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Abstract. We consider a variation of the well-known traveling salesman problem in
which there are multiple agents who all have to tour the whole set of nodes of the same
graph, while obeying node- and edge-capacity constraints require that agents must not
�crash�. We consider the simplest model in which the input is an undirected graph with
all capacities equal to one. A solution to the synchronized traveling salesman problem
is called an �agency�. Our model puts the synchronized traveling salesman problem
in a similar relation with the traveling salesman problem as the so-called evacuation
problem, or the well-known dynamic �ow (�ow-over-time) problem is in relation with
the minimum cost �ow problem.

We measure the strength of an agency in terms of number of agents which should be
as large as possible, and the time horizon which should be as small as possible. Beside
some elementary discussion of the notions introduced, we establish several upper and
lower bounds for the strength of an agency under the assumption that the input graph
is a tree, or a 3-connected 3-regular graph.

1 Introduction

The purpose of this paper is to explore and study some new problems that are de�ned from a
natural merger of the traveling salesman problem, and the dynamic �ow problem.

Our �rst starting point is the traveling salesman problem, which is one of the best known
problems from combinatorial optimization, and there has been a wide range of variations to the
original traveling salesman problem that have been investigated over the decades. In this paper we
would consider a variation of the traveling salesman problem that has multiple salesman touring
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the same network. Of course earlier research has been done with multiple salesmen, including
the so-called multiple traveling salesmen problem (Laporte, Norbert, [11], Bektas, [2], Kaempfer,
Wolf [8], Abonyi, Király, [9]), vehicle routing problems (Christo�des, Mingozzi, Toth, [5]), price-
collecting traveling salesman problem (Balas, [1]), and the pebble game (Lee, Streinu [12]). The
problem variation considered in this paper will be completely di�erent from those.

The second starting point is the dynamic �ow problem �rst introduced by Ford, Fulkerson [6],
also known as �ows over time, which came as a variation to the �ow problem in which we consider
a �ow as a dynamic notion that develops over time. See Skutella, [14] and Kotnyek [10] for a
broad survey about this topic. The idea is to replace the static notion of a �ow by a dynamic
notion in which �ow is described as the time-dependent motion of particles, either discrete, or
continuous. The evacuation problem, quickest transshipment problem (see Hoppe, Tardos [7]),
fastest �ow problem, dynamic transportation [3], and many others are special cases or variations
of the dynamic �ow problem.

In this paper we would develop a notion of dynamic (or synchronized) traveling salesmen, that
correspond to the original traveling salesman problem in a similar way as dynamic �ows correspond
to �ows. The idea, basically, is to �nd a way to put several salesmen, �agents�, in a network so
that they all need to perform a traveling salesman tour, and the lot of them must obey network
capacities. In this setting we may consider two di�erent kind of objectives: try to add as many
agents to the networks as possible, or try to �nd tours for the agents to �nish in as short time
as possible. Of course the tours of the agents must be coordinated between each other in order
to let them obey the network capacities, thus our wording to call this problem the synchronized
traveling salesmen problem. One case of this problem has been considered in [13]. A more precise
de�nition follows below.

2 Problem Setting

Let G = (V,E) be an undirected graph with n = |V |. A sequence v(0), v(1), v(2), . . . , v(T ) of
nodes v(t) ∈ V is called a walk (with parking) if for all t = 0, 1, . . . , T − 1 we have either
v(t) = v(t+1) or v(t)v(t+1) ∈ E. A sequence v(0), v(1), v(2), . . . , v(T ) of nodes v(t) ∈ V is called
a walk (without parking) if for all t = 0, 1, . . . , T − 1 we have v(t)v(t + 1) ∈ E. Most of the
time in this paper, we will consider walks with parking, so even if not expressly written, a walk
means a walk with parking. For a walk, T is called the time horizon.

A sequence v(0), v(1), v(2), . . . , v(T ) of nodes v(t) ∈ V is called a traveling salesman tour
(with/ without parking), if it is a walk (with/without parking) in the graph such that every
node appears at least once, and the tour returns to its initial node, that is, v(0) = v(T ). A traveling
salesman tour with parking is called a tour, for short. As a tour returns to its initial node, we
may consider a tour by time units modulo T (which is similar to picturing a tour as if it were to
repeat all over after the time horizon).

Of course in the usual setting of the traveling salesman problem, there is no need for parking,
because it is just a waste of time or cost; here in our setting, however, parking may be needed to
avoid two salesmen of crashing into each other: one of them would wait until the other one passes
a node or an edge, and move on afterwards. Vaguely speaking: the point is that we introduce a
setting in which there are multiple salesmen touring the same graph at the same time so that they
are not allowed to crash into each other. In this setting it makes a lot of sense to allow parking,
and this is what we do in this paper.

In the synchronized traveling salesman problem, we consider an �agency� of a number of
salesmen that each one of them has to do a tour with the same time horizon, though they need to
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start from di�erent initial nodes, and must not �crash� into each other. Essentially there is a unit
capacity for each node or each edge. More precisely, we de�ne an agency as follows.

De�nition 1 Let k, T ∈ Z+ be positive integers. k denotes the number of salesmen, or agents,
and T denotes the joint time horizon. Let ai(t) ∈ V be the node where agent i is supposed to be
at time t, where i = 1, 2, . . . , k, and t = 0, 1, . . . , T . This is called an agency with time horizon T
and k agents if for any �xed i, vi(t) is a tour (with parking). In practical terms, each i denotes
an agent that moves along the unit-length edges of the graph, so that every agent makes a traveling
salesman tour of time horizon T .

De�nition 2 If i and j are agents from the same agency, i ̸= j, then we say that these agents i
and j crash in a node v at time t if v = ai(t) = aj(t). In practical terms, this may be understood
as the two agents walk around the graph, and at time t they both occupy in the same node v.

De�nition 3 If i and j are agents from the same agency, i ̸= j, then we say that these agents
i and j crash in an edge uv ∈ E at time t if v = ai(t) = aj(t + 1), u = ai(t + 1) = aj(t) or
v = ai(t+ 1) = aj(t), u = ai(t) = aj(t+ 1). In practical terms, this may be understood as the two
agents walk around the graph, think of edges as links of a unit length, and at time t they both use
the same edge, entering from opposite ends, and thus meet in (the middle of) the edge.

De�nition 4 An agency is called a feasible agency if there is no crash between any pair of
agents in neither an edge nor a node. In practical terms, this may be understood as a set of agents
move along the unit-length edges of the graph so that they avoid crashing into each other, but each
of them manages to visit every node at least once, before �nally arriving at their respective nodes
of origin.

Given the de�nition of a feasible agency, we would like to set up a measure the �strength� of an
agency. There are two options: we may try to maximize the number of agents, or we may try to
minimize the time horizon. Anyway, for any G, k, T there is always the question: is there a feasible
agency in graph G with k agents and time horizon T?

Problem 1 Given G, k, T , decide whether there is a feasible agency in G of k agents under time
horizon T?

In Problem 1 if the answer is �yes� for a given G, k, T , then � because parking is allowed � the
answer would be �yes� for any other instance G, k′, T ′ when k′ ≤ k and T ′ ≥ T . For a given k we
may want to determine the smallest T that admits a feasible agency, and for a given T we may
want to determine the largest k that admits a feasible agency. Though these problems are hard to
solve in general, we will look for some other ways how to measure the strength of an agency, thus
we introduce the following parameters.

De�nition 5 For an agency as above, let α1 := n/k, let α2 := T/n. The strength of the agency
is given by α := max{α1, α2}.

Notice that for any connected graph there is an agency of k ≥ 1 and T ≤ 2n − 2. Also notice
that k ≤ n, and T ≥ n, for any agency. A more interesting connection is with the Hamiltonian
cycle problem.

Claim 1 For a given graph there is an agency with α = 1 if and only if there is a Hamiltonian
cycle.
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Figure 1: Case m ≥ 3.

Proof of Claim 1. α = 1 implies α2 = 1, and thus T = n. The walk a1(0), a1(0), . . . , a1(T )
is a Hamiltonian cycle. On the other hand, if there is a Hamiltonian cycle v(i), then for the �rst
agent we can set up a tour a1(t) := v(i), and all the other agents may follow this lead at a delay
of 1, 2, . . . n− 1 time units. This makes a feasible agency.

Claim 2 For any graph and any agency we have
√

T/k ≤ α ≤ T/k.

Proof of Claim 2. The claim follows from α1 α2 = T/k, and 1 ≤ α1, α2 ≤ α.

The main objective of this paper is to provide some nontrivial lower and upper bounds on the
strength of a feasible agency.

3 Trees

Theorem 1 If G is a tree, then for any feasible agency we have T/k ≥ 4.

Claim 3 In any tree G with n ≥ 3 there is an edge uv such that in G − uv the component that
contains v is a star that is centered at v.

(A star is a K1,m, where m ≥ 1, and the node that corresponds to the color class of a single
node is called its center. For ease of discussion, K2 is called a star, and either of its nodes may be
called its center.)

Proof of Claim 3. To prove this claim, consider a longest path P in the tree, and let u, v, z
be the last three nodes in this path. Edge uv is a node as required: the component of G − uv
containing v does have another node, namely z, connected to v. If some other node z′ in this
component were to be not connected to v, then a path P ′ ending in z′ would be longer than P , a
contradiction. This proves the claim.

Proof of Theorem 1. We consider an edge uv obtained from Claim 3, and let us denote the
star by v, z1, z2, . . . , zm, with v its center. Let U := {u, v, z1, . . . , zm}. We distinguish three cases,
depending on the value of m: m = 1, m = 2, and m ≥ 3.

In case m ≥ 3, the degree of node degG(v) = m+ 1 ≥ 4. Every agent needs to return at least
degG(v) number of times to v, and because they must not crash, k degG(v) ≥ T . This implies
T/k ≥ m+ 1 ≥ 4.

In case m = 1, we are mainly concerned with node z1. Every agent must visit z1 at least once.
Now two di�erent agents visiting node z1, say at times t, t′, respectively, that is, ai(t) = aj(t

′) = z1.
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Figure 3: Case m = 2.

We claim that |t − t′| ≥ 5. To prove this, it is quite easy to see that if |t − t′| ≤ 4, then agents
i, j would crash at a time between t, t′ in a node or edge in G[{u, v, z1}], a contradiction. Thus
|t− t′| ≥ 5, and actually, this still is true if we were to repeat the walks of the agents after time T ,
modulo T . This implies that T ≥ 5k.

In case m = 2 we need to be somewhat more careful to prove T/k ≥ 4. Every agent must visit
z1 and z2 at least once, and for each i we consider the time interval(s) that agent i spends in the
nodes U := {u, v, z1, z2} while visiting at least one of the nodes z1 or z2. This means that for every
agent i we pick one or two intervals so that they include one visit to v1 and one visit to v2. For an
agent i there will be one or two corresponding intervals, say I = [t1, t2]. We consider time intervals
modulo T , or �cyclically�. Of course I will start and end in a time unit when agent i is occupying
node u. Actually, we may assume that these time units satisfy the following:

� ai(t
1) = ai(t

2) = u, and

� ai(s) ∈ {z1, z2} for some s ∈ [t1, t2]

By removing parking in u from the beginning and end of the time interval (t1, t2), we may also
assume that

� ai(t
1 + 1) = ai(t

1 − 1) = v

De�nition 6 An interval that satis�es these 3 properties for agent i is called a U -interval for
agent i.

Basically, a U -interval is the time interval that corresponds to a segment of that walk of agent
i that looks like u, v, . . . , z1, . . . , v, u (or u, v, . . . , z2, . . . , v, u) such that this segment of the walk
stays within node subset U . The de�nition requires that during this time interval agent i starts
with u, v, ends with v, u, and it touches z1 or z2 at least once, while staying within U . Of course
there may be time intervals when an agent visits u, or even v, but without touching z1, z2 � we
just don!t call such intervals U -intervals.
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Every agent i must visit z1 and z2 at least once, and thus we can determine 1 or 2 U -intervals
for agent i such that

� if there is one U -interval for agent i, than both z1 and z2 are visited by agent i during this
U -interval I, or

� if there are two U -intervals for agent i, than z1 is visited by agent i during only one of these
U -intervals, and z2 is visited by agent i during only the other U -interval. The two U -intervals
for agent i are disjoint.

Let Ii denote the set of U -intervals for agent i, and let let I :=
⋃

i Ii denote the set of all U -
intervals for all agents. The most important property of U -intervals is that no 3 of them overlap
at the same time unit, or, in other words, I is a 2-packing.

Claim 4 For any 0 ≤ t ≤ T , there are at most two intervals of I that contain t, that is, |{I : I ∈
I, t ∈ I}| ≤ 2.

To prove this, suppose there are three di�erent agents for which the corresponding intervals
contain t. This means that when the last of these agents enters U := {u, v, z1, z2}, the two others
are already in U . Say the last to enter U is agent i, and the other two agents are i′, i′′. Say t1

is the time when i enters U . Agent i at time t1 + 1 moves to v, which implies that agent i′, i′′

occupy nodes z1, z2. By our assumption about these time intervals, at some time agent i while
staying inside U , will to move to z1 or z2 � but the way is blocked by agents i′, i′′. A crash would
be inevitable, and this contradiction proves the Claim.

The size of a time interval I is measured by how many time units it has, that is, |I ∩ Z|. For
short we abbreviate this as |I| := |I ∩ Z|. We claim that for any agent i, if there is one U -interval
for agent i, then that time interval has at least 7 time units; and if there are two intervals for agent
i, then both of these time intervals contain at least 5 time units.

Formally,

Claim 5 For any agent i,

1. if Ii = {I}, then |I| ≥ 7, and

2. if Ii = {I, J}, then |I|, |I| ≥ 5, and

To prove this, not that the shortest walks to visit z1 and satisfy the properties required for a
U -interval is u, v, z1, v, u, which requires 5 time units. And the shortest walks to visit z1 and z2
and satisfy the properties required for a U -interval is u, v, z1, v, z2, v, u, which requires 7 time units.
This proves Claim 5.

By Claim 4 the set of intervals is a 2-packing, and this 2T ≥
∑

I∈I |I|. By Claim 5 we get that∑
I∈I |I| ≥ 7k. This implies that T/k ≥ 3.5. But our goal is to improve this bound to 4 from 3.5,

so we need to look at these intervals more carefully. We have to look carefully especially at agents
i for which there is only one interval, and that interval contains 7 time units.

The idea is to count tokens associated with time units. For every time unit 0 ≤ t ≤ T − 1 we
create 2 tokens, this is 2T tokens in total. We would

� award one of these tokens to an agent i such that t ∈
⋃

Ii



JGAA, 25(1) 437�459 (2021) 443

Because of Claim 4, we are not running out of tokens. By Claim 5, each agent has received at least
7 tokens, proving that 2T ≥ 7k. This comes just short of proving T/k ≥ 4, so we need to be a bit
more careful with the assignment of tokens. To improve on this bound, we adjust the placement
of tokens as follows:

� If only one token is taken from time unit t by agent i, but the second token is up for grabs,
then we award the second token to agent i, too. We do this for all time units t like this.

� If I ∈ Ii, J ∈ Ij , such that I ⊆ J and |I| = 7, then agent j gives one of its tokens to agent i.
We do this between all pairs I, J like this.

Claim 6 All agents have at least 8 tokens.

To prove this claim, we �rst show the following property of the intervals. Essentially, this claims
that any U -interval I of 7 time units either has a time unit which overlaps with no other U -interval
of any other agent, or there a U -interval of another agent contains I as a subset.

Claim 7 If Ii = {I} with |I| = 7, then exactly one of the following assertions must hold:

1. There is a time unit t ∈ I −
⋃

J∈I−I J .

2. There is another interval J ∈ I − I such that I ⊆ J .

In other words, Claim 7 states that for every agent with a single visit to U that takes the
minimum 7 time units, there is either a time unit when i is the only agent on a visit to U , or there
must be another agent that will on a visit in U through these whole 7 time units. Actually, this
means that this other agent needs an interval of length at least 9 to visit U : at least one time unit
before and at least one after i's visit.

Proof of Claim 7. The only way for this claim to be false would be if there were (at least) two
other intervals, say J1 and J2, which overlap with I, and so that there is no gap between J1, J2.
Say J1 corresponds to agent 1, J2 corresponds to agent 2. Let us denote these U -intervals by I =
[a, a+6], J1 = [b, c] and J2 = [c+1, d], and thus by our assumption a ≤ c < c+1 ≤ a+6. This makes
the choice of c = a, a+1, a+2, a+3, a+4, a+5 possible. Note that by the de�nition of a U -interval,
agents 1 and 2 occupy nodes v, u, u, v for time units c− 1, c, c+1, c+2. Also by the de�nition of a
U -interval, agent i occupies nodes u, v, ⋆, ⋆, ⋆, v, u at time units a, a+1, a+2, a+3, a+4, a+5, a+6.
In all 6 possible cases of c, a crash happens in node u or v, or edge uv. This contradiction proves
Claim 7.

Proof of Claim 6. An agent i with two U -intervals has at least 10 tokens, because in both of
its U -intervals it received at least 5 tokens. Say one of its U -intervals is J . If the agent has had
to give one of them for another agent by our rule above for some I ⊆ J , then it has kept the 6
other tokens from the time units in I. In this case agent i has at least 6 tokens from U -interval
J . Otherwise agent i has at least 5 tokens from U -interval J . So this makes at least 10 tokens for
this agent, considering both of its U -intervals.

Consider an agent i with one U -interval J such that |J | ≥ 8. If i has not had to give away any
of its tokens then we are done. So now assume that agent i gave up one of its tokens because of
another agent with a U -interval I ⊆ J, |I| = 7. In this case J must have at least one time unit
before I, and at least one time unit after I, making it |J | ≥ 9. So agent i has received at least 9
tokens, and gave away only one of them. If J overlaps with multiple other U -intervals I, |I| = 7 in
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this way, then it will keep at least 6 tokens from each of them, this way agent i will have at least
6 + 6 = 12 tokens in the end. Considering all cases, agent i will have at least 8 tokens in the end.

Finally, consider an agent i with one U -interval I such that |I| = 7. This agent receives 7
tokens, and by Claim 7 it gets at least one more token for a time unit t where agent i is alone, or
one token from another agent that is responsible for a U -interval J such that I ⊆ I. In both cases,
this agent will hold at least 7 tokens in the end. This proves Claim 6.

Initially there are 2T tokens, and in the end we have accounted for at least 8k of them. This
proves T/k ≥ 4, and thus Theorem 1.

By Claim 2 this also implies a lower bound on the strength of a feasible agency that we might
get in a tree.

Corollary 1 If G is a tree, then for any agency we have α ≥ 2.

The following example shows that the bound T/k ≥ 4 given in Theorem 1 is tight, for certain
trees. This example, though, is not tight for the bound given in Corollary 1 � we conjecture that
that bound could be improved.

Example 1.
We de�ne a tree G = (V,E) as follows. Consider a tree that has 3r+2 (where r is some positive

integer) nodes such that r of them have degree 4 and 2r + 2 of them have degree 1. Let F denote
this set of nodes of degree 4, and let L denote this set of 2r+2 nodes of degree 1. We add another
4r+4 nodes so that every node in L gets 2 new neighbors: say if v ∈ L, then we add nodes v1 and
v2 joined by an edge each to node v. Let us say M denotes the set of new nodes. This de�nes a
tree G = (V,E) with V = F ∪ L ∪M , having 7r + 6 nodes and 7r + 5 edges.

Consider an arbitrary closed walk of G that visits every nodes at least once, traverses every edge
exactly twice, and returns to its origin in 14r+10 time units. We modify this walk so that for every
node v ∈ L, we add parking in v1 for one time unit � a change that provides a walk that spends 2
time units in v1. This change creates a walk of time horizon T = (14r+10)+ (2r+2) = 16r+12.
Let us denote this walk by v(t). For agent 1, we de�ne a1(t) := w(t). For all other agents, we de�ne
their walks ai by repeating w at a delay of 4(i−1), repeated cyclically, that is ai(t) := w(t−4(i−1))
where time is measured modulo T , i.e. cyclically. This de�nes a set of T/4 = 4r + 3 agents.

It is relatively straightforward to verify that this agency is feasible, thus proving the following
claim. (For nodes v ∈ L it can be veri�ed manually that there is no crash in nodes or edges in
G[{v, v1, v2}]. To see that there is no crash on any other node we need to observe that for any
edge e adjacent with at least one node in F , any agent spends 3 modulo 4 time units in either
component of G − e � this implies that there is no crash in nodes of F or edges adjacent with a
node in F .)

Claim 8 There are trees of arbitrarily large size with a feasible agency such that T/k = 4 (with
T = 16

7 n− 12
7 and k = 4

7n− 3
7).

4 Trees with T = 2n− 2

When graph G is a tree, then any traveling salesman tour has time horizon at least 2m − 2, and
thus of course, any agency has T ≥ 2n− 2. A tour with T = 2n− 2 is shortest possible, meaning
that every edge of the tree is traversed only twice. In this section we restrict ourselves to shortest
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Figure 4: Example 1. Annotated by time units modulo 4.
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tours, that is T = 2n− 2, and our main result shows an upper bound on the number of agents in
this case.

Theorem 2 If G is a tree, then for a feasible agency with T = 2n− 2 we have T/k ≥ 5.

Proof of Theorem 2.
Consider an edge uv as guaranteed by Claim 3, and let us denote the star by v, z1, z2, . . . , zm.

We distinguish three cases, depending on the value of m, m = 1, m = 2, and m ≥ 3. Let
U := {v, z1, z2, . . . , zm}. (Let us remark that we consider the tours to be repeating cyclically
modulo T , that is, we consider time units �modulo T = 2n − 2�.) As in the proof of Theorem 1,
every agent has a U -interval: for agent i let the shortest time interval that contains the times when
agent i visits some zj , and starts and ends with a time unit when agent i is occupying node u is
called a U -interval. Because the tour of any agent i is shortest, there is only one U -interval, and
it has 2m+ 3 time units. Say for agent i, the U -interval is equal to [t(i), t(i) + 2m+ 2]. The walk
of agent i during its U -interval looks like u, v, . . . , v, u, and contains all leaves zj in U .

Casem = 1. In this case it takes 2m+3 = 5 time units for any agent i to complete its U -interval,
which is [t(i), t(i) + 4]. The segment of its tour during this U -interval must be (u, v, z1, v, u). It
is plain and easy to see that the U -intervals of no two agents may overlap, to avoid a crash in U .
Thus at least 5 time units need to be spent before another agent may start its own U -interval.

Claim 9 If i ̸= j then [t(i), t(i) + 4] ∩ [t(j), t(j) + 4] = ∅.

Now, for all time units between 1 and T we create one token. An agent takes all tokens
corresponding to its U -interval. Because of Claim 9 5k tokens are distributed among the agents.
This proves the desired bound T ≥ 5k in this case.

Case m = 3. In this case it takes 2m+ 3 = 9 time units for agent i to complete its U -interval,
which is [t(i), t(i) + 8]. The segment of its tour during this U -interval must be (u, v, za, v, zb, v, zc,
v, u), where a, b, c is a permutation of 1, 2, 3. To avoid a crash in node v, if two agents i, j have
overlapping U -intervals, then the intersection of their U -interval must be even.

Claim 10 If i ̸= j, then [t(i), t(i) + 4] ∩ [t(j), t(j) + 4] has even cardinality.

This claim implies that any given time unit t may be part of at most two U -intervals corre-
sponding to any agents, or we may say the U -intervals are a 2-packing. (Considering just this, we
obtain a bound of 9k ≤ 2T .) Actually, this also implies the following:

Claim 11 For any agent i there is a time unit t in its U -interval (i.e. t ∈ [t(i), t(i) + 8]) such
that t is not part of any other agent's U -interval.

Otherwise there would have to be two other agents, i′ and i′′ such that [t(i), t(i) + 8] ⊆
[t(i′), t(i′) + 8] ∪ [t(i′′), t(i′′) + 8]. Because a U -interval has an odd number of time units, t(i′)
and t(i′′) need to have di�erent parity. This contradicts Claim 10, and thus proves Claim 11.

We now use Claims 10 and 11 to �nish the proof in this case. We create 2 tokens for every time
unit 1 ≤ t ≤ T . The token corresponding to time unit t is awarded to agent i if t ∈ [t(i), t(i) + 8].
Because the U -intervals are a 2-packing, the tokens created are enough for this step. Now if for
t only one token is taken, say by agent i, then the other token of t is also awarded to agent i.
Because a U -interval has 9 time units, every agent will have 9 tokens are taken initially. Because
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of Claim 11, every agent will have at least one extra token, thus every agent will receive at least
10 tokens in total. This implies 2T ≥ 10k, proving the bound in this case.

Case m > 3 is solved the same way.

Case m = 2.In this case it takes 2m + 3 = 7 time units for agent i to complete its U -interval,
which is [t(i), t(i) + 6]. The segment of its tour during this U -interval must be (u, v, za, v, zb, v, u),
where a, b is a permutation of 1, 2. To avoid a crash in node v, if two agents i, j have overlapping
U -intervals, then the intersection of their U -interval must be even.

Claim 12 If i ̸= j, then [t(i), t(i) + 6] ∩ [t(j), t(j) + 6] has even cardinality.

Moreover, to avoid a crash on edge uv, the overlap [t(i), t(i) + 6]∩ [t(j), t(j) + 6] may not have
cardinality 2. To avoid a crash in edges vz1, vz2, the overlap [t(i), t(i)+6]∩ [t(j), t(j)+6] may not
have cardinality 6. This implies that when there is an overlap, it must have cardinality exactly 4.
Because the U -intervals are a 2-packing, this implies the following:

Claim 13 For any agent i there is are 3 di�erent time units t in its U -interval (i.e. t ∈ [t(i), t(i)+
8]) such that t is not part of any other agent's U -interval.

We now use Claims 12 and 13 to �nish the proof in this case. We create 2 tokens for every time
unit 1 ≤ t ≤ T . The token corresponding to time unit t is awarded to agent i if t ∈ [t(i), t(i) + 8].
Because the U -intervals are a 2-packing, the tokens created are enough for this step. Now if for
t only one token is taken, say by agent i, then the other token of t is also awarded to agent i.
Because a U -interval has 7 time units, every agent will have 7 tokens are taken initially. Because
of Claim 11, every agent will have at least three extra token, thus every agent will receive at least
10 tokens in total. This implies 2T ≥ 10k, proving the bound in this case.

This completes the proof of Theorem 2.

Corollary 2 If G is a tree, then for any agency with T = 2n− 2 we have α ≥
√
5.

Example 2. The following example shows that the bound T/k ≥ 5 given in Theorem 2 is tight, for
certain trees. This example, though, is not tight for the bound given in Corollary 2 � we conjecture
that that bound could be improved. We construct a graph as shown in the �gure by using a path
of even length 2q, and adding a 1-path to its 2i+ 1'th node, and adding a 2-path to its 2i+ 2'th
node. We add another 2-path to its �rst node, and a 3-star at its last node. This creates a graph
of n = 5q + 6 nodes, and 5q + 5 edges. We create a walk of length 10q + 10 so that it �rst moves
from left to right along the path, and also enters and leaves the 1-paths, then the walk enters and
leaves the 3-star and all of its leaves, and then on the way back from right to left, the walk enters
and leaves the 2-paths. This walk is indicated with the time units modulo 5 in the �gure. Agent
1 would follow this tour, and agent i would follow this tour at a delay of 5(i − 1), cyclically. So
that in time unit 1, the nodes indicated with �1� are occupied, and then after each step, the nodes
indicated with �j� are occupied at time units congruent with j modulo 5. It is quite easy to verify
that this creates a feasible agency without parking with time horizon T = 10q+10 and number of
agents k = 2q + 2 = T/5.

Theorem 3 There are arbitrarily large trees for which there is a feasible agency without parking
such that T = 2n− 2 and k = 1

5T .
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Figure 5: Example 2. Annotated by time units modulo 5.
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5 3-edge-connected 3-regular graphs

Theorem 4 If G = (V,E) is a 3-regular 3-edge-connected graph, then there is an agency with
T/k = 4, T = 2n, k = n/2 and α = α1 = α2 = 2.

By Petersen's theorem we know that graph G contains a perfect matching, or equivalently, by
taking the complement of a perfect matching, we also know that G contains a 2-factor (a 2-regular
subgraph spanning all the nodes). There are ways of formulating a result that is stronger than
Petersen's Theorem, and one of them is a recent result of Boyd, Iwata and Takazawa [4], claiming
the existence of a 2-factor of a special property.

Theorem 5 (Boyd, Iwata, Takazawa [4]) If G = (V,E) is a 3-regular bridgeless graph, then
there is a 2-factor covering every 3-cut and every 4-cut.

Proof of Theorem 4. Because of Theorem 5, there is a perfect matching M in G such that
G −M = (V,E −M) consists of cycles of length at least 5. Let C = {C1, C2, . . . , Cs} denote the
set of these cycles. Let N ⊆ M be a spanning tree in G/C. Thus F := N ∪

⋃
C is connected, and

the only cycles in F are those of C. A tour a(t) of subgraph (V, F ) is obtained so that edges in N
are traversed twice, and edges in

⋃
C are traversed once (an arbitrary orientation of the cycles is

chosen). The time horizon for this tour is T = |V − V (N)| + 4|N |, because it uses both nodes of
an edge in N twice.

We modify this tour a(t) just by adding parking times to nodes in V − V (N). We will come
up with a �parking vector� p : V − V (N) → {1, 2, 3, 4}, and we interpret this with the intention of
making an agent stay in a node v ∈ V −V (N) for p(v) time units. This means the agent will park
for p(v) − 1 time units. This de�nes a walk ap(t), which is obtained from a(t) by repeating v by
p(v) copies. The time horizon of this walk will be

T = 4|N |+
∑

v∈V−V (N)

p(v).

Though this de�nes the tour of an agent for an arbitrary parking vector p, we need p to satisfy a
certain property in order to de�ne a feasible agency.

De�nition 7 We say that the parking vector p is a 4-cyclic parking vector if for every C ∈ C,
the sum ∑

v∈V (C)−V (N)

p(v)

is a multiple of 4.

The point of this de�nition is that a 4-cyclic parking vector may be used to de�ne an agency. Let
k := T/4, and for i = 1, 2, . . . , k, let api be the tour obtained from ap at a delay of 4(i− 1). Thus
all agents will have a traveling salesman tour, and it is also quite straightforward that this de�nes
a feasible agency.

Claim 14 For any 4-cyclic parking vector p, the set of tours api de�ned above is a feasible agency.

To prove this claim, consider any edge uv ∈ N , which of course is a cut edge in (V, F ), say it
separates the node set into parts u ∈ Vu and v ∈ Vv. Also let us suppose that t is the time
unit when our agent comes to u to move to v in the following time unit, that is, ap(t) = u and
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ap(t + 1) = v. Because the number of time units our agent spends in Vv − v is a multiple of 4,
the time t′ when it returns to v (i.e. t′ > t, ap(t′) = v) is congruent with t+ 2 modulo 4, that is,
t′ ≡ t + 2 (mod 4). This implies that there is no crash in nodes u or v or on edge uv. Thus there
is no crash on nodes or edges of matching N , but this also implies that there is no crash on nodes
V − V (N), because p(v) ≤ 4, and thus there is no time for agent api+1 to catch up with agent api .
This proves Claim 14

Of course, p(v) := 4 for all v is a 4-cyclic parking vector, and thus it de�nes a feasible agency.
Because of 5, |C| ≤ ⌊n/5⌋, and thus |N | ≤ ⌊n/5⌋ − 1. Then for P we get a feasible agency with

T = 4|N |+ 4|V − V (N)| = 2|V |+ 2|V − V (N)| ≥ 2n+ 2(n− 2(⌊n/5⌋ − 1)) ≥ 16

5
n.

Next we construct a di�erent agency ap from a di�erent 4-cyclic parking vector p, trying to
make p as small as possible. For a cycle Ci ∈ C, the minimum number of time units spent in the
nodes of V (C)− V (N) just depends on |V (C)− V (N)|: we would want to have as many ones as
possible, and then with the last remaining element, we �x the remainder modulo 4. Here we need
the function r(s) := 4

⌈
1
4s
⌉
, thus the minimum number number of time units spent in the nodes of

V (C)− V (N) is equal to r(|V (C)− V (N)|). We get the following claim.

Claim 15 There is 4-cyclic parking vector p such that for agency ap the time horizon is equal to
T = 4|N |+

∑
C∈C r(|V (C)− V (N)|).

We will be able to prove a bound on T by partitioning C = C0 ∪ C1 ∪ C2 ∪ C3 such that

� |V (C)− V (N)| = 0 for cycles C ∈ C0,

� |V (C)− V (N)| = 1 for cycles C ∈ C1,

� |V (C)− V (N)| = 2 for cycles C ∈ C2,

� |V (C)− V (N)| ≥ 3 for cycles C ∈ C3.

By the de�nition of function r(·) we get that

� r(|V (C)− V (N)|) = 0 = 2|V (C)− V (N)| for C ∈ C0,

� r(|V (C)− V (N)|) = 4 ≤ 2|V (C)− V (N)|+ 2 for C ∈ C1,

� r(|V (C)− V (N)|) = 4 = 2|V (C)− V (N)| for C ∈ C2,

� r(|V (C)− V (N)|) ≤ 2|V (C)− V (N)| − 2 for C ∈ C3.

Consider the tree F := (V,N)/C that we get from edges in N by shrinking the cycles of C. All
cycles in C1 correspond to a node of F of degree at least 3. All leaves of F correspond to a cycle
in C3. For any tree, the number of leaves is larger than the number of nodes of degree at least 3,
which for tree F implies that |C3| ≥ |C1|. We put all this together in the following calculation:

T = 4|N |+
∑
C∈C

r(|V (C)− V (N)|) =

= 2|V (N)|+
∑
C∈C0

r(|V (C)− V (N)|) +
∑
C∈C1

r(|V (C)− V (N)|)+

+
∑
C∈C2

r(|V (C)− V (N)|) +
∑
C∈C3

r(|V (C)− V (N)|) ≤
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≤ 2|V (N)|+
∑
C∈C0

2|V (C)− V (N)|+
∑
C∈C1

(2|V (C)− V (N)|+ 2)+

+
∑
C∈C2

2|V (C)− V (N)|+
∑
C∈C3

(2|V (C)− V (N)| − 2) =

= 2|V (N)|+
∑
C∈C

2|V (C)− V (N)|+ 2|C1| − 2|C3| ≤ 2|V (N)|+
∑
C∈C

2|V (C)− V (N)| = 2|V | = 2n.

Thus we have constructed two di�erent 4-cyclic parking vectors: p ≡ 4 with T ≥ 16
5
n, and this latter

4-cyclic parking vector p with T ≤ 2n. We can add any multiple of 4 time units to p while maintaining
its 4-cyclic property, to obtain 4-cyclic parking vectors p′ with p ≤ p′ ≤ p, and thus we can �nd one that
provides a feasible agency with T = 2n. This proves Theorem 4.

6 Optimization problems

Optimization problems with regard to k, T, α, α1, α2 seem to be rather hard to solve exactly �
recall that by Theorem 1, minimizing α is NP-hard. There are a few problems, though, that may
be solved exactly, namely the following:

Problem 2 For a given graph G = (V,E), �nd a feasible agency (with parking) of k = n = |V |
agents and any time horizon T , or determine that there is no such agency.

Problem 3 For a given graph G = (V,E), �nd a feasible agency without parking of k = n = |V |
agents and any time horizon T , or determine that there is no such agency.

We are going to prove that both of these problems can be solved in polynomial time.

Theorem 6 There is a polynomial time algorithm to solve Problem 2.

To prove this, note that all nodes are occupied by an agent at any time. Thus the step between
time unit t and t + 1 corresponds with a set of node-disjoint cycles in G. Agents in any of these
cycles will move to their respective neighbors, cyclically, while agents in a node not covered by
any of these cycles are just parking there during this time unit. This suggests that the following
condition may describe the existence of a a feasible agency k = n as required in Problem 2:

Claim 16 There is a feasible agency with parking of k = n agents if and only if G is 2-edge-
connected.

To show this claim, �rst note that if there is a cut edge e, then no agent may traverse e because
e is not part of any cycle. Thus agent to one side of G − e will never be able to get to the other
side. To prove the other way around, suppose G is 2-edge-connected. It is well-known that in this
case, every edge is contained in a cycle. Now consider a spanning tree of G, and agent 1: we make
agent 1 move along edges of the spanning tree, while completing each step of agent 1 using a cycle
to de�ne steps for all other agents. We repeat this for edges of the spanning tree until agent 1 has
visited all the nodes. Then we repeat this for all other agents, one by one. In the end we need
to repeat all these steps backwards to get all the agents back to their original position. The time
horizon for this agency will be T ≤ 2n(2n− 3). This proves Theorem 6.
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Conjecture 1 There is a polynomial time algorithm to solve Problem 3.

To prove this, note that all nodes are occupied by an agent at any time. Thus the step between
time unit t and t+1 corresponds with a 2-factor in G. Recall that a 2-factor is a spanning subgraph
such that all nodes have degree exactly 2. A 2-factor consists of cycles, and all the nodes are covered
by exactly one cycle. This suggests that the following condition may describe the existence of a a
feasible agency k = n as required in Problem 3:

Claim 17 There is a feasible agency without parking of k = n agents if and only if the edges of
G which are contained in a 2-factor form a connected spanning subgraph.

To show this claim, �rst let us assume that there is a partition V = V1 ∪ V2 into two disjoint
nonempty subsets such that edges between V1, V2 are contained in no 2-factor. In this case, an
agent that starts out in V1 will never leave V1, which implies that there is no agency with the
required properties. To prove the other way around, suppose that there is a spanning tree F ⊆ E
such that all edges in F are contained in a 2-factor. Then it is straightforward to construct an
agency: we make agent 1 move along edges of F , while completing each step of agent 1 using a
2-factor to de�ne steps for all other agents. We repeat this for edges of the spanning tree until
agent 1 has visited all the nodes. Then we repeat this for all other agents, one by one. After
n(2n − 3) time units every agent has �nished with visiting all the nodes. To obtain a feasible
agency, we need to make sure all the agents will get back to their original position, all at the same
time (this is required by the de�nition of a feasible agency). Let us say it took T1 ≤ n(2n − 3)
time units to �nish the moves up to this point, and note that the current positions of the agents
de�ne a permutation of V , where node v ∈ V is mapped to node ϕ(v) ∈ V if and only if the agent
starting in v has arrived at ϕ(v) after T1 time units. We just have to repeat ϕ a few times until all
agents get back to their original positions, that is, we are looking for a positive integer q such that
ϕq = id. Here the least common multiple of cycle length's of cycles in ϕ will do � the trivial upper
bound on this is q ≤ n!. This proves Claim 17 with an exponential bound on the time horizon,
T = qT1 ≤ n(2n − 3)n!. Unfortunately this is not polynomial, and for this reason we fall short
of proving Conjecture 1 � though we are able to determine a yes/no answer to the existence of
such an agency. At this point it is unclear if the existence of an agency with very long, maybe
exponential time horizon would actually also imply the existence of an agency with polynomial
time horizon, thus leaving the proof of Conjecture 1 open.

We may consider the problem of maximizing the number of agents in a particular graph, without
a limit on the time horizon. The problem becomes similar to a mechanical disentanglement puzzle.
The following partial solution to this was found in informal discussions with László Végh, Amitabh
Basu, and Daniel Dadush at an Oberwolfach workshop.

Problem 4 Suppose that G = (V,E) is a tree. Find a feasible agency (with parking allowed) of
a maximum number of agents k. (Note that there is no constraint on time horizon T .)

Theorem 7 If G = (V,E) is a tree with no nodes of degree 2, then the following cases determine
the optimum for Problem 4:

a) If n = 1 or n = 2, then the optimum is k = 1.

b) If n ≥ 3 and G is a star, then the optimum is k = n− 2.

c) Otherwise the optimum is k = n− 3.



JGAA, 25(1) 437�459 (2021) 453

(A tree with no node of degree 2 may not have 3 nodes.)

Proof. Proof of part a) and b) is rather simple:
If n = 2 then the tree is just a single edge. We can have a single agent moving between the

two endpoints of this edge. There is no agency with 2 agents, because they would bump into each
other along the edge or one of its endpoints. Thus the optimum is k = 1.

If G is a star with a center, and n− 1 leaves, then we can de�ne an agency with n− 2 agents
as follows. We initiate with the n − 2 agents in some of the leaves. Either one of the agents may
then go to the vacant leaf, by passing through the center. By repeating this 2n − 2 times, every
agent will have the chance to visit each of the leaves. This is an agency with n− 2 agents. There
is no agency with n − 1 agents, because in with n − 1 agents, each agents would be restricted to
just one of the leaves and the center - all other leaves are blocked by the other agents. Thus the
optimum is k = n− 2.

In case c), graph G is a tree with no degree-2 nodes, such that there is an edge uv ∈ E such
that both components of G− e have more than one node.

For contradiction, assume that there is an agency with k = n− 2 agents. We partition V into
the following parts: V = V1 ∪ V2 ∪ V3 ∪ V4 such that V2 = {u}, V3 = {v}, and V1 ∪ V2 is one of the
components of G− uv, and V3 ∪ V4 is the other component of G− uv. All parts Vi are nonempty.

We may assume that the agency is initiated so that u and v are the two empty nodes, and
all other nodes are occupied by agents. (We may assume this, because any initial setup could
be reached from this state, or actually, any other state.) Let us �color� the agent so that agents
that are in V1 in the initial setting are colored red, and agents that are in V1 in the initial setting
are colored blue. We claim that red and blue agents will not mix, and actually, at all times the
agent distribution will always be like one of the following cases: (1) red agents occupy a subset of
V1 ∪ V2 ∪ V3 and blue agents occupy all of V4, or (2) red agents occupy a subset of V1 ∪ V2 and
blue agents occupy a subset of V3 ∪ V4, or (3) red agents occupy all of V1 and blue agents occupy
a subset of V2 ∪ V3 ∪ V4. This is easily seen because (a) V2 and V3 are sets of just a single node,
and thus red and blue cannot pass by each other there, and furthermore, (b) when there is a blue
agent in V2 then all of V1 is occupied, so this blue agent cannot enter V1 to mix with the red agents
there. Anyway, we conclude that red agents will not be able to visit nodes in the nonempty subset
V4, and blue agents will not be able to enter nodes in the nonempty V1. Thus there is no agency
of this size k = n− 2.

In case c), the tree must be of diameter at least 3, because it is not a star, and it also has no
nodes of degree 2. To prove that there is a feasible agency with k = n− 3, it su�ces to prove the
following claim:

Claim 18 Suppose there are n − 3 agents, agent i is currently in node u ∈ V , and there is an
edge uv ∈ E. Then there is a sequence of agency moves such that agent i �nds itself in node v
after that sequence of moves.

Proof. Let us denote by Vu and Vv the nodeset of the two components of G − uv, so that
V = Vu ∪Vv, u ∈ Vv, v ∈ Vv. If there is an unoccupied node in Vv, then a sequence of moves along
a path will result in v being unoccupied, and then agent i may move into node v as required. Thus
we may assume that all nodes in Vv are occupied. This also implies that all 3 unoccupied nodes
must be in Vu.

Because u is occupied (by agent i), the 3 unoccupied nodes are in Vu − u. G[Vu]− u partitions
into a family of components, say denoted by H1, H2, . . . ,Hp. Now we distinguish two cases here:
either A) there are at least two distinct components sayH1, H2 that contain at least one unoccupied
node, or B) all 3 unoccupied nodes are in the same component, say H1.
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In case A), a simple sequence of moves will allow agent i to be pushed into component H1,
because initially H1 has contained an unoccupied node. Then u becomes unoccupied, and thus
a simple sequence of moves will allow agent j to be pushed into H2, because initially H1 has
contained an unoccupied node. After this, both u and v become unoccupied, and we may allow
both agents i and j to return to nodes u and v. We may, however, choose to �rst allow i to reach
node v, and then allow j to return to node u. Anyway, the main observation is that after this
sequence of moves, agent i gets to visit node v as we wanted to prove. An example of this action
is show in in Figure 6.

In case B), we have the situation shown in Figure 7, where in component H1 there is a node
u1, a neighbor of u, and u1 has two more neighbors, u11 and u12. Agent i may go to u12 in two
steps, and then agent j can go to u11 in two steps. After that, agent i may go to v in three steps,
and agent j may go to u in two steps. After all these steps, agent i has succeeded in going to v, as
claimed.

In a tree G = (V,E), let L ⊆ V denote the set of leaves (nodes of degree 1), and let Y ⊆ V
denote the set of �joints�, i.e. nodes with degree at least 3. An L�Y -path is a path in G that
connects a leaf with a joint, and apart from its endpoints, all points of the path have degree 2. An
Y �Y -path is a path in G that connects a joint with a joint, and apart from its endpoints, all points
of the path have degree 2. For a tree that has at least one joint (i.e. is not a path), we de�ne its
stretch as follows:

stretchY Y (G) :=

{
max{|V (P )| : P is a Y �Y -path} if there is a Y �Y -path

−∞ otherwise

stretchLY (G) :=

{
max{|V (P )| : P is an L�Y -path} if there is an L�Y -path

−∞ otherwise

stretchLL(G) :=

{
|V (P )| if G = P is a path

−∞ otherwise

Theorem 8 If G = (V,E) is a tree with no nodes of degree 2, then the optimum for Problem 4
is equal to:

k = min{n− stretchY Y (G)− 1, n− stretchLY (G), n− stretchLL(G) + 1}.

This theorem makes sense in the following special cases: If G is a star, then from stretchLY = 1
we get that k = n − 2, which is straightforward. If G is a path, then from stretchLL = n we get
that k = 1, which is actually quite obvious for a path. If G is a tree that has no nodes of degree
2, and more than 2 nodes, then from stretchY Y = 2 we get that k = n− 3, just like we expected
from Theorem 7.

Proof of Theorem 8. We �rst prove that k is at most the value on the right hand side.
To see that k ≤ n − stretchLL(G) + 1 is rather trivial: If G is not a path, then this value is

in�nity, and we are done. Otherwise, if G is a path, then the value become equal to 1, which is an
obvious upper bound on the number of agents in a path.

To see that k ≤ n− stretchLY (G), assume that G is not a path (because in case of a path, this
value would be in�nity, and we are done.) Consider the path P where the maximum attains, let us
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Figure 6: Case A in the proof of Claim 18.
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Figure 7: Case B in the proof of Claim 18.
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Figure 8: Case C in the proof of Claim 8. We denote σ := distT (u, u1)
.
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say it is a path P that connects leaf l ∈ V with a node v ∈ V . Thus distG(u, v) = stretchY Y (G)−1.
All interior nodes of P have degree 2 in G. At a point in time, the leaf l will be occupied by an
agent i, say. If for contradiction, k ≥ n− stretchLY (G) + 1, then it would be impossible for agent
i to leave the path P , because as long as it stays in P , the part of P between l and the agent will
be empty, and thus, when the agent gets to node v, all nodes of G outside of P will be occupied
by the other agents. Thus agent i would not be able to visit nodes outside of P , and because P is
not a path, this contradicts the de�nition of an agency.

The proof of k ≤ n− stretchY Y (G)− 1 will be similar to the proof of the upper bound in case
c) of Theorem 7. Consider the Y �Y path P that attains maximum length, connecting nodes u and
v of degree at least 3. Let Vv denote the set of node in V − v that are in the same component of
G − u as v. Similarly, let Vu denote the set of node in V − u that are in the same component of
G− v as u. Note that distG(u, v) = stretchY Y (G)− 1. All interior nodes of P have degree 2 in G.
Now assume for contradiction, that k = n− stretchY Y (G). This means that in the graph we have
|V (P )| number of unoccupied nodes. Note that for the purpose of this proof, we may assume that
at t = 0 the unoccupied nodes are exactly those of V (P ) (because from that state we may reach
any other initial state that was supposed to happen). So there are two groups of agents, those
agents near to u occupying the nodes of Vu (called u-agents), and those agents near v occupying
nodes of Vv (called v-agents). Then it is quite easy to see that u-agents and v-agents �do not mix�,
that is, whatever moves the agents are doing, one of the edges incident with a node in V (P ) cuts
away all u-agents from all v-agents. Note that this property is preserved by induction, because a
u-agent can only make moves in V − Vv, and a v-agent can only make moves in V − Vu. Because
of this, when for example a u-agent gets as far as node v, then all nodes of Vv will be occupied
by v-agents, and thus this agent will have to stay in V − Vv. This proves the inductive statement,
and proves that there is no agency with k ≥ n− stretchY Y (G).

To prove the equality in Theorem 8, we need to consider two cases, similar to those consider in
the proof of Theorem 7. We de�ne u, v, i, j,Hu, Hv just the same as in that proof. We have two
cases: either A) there are at least two distinct components say H1, H2 that contain at least one
unoccupied node, or C) all unoccupied nodes are in the same component, say H1. Case A) can be
handled just the same as in the proof of Theorem 7.

Case C) is very similar to Case B) of Theorem 7, but we will elaborate on that a bit. The main
case is when there is at least one node of degree at least 3 in H1, and assume that the nearest to u
is u1. The distance between u and u1 is spanned by a path P of at most stretchY Y (G) nodes. Thus
there are at least stretchY Y (G) + 1 unoccupied nodes in H1, and we may assume that they are
arranged in the way of Figure 8. That is, all nodes of P − u are unoccupied, and u1 has two more
unoccupied neighbors, u11,12. Please refer to Figure 8 for the way how to make moves (similar to
Case B) to exchange u and v, and thus prove that any agent can get anywhere. By applying this
procedure repeatedly, we can construct an agency of k agents, where k is determined by the above
formula.
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