reduce it.

Now, w.l.o.g., assume u3v1 is the missing edge. It follows that u1v3 exists as an edge and
the u1v3 path must also have junctions with both u2v2 paths. Furthermore, we know both these
junctions are merge junctions for u1 and u2, v2 and v3 respectively. Thus we can redraw as in
Figure 10. For the case of no edge from K3,3 missing the same argument applies.

For the other direction, consider a strict bipartite-outerconfluent diagram D = (N, J,Γ). By
Theorem 4, GD is a bipartite permutation graph, and by Lemma 4, it must be domino free. Thus,
GD must be as described. □

Figure 11: Strict bipartite-outerconfluent drawings of C4, K2,3 minus an edge, and K2,3.

494 Förster et al. On Strict (Outer-)Confluent Graphs

6 SOC Graphs Have Cop-Number Two

The cops-and-robbers game [1] on a graphG = (V,E) is a two-player game with perfect information.
The cop-player controls k cop tokens, while the robber-player has one robber token. In the first
move the cop-player places the cop tokens on vertices of the graph, and then the robber places his
token on another vertex. In the following the players alternate, in each turn moving their tokens
to a neighboring vertex or keeping them at the current location. The cop-player is allowed to move
all cops at once and multiple cops may be at the same vertex. The goal of the cop-player is to
catch the robber, i.e., place one of its tokens on the same vertex as the robber. Note that, since it
is a game with perfect information, the players can see each others token at all times.

The cop-number cop(G) of a connected graphG is the smallest integer k such that the cop-player
has a winning strategy using k cop tokens. In case G is not connected cop(G) is the maximum cop-
number of any of its connected components [8]. Gavenc̆iak et al. [28] showed that the cop-number
of outer-string graphs is between three and four, while the cop-number of many other interesting
classes of intersection graphs, such as circle graphs and interval filament graphs, is two. We show
that the cop-number of SOC graphs is two as well.

Consider an SOC drawing D = (N, J,Γ) of a graph G = (V,E). Note that if G = (V,E) is not
connected, each connected component can be treated as discussed below. Hence, the cop number
is then just two times the number of connected components. For nodes u, v ∈ N , let the node
interval N [u, v] ⊂ N be the set of nodes in clockwise order between u and v on the outer face,
excluding u and v. Let the cops be located on nodes C ⊆ N and the robber be located on r ∈ N .
We say that the robber is locked to a set of nodes N ′ ⊂ N if r ∈ N ′ and every path from r to
N \N ′ contains at least one node that is either in C or adjacent to a node in C; in other words, a
robber is locked to N ′ if it can be prevented from leaving N ′ by a cop player who simply remains
stationary unless the robber can be caught in a single move. The following lemma establishes that
a single cop can lock the robber to one of two “sides” of an SOC drawing.

Lemma 6 Let D = (N, J,Γ) be an SOC diagram of a graph G. Let a cop be placed on node u, the
robber on node r ̸= u and not adjacent to u, and let v ̸= r be an arbitrary neighbor of u. Then the
robber is either locked to N [u, v] or locked to N [v, u].

Proof: Assume that, w.l.o.g., r ∈ N [u, v], and consider an arbitrary path P in G from r to
N \ (N [u, v] ∪ {u, v}), which contains neither u nor a neighbor of u. Consider the first edge xy on
P such that y ̸∈ N [u, v], and consider the xy-path in D. Since y ̸= u and y ̸= v, it must hold that
the xy-path in D crosses the uv-path at some junction. Hence, x must either be adjacent to u or
to v; in the former case, this immediately contradicts our assumption that P contains no neighbor
of u. In the latter case, it follows that there must be a junction on the uv-path in D, which is used
by the xy-path to reach y, and hence u must also be adjacent to y—once again contradicting our
initial assumption about P . □

Let u, v ∈ N be two nodes of an SOC diagram D = (N, J,Γ). We call a neighbor w of u
in N [u, v] cw-extremal (resp. ccw-extremal) for u, v (assuming such a neighbor exists), if it is the
last neighbor of u in the clockwise (resp. counterclockwise) traversal of N [u, v]. Now let u, v be
two adjacent nodes in N , w ∈ N [u, v] be the cw-extremal neighbor for u and x ∈ N [u, v] be the
ccw-extremal neighbor for v. If w appears before x in the clockwise traversal of N [u, v] we call
w, x the extremal pair of the uv-path, see Figures 12b and 12c. In the case where only one node
of u, v has an extremal neighbor w, say u, we define the extremal pair as v, w. In the following we
assume that for a given uv-path the extremal pair exists.

JGAA, 25(1) 481–512 (2021) 495

u

w

v

r

(a) The cops confine the robber to
N [u, v].

u

r
x

w
v

(b) The cops confine the robber to
N [w, x].

u

x

v

w

r
y

z

(c) The cops confine the robber to
N [w, x].

Figure 12: Moves of the cops to confine the robber to a strictly smaller range.

Lemma 7 Let D = (N, J,Γ) be an SOC diagram of a graph G, u, v ∈ N be two nodes connected
by a uv-path in P (D) and w, x ∈ N [u, v] the extremal pair of the uv-path. If the cops are placed
at u and v and the robber is at r ∈ N [u, v], r ̸= w, r ̸= x, there is a move that locks the robber to
N [u,w], N [w, x] or N [x, v].

Proof: In case r ∈ N [u,w] or r ∈ N [x, v] we can swap the cops in one move (see Figure 12a) by
moving the cop from v to u and from u to w in the former case and from u to v and v to x in the
latter. This locks the robber to N [u,w] or N [x, v] by Lemma 6.

The remaining case is r ∈ N [w, x]. By construction of the extremal pair, no y ∈ N [w, x] is a
neighbor of u or v. Because G is a connected graph, there must be at least one y ∈ N [w, x] that is
a neighbor of w or x as the only smooth paths leaving N [w, x] must share a merge junction with
u or v on the paths towards w or x. In the next step, we move the cops from u and v to w and x.
We need to distinguish two subcases. If r is not a neighbor of w or x, then this position obviously
locks the robber to N [w, x] as any path leaving N [w, x] must pass through a neighbor of w or x.
If, however, r is already at a neighbor of w ̸= u or x ̸= v, it may escape from N [w, x] in the next
move to a node in N [u,w] or N [x, v]. But then by Lemma 6 it locks itself to N [u,w] or N [x, v].
Note that if w = u or x = v, then there is no way for r to escape across w or x, respectively, as r
would be a neighbor of u or v in that case. □

Lemma 8 Let D = (N, J,Γ) be an SOC diagram of a graph G, u, v ∈ N be two nodes connected
by a uv-path in P (D) and w, x ∈ N [u, v] be the extremal pair of the uv-path such that there is
no wx-path in P (D). If the robber is at r ∈ N [w, x] and the cops are placed on w, x we can find
y, z ∈ N [w, x] ∪ {w, x} such that the yz-path exists in P (D) and the robber is locked to N [y, z].

Proof: First, assume that there is a path in G connecting w and x which passes only through
nodes in N [w, x]; see Figure 12c. Let y ∈ N [w, x] be the ccw-extremal neighbor of x. If r ∈ N [y, x]
we are done and by Lemma 6 we can move the cop from w to y as the cop at x suffices to lock the
robber to N [y, x].

Now let r ∈ N [w, y] instead and move the cop from x to y. As in the proof of the previous
lemma, there are two subcases. If r is not a neighbor of y, the new position of the cops locks
the robber to N [w, y]. Otherwise, the robber might escape to N [y, x] but immediately locks itself
to N [y, x] by Lemma 6 and we are done. We repeat this process of going to the ccw-extremal
neighbor until we eventually lock the robber to some N [y, z] where the yz-path is in P (D).

496 Förster et al. On Strict (Outer-)Confluent Graphs

Now assume that there is no path from w to x in G that passes only through nodes in N [w, x].
But then the only possibility for the robber to leave N [w, x] is by passing through a neighbor of
just one of w or x, say x. We keep the cop at x, which suffices to lock the robber to N [w, x]. We
can thus safely move the other cop first from w to x and from there following a path from one
ccw-extremal neighbor to the next until reaching a node y such that the robber is now locked to
N [y, x] by the two cops. If there is an xy-path in P (D) we are done. Otherwise we are now in the
first case of the proof since by definition of y there is a path from x to y in G passing only through
nodes in N [y, x]. □

Combining Lemmas 6, 7 and 8 yields the result.

Theorem 6 SOC graphs have cop-number two.

Proof: Let D = (N, J,Γ) be a strict-outerconfluent diagram of a (connected) graph G. Choose
any uv-path in P (D) and place the cops on u and v as initial turn. The robber must be placed
on a node r that is either in N [u, v] or in N [v, u]; by symmetry, let us assume the former. By
Lemma 6, the robber is now locked to N [u, v] ̸= ∅.

In every move we will shrink the locked interval until eventually the robber is caught. Let
w ∈ N [u, v] be the cw-extremal neighbor of u and let x ∈ N [u, v] be the ccw-extremal neighbor of
v, which, for now, we assume to exist both. If the clockwise order of u, v, w, x on the outer face
is u < x < w < v then the robber must be either locked to N [u,w] or to N [x, v] by Lemma 6,
so we move the cops to the respective nodes u,w or v, x and recurse with a smaller interval. If
the clockwise order is u < w < x < v then w, x is an extremal pair and by Lemma 7 we can lock
the robber to a smaller interval in the next move. In case it is locked to N [u,w] or to N [x, v] we
move the cops accordingly and recurse by Lemma 6. If it is locked to N [w, x], then either there is
a wx-path in P (D) and again Lemma 6 applies (Figure 12b) or there is no wx-path and Lemma 8
applies after moving the cops to w and x.

It remains to consider the case that u, v do not both have an extremal neighbor in N [u, v]. At
least one of them, say u, must have a neighbor w in N [u, v]—otherwise G would not be connected.
So we define the extremal pair as v, w. If the robber is in N [u,w] we can move the cops to u,w as
in Figure 12a and apply Lemma 6. If r ∈ N [w, v], then we can move the cops to v, w and Lemma 8
applies. □

Theorem 6 suggests a closer link between SOC graphs and interval-filament graphs [30], another
subclass of outer-string graphs with cop-number two.

7 Non-Inclusion Results for SOC Graphs

Here we collect smaller results for classes of graphs which have non-empty intersection with the
class of SOC graphs, but are neither superclasses nor subclasses. Theorem 7 shows our incompa-
rability results, while Corollary 3 lists classes which are not contained in the class of SOC graphs.
Throughout this section, we denote by Cn = (V,E) the cycle on n vertices. We assume that the
vertices V = {v1, . . . , vn, vn+1 = v1} of Cn are ordered such that vivi+1 ∈ E for every 1 ≤ i ≤ n.
To simplify the notation we denote by Zπ(G) the straight-line circular drawing of G with circular
order π.

Recall that, given a graph G = (V,E) and a circular ordering of the vertices, we say a cross-
ing between edges uv,wx ∈ E in the resulting straight line circular layout is representable if
G[{u, v, w, x}] has a K2,2 subgraph.

JGAA, 25(1) 481–512 (2021) 497

v5

v1 v2

v3v4

(a) The house graph.

v5

v1 v2

v3

v4

v6

v5

v1 v2

v3

v4

v6

(b) The domino graph.

Figure 13: The house and the domino graph.

Lemma 9 Let D = (N, J,Γ) be an outerconfluent diagram and π the circular ordering of the nodes
in N . Then every induced cycle Cn = {v1, . . . , vn} with n ≥ 5 in the corresponding outerconfluent
graph GD = (VD, ED) appears in this or its reverse ordering in π.

Proof: Let D = (N, J,Γ) be an outerconfluent diagram of a graph GD = (VD, ED), Cn =
{v1, . . . , vn} an induced cycle of GD with more than five vertices, and π the cyclic ordering of
the vertices VD in D. Assume for contradiction that v1, . . . , vn do neither appear in order nor in
reverse order of the indices. Then, we find a crossing between two edges of Cn in Zπ(GD). Though,
since Cn has no chords, and consequently no induced C4 or triangles, this crossing can never be
representable as a confluent junction. Consequently, the outerconfluent diagram D does not exist
by Lemma 2. □

Next we consider the house graph. It is a constant size graph on five vertices that consists of a
C4 and a triangle that has one edge identified with one edge in the cycle. Let H = (VH, EH) be
the house graph and V = {v1, v2, v3, v4, v5} its ordered set of vertices such that v5 is the tip of the
triangle and v1, v2, v3, v4 form the induced C4, see Figure 13a.

Lemma 10 Let GD be an outerconfluent graph, D = (N, J,Γ) an outerconfluent drawing of GD,
and π the inferred vertex order from D, the vertices {v1, . . . , v5} of every induced house graph H
of GD appear in order

⟨v1, v5, v2, v3, v4⟩ or ⟨v1, v5, v2, v4, v3⟩

in π.

Proof: It is easy to see that the two orderings have strict outerconfluent drawings. Hence, they
can appear as sub-diagrams in an outerconfluent diagram of a graph containing an induced house
graph. Let GD be an outerconfluent graph containing induced houses and D = (N, J,Γ) an
outerconfluent drawing of GD. Furthermore, let π be the vertex ordering of vertices in N inferred
from D. Assume that H = (VH, EH) is an induced house in GD and its vertices are ordered not by
one of the two above orders in π. This means we find a crossing between an edge v5vi for i ∈ {1, 2}
and an edge in {v2v3, v3v4, v4v1} in Zπ(GD). This crossing is not representable, a contradiction to
Lemma 2. □

We already considered the domino graph in Section 5. Here we show that the vertices of
a domino graph have to be ordered according to one of six different orders to obtain a strict

498 Förster et al. On Strict (Outer-)Confluent Graphs

outerconfluent drawings. Note however, that these six orders encode only two non-isomorphic
drawings. One is the outerplanar drawing and the other one with one junction. Both drawings are
shown in Figure 13b. Let D = (VD, ED) be the domino graph and let V = {v1, v2, v3, v4, v5, v6} be
its ordered vertex set.

Lemma 11 Let GD be an outerconfluent graph, D = (N, J,Γ) an outerconfluent drawing of GD,
and π the inferred vertex order from D, the vertices {v1, . . . , v6} of every induced domino graph D
of GD appear in order

⟨v1, v2, v3, v4, v5, v6⟩ or ⟨v2, v1, v3, v4, v5, v6⟩ or ⟨v2, v1, v6, v4, v5, v3⟩ or
⟨v1, v2, v3, v5, v4, v6⟩ or ⟨v1, v2, v6, v5, v4, v3⟩ or ⟨v1, v2, v6, v4, v5, v3⟩

in π.

Proof: Clearly all these orders admit outerconfluent drawings of the domino graphD and can hence
be sub-diagrams of a larger outerconfluent diagram. Now let D = (N, J,Γ) be an outerconfluent
diagram of a graph GD containing an induced domino D and let π be the from D inferred vertex
ordering. Assume that in π we find the vertices of D ordered non-isomorphic to one of the above
orderings. This means that there is a crossing between two edges ab, cd ∈ ED\{v3v6}, a, b, c, d ∈ VD

such that a, b ∈ {v1, v2, v3, v6} and c, d ∈ {v3, v4, v5, v6}. Yet, there cannot be a C4 such that the two
of the edges are ab and cd. Consequently, this crossing can never be representable, a contradiction
to Lemma 2. □

Lemma 11 holds for general outerconfluent graphs. In fact if we consider strict outerconfluent
graphs we get the following corollary, whose proof follows directly from Lemmas 4 and 11.

Corollary 1 Let GD be a strict outerconfluent graph, D = (N, J,Γ) an outerconfluent drawing
of GD, and π the inferred vertex order from D, the vertices {v1, . . . , v6} of every induced domino
graph D of GD appear in order

⟨v1, v2, v3, v4, v5, v6⟩ or ⟨v2, v1, v3, v4, v5, v6⟩ or ⟨v2, v1, v6, v4, v5, v3⟩ or
⟨v1, v2, v3, v5, v4, v6⟩ or ⟨v1, v2, v6, v5, v4, v3⟩

in π.

Before considering more complex classes of graphs we investigate two simple cases in the next
lemma. It was already observed by Eppstein et al. [22] that the wheel on five vertices W5 which
is the graph obtained from a C5 by adding one apex vertex, has no outerconfluent drawing. We
show that this straight-forwardly holds for any n ≥ 5. See Figures 14a and 14b for examples with
n = 5 and n = 7. We note that the lemma also follows directly as outerconfluence is closed under
taking induced subgraphs. The following proof is provided as Eppstein et al. do not provide a
formal argument and we believe the observations made by our proof can be valuable in the future.

Lemma 12 The wheel Wn has no outerconfluent drawing for n ≥ 5.

Proof: Assume D = (N, J,Γ) is an outerconfluent drawing with |N | − 1 = n ≥ 5 such that GD is
isomorphic to Wn. Clearly GD contains an induced cycle Cn−1 on n− 1 vertices and by Lemma 9
this cycle has just one outerconfluent drawing. Now, at whatever position the apex vertex is going
to be placed produces a crossing between all but two of its incident edges with the Cn−1. Let

JGAA, 25(1) 481–512 (2021) 499

(a) W5 (b) W5 (c) BW3

Figure 14: The graphs W5, W7 and BW3 used in Definition 1.

va ∈ VD be the apex vertex and let va be placed between vn−1 and v1 along Cn−1. Furthermore,
let j = ⌈n−1

2 ⌉. Consider the crossing between the edge vn−1v1 and vavj . This crossings can never
be representable since it would require the existence of at least one chord in Cn−1. Our choice of
v1 and vn−1 was not a restriction, since we can shift the indices of the vertices in the cyclic order
of Cn−1,. Hence, by Lemma 2 there is no outerconfluent drawing of Wn with n ≥ 5. □

The graph BW3 is the graph obtained from a C6 by adding a degree three vertex and connecting
it to every second vertex in the C6. Then the bipartite wheel graph [5] BWn for n ≥ 4 is obtained
by combining a degree n vertex with a C2n in the same way. In both classes we call the high-degree
vertex the central vertex of the graph. Figure 14c shows BW3.

Corollary 2 The graph BWn has no outerconfluent drawing for n ≥ 3.

Proof: This follows directly from the proof of Lemma 12 □

These graphs are also relevant in the course of recognizing circle graphs. We now continue by
giving short definitions for all the classes not yet defined in any previous section of this paper. As
common in the graph theory literature we denote by H-free graphs, for a fixed graph H, the class
of graphs that does not contain H as an induced subgraph.

Circle graphs are commonly defined as the class of intersection graphs that can be obtained
from the intersections of chords in a circle. Here, we also use the following characterization of
circle graphs due to Bouchet.

Definition 1 (Bouchet [9]) The local complement G ∗ v is obtained from G by complementing
the edges induced by v and its neighborhood in G. Two graphs are said to be locally equivalent if
one can be obtained from the other by a series of local complements. A graph G is a circle graph
if and only if no graph locally equivalent to G has an induced subgraph isomorphic to W5, BW3,
or W7 (see Figure 14).

Circular-arc graphs are the graphs which have an intersection model of arcs of one circle [35].
Let ab, cd be two non-crossing chords of a circle and a, b, c, d points on the circle in order a, b, c, d.
A circle trapezoid then consists of the two chords ab, cd and the circular-arcs bc and da. A
circle-trapezoid graph is a graph which can be represented by intersecting circle trapezoids of one
circle [24]. Co-comparability graphs are the intersection graphs of x-monotone curves in a vertical
strip [33]. The polygon-circle graphs are the graphs which have an intersection model of polygons
inscribed in the same circle [43]. Interval filament graphs, defined by Gavril [30], are intersection

500 Förster et al. On Strict (Outer-)Confluent Graphs

c1 c2

c3

c8c7

c4

c6c5

d

(a) The graph.

c1 c2

c3

c8c7

c4

c6c5

d

c1 c2

c3

c8c7

c4

c6c5

d

(b) The final case in Lemma 13 the thick marked edges form a non-
representable crossing.

Figure 15: Illustration of the counterexample for bipartite permutation ⊆ SOC.

c1 c2 c3 c8 c7c4 c6c5

d c1c2 c3 c8c7c4c6 c5

d

Figure 16: An intersection representation of the graph in Figure 15.

graphs of continuous, non-negative graphs of functions defined on closed intervals, such that they
are zero-valued at their endpoints.

The comparability graphs are the transitively orientable graphs. We also use the forbidden
subgraph characterization by Gallai [27]. The alternation graphs are the graphs which have a
semi-transitive orientation [37]. For a graph G = (V,E) a semi-transitive orientation is acyclic
and for any directed path v1, . . . , vk we either find v1vk ̸∈ E or vivj ∈ E for all 1 ≤ i < j < k.

The chordal graphs are the graphs, which have no chordless induced cycle of length at least
four [32, 36]. Co-chordal graphs are the complement graphs of chordal graphs. Series-parallel
graphs [17] are the graphs with terminal vertices s and t which can be constructed inductively
from a single edge st, which is a series-parallel graph, using two composition operations. In either
we are given two series-parallel graphs G1 with terminals s1 and t1 and G2 with terminals s2 and
t2. In a parallel composition of G1 and G2 we take the disjoint union of G1 and G2 and and
then identify s1 with s2 and t1 with t2. The two vertices resulting from this identification are
the terminal vertices of the new series-parallel graph. In a series decomposition of G1 and G2 we
identify s2 with t1 and take s1 and t2 as the terminal vertices of the new series-parallel graph.

Finally the class of pseudo-split graphs contains the graphs G = (V,E) such that V can be
partitioned into three sets C (a complete graph), I (an independent set) and S (if not empty an
induced C5). Further every vertex in C is adjacent to every vertex in S and every vertex in I is
non-adjacent to every vertex in S.

We begin by showing that not every bipartite permutation graph can be drawn strict outercon-
fluent, complementing the result in Section 5. While the graph is small we did not find it by hand,
but using an implementation of the algorithm for testing strict outerconfluency for a given vertex
order by Eppstein et al. [22] which was recently created by Buchta in the course of his Master’s
thesis [10].

Lemma 13 There is a bipartite permutation graph that is not an SOC graph.

JGAA, 25(1) 481–512 (2021) 501

Proof: The graph depicted in Figure 15a is clearly bipartite. Moreover, the intersection diagram
in Figure 16 encodes the same graph. Hence, it is a bipartite permutation graph.

It remains to show that the depicted graph is not a SOC graph. Let G be the graph and identify
the vertices with their names in Figure 15a. AssumeD = (N, J,Γ) is a strict outerconfluent diagram
such that GD is isomorphic to G and let π be the ordering of the vertices. By Corollary 1 we know
that the two induced domino subgraphs C1 = {c1, c2, c3, c4, c5, c6} and C2 = {c3, c4, c5, c6, c7, c8}
each induce either an outerplane drawing or exactly two junctions in D (that is one representable
crossing in Zπ(GD)). Observe that the edges cici+1 for i = 1, 3, 5, 7 are not crossed in Zπ(D).
Moreover, the vertices c1, . . . , c8 appear in Zπ(D) under the following restrictions in clockwise
order starting from c1 if it is followed by c2 and else from c2. {c1, c2} appear first in some order,
followed by c3 or c4, followed by c5 or c6, followed by {c7, c8} in some order, followed by the other
vertex of {c5, c6}, and finally the other vertex of {c3, c4}.

It remains to consider where d lies in Zπ(D). First, observe that for each edge cici+1 with i =
1, . . . , 8 and c9 = c1 either dc1 or dc8 cannot cross that edge without creating a non-representable
crossing in Zπ(D). Consequently, d cannot be placed between c1 and c2 or c7 and c8 as this leads
to a crossing between dc8 and c1c2 or dc1 and c7c8, respectively. Moreover, d cannot be placed
directly after or before the two vertices in {c1, c2} as this results in a crossing between dc8 and
c3c4. Analogously not directly before or after {c7, c8} using dc1 and c5c6. Finally, placing d in any
of the two remaining positions leads to a crossing between dc1 and c4c6 or dc8 and c3c5 with either
possibility resulting in a non-representable crossing. The latter cases are illustrated in Figure 15b.

□

The main theorem of this section shows a series of non-inclusion results for most of the previ-
ously defined classes.

Theorem 7 These graph classes are incomparable to SOC graphs: bipartite permutation, circle,
circular-arc, (co-)chordal, (co-)comparability, domino-free, pseudo-split and series-parallel.

Proof: We begin by showing the statement for bipartite permutation graphs.
Bipartite Permutation. By Lemma 13 there exists a graph that is a bipartite permutation

graph, but not an SOC graph. C5 is outerplanar and hence an SOC graph, but is not a bipartite
permutation graph.

Bipartite permutation graphs are permutation graphs and hence also circle, comparability, co-
comparability, and trapezoid graphs by definition. Hence for all these classes it also holds that not
every graph is an SOC graph. It remains to show the converse for each.

Circle. Using the characterization of circle graphs due to Bouchet [9], we show that the graph
in Figure 17 is not a circle graph.

Comparability. The graph in Figure 18 has a strict outerconfluent drawing, but is among the
forbidden subgraphs of the class of comparability graphs [27].

Co-comparability. C5 is not a co-comparability graph, but it is an SOC graph.
Trapezoid. C5 is not a trapezoid graph, but is an SOC graph.
Next, we show the statement for chordal and co-chordal graphs, as well as the domino-free

graphs. We use an argument that was already noticed by Dickerson et al. [16]. Let Kn = (V,E)
be a complete graph with n ≥ 5 and attach for every uv ∈ E a vertex w with edges uw and wv.
This graph is chordal, but it does not even have a confluent drawing as the added vertices are not
part of any C4. We observe that in the case of outerconfluent drawings this already holds for K4.

Chordal. C4 is not a chordal graph by definition, but it is an SOC graph. As argued above
there is a graph that is chordal but not outerconfluent.

502 Förster et al. On Strict (Outer-)Confluent Graphs

a

b c

d

e

f

gh

i

j

a

b c

d

e

f

g
h

i

j

a

b c

d

e

f

g
h

i

j

a

b

c
d

h

i

Figure 17: Counterexample for SOC ⊆ circle. The green edges give the SOC drawing.

Co-chordal. C5 is self-complementary and has a strict outerconfluent drawing, but co-chordal
graphs do not contain the complement of Cn+4. Take the complement of a K4 to which we added
vertices as above, let K be this graph. Notice that in K we find that the four vertices of the K4 are
independent and that there is a clique between the ones that we added. Observe that any vertex
that was in the K4 has degree three in K. As there are four old and six new vertices we find at
least one crossing between edges both incident to vertices in the K4. This crossing can never be
representable as by construction two K4 vertices share exactly one common neighbor and have no
edge between them. Hence, they are not part of any C4.

Domino-free. Domino-free graphs contain chordal and co-chordal graphs as a domino contains
a C4 as well as a C4. Since there are chordal and co-chordal graphs which are not SOC graphs
there is also a domino-free graph that is not an SOC graph. Conversely, the domino is of course
an outerplanar graph and consequently an SOC graph.

The remaining classes are circular-arc, pseudo-split and series-parallel graphs. The first two
results make use of the fact that W5 is no strict outerconfluent graph by Lemma 12.

Circular-arc. Circular-arc graphs do not contain every complete bipartite graph, but obvi-
ously those have a strict outerconfluent drawing. Conversely this class contains W5.

Pseudo-split. C4 is not a pseudo split graph, but it is an SOC graph. W5 is a pseudo-split
since we can take the central vertex as the clique and the other five vertices as the C5.

Series-parallel. K4 is not a series-parallel graph by definition, but it is an SOC graph. Let
G = (V,E) be a domino graph. Let the edge uv ∈ E be the chord of the domino graph. (For
comparison, this is the edge between v6 and v3 in Figure 13b.) Subdivide uv with a vertex w.
This is a series-parallel graph, but any crossing between uw or vw and another edge cannot be
represented. □

JGAA, 25(1) 481–512 (2021) 503

a

c

e

g

f

d

b a

c

e

g

f

d

b

Figure 18: Counterexample for SOC ⊆ comparability.

Corollary 3 The following graph classes are not contained in the class of SOC graphs: alternation,
BW3-free, circle-trapezoid, polygon-circle, interval-filament, subtree-filament, (outer-)string.

Proof: Comparability graphs are contained in alternation graphs [37], but comparability graphs
are not a subclass of SOC graphs. All other classes follow directly, since they are known to be
superclasses of circle graphs. □

The classes in Theorem 7 seem arbitrary to some degree. As a motivation we list a few
intuitively interesting consequences. The relation to the domino-free graphs is of interest, as the
existence of two non-strict paths in a strict outerconfluent diagram implies a twisted domino by
Lemma 4. While it is clear that not all SOC graphs are domino-free it is interesting to see if
all domino-free graphs are drawable strict outerconfluent. For the bipartite permutation graphs
we confirmed this as they, by Theorem 5, have a strict-outerconfluent drawing when dominos are
forbidden. This makes, to our knowledge, the graph in Figure 15 the first graph to be shown to
have no strict outerconfluent drawing, but an outerconfluent one. The relation to the cop-number
shown in Theorem 6 hints at a relation of SOC graphs with geometric intersection graphs of the
same cop-number [28]. The above study shows that most classes “surrounding” interval-filament
graphs are all incomparable to SOC graphs, which raises the natural question if all SOC graphs
are interval filament graphs. In fact there is a curious inclusion path left over that we were not
able to show incomparability for. These classes lie between the incomparable class of circle graphs
and the superclass of outer-string graphs.

circle ⊂ circle-trapezoid ⊂ polygon-circle ⊆ interval-filament ⊂ outer-string.

To sum up, our study shows that many geometric intersection graphs do not admit strict outer-
confluent drawings. At the same time we could identify classes that form non-trivial superclasses
of SOC graphs.

8 Clique-width of Tree-like SOC Graphs

In 2005, Eppstein et al. [21] showed that every strict outerconfluent graph whose arcs in a strict
outerconfluent drawing topologically form a tree is distance hereditary and hence exhibits cer-
tain well-understood structural properties—in particular, every such graph has bounded clique-
width [12]. More precisely, distance hereditary graphs are equivalent to ∆-confluent graphs, which
have a tree-like confluent drawing using an additional 3-way junction, called a ∆-junction, that

504 Förster et al. On Strict (Outer-)Confluent Graphs

smoothly links together all three incident arcs. See Figure 19, where the junctions j′ and k′ now
form a single ∆-junction instead of three separate merge or split junctions.

In this section, we lift the result of Eppstein et al. [21] to the class of strict outerconfluent
graphs whose arcs may not form a topological tree: in particular, we show that as long as the arcs
incident to junctions (including ∆-junctions) topologically form a tree, strict outerconfluent graphs
also have bounded clique-width. Equivalently, we show that “extending” any drawing covered by
Eppstein et al. [21] through the addition of outerplanar drawings of graphs on a subset of the
vertices in order to produce a strict outerconfluent drawing does not substantially increase the
clique-width of the graph. Since the notion of clique-width will be central to this section, we
formally introduce it below (see also the work of Courcelle et al. [12]).

A k-graph is a graph whose vertices are labeled by [k] = {1, 2, . . . , k}; formally, the graph
is equipped with a labeling function γ : V (G) → [k], and we also use γ−1(i) to denote the set
of vertices labeled i for i ∈ [k]. We consider an arbitrary graph as a k-graph with all vertices
labeled by 1. We call the k-graph consisting of exactly one vertex v labeled by j ∈ [k] an initial
k-graph and denote it by j(v). The clique-width of a graph G is the smallest integer k such that G
can be constructed from initial k-graphs by means of repeated application of the following three
operations:

1. Disjoint union (denoted by ⊕);

2. Relabeling: changing all labels i to j (denoted by pi→j);

3. Edge insertion: adding an edge between every vertex labeled by i and every vertex labeled
by j, where i ̸= j (denoted by ηi,j or ηj,i).

The construction sequence of a k-graph G using the above operations can be represented by an
algebraic term composed of i(v), ⊕, pi→j and ηi,j (where v ∈ V (G), i ̸= j and i, j ∈ [k]). Such a
term is called a k-expression defining G, and the clique-width of G is the smallest integer k such
that G can be defined by a k-expression. Distance-hereditary graphs are known to have clique-
width at most 3 [34] and outerplanar graphs have clique-width at most 5 due to having treewidth
at most 2 [4, 13]. As an example illustrating the notation, the 2-expression η1,2((1(a) ⊕ 1(b)) ⊕
(2(c)⊕ 2(d))) demonstrates that the graph K2,2 has clique-width at most 2.

Let (tree-like) ∆-SOC graphs be the class of all graphs which admit strict outerconfluent draw-
ings (including ∆-junctions) such that the union of all arcs incident to at least one junction topo-
logically forms a tree. Clearly, the edge set E of every tree-like ∆-SOC graph G = (V,E) with
confluent diagram DG can be partitioned into sets Es and Ec, where Es (the set of simple edges)
contains all edges represented by single-arc paths in D not passing through any junction and Ec

(the set of confluent edges) contains all remaining edges in G. Let Gc = G[Ec] = (Vc, Ec) be the
subgraph of G induced by Ec, i.e., Vc is obtained from V by removing all vertices without incident
edges in Ec.

We note that even though Gc is known to be distance-hereditary [21] and G−Ec is easily seen
to be outerplanar, this does not imply that tree-like ∆-SOC graphs have bounded clique-width—
indeed, the union of two graphs of bounded clique-width may have arbitrarily high clique-width
(consider, e.g., the union of two sets of disjoint paths that create a square grid). Furthermore, one
cannot easily adapt the proof of Eppstein et al. [21] to tree-like ∆-SOC graphs, as that explicitly
uses the structure of distance-hereditary graphs; note that there exist outerplanar graphs which
are not distance-hereditary, and hence tree-like ∆-SOC graphs are a strict superclass of distance
hereditary graphs. Before proving the desired theorem, we introduce an observation which will
later allow us to construct parts of G in a modular manner.

JGAA, 25(1) 481–512 (2021) 505

u

v

w

x

y

i

j′
k′

Figure 19: A ∆-confluent diagram representing K5− (u, v). Nodes are disks, junctions are squares.
∆-junctions are marked with a grey circle.

Lemma 14 Let H = (V,E) be a graph of clique-width k ≥ 2, let V1, V2 be two disjoint subsets of
V , and let s ∈ V \ (V1 ∪V2). Then there exists a (3k+1)-expression defining H so that in the final
labeling all vertices in V1 receive label 1, all vertices in V2 receive label 2, s receives label 3 and all
remaining vertices receive label 4.

Proof: Consider an arbitrary k-expression of H which ends by setting all labels in H to 1. Now
adjust the k-expression as follows: whenever a vertex in V1 receives a label i, replace it with i+ k,
and whenever a vertex in V2 receives a label i, replace it with i+2k, and use a special label 3k+1
for s. This new (3k+1)-expression constructs H and assigns all vertices in V \ (V1 ∪V2 ∪{s}), V1,
V2 and {s} the labels 1, k + 1, 2k + 1, and 3k + 1, respectively. To complete our construction, we
merely map label 1 to 4, label k + 1 to 1, label 2k + 1 to 2, and label 3k + 1 to 3. □

Theorem 8 Every tree-like ∆-SOC graph has clique-width at most 16.

Proof: Let us consider an arbitrary tree-like ∆-SOC graph G = (V,E) and let us fix a tree-like
strict outerconfluent drawing D = (N, J,Γ) of G; let Γc be the set of arcs with at least one endpoint
in J . Based on D, we partition E into the edge sets Ec and Es as above. Let Vc be the set of
vertices incident to at least one edge in Ec and let Gc = (Vc, Ec).

Note that Dc = (N, J,Γc) is topologically equivalent to a tree (plus some singletons in V \ Vc).
Our aim will be to pass through Dc in a leaves-to-root manner (whereas the root will be selected
later) so that at each step we construct a 16-expression for a subgraph induced by a certain set of
consecutive vertices on the outer circle. This way, we will gradually build up the 16-expression for
G from modular parts, and once we reach the root we will have a complete 16-expression for G.

Our proof will perform induction along a notion of height, which is tied to the tree-like structure
of Dc. We say that each node corresponding to a vertex in Vc has height 0, and we define the height
of each junction j as follows: j has height ℓ if ℓ is the minimum integer such that at least two of the
arcs incident to j lead to junctions or nodes of height at most ℓ−1 (for example, a junction of height
1 has 2 arcs leading to nodes, while a junction of height 2 has at least one arc leading to a junction
of height 1 and the other arc leads to either a node or another junction of height 1). We call an
arc between a junction j of height i and a junction (or node) of height smaller than i a down-arc

506 Förster et al. On Strict (Outer-)Confluent Graphs

j

a1

a2

R1

R2

A

B

A

B

s
R3

C/D

C/D j′

a

Figure 20: Sketch of a tree-like ∆-SOC graph G with the regions and junctions used in the inductive
construction of the 16-expression defining G.

for j. To formally fix a root, we choose an arbitrary arc ab with a maximum combined height of
its endpoints (i.e., such that no arc a′b′ satisfies height(a)+height(b) < height(a′)+height(b′)), and
denote it as the root arc r.

Another notion we will use is that of a region, see Figure 20: the region defined by a junction
j and one of its down-arcs a is the segment of the boundary of the outer face delimited by the
“right-most” and “left-most” paths (not necessarily smooth), which leave j through a. Crucially,
we observe that the set VR of all vertices corresponding to nodes in a region R can be partitioned
into the following four groups:

A. one vertex on the left border of R;

B. up to one vertex that is not on the left border but on the right border of R;

C. vertices not on the border which have no neighbors outside of R;

D. vertices not on the border which have at least one neighbor outside of R;

and furthermore we observe that all vertices of group D have precisely the same neighborhood
outside of R (in particular, they must all have a path to j which forms a smooth curve). In the
degenerate case of nodes (which have height 0), we say that the region is merely the point of that
node (and the corresponding vertex then belongs to group A).

As the first step of our procedure, for each v ∈ Vc we create a 1-expression 1(v) (i.e., we create
each vertex in Vc as a singleton). For the second step, we apply induction along the height of
junctions as follows. As our inductive hypothesis at step i, we assume that for each junction j′ of
height at most i − 1 and each of its down-arcs defining a region R′, there exists a 16-expression
which constructs G[VR′] and labels VR′ by using labels 1, 2, 3, 4 for vertices in groups A, B, C,
D, respectively. We observe that the inductive hypothesis holds at step 1: indeed, all regions at
height 0 consist of a node, and we already created the respective 1-expressions for all such nodes.

JGAA, 25(1) 481–512 (2021) 507

Our aim is now to use the inductive hypothesis for i to show that the inductive hypothesis also
holds for i+ 1—in other words, we need to obtain a 16-expression which constructs and correctly
labels the graph G[VR] for the region R defined by each junction j of height i and down-arc a.
Assume that a is incident to a junction j′ with down-arcs a1 and a2, defining the regions R1 and
R2, respectively. By our inductive assumption, G[VR1] and G[VR2] both admit a 16-expression
which labels the vertices based on their group in the desired way. Now observe that R is composed
of the following parts: region R1 on the “left”, region R2 on the “right”, and a segment R3 on the
boundary of the outer face between R1 and R2. Crucially, we make the following observations for
vertices VR3

in R3:

� none of the vertices in VR3
are incident to an edge in Ec;

� G[VR3
] is outerplanar;

� at most one vertex, denoted s, in VR3 has two neighbors outside of VR3 , notably the rightmost
vertex in VR1

and the leftmost vertex in VR2
;

� all vertices other than s in VR3 either have no neighbors outside of VR3 , or have one neighbor
outside of VR3—in particular, either the rightmost vertex in VR1 or the leftmost vertex in
VR2

.

At this point, we can finally invoke Lemma 14. In particular, since G[VR3] is outerplanar, it
has clique-width at most 5, and by using the observation we can construct a 16-expression which
labels all vertices adjacent to the right border of R1 with label 1, all vertices adjacent to the left
border of R2 with label 2, vertex s with label 3, and all other vertices with label 4. Now all that
remains is to:

1. relabel labels 1–4 used in the 16-expression for R2 to labels 5–8 and the labels 1–4 used in
the 16-expression for R3 to labels 9–12, respectively;

2. use the ⊕ operator to merge these 16-expressions,

3. use the ηi,j operator to add edges between VR1
∪VR2

and VR3
as required, in particular: η9,2,

η11,2, η10,5, η11,5;

4. use the η4,8 operator to add all pairwise edges between the groups D of VR1 and VR2 in case
junction j′ smoothly connects arcs a1 and a2;

5. use the pi→j operator to relabel as required by the inductive assumption, where depending
on the junction type of j′ group D of VR either consist of the union of the groups D of VR1

and VR2
or it is identical to group D of just one of them. Group A coincides with group A

of VR1
and group B coincides with group B of VR2

. The remaining vertices form group C.

The inductive procedure described above runs until it reaches the root arc r, and it is easy to
observe that at this point we have constructed two 16-expressions corresponding to the two regions,
say R∗

1 and R∗
2, defined by paths which start at r and go in the two possible directions. The two

remaining regions on the outer face between R∗
1 and R∗

2 are then handled completely analogously
as the regions denoted R3 in our inductive step. Hence we conclude that there indeed exists a
16-expression which constructs G. □

508 Förster et al. On Strict (Outer-)Confluent Graphs

9 Conclusion

In this paper we presented an in-depth study of strict outerconfluent graph drawings. While it was
not possible to resolve the main open question whether recognizing graphs admitting such drawings
is tractable or not, we could make, we hope, significant steps towards resolving it. More precisely,
we showed that (outer-)string graphs contain the strict (outer-)confluent graphs. Furthermore, we
showed that every unit interval graph is strict confluent and every domino-free bipartite permuta-
tion graph is strict outerconfluent. We also gave a wide variety of smaller results, excluding many
geometric intersection graph classes from the list of possible sub- or super-classes of strict outer-
confluent graphs. Complementing the results on string graphs we showed that strict outerconfluent
graphs have cop-number two. As outer string graphs have cop-number at least three this hints
that it should be possible to refine our superclass. Finally, we showed that tree-like ∆-confluent
graphs, a generalization of the ∆-confluent graphs presented by Eppstein et al. [21], have bounded
cliquewidth.

Among the intersection graph classes with cop-number two identified by Gavenc̆iak et al. [28]
there are so-called interval filament graphs. We suspect that the strict outerconfluent graphs are in
fact a sub-class of the interval filament graphs, but we have not been able to prove this conclusively.
Similarly, it is open whether SC graphs are contained in subtree-filament graphs. Furthermore, it
is conceivable that a similar construction for the inclusion in string graphs, Section 3, could be used
to show similar results for non-strict confluent graphs. Finally, investigating the curve complexity
of our construction might provide insight into the curve complexity of SC and SOC diagrams.

On the algorithmic side, Section 8 raises the question of whether clique-width might be used to
recognize SOC graphs, and perhaps even for finding SOC drawings. Another decomposition-based
approach would be to use so-called split-decompositions [31], which we did not consider here. It
is also open whether it is possible to drop the unit length condition on the intervals in Section 4.
We did not see an obvious way of adapting the construction for confluent drawings of interval
graphs [16]. In the same direction, we could present a bipartite permutation graph that is not
strict outerconfluent, yet it would be interesting to investigate if all bipartite permutation graphs
are in fact strict confluent.

Acknowledgments

The authors thank Markus Buchta for the code used in initially obtaining the counterexample in
Lemma 13.

JGAA, 25(1) 481–512 (2021) 509

References

[1] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics,
8(1):1–12, 1984. doi:10.1016/0166-218X(84)90073-8.

[2] M. J. Alam, M. Fink, and S. Pupyrev. The Bundled Crossing Number. In Y. Hu and
M. Nöllenburg, editors, 24th International Symposium on Graph Drawing and Network Vi-
sualization (GD’16), volume 9801 of LNCS, pages 399–412. Springer, 2016. doi:10.1007/

978-3-319-50106-2_31.

[3] B. Bach, N. H. Riche, C. Hurter, K. Marriott, and T. Dwyer. Towards Unambiguous Edge
Bundling: Investigating Confluent Drawings for Network Visualization. IEEE Transactions
on Visualization and Computer Graphics, 23(1):541–550, 2017. doi:10.1109/TVCG.2016.

2598958.

[4] B. S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs. Journal
of the ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

[5] H. Bandelt. Hereditary modular graphs. Combinatorica, 8(2):149–157, 1988. doi:10.1007/

BF02122796.

[6] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. Journal of Combinatorial
Theory, Series B, 41(2):182–208, 1986. doi:10.1016/0095-8956(86)90043-2.

[7] C. Benzaken, Y. Crama, P. Duchet, P. L. Hammer, and F. Maffray. More characterizations
of triangulated graphs. Journal of Graph Theory, 14(4):413–422, 1990. doi:10.1002/jgt.

3190140404.

[8] A. Berarducci and B. Intrigila. On the cop number of a graph. Advances in Applied Mathe-
matics, 14(4):389–403, 1993. doi:10.1006/aama.1993.1019.

[9] A. Bouchet. Circle graph obstructions. Journal of Combinatorial Theory, Series B, 60(1):107–
144, 1994. doi:10.1006/jctb.1994.1008.

[10] M. Buchta. Engineering an algorithm for strict outerconfluent graph drawings. Master’s thesis,
TU Wien, 2019. URL: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-130995.

[11] S. Chaplick, T. C. van Dijk, M. Kryven, J.-w. Park, A. Ravsky, and A. Wolff. Bundled crossings
revisited. In D. Archambault and C. D. Tóth, editors, 27th International Symposium on Graph
Drawing and Network Visualization (GD’19), volume 11904 of LNCS, pages 63–77. Springer,
2019. doi:10.1007/978-3-030-35802-0_5.

[12] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.
doi:10.1007/s002249910009.

[13] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied
Mathematics, 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

[14] H. Czemerinski, G. A. Durán, and A. Gravano. Bouchet graphs: A generalization of circle
graphs. Congressus Numerantium, pages 95–108, 2002.

https://doi.org/10.1016/0166-218X(84)90073-8
https://doi.org/10.1007/978-3-319-50106-2_31
https://doi.org/10.1007/978-3-319-50106-2_31
https://doi.org/10.1109/TVCG.2016.2598958
https://doi.org/10.1109/TVCG.2016.2598958
https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/BF02122796
https://doi.org/10.1007/BF02122796
https://doi.org/10.1016/0095-8956(86)90043-2
https://doi.org/10.1002/jgt.3190140404
https://doi.org/10.1002/jgt.3190140404
https://doi.org/10.1006/aama.1993.1019
https://doi.org/10.1006/jctb.1994.1008
https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-130995
https://doi.org/10.1007/978-3-030-35802-0_5
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5

510 Förster et al. On Strict (Outer-)Confluent Graphs

[15] I. Dagan, M. C. Golumbic, and R. Y. Pinter. Trapezoid graphs and their coloring. Discrete
Applied Mathematics, 21(1):35–46, 1988. doi:10.1016/0166-218X(88)90032-7.

[16] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent Drawings: Visualiz-
ing Non-planar Diagrams in a Planar Way. Journal of Graph Algorithms and Applications,
9(1):31–52, 2005. doi:10.7155/jgaa.00099.

[17] R. J. Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications, 10(2):303 – 318, 1965. doi:10.1016/0022-247X(65)90125-3.

[18] T. Dwyer, C. Mears, K. Morgan, T. Niven, K. Marriott, and M. Wallace. Improved op-
timal and approximate power graph compression for clearer visualisation of dense graphs.
In I. Fujishiro, U. Brandes, H. Hagen, and S. Takahashi, editors, IEEE Pacific Visualization
Symposium (PacificVis’14), pages 105–112. IEEE, 2014. doi:10.1109/PacificVis.2014.46.

[19] T. Dwyer, N. H. Riche, K. Marriott, and C. Mears. Edge compression techniques for visualiza-
tion of dense directed graphs. IEEE Transactions on Visualization and Computer Graphics,
19(12):2596–2605, 2013. doi:10.1109/TVCG.2013.151.

[20] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent Layered Drawings. Algorithmica,
47(4):439–452, 2007. doi:10.1007/s00453-006-0159-8.

[21] D. Eppstein, M. T. Goodrich, J. Y. Meng, P. Healy, and N. S. Nikolov. Delta-confluent
drawings. In 13th International Symposium on Graph Drawing (GD’05), volume 3843 of
LNCS, pages 165–176. Springer, 2005. doi:10.1007/11618058_16.

[22] D. Eppstein, D. Holten, M. Löffler, M. Nöllenburg, B. Speckmann, and K. Verbeek. Strict
confluent drawing. Journal of Computational Geometry, 7(1):22–46, 2016. doi:10.20382/

jocg.v7i1a2.

[23] D. Eppstein and J. A. Simons. Confluent Hasse Diagrams. Journal of Graph Algorithms and
Applications, 17(7):689–710, 2013. doi:10.7155/jgaa.00312.

[24] S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations, geometry and
algorithms. Discrete Applied Mathematics, 74(1):13–32, 1997. doi:10.1016/S0166-218X(96)
00013-3.

[25] M. Fink, J. Hershberger, S. Suri, and K. Verbeek. Bundled Crossings in Embedded Graphs.
In E. Kranakis, G. Navarro, and E. Chávez, editors, 12th Latin American Symposium on
Theoretical Informatics (LATIN’16), volume 9644 of LNCS, pages 454–468. Springer, 2016.
doi:10.1007/978-3-662-49529-2_34.

[26] C. P. Gabor, K. J. Supowit, and W.-L. Hsu. Recognizing circle graphs in polynomial time.
Journal of the ACM, 36(3):435–473, 1989. doi:10.1145/65950.65951.

[27] T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Hungarica, 18(1-2):25–66, 1967.
doi:10.1007/bf02020961.

[28] T. Gavenčiak, P. Gordinowicz, V. Jeĺınek, P. Klav́ık, and J. Kratochv́ıl. Cops and Robbers
on intersection graphs. European Journal of Combinatorics, 72:45–69, 2018. doi:10.1016/

j.ejc.2018.04.009.

https://doi.org/10.1016/0166-218X(88)90032-7
https://doi.org/10.7155/jgaa.00099
https://doi.org/10.1016/0022-247X(65)90125-3
https://doi.org/10.1109/PacificVis.2014.46
https://doi.org/10.1109/TVCG.2013.151
https://doi.org/10.1007/s00453-006-0159-8
https://doi.org/10.1007/11618058_16
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.20382/jocg.v7i1a2
https://doi.org/10.7155/jgaa.00312
https://doi.org/10.1016/S0166-218X(96)00013-3
https://doi.org/10.1016/S0166-218X(96)00013-3
https://doi.org/10.1007/978-3-662-49529-2_34
https://doi.org/10.1145/65950.65951
https://doi.org/10.1007/bf02020961
https://doi.org/10.1016/j.ejc.2018.04.009
https://doi.org/10.1016/j.ejc.2018.04.009

JGAA, 25(1) 481–512 (2021) 511

[29] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180–187,
1972. doi:10.1137/0201013.

[30] F. Gavril. Maximum weight independent sets and cliques in intersection graphs of fila-
ments. Information Processing Letters, 73(5-6):181–188, 2000. doi:10.1016/S0020-0190(00)
00025-9.

[31] E. Gioan and C. Paul. Split decomposition and graph-labelled trees: Characterizations and
fully dynamic algorithms for totally decomposable graphs. Discrete Applied Mathematics,
160(6):708–733, 2012. doi:10.1016/j.dam.2011.05.007.

[32] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier, 2004.

[33] M. C. Golumbic, D. Rotem, and J. Urrutia. Comparability graphs and intersection graphs.
Discrete Mathematics, 43(1):37 – 46, 1983. doi:10.1016/0012-365X(83)90019-5.

[34] M. C. Golumbic and U. Rotics. On the Clique-Width of Some Perfect Graph Classes.
International Journal of Foundations of Computer Science, 11(3):423–443, 2000. doi:

10.1142/S0129054100000260.

[35] H. Hadwiger and H. Debrunner. Combinatorial Geometry in the Plane. Dover Books on
Mathematics, 2015.

[36] A. Hajnal and J. Surányi. über die Auflösung von Graphen in vollständige Teilgraphen. An-
nales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Math-
ematica, 1:113–121, 1958.

[37] M. M. Halldórsson, S. Kitaev, and A. Pyatkin. Alternation graphs. In P. Kolman and
J. Kratochv́ıl, editors, 37th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG’11), volume 6986 of LNCS, pages 191–202. Springer, 2011. doi:10.1007/
978-3-642-25870-1_18.

[38] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical
Data. IEEE Transactions on Visualization and Computer Graphics, 12(5):741–748, 2006.
doi:10.1109/TVCG.2006.147.

[39] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph visualization. Computer
Graphics Forum, 28:983–990, 2009. doi:10.1111/j.1467-8659.2009.01450.x.

[40] W.-L. Hsu. Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM
Journal on Computing, 14(1):224–231, 1985. doi:10.1137/0214018.

[41] P. Hui, M. J. Pelsmajer, M. Schaefer, and D. Stefankovic. Train tracks and confluent drawings.
Algorithmica, 47(4):465–479, 2007. doi:10.1007/s00453-006-0165-x.

[42] S. G. Kobourov. Force-directed drawing algorithms. In R. Tamassia, editor, Handbook of
Graph Drawing and Visualization, pages 383–408. Chapman and Hall/CRC, 2013.

[43] A. Kostochka and J. Kratochv́ıl. Covering and coloring polygon-circle graphs. Discrete Math-
ematics, 163(1-3):299–305, 1997. doi:10.1016/S0012-365X(96)00344-5.

https://doi.org/10.1137/0201013
https://doi.org/10.1016/S0020-0190(00)00025-9
https://doi.org/10.1016/S0020-0190(00)00025-9
https://doi.org/10.1016/j.dam.2011.05.007
https://doi.org/10.1016/0012-365X(83)90019-5
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1007/978-3-642-25870-1_18
https://doi.org/10.1007/978-3-642-25870-1_18
https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.1137/0214018
https://doi.org/10.1007/s00453-006-0165-x
https://doi.org/10.1016/S0012-365X(96)00344-5

512 Förster et al. On Strict (Outer-)Confluent Graphs

[44] J. Kratochv́ıl. String Graphs. I. The Number of Critical Nonstring Graphs Is Infinite. Journal
of Combinatorial Theory, Series B, 52(1):53–66, 1991. doi:10.1016/0095-8956(91)90090-7.

[45] R. J. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete Mathematics,
43(2-3):235–239, 1983. doi:10.1016/0012-365X(83)90160-7.

[46] A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and identification of
permutation graphs. Canadian Journal of Mathematics, 23(1):160–175, 1971. doi:10.4153/
CJM-1971-016-5.

[47] A. Quilliot. Jeux et pointes fixes sur les graphes. PhD thesis, Université de Paris VI, 1978.

[48] F. S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in Graph Theory:
Proceedings of the 2nd Ann Arbor Graph Theory Conference, pages 139–146. Academic Press,
1969.

[49] L. Royer, M. Reimann, B. Andreopoulos, and M. Schroeder. Unraveling protein networks
with power graph analysis. PLoS Computational Biology, 4(7):e1000108, 2008. doi:10.1371/
journal.pcbi.1000108.

[50] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinato-
rial problems on series-parallel graphs. Journal of the ACM, 29(3):623–641, 1982. doi:

10.1145/322326.322328.

[51] W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory, volume 6. The
Johns Hopkins University Press, 2001.

[52] T. C. van Dijk, M. Fink, N. Fischer, F. Lipp, P. Markfelder, A. Ravsky, S. Suri, and A. Wolff.
Block crossings in storyline visualizations. Journal of Graph Algorithms and Applications,
21(5):873–913, 2017. doi:10.7155/jgaa.00443.

[53] T. C. van Dijk, F. Lipp, P. Markfelder, and A. Wolff. Computing storyline visualizations
with few block crossings. In F. Frati and K.-L. Ma, editors, 25th International Symposium on
Graph Drawing and Network Visualization (GD’17), volume 10692 of LNCS, pages 365–378.
Springer, 2017. doi:10.1007/978-3-319-73915-1_29.

[54] G. Wegner. Eigenschaften der Nerven Homologisch-Einfacher Familien im Rn. PhD thesis,
Universität Göttingen, 1967.

[55] C.-W. Yu and G.-H. Chen. Efficient parallel algorithms for doubly convex-bipartite
graphs. Theoretical Computer Science, 147(1-2):249–265, 1995. doi:10.1016/0304-3975(94)
00220-D.

[56] J. X.-S. Zheng, S. Pawar, and D. F. M. Goodman. Further Towards Unambiguous Edge
Bundling: Investigating Power-Confluent Drawings for Network Visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 2019. doi:10.1109/TVCG.2019.2944619.

[57] H. Zhou, Panpan Xu, X. Yuan, and H. Qu. Edge bundling in information visualization.
Tsinghua Science and Technology, 18(2):145–156, 2013. doi:10.1109/TST.2013.6509098.

https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.1016/0012-365X(83)90160-7
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.4153/CJM-1971-016-5
https://doi.org/10.1371/journal.pcbi.1000108
https://doi.org/10.1371/journal.pcbi.1000108
https://doi.org/10.1145/322326.322328
https://doi.org/10.1145/322326.322328
https://doi.org/10.7155/jgaa.00443
https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1016/0304-3975(94)00220-D
https://doi.org/10.1016/0304-3975(94)00220-D
https://doi.org/10.1109/TVCG.2019.2944619
https://doi.org/10.1109/TST.2013.6509098

	Introduction
	Preliminaries
	Strict (Outer-)Confluent (Outer-)String
	Unit Interval Graphs and Strict Confluent Diagrams
	Strict Bipartite-Outerconfluent Drawings
	SOC Graphs Have Cop-Number Two
	Non-Inclusion Results for SOC Graphs
	Clique-width of Tree-like SOC Graphs
	Conclusion

