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Abstract. Let G be a multigraph with n vertices and e > 4n edges, drawn in the
plane such that any two parallel edges form a simple closed curve with at least one vertex
in its interior and at least one vertex in its exterior. Pach and Tóth (A Crossing Lemma
for Multigraphs, SoCG 2018 ) extended the Crossing Lemma of Ajtai et al. (Crossing-
free subgraphs, North-Holland Mathematics Studies, 1982) and Leighton (Complexity
issues in VLSI, Foundations of computing series, 1983) by showing that if no two
adjacent edges cross and every pair of nonadjacent edges cross at most once, then the
number of edge crossings in G is at least αe3/n2, for a suitable constant α > 0. The
situation turns out to be quite different if nonparallel edges are allowed to cross any
number of times. It is proved that in this case the number of crossings in G is at least
αe2.5/n1.5. The order of magnitude of this bound cannot be improved.

1 Introduction

In this paper, multigraphs may have parallel edges but no loops. A topological graph (or multi-
graph) is a graph (multigraph) G drawn in the plane with the property that every vertex is
represented by a point and every edge uv is represented by a curve (continuous arc) connecting
the two points corresponding to the vertices u and v. We assume, for simplicity, that the points
and curves are in “general position”, that is, (a) no vertex is an interior point of any edge; (b)
any pair of edges intersect in at most finitely many points; (c) if two edges share an interior point,
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then they properly cross at this point; and (d) no 3 edges cross at the same point. Throughout
this paper, every multigraph G is a topological multigraph, that is, G is considered with a fixed
drawing that is given from the context. In notation and terminology, we then do not distinguish
between the vertices (edges) and the points (curves) representing them. The number of crossing
points in the considered drawing of G is called its crossing number, denoted by cr(G). (I.e., cr(G)
is defined for topological multigraphs rather than abstract multigraphs.)

The classic “crossing lemma” of Ajtai, Chvátal, Newborn, Szemerédi [1] and Leighton [6] gives
an asymptotically best-possible lower bound on the crossing number in any n-vertex e-edge topo-
logical graph without loops or parallel edges, provided e > 4n.

Theorem A (Crossing Lemma, Ajtai et al. [1] and Leighton [6]) There is an absolute con-
stant α > 0, such that for any n-vertex e-edge topological graph G we have

cr(G) ≥ α
e3

n2
, provided e > 4n.

In general, the Crossing Lemma does not hold for topological multigraphs with parallel edges,
as for every n and e there are n-vertex e-edge topological multigraphs G with cr(G) = 0. Székely
proved the following variant for multigraphs by restricting the edge multiplicity, that is the maxi-
mum number of pairwise parallel edges, in G to be at most m. In fact, the statement holds with
the same constant α as the original Crossing Lemma [9].

Theorem B (Székely [11]) There is an absolute constant α > 0 such that for any m ≥ 1 and
any n-vertex e-edge topological multigraph G with edge multiplicity at most m we have

cr(G) ≥ α
e3

mn2
, provided e ≥ 5mn.

Recently, Pach and Tóth extended the Crossing Lemma to so-called branching multigraphs [10],
and together with Tardos to so-called non-homotopic multigraphs [8]. We say that a topological
multigraph is

� separated if any pair of parallel edges form a simple closed curve with at least one vertex in
its interior and at least one vertex in its exterior,

� single-crossing if any pair of edges cross at most once (that is, edges sharing k endpoints,
k ∈ {0, 1, 2}, may have at most k + 1 points in common),

� locally starlike if no two adjacent edges cross (that is, edges sharing k endpoints, k ∈ {1, 2},
may not cross), and

� non-homotopic if no two parallel edges can be continuously transformed into each other
without passing through a vertex.

A topological multigraph is branching if it is separated, single-crossing and locally starlike. Thus
every branching drawing is separated, and every separated drawing is non-homotopic. However,
the converse is not true. The edge multiplicity of a branching multigraph may be as high as n− 2,
while a non-homotopic multigraph with two vertices can already have arbitrarily many edges.

Theorem C (Pach and Tóth [10]) There is an absolute constant α > 0 such that for any n-
vertex e-edge branching multigraph G we have

cr(G) ≥ α
e3

n2
, provided e > 4n.
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Figure 1: Illustrating some drawing styles of topological multigraphs. A branching drawing is
separated, single-crossing and locally starlike.

Theorem D (Pach, Tardos, and Tóth [8]) There is an absolute constant α > 0 such that for
any n-vertex e-edge non-homotopic multigraph G we have

cr(G) ≥ α
e2

n
, provided e > 4n.

Let us also mention that Felsner et al. [3] recently considered locally starlike drawings of the
complete graph on n vertices in which no face of the arrangement is bounded by a 2-cycle. They
showed that any such drawing contains at most n! crossings.

In this paper we generalize Theorem C by showing that the Crossing Lemma holds for all
topological multigraphs that are separated and locally starlike, but not necessarily single-crossing.
We shall sometimes refer to the separated condition as the multigraph having “no empty lens,”
where we remark that here a lens is bounded by two entire edges, rather than general edge segments
as sometimes defined in the literature. We also prove a Crossing Lemma variant for separated

(and not necessarily locally starlike) multigraphs, where however the term α e3

n2 must be replaced

by α e2.5

n1.5 . Both results are best-possible up to the value of constant α. Hence, the Crossing Lemma

for separated drawings with α e2.5

n1.5 nicely settles between the one for branching drawings with α e3

n2

(Thm C) and the one for non-homotopic drawings with α e2

n (Thm D).

Theorem 1 There is an absolute constant α > 0 such that for any n-vertex e-edge topological
multigraph G with e > 4n we have

(i) cr(G) ≥ α e3

n2 , if G is separated and locally starlike.

(ii) cr(G) ≥ α e2.5

n1.5 , if G is separated.

Moreover, both bounds are best-possible up to the constant α.
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We prove Theorem 1 in Section 3. Our arguments hold in a more general setting, which we
present in Section 2. In Section 4 we use this general setting to deduce other known Crossing Lemma
variants, including Theorem B. We conclude the paper with some open questions in Section 5.

2 A Generalized Crossing Lemma

In this section we consider general drawing styles and propose a generalized Crossing Lemma,
which will subsume the Crossing Lemma variants in Theorem 1 and Section 4. A drawing style D
is a predicate over the collection of all topological drawings, i.e., for each topological drawing of a
multigraph G we specify whether G is in drawing style D or not. We say that G is a multigraph
in drawing style D when G is a topological multigraph whose drawing is in drawing style D.

In order to prove our generalized Crossing Lemma, we follow the line of arguments of Pach
and Tóth [10] for branching multigraphs. Their main tool is a bisection theorem for branching
drawings, which easily generalizes to all separated drawings. We generalize their definition as
follows.

Definition 1 (D-bisection width) For a drawing style D the D-bisection width bD(G) of a
multigraph G in drawing style D is the smallest number of edges whose removal splits G into two
multigraphs, G1 and G2, in drawing style D with no edge connecting them such that |V (G1)|, |V (G2)| ≥
n/5.

We say that a drawing style is monotone if removing edges retains the drawing style, that is,
for every multigraph G in drawing style D and any edge removal, the resulting multigraph with its
inherited drawing from G is again in drawing style D. Note that we require a monotone drawing
style to be retained only after removing edges, but not necessarily after removing vertices. For
example, the branching drawing style is in general not maintained after removing a vertex, since
a closed curve formed by a pair of parallel edges might become empty. However, the separated,
single-crossing and locally starlike drawings styles (and therefore also the branching drawing style)
are monotone.

Given a topological multigraph G, we call any operation of the following form a vertex split :
(1) Replace a vertex v of G by two vertices v1 and v2 and (2) by locally modifying the edges in a
small neighborhood of v, connect each edge in G incident to v to either v1 or v2 in such a way that
no new crossing is created. Note that such a split is possible, even enforcing the degree of v1 to be
any specific number between 0 and the degree of v. We say that a drawing style is split-compatible
if performing vertex splits retains the drawing style, that is, for every multigraph G in drawing
style D and any vertex split, the resulting multigraph with its inherited drawing from G is again
in drawing style D. Again, the separated, single-crossing and locally starlike drawings styles (and
therefore also the branching drawing style) are split-compatible.

We are now ready to state our main result. Recall that ∆(G) denotes the maximum degree of
a vertex in G.

Theorem 2 (Generalized Crossing Lemma) Suppose D is a monotone and split-compatible
drawing style, and that there are constants k1, k2, k3 > 0 and b > 1 such that each of the following
holds for every n-vertex e-edge multigraph G in drawing style D:

(P1) If cr(G) = 0, then the edge count satisfies e ≤ k1 · n.

(P2) The D-bisection width satisfies bD(G) ≤ k2
√
cr(G) + ∆(G) · e+ n.
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(P3) The edge count satisfies e ≤ k3n
b.

Then there exists an absolute constant α > 0 such that for any n-vertex e-edge multigraph G in
drawing style D we have

cr(G) ≥ α
ex(b)+2

nx(b)+1
, provided e > (k1 + 1)n,

where x(b) := 1/(b− 1) and α is some positive constant depending only on b, k2, and k3.

Lemma 1 If there exist for arbitrarily large n multigraphs in drawing style D with n vertices and
e = Θ(nb) edges such that any two edges cross at most a constant number of times, then the bound
in Theorem 2 is asymptotically tight.

Proof: Consider such an n-vertex e-edge multigraph in drawing style D. Clearly, there are at
most O(e2) = O(n2b) crossings, while Theorem 2 gives with x(b) = 1/(b−1) that there are at least

Ω

(
ex(b)+2

nx(b)+1

)
= Ω

(
ex(b)+2

nb·x(b)

)
= Ω

(
nb·x(b)+2b

nb·x(b)

)
= Ω

(
n2b
)

crossings. 2

2.1 Proof of Theorem 2

Proof: [Proofidea] Before proving Theorem 2, let us sketch the rough idea. Suppose, for a contra-

diction, that G is a multigraph in drawing style D with fewer than α ex(b)+2

nx(b)+1 crossings, for a constant
α to be defined. First, we conclude from (P1) that G must have many edges. Then, by (P2), the
D-bisection width of G is small, and thus we can remove few edges from the drawing to obtain
two smaller multigraphs, G1 and G2, both also in drawing style D, which we call parts. We then
repeat splitting each large enough part into two parts each, again using (P2). Note that each part
has at most 4/5 of the vertices of the corresponding part in the previous step. We continue until
all parts are smaller than a carefully chosen threshold. As we removed relatively few edges during
this decomposition algorithm, the final parts still have a lot of edges, while having few vertices
each. This will contradict (P3) and hence complete the proof. 2

Now, let us start with the proof of Theorem 2. We define an absolute constant

α := min

 1

22x(b)+16
· 1

k22
· 1

k
x(b)
3

;
1

2(2x(b)+16)· x(b)+2
x(b)

· 1

k
2· x(b)+2

x(b)

2

· 1

k
x(b)+2
3

 .

Then a simple computation shows that

√
α · k2 ·

√
k
x(b)
3 · 2x(b)+6 ≤ 1

4
and (1)√

α
x(b)

x(b)+2 · k2 ·
√
k
x(b)
3 · 2x(b)+6 ≤ 1

4
, (2)

which will be important later.
Now let G̃ be a fixed multigraph in drawing style D with ñ vertices and ẽ > (k1 + 1)ñ edges.

Let G′ be an edge-maximal subgraph of G̃ on vertex set V (G̃) such that the inherited drawing
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of G′ has no crossings. Since D is monotone, G′ is in drawing style D. Hence, by (P1), for the
number e′ of edges in G′ we have e′ ≤ k1 ·n′ = k1 · ñ. Since G′ is edge-maximal crossing-free, each
edge in E(G̃)− E(G′) has at least one crossing with an edge in E(G′). Thus

cr(G̃) ≥ ẽ− e′ ≥ ẽ− k1ñ > ñ. (3)

In case (k1 + 1)ñ < ẽ ≤ βñ for β := α−1/(x(b)+2), we get

cr(G̃)
(3)
> ñ ≥ α · ẽ

x(b)+2

ñx(b)+1
,

as desired. To prove Theorem 2 in the remaining case ẽ > βñ we use proof by contradiction.
Therefore assume that the number of crossings in G̃ satisfies

cr(G̃) < α · ẽ
x(b)+2

ñx(b)+1
.

Let d denote the average degree of the vertices of G̃, that is, d = 2ẽ/ñ. For every vertex v ∈ V (G̃)
whose degree, deg(v, G̃), is larger than d, we perform ⌈deg(v, G̃)/d⌉ − 1 vertex splits so as to split
v into ⌈deg(v, G̃)/d⌉ vertices, each of degree at most d. At the end of the procedure, we obtain a
multigraph G with e = ẽ edges, n < 2ñ vertices, and maximum degree ∆(G) ≤ d = 2ẽ/ñ < 4e/n.
Moreover, as D is split-compatible, G is in drawing style D. For the number of crossings in G, we
have

cr(G) = cr(G̃) < α · ẽ
x(b)+2

ñx(b)+1
< 2x(b)+1α · e

x(b)+2

nx(b)+1
. (4)

Moreover, recall that

e > βñ > β
n

2
for β =

1

α1/(x(b)+2)
. (5)

We break G into smaller parts, according to the following procedure. At each step the parts form
a partition of the entire vertex set V (G).
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Decomposition Algorithm

Step 0.
▷ Let G0 = G,G0

1 = G,M0 = 1,m0 = 1.

Suppose that we have already executed Step i, and that the resulting graph
Gi consists of Mi parts, G

i
1, G

i
2, . . . , G

i
Mi

, each in drawing style D and having

at most (4/5)in vertices. Assume without loss of generality that each of the
first mi parts of G

i has at least (4/5)i+1n vertices and the remaining Mi −mi

have fewer. Letting n(Gi
j) denote the number of vertices of the part Gi

j , we
have

(4/5)i+1n(G) ≤ n(Gi
j) ≤ (4/5)in(G), 1 ≤ j ≤ mi.

Hence,
mi ≤ (5/4)i+1. (6)

Step i+ 1.
▷ If

(4/5)i <
1

(2k3)x(b)
· ex(b)

nx(b)+1
,

then stop.
▷ Else, for j = 1, 2, . . . ,mi, delete bD(G

i
j) edges from Gi

j , as guaranteed

by (P2), such that Gi
j falls into two parts, each of which is in drawing style D

and contains at most (4/5)n(Gi
j) vertices. Let G

i+1 denote the resulting graph
on the original set of n vertices.

Clearly, each part of Gi+1 has at most (4/5)i+1n vertices.

Suppose that the Decomposition Algorithm terminates in Step k + 1. If k > 0, then

(4/5)k <
1

(2k3)x(b)
· ex(b)

nx(b)+1
≤ (4/5)k−1. (7)

First, we give an upper bound on the total number of edges deleted from G. Using Cauchy-
Schwarz inequality, we get for any nonnegative numbers a1, . . . , am,

m∑
j=1

√
aj ≤

√√√√m

m∑
j=1

aj , (8)

and thus obtain that, for any 0 ≤ i ≤ k,

mi∑
j=1

√
cr(Gi

j)
(8)

≤

√√√√mi

mi∑
j=1

cr(Gi
j)

(6)

≤
√

(5/4)i+1
√
cr(G)

(4)
<
√
(5/4)i+1

√
2x(b)+1α · e

x(b)+2

nx(b)+1
. (9)

Letting e(Gi
j) and ∆(Gi

j) denote the number of edges and maximum degree in part Gi
j , respectively,
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we obtain similarly

mi∑
j=1

√
∆(Gi

j) · e(Gi
j) + n(Gi

j)
(8)

≤

√√√√√mi

mi∑
j=1

∆(Gi
j) · e(Gi

j) + n(Gi
j)


(6)

≤
√
(5/4)i+1

√
∆(G) · e+ n ≤

√
(5/4)i+1

√
4e

n
e+ n

<
√

(5/4)i+1

√
4e2

n
+

4e2

n
<
√
(5/4)i+1

3e√
n
, (10)

where we used in the last line the fact that n/2 < e.

Using a partial sum of a geometric series we get

k∑
i=0

(
√
5/4)i+1 =

(
√
5/4)k+2 − 1√
5/4− 1

− 1 <
(
√
5/4)3√

5/4− 1
· (
√

5/4)k−1 < 12 · (
√

5/4)k−1 (11)

Thus, as each Gi
j is in drawing style D and hence (P2) holds for each Gi

j , the total number of
edges deleted during the decomposition procedure is

k∑
i=0

mi∑
j=1

bD(Gi
j) ≤ k2

k∑
i=0

mi∑
j=1

√
cr(Gi

j) + ∆(Gi
j) · e(Gi

j) + n(Gi
j)

≤ k2

 k∑
i=0

mi∑
j=1

√
cr(Gi

j) +

k∑
i=0

mi∑
j=1

√
∆(Gi

j) · e(Gi
j) + n(Gi

j)


(9),(10)

≤ k2

(
k∑

i=0

√
(5/4)i+1

)(√
2x(b)+1α · e

x(b)+2

nx(b)+1
+

3e√
n

)
(11)
< k2 · 12

√
(5/4)k−1

(√
2x(b)+1α · e

x(b)+2

nx(b)+1
+

3e√
n

)
(7)
< k2 · 12

√
(2k3)x(b) ·

nx(b)+1

ex(b)

(√
2x(b)+1α · e

x(b)+2

nx(b)+1
+

3e√
n

)

< k2 · 36 ·
√

k
x(b)
3

(
2x(b)

√
αe+

√
2x(b)nx(b)

ex(b)−2

)
(5)
< k2 · 36 ·

√
k
x(b)
3 · 2x(b)

(
√
α+

√
1

βx(b)

)
e

(5)
= k2 · 36 ·

√
k
x(b)
3 · 2x(b)

(
√
α+

√
α

x(b)
x(b)+2

)
e

< k2 ·
√
k
x(b)
3 · 2x(b)+6

(
√
α+

√
α

x(b)
x(b)+2

)
e

(1),(2)

≤ e

2
. (12)
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By (12) the Decomposition Algorithm removes less than half of the edges of G if k > 0. Hence,
the number of edges of the graph Gk obtained in the final step of this procedure satisfies

e(Gk) >
e

2
. (13)

(Note that this inequality trivially holds if the algorithm terminates in the very first step, i.e.,
when k = 0.)

Next we shall give an upper bound on e(Gk) that contradicts (13). The number of vertices of
each part Gk

j of Gk satisfies

n(Gk
j ) ≤ (4/5)kn

(7)
<

(
1

(2k3)x(b)
· ex(b)

nx(b)+1

)
n =

(
e

2 · k3 · n

)x(b)

, 1 ≤ j ≤ Mk.

Hence

n(Gk
j )

b−1 <

(
e

2 · k3 · n

)x(b)(b−1)

=
e

2 · k3 · n
,

since x(b) = 1/(b− 1) and hence x(b)(b− 1) = 1.
As Gk

j is in drawing style D, (P3) holds for Gk
j and we have

e(Gk
j ) ≤ k3 · n(Gk

j )
b < k3 · n(Gk

j ) ·
e

2 · k3 · n
= n(Gk

j ) ·
e

2n
.

Therefore, for the total number of edges of Gk we have

e(Gk) =

Mk∑
j=1

e(Gk
j ) <

e

2n

Mk∑
j=1

n(Gk
j ) =

e

2
,

contradicting (13). This completes the proof of Theorem 2. 2

3 Separated Multigraphs

We derive our Crossing Lemma variants for separated multigraphs (Theorem 1) from the general-
ized Crossing Lemma (Theorem 2) presented in Section 2. Let us denote the separated drawing
style by Dsep and the separated and locally starlike drawing style by Dloc-star. In order to apply
Theorem 2, we shall find for D = Dsep, Dloc-star (1) the largest number of edges in a crossing-
free n-vertex multigraph in drawing style D, (2) an upper bound on the D-bisection width of
multigraphs in drawing style D, and (3) an upper bound on the number of edges in any n-vertex
multigraph in drawing style D.

As for crossing-free multigraphs Dsep and Dloc-star are equivalent to the branching drawing
style, we can rely on the following Lemma of Pach and Tóth.

Lemma 2 (Pach and Tóth [10]) Any n-vertex crossing-free branching multigraph, n ≥ 3, has
at most 3n− 6 edges.

Corollary 1 Any n-vertex crossing-free multigraph in drawing style Dsep or Dloc-star, n ≥ 3, has
at most 3n− 6 edges.
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Also we can derive the bounds on the D-bisection width from the corresponding bound for the
branching drawing style due to Pach and Tóth.

Lemma 3 (Pach and Tóth [10]) For any multigraph G in the branching drawing style D with
n vertices of degrees d1, d2, . . . , dn, and with cr(G) crossings, the D-bisection width of G satisfies

bD(G) ≤ 22

√√√√cr(G) +

n∑
i=1

d2i + n.

Lemma 4 For D = Dsep, Dloc-star any multigraph G in the drawing style D with n vertices, e
edges, maximum degree ∆(G), and with cr(G) crossings, the D-bisection width of G satisfies

bD(G) ≤ 44
√

cr(G) + ∆(G) · e+ n.

Proof: Let G be a multigraph in drawing style D. Our goal is that introducing a new vertex at
each crossing, the resulting crossing-free multigraph is separated. As this may fail in general, we
might have to redraw G first.

To begin, we remove all selfcrossings of edges by simply rerouting each such edges in a crossing-
free way within its original curve. Observe that this preserves the drawing style D. In fact, for
D = Dsep, no self-crossing edge has a parallel edge, and thus any pair of parallel edges remains
unaltered. Since the number of crossings is reduced, we may assume without loss of generality that
G has no selfcrossings.

Now suppose there is a simple closed curve γ formed by parts of only two edges e1 and e2,
which does not have a vertex in its interior. This can happen between two crossings of e1 and e2,
or for D ̸= Dloc-star between a common endpoint and a crossing of e1 and e2. Further assume that
the interior of γ is inclusion-minimal among all such curves, and note that this implies that an
edge crosses e1 along γ if and only if it crosses e2 along γ. Say e1 has at most as many crossings
along γ as e2. We then reroute the part of e2 on γ very closely along the part of e1 along γ so as to
reduce the number of crossings between e1 and e2. The rerouting does not introduce new crossing
pairs of edges. Hence, the resulting multigraph is again in drawing style D and has at most as
many crossings as G. Similarly, we proceed when γ has no vertex in its exterior.

Thus, we can redraw G to obtain a multigraph G′ in drawing style D with cr(G′) ≤ cr(G),
such that introducing a new vertex at each crossing of G′ creates a crossing-free multigraph that
is separated. Moreover, if G is locally starlike, then so is G′. I.e., G′ is in drawing style D and
additionally separated. Now, using precisely the same proof as in [10] (for Lemma 3), we can show
that

bD(G′) ≤ 22

√√√√cr(G′) +

n∑
i=1

d2i + n,

where d1, . . . , dn denote the degrees of vertices in G′. Thus with

n∑
i=1

d2i ≤ ∆(G)

n∑
i=1

di ≤ 2∆(G) · e

the result follows. 2

Finally, let us bound the number of edges in general (not necessarily crossing-free) multigraphs.
Again, we can utilize the result of Pach and Tóth for the branching drawing style.
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Lemma 5 (Pach and Tóth [10]) For any n-vertex e-edge, n ≥ 3, multigraph of maximum de-
gree ∆(G) in the branching drawing style we have ∆(G) ≤ 2n − 4 and e ≤ n(n − 2), and both
bounds are best-possible.

Lemma 6 For any n-vertex e-edge, n ≥ 3, multigraph G in drawing style D of maximum degree
∆(G) we have

(i) ∆(G) ≤ (n− 1)(n− 2) and e ≤
(
n
2

)
(n− 2) if D = Dsep,

(ii) ∆(G) ≤ 2n− 4 and e ≤ n(n− 2) if G if D = Dloc-star.

Moreover, each bound is best-possible.

Proof: Let G be a fixed n-vertex, n ≥ 3, e-edge crossing-free multigraph in drawing style D.

(i) Let D = Dsep. Clearly, every set of pairwise parallel edges contains at most n − 2 edges,
since every lens has to contain a vertex different from the two endpoints of these edges. This
gives ∆(G) ≤ (n − 1)(n − 2) and e ≤ n∆(G)/2 =

(
n
2

)
(n − 2). To see that these bounds are

tight, consider n points in the plane with no four points on a circle. Then it is easy to draw
between any two points n−2 edges as circular arcs such that the resulting multigraph (which
has

(
n
2

)
(n− 2) edges) is in separating drawing style.

(ii) Let D = Dloc-star. Consider any fixed vertex v in G and remove all edges not incident to v.
The resulting multigraph is branching and hence by Lemma 5 v has at most 2n− 4 incident
edges. Thus ∆(G) ≤ 2n − 4 and e ≤ n∆(G)/2 = n(n − 2). By Lemma 5, these bounds are
tight, even for the more restrictive branching drawing style.

2

We are now ready to prove that drawing styles Dloc-star and Dsep fulfill the requirements of the
generalized Crossing Lemma (Theorem 2), which lets us prove Theorem 1.

Proof: [Proof of Theorem 1] Let D = Dloc-star for (i) and D = Dsep for (ii). Clearly, these
drawing styles are monotone, i.e., maintained when removing edges, as well as split-compatible.
So it remains to determine the constants k1, k2, k3 > 0 and b > 1 such that (P1), (P2), and (P3)
hold for D.

(P1) holds with k1 = 3 for D = Dloc-star, Dsep by Corollary 1. (P2) holds with k2 = 44 for
D = Dloc-star, Dsep by Lemma 4. (P3) holds with k3 = 1 and b = 3 for D = Dsep by Lemma 6(i),
and with k3 = 1 and b = 2 for D = Dloc-star by Lemma 6(ii).

For b = 2 we have x(b) = 1/(b − 1) = 1. Thus Theorem 2 for D = Dloc-star gives an absolute
constant α > 0 such that for every n-vertex e-edge separated and locally starlike multigraph we
have cr(G) ≥ αex(b)+2/nx(b)+1 = αe3/n2, provided e > (k1 +1)n = 4n. Moreover, by Lemma 6(ii)
there are separated multigraphs with n vertices and Θ(n2) edges, any two of which cross at most
once. Hence, the term e3/n2 is best-possible by Lemma 1.

For b = 3 we have x(b) = 1/(b − 1) = 0.5. Thus Theorem 2 for D = Dsep gives an
absolute constant α > 0 such that for every n-vertex e-edge separated multigraph we have
cr(G) ≥ αex(b)+2/nx(b)+1 = αe2.5/n1.5, provided e > (k1 + 1)n = 4n. Moreover, by Lemma 6(i)
there are separated multigraphs with n vertices and Θ(n3) edges, any two of which cross at most
twice. Hence, the term e2.5/n1.5 is best-possible by Lemma 1. 2
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4 Other Crossing Lemma Variants

We use the generalized Crossing Lemma (Theorem 2) to reprove existing variants of the Crossing
Lemma due to Székely [11] and Pach, Spencer, and Tóth [7], respectively.

4.1 Low Multiplicity

Here we consider for fixed m ≥ 1 the drawing style Dm which is characterized by the absence of
m+1 pairwise parallel edges. In particular, any n-vertex multigraph G in drawing style Dm has at
most m

(
n
2

)
edges, i.e., (P3) holds for Dm with b = 2 and k3 = m. Moreover, if G is crossing-free

on n vertices and e edges, then e ≤ 3mn, i.e., (P1) holds for Dm with k1 = 3m.
Finally, we claim that (P2) holds for Dm with k2 being independent of m. To this end, let G

be any n-vertex e-edge multigraph in drawing style Dm. As already noted by Székely [11], we can
reroute all but one edge in each bundle in such a way that in the resulting multigraph G′ every
lens is empty, no two adjacent edges cross, and cr(G′) ≤ cr(G). (Simply route every edge very
closely to its parallel copy with the fewest crossings.) Clearly, G′ has drawing style Dm.

Now, we place a new vertex in each lens of G′, giving a multigraph G′′ with n′′ ≤ n+ e vertices
and e′′ = e edges, which is in the separated drawing style D. By Lemma 4, there is an absolute
constant k such that

bD(G′′) ≤ k
√
cr(G′′) + ∆(G′′) · e′′ + n′′.

As bDm
(G) ≤ bD(G′′), cr(G′′) = cr(G′) ≤ cr(G), ∆(G′′) = ∆(G), and ∆(G) + 1 ≤ 2∆(G) we

conclude that
bDm

(G) ≤ 2k
√
cr(G) + ∆(G) · e+ n.

In other words, (P2) holds for drawing style Dm with an absolute constant k2 = 2k that is
independent of m.

Note that for b = 2, we have x(b) = 1. We conclude with Theorem 2 that there is an absolute
constant α′ such that for every m and every n-vertex e-edge multigraph G in drawing style Dm

we have

cr(G) ≥ α′ · 1

k
x(b)
3

· e
x(b)+2

nx(b)+1
= α′ · e3

mn2
, provided e > (3m+ 1)n,

which is the statement of Theorem B; except that we slightly improved the assumption of e > 5mn
in Theorem B to e > (3m+ 1)n.

4.2 High Girth

Theorem E (Pach, Spencer, Tóth [7]) For any r ≥ 1 there is an absolute constant αr > 0
such that for any n-vertex e-edge graph G of girth larger than 2r we have

cr(G) ≥ αr ·
er+2

nr+1
, provided e > 4n.

Here we consider for fixed r ≥ 1 the drawing style Dr which is characterized by the absence
of cycles of length at most 2r. In particular, any multigraph G in drawing style Dr has neither
loops nor multiple edges. Hence (P1) holds for drawing style Dr with k1 = 3. Secondly, drawing
style Dr is more restrictive than the separated drawing style and thus also (P2) holds for Dr.
Moreover, any n-vertex graph in drawing style Dr has O(n1+1/r) edges [2], i.e., (P3) holds for Dr

with b = 1 + 1/r. Finally, Dr is obviously a monotone and split-compatible drawing style.
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Thus with x(b) = 1/(b − 1) = r, Theorem 2 immediately gives the existence of an absolute
constant αr such that

cr(G) ≥ αr ·
er+2

nr+1
, provided e > 4n

for any n-vertex e-edge multigraph in drawing style Dr, which is the statement of Theorem E.

5 Conclusions

Let G be a topological multigraph with n vertices and e > 4n edges. We have shown that
cr(G) ≥ αe3/n2 if G is separated and locally starlike, which generalizes the result for branching
multigraphs [10], which are additionally single-crossing. Moreover, if G is only separated, then the
lower bound drops to cr(G) ≥ αe2.5/n1.5, which is tight up to the constant factor, too. It remains
open to determine a best-possible Crossing Lemma for separated and single-crossing multigraphs.
This would follow from our generalized Crossing Lemma (Theorem 2), where the missing ingredient
is the determination of the smallest b such that every separated and single-crossing multigraph G
on n vertices has O(nb) edges. It is easy to see that the maximum degree ∆(G) may be as high as
(n − 1)(n − 2), but we suspect that any such G has O(n2) edges. This has been recently verified
up to a logarithmic factor, see [4].
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