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Abstract. Let G = (V,E) be a graph and let S ⊆ V be a subset of its vertices.
If the subgraph of G induced by V \ S is acyclic, then S is said to be a decycling set
of G. The size of a smallest decycling set of G is called the decycling number of G.
Determining the decycling number of a graph G is NP-hard, even if G is bipartite. We
describe a tabu search procedure that generates decycling sets of small size for arbi-
trary bipartite graphs. Tests on challenging families of graphs show that the proposed
algorithm improves many best-known solutions, thus closing or narrowing the gap to
the best-known lower bounds.

1 Introduction

We consider the problem of eliminating all cycles from a graph by means of deletion of vertices.
Determining a decycling set (i.e., a set of vertices whose removal eliminates all cycles) of minimum
size is an NP-hard problem, even for bipartite graphs. We describe a heuristic procedure that
produces small decycling sets in arbitrary bipartite graphs. Experiments performed on challenging
families of bipartite graphs will demonstrate the efficiency of the proposed procedure. We first
need to fix some notation to describe the problem more precisely.

Let G = (V,E) be a simple undirected graph with vertex set V and edge set E. The order of G
is its number |V | of vertices. For a subset W ⊆ V of vertices, we write E(W ) for the set of edges
of G with both endpoints in W , while G[W ] = (W,E(W )) is the subgraph of G induced by W .
Also, we write NG(v) for the set of vertices adjacent to v in G and dG(v) = |NG(v)| is the degree
of v. A stable set of G is a set of pairwise non-adjacent vertices, while a clique of G is a set of
pairwise adjacent vertices. A forest is an acyclic graph. A graph G = (V,E) is bipartite if there is
a partition (V1, V2) of V so that all edges of E have one endpoint in V1 and the other in V2, and
we also write G = (V1, V2, E). For other basic notions of graph theory that are not defined here,
we refer to Diestel [10].
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Let W be a subset of vertices of a graph G = (V,E). If the induced subgraph G[V \W ] of G
is acyclic, then W is said to be a decycling set of G. The smallest size of a decycling set of G is
the decycling number (or feedback vertex number) of G and is denoted by ϕ(G). Let φ(G) denote
the largest order of an induced forest of G = (V,E). Clearly, determining ϕ(G) is equivalent to
computing φ(G) since a subset F ⊆ V of vertices induces a forest in G if and only if V \ F is a
decycling set of G, which implies ϕ(G) + φ(G) = |V |.

Determining the decycling number of a graph has various applications, including deadlock
recovery [27], synchronous distributed systems [22], VLSI design [12], constraint satisfaction and
Bayesian inference [4]. Karp [17] has shown that the problem is NP-hard, even when restricted to
planar graphs, bipartite graphs and perfect graphs. On the other hand, the problem is known to
be solvable in polynomial time for various other families of graphs, including cubic graphs [19, 28],
cocomparability graphs and convex bipartite graph [20]. A 2-approximation (i.e., a polynomial
time algorithm that generates a decycling set of cardinality at most 2ϕ(G)) is described in [3],
while a branch-and-cut algorithm for the exact solution of the problem is given in [8]. Local search
algorithms are proposed in [8, 9, 23, 26] for determining an upper bound on the decycling number
of arbitrary graphs. More results on the decycling number can be found in [5].

In a seminal paper on the topic, Beineke and Vandell [7] have bounded the decycling number
of hypercubes. Improving these bounds for hypercubes was continued in [6, 13, 25]. Other families
of graphs have then also been investigated, including Fibonacci cubes [11], bubble sort graphs
[30] and star graphs [29]. All these graphs are bipartite and have nice topological properties that
provide attractive interconnection schemes for massively parallel systems [1, 2]. The problem of
avoiding deadlocks when using these topologies for exchanging data between processors can be
reformulated as a decycling problem, and it turns out that computing the decycling number of
these bipartite graphs is a real challenge. Indeed, there is a gap between the best-known lower and
upper bounds on ϕ(G) for such graphs G with only 120 vertices. We aim to decrease these gaps
by generating decycling sets of small size.

In the next section, we describe an algorithm that determines small decycling sets in arbitrary
bipartite graphs. We first design in Section 2.1 a procedure that extends an induced forest G[F ]
of G to a larger one G[F ′=F∪S] with a stable set S of G. We then show in Section 2.2 how to
embed such forest extensions into a tabu search. In Section 3, we demonstrate the efficiency of
our algorithm by applying it on various challenging families of bipartite graphs. The proposed
procedures offer flexibility at different levels, and we will discuss this in Section 4.

2 The proposed algorithm

As a first observation, note that if a vertex set induces a forest in G, then all its subsets also induce
a forest in G. As a particular case, assume that F is the vertex set of an induced forest of G and
that S is obtained from F by removing all vertices of degree at least 2 in G[F ] as well as one vertex
per connected component of G[F ] with exactly 2 vertices. Then S is a stable set of G, and G[F\S]
is a forest of G obtained from G[F ] by removing all isolated vertices as well as some of its leaves.
We show in Section 2.1 how to use this property the other way around. In other words, given a
subset F that induces a forest in G, we will extend it to a larger set F ′=F∪S so that G[F ′] also
induces a forest in G, while imposing that the set S of added vertices is a stable set of G.

Given a forest G[F ] of G, finding a set F ′ of maximum cardinality so that F ′ ⊇ F and G[F ′]
is also a forest of G is a difficult task. Indeed, for F = ∅, the problem is equivalent to determining
φ(G). We will focus on bipartite graphs G and on supersets F ′ of F obtained by adding a stable
set S of G (i.e., F ′ = F ∪ S). These assumptions make the problem a little easier. Indeed, while
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finding a stable set of maximum cardinality in an arbitrary graph is an NP-hard problem, the
famous Hungarian method [18] can be used when restricted to bipartite graphs. Hence, given a
vertex set F that induces a forest G[F ] in a bipartite graph G = (V,E), the following problem
can be solved in polynomial time: find a stable set S ⊆ V \ F of maximum cardinality such that
every vertex in S is adjacent to at most one vertex in F . With such a stable set S we deduce that
G[F ′ = F ∪ S] is a forest of G. It is obtained by adding leaves and isolated vertices to G[F ]. We
will go one step further by considering stable sets S of G that possibly contain vertices with more
than one neighbor in F .

The next subsection gives more details on the proposed procedure that extends an induced
forest G[F ] of G to a larger one G[F ′ = F ∪ S] with a stable set S of G. The next step will be
to embed these forest extensions into a tabu seach. Roughly speaking, we are going to explore the
space that contains all the induced forests of G that have fixed numbers of vertices in X and in Y ,
and for each considered forest, we will try to extend it by adding a stable set of G. This will be
explained in detail in Section 2.2.

2.1 Forest extensions with stable sets

Let F be the vertex set of an induced forest of a graph G = (V,E). Assume G[F ] has r connected
components with vertex sets C1, C2, . . . , Cr. We denote by VF the set of vertices v ∈ V \ F with
at most one neighbor in every Ci:

VF = {v ∈ V \ F with |NG(v) ∩ Ci| ≤ 1 for i = 1, 2, . . . , r}.

Clearly, adding a vertex v /∈ VF to F creates a cycle. We therefore extend F by choosing
vertices in VF . We consider the partition (V ≤1

F , V ≥2
F ) of VF where V ≤1

F is the subset of vertices

in VF with at most one neighbor in F and V ≥2
F is the subset of vertices in VF with at least two

neighbors in F :

V ≤1
F = {v ∈ VF with |NG(v) ∩ F | ≤ 1}, and

V ≥2
F = {v ∈ VF with |NG(v) ∩ F | ≥ 2}.

For illustration, consider the bipartite graph G at the top left of Figure 1 and assume F =
{a, f, g, h, j, n, p, r}, which gives the forest G[F ] of G at the bottom left, with four connected
components, the vertices of F becoming colored in black. Vertex b does not belong to VF since
its neighbors a and g belong to the same connected component of G[F ]. Vertices d and k have no
neighbor in F , while vertices c and e have one neighbor in F . Also, vertices l, m, o and q have
a neighbor in two different connected components of G[F ], while vertex i has a neighbor in three

connected components of G[F ]. Hence, VF = {c, d, e, i, k, l,m, o, q} with V ≤1
F = {c, d, e, k} and

V ≥2
F = {i, l,m, o, q}.
We have observed that if F induces a forest in G and S is any stable set in V ≤1

F , then F ∪S also
induces a forest in G. Such an extension is similar to adding leaves and isolated vertices to G[F ].

Adding one vertex v ∈ V ≥2
F to F does not create any cycle in G[F ∪ {v}], while it reduces the

number of connected components by |NG(v) ∩ F | − 1 units. Note however that adding more than

one vertex of V ≥2
F to F may create a cycle, even if the added vertices form a stable set of G. For

example, if G = (V,E) is a cycle on four vertices a, b, c, d and F contains two non-adjacent vertices
of G, say a and c, then the two other vertices b and d are also non-adjacent and they both belong
to V ≥2

F . Hence G[F = {a, c}] is a forest and S = {b, d} is a stable set of G, while G[F ∪ S] = G is
not a forest of G.
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Figure 1: A bipartite graph G = (X,Y,E) and three of its induced forests.

Consider again the example of Figure 1 with F = {a, f, g, h, j, n, p, r}. Clearly, S = {c, e, k} is
the only maximum stable set in V ≤1

F , which means that the largest forest G[F ∪ S] with S ⊆ V ≤1
F

has order 11. As shown at the bottom right of Figure 1, a forest G[F ∪ S] of order 13 can be

obtained by choosing the stable set S = {c, e, k,m, o} with c, e, k in V ≤1
F and m, o in V ≥2

F . Observe
also that {c, e, i, k,m, o, q} is the only stable set of VF with 6 vertices, but it contains vertices i
and o, and the addition of these two vertices to F creates the cycle (i, j, o, n). The next Property
indicates which stable sets S in VF ensure that G[F ∪ S] is a forest of G.

Property 2.1 Let F be the vertex set of an induced forest of a graph G, let S be a stable set in
VF , and let S′ = S ∩V ≥2

F . Then G[F ∪S] is a forest of G if and only if G[F ∪S′] is a forest of G.

Proof: Since G[F ∪S′] is a subgraph of G[F ∪S], we only have to prove that if G[F ∪S′] is a forest
of G, then the same is true for G[F ∪S]. So assume G[F ∪S′] is a forest of G, and let F ′ = F ∪S′

and S′′ = S ∩ V ≤1
F = S \ S′. Then V ≤1

F ′ = V ≤1
F since the vertices in S′′ have no neighbor in S′.

Hence, no vertex in S′′ has more than one neighbor in F ′ and we have observed that this implies
that G[F ′ ∪ S′′] = G[F ∪ S] is a forest of G. 2

In the example of Figure 1, G[F ∪ {c, e, k,m, o}] is a forest of G since the same is true for
G[F ∪ {m, o}]. Also, G[F ∪ {c, e, i, k,m, o}] is not a forest of G since this is also not the case for
G[F ∪ {i,m, o}].

Property 2.1 shows that when looking for a stable set S that extends a forest G[F ] of G, we

may determine a stable set S′ in V ≥2
F such that G[F ∪ S′] is a forest of G. We can then easily
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determine a maximum stable set S′′ among the vertices of V ≤1
F that are not adjacent to any vertex

of S′, and this will give a stable set S = S′ ∪ S′′ so that G[F ∪ S] is a forest of G.

We will restict our attention to stable sets S with S ⊆ X or S ⊆ Y . So, let G = (X,Y,E)

be a bipartite graph. We first show how to determine a stable set SX in VX = V ≥2
F ∩X so that

G[F ∪SX ] is a forest of G. As mentioned above, we assume that G[F ] has r connected components
with vertex sets C1, C2, . . . , Cr. We set A = {1, 2, . . . , r} and construct a bipartite graph HX(F )
with bipartition (VX , A) of its vertex set and with edge set EX , where a vertex v ∈ VX is linked to
a vertex a ∈ A if and only if v has a neighbor in the connected component Ca of G[F ]. We then
look for a large subset SX of VX so that SX ∪ A is a forest of HX(F ). Clearly such a subset SX

is a stable set in V ≥2
F so that G[F ∪ SX ] is a forest of G.

For the forest G[F ] of Figure 1, assuming that a ∈ X, C1 = {a, f, g, h}, C2 = {j}, C3 = {n, r},
and C4 = {p}, we have HX(F ) equal to the graph at the top left of Figure 2. The removal of i
from VX deletes all cycles in HX(F ). Hence, by setting SX = {m, o}, we can conclude that A∪SX

induces a forest in HX(F ), which means that G[F ∪ SX ] is a forest of G, as shown at the bottom
left of Figure 2.
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Figure 2: Two extensions of the forest G[F ] of Figure 1, with a ∈ X, C1 = {a, f, g, h}, C2 = {j},
C3 = {n, r}, and C4 = {p}.

Finding a stable set SX ⊆ VX of maximum cardinality so that SX ∪ A induces a forest in
HX(F ) is a difficult problem since it is equivalent to determining the smallest decycling set D of
HX(F ) with the additional constraint that D ⊆ VX . Since the tabu search described in the next
section will perform this task many times, we have decided to use a greedy algorithm that works as
follows. We start by setting SX equal to the empty set, and then iteratively increase SX ensuring
that SX ∪A induces a forest in HX(F ). Let W be the set of vertices v of VX so that SX ∪A∪{v}
induces a forest in HX(F ). At each step of the iterative process, we choose a vertex v ∈ W with
minimum degree dHX(F )(v), add it to SX and update W . Hence, W is initially equal to VX , and
the algorithm stops when W is empty. Algorithm GreedyStable describes the general steps of this
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algorithm. Its input is a bipartite graph H = (X,Y,E) and its output is a subset S ⊆ X so that
H[S ∪ Y ] is a forest of H. Hence, we will run it on HX(F ) = (VX , A,EX).

Algorithm GreedyStable

Input : a bipartite graph H = (X,Y,E)
Output: a set S ⊆ X so that H[S ∪ Y ] is a forest of H

1: Set S ← ∅ and W ← X.
2: while W ̸= ∅ do
3: Choose a vertex v of minimum degree dH(v) in W .
4: Set S ← S ∪ {v}.
5: Remove v from W as well as all vertices u that belong to a cycle of H[S ∪ Y ∪ {u}].
6: end while

When applied to the graph HX(F ) of Figure 2, Algorithm GreedyStable determines SX by
first choosing m or o in W = {i,m, o}, say m. Then m is removed from W as well as i that
belongs to the cycle (1, i, 3,m). Vertex o is then added to the stable set and W becomes empty.
The output is therefore SX = {m, o}.

The same process can be repeated with Y instead of X. More precisely, we can construct the
graph HY (F ) with vertex set VY ∪ A for VY = V ≥2

F ∩ Y , and with edge set EY where a vertex
v ∈ VY is linked to a vertex a ∈ A if and only if v has a neighbor in the connected component Ca

of G[F ]. We can then run Algorithm GreedyStable on HY (F ) = (VY , A,EY ) to produce a stable
set SY ⊆ VY so that G[F ∪SY ] is a forest of G. As shown at the top right of Figure 2, VY = {l, q}
and HY (F ) is a forest, which means that G[F ∪ SY ] is a forest of G for SY = {l, q}.

Note that SX ∪(V ≤1
F ∩VX) is a stable set of G = (X,Y,E) since all vertices of this set belong to

the same part X of the bipartition (X,Y ) of the vertex set of G. Hence, G[F ∪SX∪(V ≤1
F ∩VX)] is a

forest of G. Similarly, G[F ∪S] is a forest of G for the stable set S = SY ∪(V ≤1
F ∩VY ). For the forest

G[F ] of Figure 1, we have observed that SX = {m, o} and SY = {l, q}. Also, V ≤1
F ∩X = {c, e, k}

and V ≤1
F ∩ Y = {d}, which means that G[F ∪ {c, e, k,m, o}] and G[F ∪ {d, l, q}] are forests of G

obtained from G[F ] by adding a stable set.
We are now ready to explain how we extend an induced forest G[F ] of a bipartite graph G =

(X,Y,E) by adding a stable set S so that G[F ∪S] is also a forest of G. We first construct HX(F )
and HY (F ) and then apply Algorithm GreedyStable to both bipartite graphs to obtain sets SX

and SY such that G[F∪SX ] andG[F∪SY ] are forests ofG. We then compare nX = |SX |+|V ≤1
F ∩X|

with nY = |SY | + |V ≤1
F ∩ Y |. If nX ≥ nY , we set F ′ = F ∪ SX ∪ (V ≤1

F ∩ X), otherwise we set

F ′ = F ∪SY ∪ (V ≤1
F ∩Y ). It follows from Property 2.1 that G[F ′] is a forest of G. In our example,

we have seen that SX = {m, o}, SY = {l, q}, V ≤1
F ∩ X = {c, e, k} and V ≤1

F ∩ Y = {d}. Hence
nX = 2 + 3 = 5 and nY = 2 + 1 = 3. We therefore add {c, e, k,m, n} to F to obtain the forest
drawn at the bottom right of Figure 1. Algorithm ForestExtension describes the general steps
of this procedure.

Several remarks are worth making at this stage. Algorithm ForestExtension determines a
stable set S with S ⊆ X or S ⊆ Y while a larger stable set S′ could exist in X ∪ Y so that
G[F ∪ S′] is a forest of G. Also, we only look for forest extensions G[F ∪ S] of G[F ] obtained by
adding a stable set S, while larger forests G[F ∪W ] of G might exist for non-stable sets W . For
the example of Figure 1 a forest with 14 vertices is depicted at the top right. It is obtained by
adding the non-stable set {c, d, e, k, l, q} to F . But finding the largest set W so that G[F ∪W ] is
a forest of G is an NP-hard problem since it is equivalent to determining φ(G) when F = ∅.
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Algorithm ForestExtension

Input : a bipartite graph G = (X,Y,E) and a vertex set F ⊆ X ∪Y so that G[F ] is a forest of G.
Output : a stable set S of G so that G[F ∪ S] is a forest of G.

1: Determine V ≤1
F and V ≥2

F .
2: Construct HX(F ) and HY (F ).
3: Run Algorithm GreedyStable on HX(F ) and HY (F ) to determine SX and SY so that G[F ∪

SX ] and G[F ∪ SY ] are forests of G.

4: Set nX ← |SX |+ |V ≤1
F ∩X| and nY ← |SY |+ |V ≤1

F ∩ Y |.
5: if nX ≥ nY then Set S ← SX ∪ (V ≤1

F ∩X) else Set S ← SY ∪ (V ≤1
F ∩ Y ).

Note that if we look for stable sets S with both S ∩X and S ∩ Y possibly not empty and with
S ∩ V ≥2

F = ∅, then finding the largest one such that G[F ∪ S] is a forest of G is an easy problem.

Indeed, G[F ∪ S] is a forest of G for all stable sets S ⊆ V ≤1
F , and the problem of finding the

largest stable set in G[V ≤1
F ] can be solved in polynomial time since G is bipartite. Continuing on

this path, note that instead of adding V ≤1
F ∩X to SX or V ≤1

F ∩ Y to SY at step 5 of Algorithm
ForestExtension, one could do the following. Once SX is obtained with Algorithm GreedyStable,
define F ′ = F ∪ SX and determine V ≤1

F ′ . We have seen that G[F ′] is a forest of G, and by adding

a maximum stable set S′ of V ≤1
F ′ , one can get a forest G[F ∪ (SX ∪ S′)] of G. Note however that

S = SX ∪ S′ is not necessarily a stable set of G. Similarly, another forest G[F ∪ (SY ∪ S′)] can

be obtained by determining a maximum stable set S′ in V ≤1
F∪SY

and adding it to F ∪ SY . For the

forest G[F ] of Figure 1, we have seen that SY = {l, q}, and instead of adding V ≤1
F ∩ Y = {d}

to F ∪ SY , one can add the maximum stable set S′ = {c, e, k} in V ≤1
F∪SY

= {c, d, e, k}. We thus
get an induced forest with 13 vertices which is obtained from G[F ] by adding the non-stable set
{c, e, k, l, q}.

The variations of Algorithm ForestExtension mentioned above necessitate the solution of
maximum stable set problems in bipartite graphs. Even if this task can be done in polynomial
time, it is too time consuming for the tabu search procedure described in the next subsection,
where Algorithm ForestExtension has to be applied many times.

2.2 A tabu search

The proposed heuristic for producing a large induced forest in a given bipartite graph G is based
on the tabu search metaheuristic, which is one of the most frequently used in combinatorial opti-
mization [15]. Tabu search is a local search technique that visits a solution space S by moving step
by step from a current solution s ∈ S to a neighbor solution s′ ∈ N (s), where N (s) is a subset
of S called the neighborhood of s. A tabu list forbids some moves which would bring the search
back to a recently visited solution. The best move that does not belong to the tabu list is chosen
at each iteration. Tabu search was introduced by Glover [14]. A description of the method and its
concepts can be found in [15].

The proposed adaptation of the tabu search metaheuristic to our problem can be roughly
described as follows. We first choose a vertex set F so that G[F ] is a forest of G = (X,Y,E).
Such a set F can be obtained, for example, by means of the following greedy algorithm: start with
an empty set F , consider all vertices v of G in non-decreasing degree order, and sequentially add
them to F when G[F ∪ {v}] is a forest of G. But this initial set F can be chosen in many other
different ways. For example, it can be the vertex set of the best-known induced forest of G that
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we try to improve. We can also impose F ∩ X = X so that F contains all the vertices of X or,
on the contrary, we can impose F ⊆ Y so that F does not contains any vertex of X. There are
actually no restrictions on F except that G[F ] must be a forest of G.

As mentioned earlier, the proposed tabu search explores the space S that contains all the
induced forests of G which have fixed numbers of vertices in X and in Y , and for each considered
forest, we will try to extend it by adding a stable set of G. Once an initial induced forest F is
chosen, we set kX = |F ∩X|, kY = |F ∩ Y | and therefore define the solution space S as the set of
all vertex sets F ′ such that |F ′ ∩X| = kX , |F ′ ∩ Y | = kY , and G[F ′] is a forest of G.

The neighborhood N (F ) of F ∈ S contains all vertex sets F ′ ∈ S that can be obtained from F
by replacing a vertex u ∈ F ∩X by a vertex v ∈ X \ F , or by replacing a vertex u ∈ F ∩ Y by a
vertex v ∈ Y \ F . Such a move from F to F ′ is denoted F ′ = F ⊕ (u, v). The value f(F ) of a set
F ∈ S is measured by using Algorithm ForestExtension that produces a stable set S such that
G[F ∪ S] is a forest of G. More precisely, we fix f(F ) equal to |F | + |S|, where S is the output
of Algorithm ForestExtension. Note that F = F ′ ⊕ (v, u), and there is therefore a risk that
the algorithm removes v and adds u in the next iterations to return to F , which could cause the
algorithm to cycle. To avoid this, when moving from a set F to F ⊕(u, v), we put u and v in a tabu
list, which means that we forbid the visit of sets F ′ ∈ S with u ∈ F ′ or v /∈ F ′. These restrictions
are only effective for a limited number of iterations. It is customary to keep them active for a
number of iterations proportional to the square root of the number of other possible choices. Let
Z ∈ {X,Y } be so that u and v both belong to Z. Since |Z| − kZ vertices (including u) of Z do
not belong to F ′ while kZ of them are part of it (including v), we keep u and v in the tabu list
for

√
|Z| − kZ and

√
kZ iterations, respectively. The stopping criterion is a time limit. Algorithm

LargeForest describes this tabu search, where G[F ∗] is the best found forest of G, BestValue is
the largest value f(F ′) of a non-tabu neighbor F ′ ∈ N (F ), and ListBest is the set of non-tabu
neighbors F ′ of F with f(F ′) =BestValue. At each iteration, the algorithm moves from a set F
to a neighbor F ′ chosen at random in ListBest . Note that if a neighbor F ′ of F is found at step
10 with value f(F ′) > |F ∗|, then the possible tabu status of the move from F to F ′ is cancelled
(i.e., the move from F to F ′ = F ⊕ (u, v) is accepted, even if u or v belong to the tabu list). Also,
when f(F ′) > |F ∗|, we stop exploring the neighborhood N (F ) and start a new iteration from F ′.

Algorithm LargeForest can be considered as an upper bounding procedure for the computation
of the decycling number of arbitrary bipartite graphs. Indeed, its output F ∗ indicates that G[F ∗]
is a forest of G, which is equivalent to say that V \ F ∗ is a decycling set of G. Hence, |V | − |F ∗|
is an upper bound on the decycling number ϕ(G) of G. In the following, this upper bound will be
denoted UB(G).

3 Computational experiments.

There are very few hard instances in the literature for the computation of the decycling number
of bipartite graphs. We found several exceptions, where the gap between the best-known lower
and upper bounds is not zero, namely, star graphs, bubble sort graphs, Fibonacci cubes, and
hypercubes. These families of bipartite graphs are our test sets for the next subsections. We use
a 3 GHz Intel Xeon X5675 machine with 8 GB of RAM.

3.1 Star graphs

The star graph Sn has a vertex for every permutation v = v1, v2, . . . , vn of the integers 1, 2 . . . , n,
and two vertices v = v1, v2, . . . , vn and u = u1, u2, . . . , un are adjacent if there is i ∈ {2, . . . , n}
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Algorithm LargeForest

Input : a bipartite graph G = (X,Y,E)
Output : a set F ∗ such that G[F ∗] is a forest of G.

1: Choose a set F such that G[F ] is a forest of G
2: Set kX ← |F ∩X|, kY ← |F ∩ Y |, F ∗ ← F and TabuList← ∅.
3: while the time limit is not reached do
4: Set BestValue← 0 and ListBest← ∅.
5: for all u, v with u ∈ F ∩X and v ∈ X \ F or u ∈ F ∩ Y and v ∈ Y \ F do
6: Set F ′ = F ⊕ (u, v).
7: if G[F ′] is a forest of G then
8: Apply Algorithm ForestExtension to determine a stable set S such that G[F ′ ∪ S] is

a forest of G.
9: Set f(F ′) = |F ′|+ |S|.

10: if f(F ′) > |F ∗| then
11: Set F ∗ ← F ′ ∪ S, F ← F ′ and go to step 4.
12: else
13: if f(F ′) ≥ BestValue and {u, v} ∩ TabuList = ∅ then
14: if f(F ′) > BestValue then
15: Set BestValue← f(F ′) and ListBest← {F ′}.
16: else
17: Add F ′ to ListBest .
18: end if
19: end if
20: end if
21: end if
22: end for
23: Choose a set F ′ ∈ ListBest an let u, v be such that F ′ = F ⊕ (u, v).
24: if u and v both belong to X then set Z ← X else set Z ← Y end if
25: Keep u and v in TabuList for

√
|Z| − kZ and

√
kZ iterations, respectively.

26: Set F ← F ′.
27: end while

such that v1 = ui, vi = u1, and vj = uj for all j ̸= 1, i. For illustration, S3 and S4 are depicted

in Figure 3. Clearly Sn is bipartite and has n! vertices and n!(n−1)
2 edges. Star graphs have many

nice topological properties that provide attractive interconnection schemes for massively parallel
systems [1, 2]. Their decycling number is studied in [29] where it is proved that ϕ(S1) = ϕ(S2) = 0,
ϕ(S3) = 1, ϕ(S4) = 7, and

L(Sn) =
n!(n− 3)

2(n− 2)
+ 1 ≤ ϕ(Sn) ≤

1

2
(n!−

n−1∑
i=2

i!)− 1 = U(Sn) ∀n ≥ 5.

Algorithm LargeForest starts with the generation of a vertex set F such that G[F ] is a forest
of G, and then sets kX = |F ∩ X| and kY = |F ∩ Y |, which means that every vertex set in the
solution space S of the tabu search has kX vertices in X and kY vertices in Y . As explained in
Section 2.2, this initial set F can be obtained in various ways.

Our initial choice was to produce the initial forest with the help of a greedy algorithm. For
example, for S7, we got a forest of order 2, 258. Much larger forests are however easy to obtain by
imposing that F must contain one side, say Y , of the bipartition (X,Y ) of the vertex set of Sn.
This can be done as follows : use Algorithm GreedyStable on Sn = (X,Y,E) to obtain a stable set
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Figure 3: Star graphs S3 and S4.

S ⊆ X so that Sn[S ∪ Y ] is a forest of Sn, and then set F = S ∪ Y . For S7, this process has given
a forest of order 2, 931, and we have therefore fixed kX = 2931− 1

27! = 411 and kY = 1
27! = 2520.

For S5 and S6, the same initialization process resulted in forests of order 76 and 436, respectively.
The results produced by Algorithm LargeForest with these initial forests are reported in Table
1. For every n, we indicate the order |V | and the size |E| of Sn, as well as the above-mentioned
lower and upper bounds L(Sn) and U(Sn). For Algorithm LargeForest, we indicate the values of
kX and kY , and report the number of iterations (column ‘Iter’) and the CPU time (column ‘time’)
needed to obtain the upper bound UB(Sn) on ϕ(Sn). For S7, we also indicate the time required
to reach certain intermediate values. The complete evolution of the UB(S7) bound is shown in
Figure 4.

Bounds from [29]
n |V | |E| L(Sn) U(Sn)
1 1 0 0 0
2 2 1 0 0
3 6 6 1 1 LargeForest

4 24 36 7 7 kX kY UB(S6) Iter. time
5 120 240 41 43 17 60 41 6 <1s.
6 720 1,800 271 283 76 360 271 209 3s.

7 5,040 15,120 2,017 2,083 411 2,520

2,100 9 2s.
2,075 61 144s.
2,050 557 1,850s.
2,035 20,031 21h.49m.
2,020 99,859 126h.48m.
2,018 170,085 217h.27m.

Table 1: Result for star graphs Sn with n ≤ 7.

We observe that for n = 5 and 6, our upper bound UB(Sn) equals the lower bound L(Sn),
which means that we have proved that ϕ(S5) = 41 and ϕ(S6) = 271, and this proof is obtained
in less than a second for S5, and in 3 seconds for S6. For S7, the upper bound U(S7) is reached
in 32 seconds. The algorithm was stopped after ten days of computation, and our upper bound
UB(S7) = 2018 is 65 units lower than that of Wang et al. [29], which represents a decrease of 98%
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Figure 4: Results for S7 with kX = 411 and kY = 2, 520.

of the gap. A smaller upper bound may have been reached if more time had been allocated. Note
that ϕ(Sn) = L(Sn)) for n ≤ 6 which could mean that this is also true for larger values of n.

We then tried other values for kX and kY . As explained in Section 2.2, knowledge of a large
induced forest can be used to generate an initial set F at step 1 of Algorithm LargeForest. Such
a large forest is known for Sn. Indeed, to demonstrate the validity of their upper bound U(Sn)
on ϕ(Sn), Wang et al. [29] have shown how to construct a decycling set D of Sn = (X,Y,E)
with |D ∩ X| = U(Sn) and D ∩ Y = ∅. This means that (X \ D) ∪ Y induces a forest of order
n!− U(Sn) in Sn. Hence, by setting F = X \D at step 1 of Algorithm LargeForest and running
ForestExtension with Sn and F as input, we immediately obtain a forest Sn[F ∪ Y ] of Sn with
n!−U(Sn) vertices. In order to generate larger forests, we set F = (X \D)∪R, where R contains
r vertices chosen at random in D, with r ∈ {1, . . . , U(Sn)}. Hence, kX = 1

2n!−U(Sn)+ r, kY = 0,
and if Algorithm LargeForest succeeds in determining a forest Sn[F

∗] of Sn with Y ⊆ F ∗, this
means that we have found a forest of order ( 12n! − U(Sn) + r) + 1

2n! = n! − (U(Sn) − r), thus
decreasing by r units the best-known upper bound on ϕ(Sn). We tested several values for r and
the best results for S7 were obtained with r = 12, which gives kX = 7! − 2083 + 12 = 449 and
kY = 0. With this setting, Algorithm LargeForest has reached the upper bound U(S7) = 2, 083
of Wang et al. [29] in 20 iterations that required one hour and 42 minutes of calculation. We were
only able to improve it by 8 units in 2 days of calculation, thus producing a bound which is 57
units higher than that obtained with the other setting. These tests are therefore not reported in
Table 1.

An analysis of the computing times shows that the first iterations take less than a second
(because, at step 11 of LargeForest, we stop exploring N (F ) when a neighbor F ′ of F is found
with value f(F ′) > |F ∗|), while subsequent iterations (which requireO(kX(|X|−kX)+kY (|Y |−kY ))
calls to Algorithm ForestExtension) can take a few seconds. Computing times are shorter with



472 Hertz Decycling Bipartite Graphs

kX = 411 and kY = 2520 than with kX = 449 and kY = 0, the reason being that with the first
setting, Algorithm ForestExtension has to determine stable sets S having only a few tens of
vertices, while with the second setting, S typically contains about 2500 vertices.

Still dealing with S7, we have tried to initialize F by choosing 449 vertices at random in Y ,
without taking into account the decycling set described in [29]. This also gives kX = 449 and
kY = 0. With this other start, Algorithm LargeForest has produced an initial forest of 2, 662
vertices and therefore a decycling set of 2, 378 vertices. It would have taken days of computation to
decrease this initial upper bound by 360 units (to get an upper bound equal to 2378−360 = 2018).
These tests are therefore not reported in Table 1.

3.2 Bubble sort graphs

The bubble sort graph Bn has the same vertex set as the star graph Sn, but not the same edge
set. More precisely, there is a vertex in Bn for every permutation v = v1, v2, . . . , vn of the integers
1, 2 . . . , n, and two vertices v = v1, v2, . . . , vn and u = u1, u2, . . . , un are adjacent if there is
i ∈ {1, 2, . . . , n−1} such that vi = ui+1, vi+1 = ui, and vj = uj for all j ̸= i, i+1. For illustration,

B3 and B4 are depicted in Figure 5. Clearly Bn is bipartite and has n! vertices and n!(n−1)
2

edges. Bubble sort graphs were first introduced by Akers and Krishnamurthy [2] as a new type of
interconnection network. As mentioned in [30], bubble sort graphs are attractive because of their
simple, symmetric and recursive structure. The decycling number of these graphs is studied in [30]
and the authors have proved that ϕ(B1) = ϕ(B2) = 0, ϕ(B3) = 1, ϕ(B4) = 7, and

L(Bn) =
n!(n− 3)

2(n− 2)
+ 1 ≤ ϕ(Bn) ≤

n!(2n− 3)

4(n− 1)
= U(Bn) ∀n ≥ 5.
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Figure 5: Bubble sort graphs B3 and B4.

Algorithm LargeForest is applied to B5, B6 and B7, with the initialization process that pro-
duced the best results for star graphs. More precisely, Algorithm GreedyStable is run with
Bn = (X,Y,E) as input to obtain a stable set S ⊆ X so that Bn[S ∪ Y ] is a forest of Bn, and we
then set F = S ∪ Y . For B7, this process has given a forest of order 2, 932, and we have therefore
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fixed kX = 2932 − 1
27! = 412 and kY = 1

27! = 2520. For B5 and B6, the same initialization
process resulted in forests of order 76 and 437, respectively. The results produced by Algorithm
LargeForest with these initial forests are reported in Table 2, with the same column labels as in
Table 1.

Bounds from [30]
n |V | |E| L(Bn) U(Bn)
1 1 0 0 0
2 2 1 0 0
3 6 6 1 1 LargeForest

4 24 36 7 7 kX kY UB(Bn) Iter. time
5 120 240 41 52 16 60 41 8 <1s.

6 720 1,800 271 324 77 360
272 796 14s.
271 42,563 889s.

7 5,040 15,120 2,017 2,310 412 2,520

2,100 7 14s.
2,075 55 474s.
2,050 767 1h.31m.
2,040 4,570 7h.46m.
2,036 14,315 21h.10m.

Table 2: Results for bubble sort graphs Bn with n ≤ 7.

We observe that for n = 5 and 6, our upper bound UB(Bn) equals the lower bound L(Bn),
which means that we have proved that ϕ(B5) = 41 and ϕ(B6) = 271. For B7, the process was
stopped after one day of computation, and we could improve the best-known upper bound by 274
units, which represents a decrease of 94% of the gap. A smaller upper bound may have been
reached if more time had been allocated. Note that ϕ(Bn) = L(Bn)) for n ≤ 6 which could mean
that this is also true for larger values of n.

3.3 Fibonacci cubes

The Fibonacci numbers form a sequence of positive integers {fn}∞n=0 such that each number fn is
the sum of the two preceding ones, starting from f0 = 1 and f1 = 2. All non-negative integers i
such that i ≤ fn − 1 can be uniquely represented as a sum of distinct non-consecutive Fibonacci
numbers in the form i =

∑n−1
j=0 bjfj , where bj is either 0 or 1, for 0 ≤ j ≤ n− 1, with the condition

bjbj+1 = 0 for 0 ≤ j < n − 1 [32]. The sequence (bn−1, . . . , b1, b0) is called the order-n Fibonacci
code of i, and uniquely determines i. For example, i = 19 ≤ f6 − 1 = 20 has order-6 Fibonacci
code (1, 0, 1, 0, 0, 1). The Fibonacci cube of order n, denoted Γn, has vertex set {0, 1, . . . , fn − 1},
and two vertices i and j are adjacent if and only if their order-n Fibonacci codes differ in exactly
one bit. The Fibonacci cubes for n ≤ 4 are depicted in Figure 6.

Fibonacci cubes were first introduced by Hsu [16], and properties are described in [11, 21, 24, 31].
The decycling number of Γn is known for n ≤ 9. For larger n, lower and upper bounds on ϕ(Γn)
were obtained using various techniques. The best-known bounds L(Γn) and U(Γn) appear in [11]
and are reported in Table 3 for n ≤ 14.

Let (X,Y ) be the bipartition of the vertex set of Γn, and assume without loss of generality
that |X| ≤ |Y |. It is easy to check that |X| = |Y | or |Y | − 1.

Algorithm LargeForest was first tested with the initialization process of the previous sections,
where the forests generated at step 1 contain all vertices of Y (i.e., kY = |Y |) and some of X.
The results are reported in Table 3. We observe that the best-known upper bound U(Γn) is easily
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Figure 6: Fibonacci cubes Γn for n ≤ 4.

Bounds from [11]
n |V | |E| L(Γn) U(Γn)
1 2 1 0 0
2 3 2 0 0
3 5 5 1 1
4 8 10 1 1
5 13 20 3 3
6 21 38 6 6
7 34 71 11 11
8 55 130 19 19 LargeForest

9 89 235 33 33 kX kY UB(Γn) Iter. time
10 144 420 53 55 13 72 55 58 <1s.
11 233 744 86 94 19 116 94 70 <1s.
12 377 1,308 139 158 26 189 157 51 1s.
13 610 2,285 225 264 37 305 259 134 7s.

14 987 3,970 364 439

62 494
439 5 <1s.
427 1,494 31s.
426 4,696 160s.

54 0 439 80 213s.
66 0 427 865 3,340s.
67 0 426 5,217 5h16m.

Table 3: Result for Fibonacci cubes Γn with n ≤ 14.

reached for all n, and we have improved it by one unit for n = 12, by 5 units for n = 13, and by
13 units for n = 14.

As done for star graphs, we have tested another initialization process by fixing kX = |X| −
U(Γn) + r and kY = 0 with r > 0, but without taking into account the structure of the known
forest of order n!−U(Γn). In other words, our initial set F contains kX vertices chosen at random
in X. If Algorithm LargeForest succeeds in determining a forest Γn[F

∗] of Γn with Y ⊆ F ∗, this
means that we have found a forest of order kX + |Y | = (|X|−U(Γn)+ r)+ |Y | = fn− (U(Γn)− r),
thus decreasing by r units the best-known upper bound on ϕ(Γn). We can then stop the algorithm
(since it cannot produce a forest with more that kX+max{|X|, |Y |} = kX+ |Y | vertices) and rerun
it with a larger value of r. The results produced with this setting are reported in Table 3 for some
values of r. We observe that we reach the same bounds as with the previous setting, but in more
time. As already indicated in Section 3.1, this can be explained by the fact that each iteration
takes more time with kY = 0 than with kY = |Y | since the stable sets S added to the forests F
are larger with kY = 0.
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3.4 Hypercubes

As final experiments, we illustrate how knowledge of the structure of the considered bipartite graph
can help speed up the proposed upper bounding procedure. The n-dimensional hypercube Qn is
the graph with vertex set {0, 1}n, where two vertices v and u are linked by an edge if and only
if there is i ∈ {1, 2, . . . , n} such that vi = 1 − ui and vj = uj for all j ̸= i. In what follows, we
consider the bipartition (X,Y ) of the vertex set of Qn so that v belongs to X if and only if

∑n
i=1 vi

is even.
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Figure 7: Hypercubes Q3 and Q4 with their associated graphs H3 and H4 and optimal induced
forests represented with bold lines and black vertices.

The decycling number of Qn is known for n ≤ 8. As observed in [7], the best-known forests
G[F ] of Qn (n ≤ 8) are unions of stars with n leaves plus some isolated vertices. For illustration
optimal forests of Q3 and Q4 are depicted in Figure 7. A deeper analysis of these optimal forests
G[F ] shows that all centers of stars belong to the same part, say X, of the partition (X,Y ) of
the vertex set of Qn, and all vertices of Y are in G[F ]. For example the largest induced forest of
Q3, depicted in Figure 7, contains all vertices of Y and 000 as only center of a star. For Q4, the
depicted largest induced forest contains all vertices of Y as well as 0000 and 1111 as centers of
stars.

Assuming that optimal induced forests of Qn have the above structure, we can speed up our
upper bounding procedure by imposing that F must be a subset of X. Moreover, if G[F ∪ Y ]
is a union of stars, then all pairs of vertices in F must be at distance at least 4 in Qn. So, let
Hn be the graph with vertex set X, and where two vertices are linked by an edge if and only if
their distance in Qn is at least 4. For illustration, H3 and H4 are depicted in Figure 7. It follows
that if F is a clique in Hn, then G[F ∪ Y ] is a union of |F | stars in Qn. The following algorithm,
called CliqueSearch is an adaptation of Algorithm LargeForest. It aims to determine a clique
K of maximum cardinality in Hn, which will imply that G[F ∗ = K ∪ Y ] is a union of stars (and
therefore also a forest) of G. In this algorithm, E(F ) is the set of edges linking two vertices of F

in Hn, which means that F is a clique in Hn if and only if |E(F )| = |F |(|F |−1)
2 .
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Algorithm CliqueSearch was tested on Qn with 9 ≤ n ≤ 13. The results are reported in Table
4, with the same column labels as in the previous tables. The best-known lower and upper bounds
L(Qn) and U(Qn) for Qn are taken from [25]. The upper bound U(Qn) is based on the theory of
error-correcting codes, where

U(Qn) = 2n−1 − 2n−r−1 with n = 2r − x and 0 ≤ x < 2r−1.

We also report the upper bounds published one year earlier in [5] to demonstrate that Pike’s work
[25] has considerably reduced the value of these bounds.

Algorithm CliqueSearch

Input : graph Hn.
Output : a clique K in Hn so that G[K ∪ Y ] is a forest of Qn.

1: Generate a maximal clique F in Hn and set K ← F and k = |F |+ 1.
2: Choose a vertex u ∈ X \ F and set F ← F ∪ {u}, F ∗ ← F and TabuList← ∅.
3: while the time limit is not reached do
4: Set BestValue← 0 and ListBest← ∅.
5: for all u ∈ F and v ∈ X \ F do
6: Set F ′ = F ⊕ (u, v).
7: Set f(F ′) = |E(F ′)|.
8: if f(F ′) > |F ∗| then
9: Set F ∗ ← F ′ and go to step 22.

10: else
11: if f(F ′) ≥ BestValue and {u, v} ∩ TabuList = ∅ then
12: if f(F ′) > BestValue then
13: Set BestValue← f(F ′) and ListBest← {F ′}.
14: else
15: Add F ′ to ListBest .
16: end if
17: end if
18: end if
19: end for
20: Choose a set F ′ ∈ListBest an let u, v be such that F ′ = F ⊕ (u, v).

21: Keep u and v in TabuList for
√
|X| − k and

√
k iterations, respectively.

22: Set F ← F ′.
23: if |E(F )| = |F |(|F |−1)

2 then
24: Set K ← F and k ← k + 1.
25: Choose a vertex u ∈ X \ F and set F ← F ∪ {u} and F ∗ ← F .
26: end if
27: end while

We observe that Algorithm CliqueSearch reaches the best-known upper bounds in at most
1 second. Note that Q13 has 8, 192 vertices and 53, 248 edges, which means that hours or days
of computations would probably have been necessary to reach the same bounds with the original
version of Algorithm LargeForest.

4 Concluding remarks

We have described a tabu search procedure that determines decycling sets of small size in arbitrary
bipartite graphs G. The algorithm explores the set of induced forest of G of fixed order and tries
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Bounds from [25]
n |V | |E| L(Qn) U(Qn)
1 2 1 0 0
2 4 4 1 1
3 8 12 3 3
4 16 32 6 6
5 32 80 14 14
6 64 192 28 28
7 128 448 56 56 Upper bounds CliqueSearch

8 256 1,024 112 112 from [5] UB(Qn) Iter. time
9 512 2,304 225 236 237 236 89 <1s.
10 1,024 5,120 456 472 493 472 903 1s.
11 2,048 11,264 922 952 1,005 952 212 1s.
12 4,096 24,576 1,862 1,904 2,029 1,904 605 1s.
13 8,192 53,248 3,755 3,840 4,077 3,840 2,082 1s.

Table 4: Result for hypercubes Qn with n ≤ 13.

to extend these forests to larger ones by adding stable sets. We have shown that the procedure is
effective on challenging families of bipartite graphs. Indeed, we have decreased most of the best-
known upper bounds on ϕ(G), thus narrowing the gap to the best-known lower bounds. On four
occasions we even managed to close this gap, which allows us to state that ϕ(B5) = ϕ(S5) = 41
and ϕ(B6) = ϕ(S6) = 271. The updated bounds for the tested graphs with a strictly positive gap
are as follows, the old upper bounds being shown in parentheses:

2017 ≤ ϕ(S7) ≤ 2018 (2083)
2017 ≤ ϕ(B7) ≤ 2036 (2310)
139 ≤ ϕ(Γ12) ≤ 157 (158)
225 ≤ ϕ(Γ13) ≤ 259 (264)
364 ≤ ϕ(Γ14) ≤ 426 (439).

Most of the largest forests produced by our algorithm contain all vertices of one part of the
bipartition (X,Y ) of the vertex set of G. Assuming |X| ≤ |Y |, this has led us to fix kY = 0 or
kY = |Y |, which helps speed up the algorithm since the moves from a solution F to a solution
F ′ = F⊕(u, v) are restricted to pairs u, v of vertices that both belong toX. Such forests correspond
to decycling sets fully contained in X. Notice however that it is easy to construct bipartite graphs
G = (X,Y,E) with no decycling set of minimum size fully contained in X or Y . In the example
of Figure 8, the only optimal decycling set contains two adjacent vertices x and y which therefore
belong to different parts of the bipartition of the vertex set. Algorithm LargeForest is flexible
enough to allow the discovery of any induced forest of G (and therefore of any decycling set of G).
Indeed, a forest G[F ∗] of G can be generated with kX = |F ∗ ∩X| and kY ≤ |F ∗ ∩ Y | : Algorithm
LargeForest has to determine a set F so that F ∩ X = F ∗ ∩ X, F ∩ Y ⊆ F ∗ ∩ Y and G[F ] is
a forest of G, and Algorithm GreedyStable can then extend F to F ∗ by adding the stable set
F ∗ \ F ⊆ Y .

We have observed in Section 3.4 that knowledge of the structure of the considered bipartite
graph can help speed up the proposed upper bounding procedure. For example, several authors
have realized that optimal forests in Qn are unions of stars. With this assumption, we have been
able to match the best-known upper bounds for ϕ(Qn) (n ≤ 13) in at most one second, while these
graphs have up to 8, 192 vertices. Hence, an analysis of the structure of the best-known induced
forests of a bipartite graph can facilitate the generation of large induced forests.
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x y

Figure 8: A bipartite graph with adjacent vertices in all optimal decycling sets.

Every iteration of Algorithm LargeForest requires O(kX(|X| − kX) + kY (|Y | − kY )) calls to
Algorithm ForestExtension. In order to speed up the algorithm, we can fix an upper limit kmax

on kX and kY . If this limit has a too low value, it can prevent Algorithm LargeForest from
generating an induced forest of G of maximum order. For example, if kmax = 0, then the output
F ∗ of Algorithm LargeForest will be a stable set with max{|X|, |Y |} vertices. For the bubble sort
graph B7, this would lead to an upper bound of 2, 520 on ϕ(B7) while it is very easy to generate
decycling sets of B7 with less than 2, 100 vertices. If an optimal forest has x vertices in X and y
vertices in Y , then kmax should at least be equal to min{x, y}. In summary, small values for kmax

make it possible to speed up Algorithm LargeForest, but finding the smallest value of kmax which
makes it possible to generate an optimal induced forest is a real challenge.

We want to mention that we did not seek to optimize the code by using structures making
it possible to efficiently manage the fusion of connected components when adding a vertex to a
forest, or their splitting when removing a vertex. This would certainly reduce the computing
times somewhat. The aim of this article was to demonstrate that the proposed algorithm makes it
possible to generate large induced forests in bipartite graphs and thus obtain small decycling sets.

Note finally that the smallest decycling sets generated by our algorithm for star graphs, bubble
sort graphs, and Fibonacci cubes are archived online at www.gerad.ca/~alainh/decycling.html.
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