
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 25, no. 1, pp. 311–352 (2021)
DOI: 10.7155/jgaa.00560

Schematic Representation of Large Biconnected Graphs

Giuseppe Di Battista 1 Fabrizio Frati 1 Maurizio Patrignani 1 Marco Tais 1

1Department of Engineering, Roma Tre University, Rome, Italy

Submitted: November 2020 Reviewed: February 2021 Revised: March 2021

Accepted: April 2021 Final: April 2021 Published: April 2021

Article type: Regular paper Communicated by: G. Liotta

Abstract. Suppose that a biconnected graph is given, consisting of a large com-
ponent plus several other smaller components, each separated from the main compo-
nent by a separation pair. We investigate the existence and the computation time of
schematic representations of the structure of such a graph where the main component
is drawn as a disk, the vertices that take part in separation pairs are points on the
boundary of the disk, and the small components are placed outside the disk and are
represented as non-intersecting lunes connecting their separation pairs. We consider
several drawing conventions for such schematic representations, according to different
ways to account for the size of the small components. We map the problem of testing for
the existence of such representations to the one of testing for the existence of suitably
constrained 1-page book-embeddings and propose several polynomial-time algorithms.

1 Introduction

Many of today’s applications are based on large-scale networks, having billions of vertices and
edges. This spurred an intense research activity devoted to finding methods for the visualization
of very large graphs.

Several recent contributions focus on algorithms that produce drawings where either the graph
is only partially represented or it is schematically visualized. Examples of the first type are proxy
drawings [7, 13], where a graph that is too large to be fully visualized is represented by the drawing
of a much smaller proxy graph that preserves the main features of the original graph. Examples
of the second type are graph thumbnails [16], where each connected component of a graph is
represented by a disk and biconnected components are represented by disks contained into the
disk of the connected component they belong to.
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(a) (b)

Figure 1: Schematic representations of biconnected graphs. (a) A max-constrained book-
embedding. (b) A two-dimensional book-embedding; for simplicity the vertices are aligned on
a straight-line.

Among the characteristics that are emphasized by the above mentioned drawings, a crucial role
is played by connectivity. Following this line of thought, we study schematic representations of
graphs that emphasize their connectivity features. We start from the following observation: quite
often, real-life very large graphs have one large connected component and several much smaller
other components (see, e.g., [5, 12]). This happens to biconnected and triconnected components
too (see, e.g., [2] for an analysis of the graphs in [9]).

Hence, we concentrate on a single biconnected graph (that can be a biconnected component
of a larger graph) consisting of a large component plus several other smaller components, each
separated from the large component by a separation pair. We propose to represent the large
component as a disk, to draw the vertices of such a component that take part in separation pairs
as points on the boundary of the disk, and to represent the small components as non-intersecting
lunes connecting their separation pairs placed outside the disk. See Figure 1. This representation
is designed to emphasize the arrangement of the components with respect to the separation pairs.
For simplicity, we assume that each separation pair separates just one small component from the
large one.

More formally, our input is a weighted graph G = (V,E, ω), where each vertex in V participates
in at least one separation pair, each edge (u, v) of E represents a small component separated from
the large one by the separation pair {u, v}, and ω assigns a positive weight to each edge. The weight
of an edge represents a feature that should be emphasized in the schematic representation. As an
example, it might represent the number of vertices or the number of edges of the corresponding
small component.

We study one-dimensional and two-dimensional representations. In both cases, the vertices of
G form a sequence of linearly ordered points that are placed along the boundary of a disk. In the
one-dimensional representations, we draw each edge as an arc and impose that arcs do not cross.
Also, consider two edges (u, v) and (x, y) and suppose that the weight of (u, v) is larger than that of
(x, y). Then we impose that (u, v) is drawn outside (x, y), so to represent the weight by means of the
edge length. We call max-constrained book-embedding this type of representation (see Figure 1a).
In Section 3, we present an optimal O(n log n)-time algorithm that tests whether an n-vertex
graph admits such a representation. We also study a more constrained type of representations.
Namely, let (u, v) be an edge and consider the sequence of edges (u1, v1), . . . , (uk, vk) that are

drawn immediately below (u, v); then we may want that ω(u, v) >
∑k
i=1 ω(ui, vi). We call sum-

constrained book-embedding this type of representation. In Section 4, we present an O(n3 log n)-time
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algorithm that tests whether an n-vertex graph admits such a representation. Both max- and sum-
constrained book-embeddings are 1-page book-embeddings satisfying specific constraints. Hence,
a necessary condition for G to admit these types of representations is outerplanarity [1].

Since there exist weighted outerplanar graphs that admit neither a max- nor a sum-constrained
book-embedding (a cycle with three edges that all have the same weight is an example of such a
graph), we study how to represent without crossings a weighted outerplanar graph with edges that
have, in addition to their length, also a thickness: each edge is represented with a lune with area
proportional to its weight. We call two-dimensional book-embeddings these representations. See
Figure 1b. First, in Section 5, we show that all weighted outerplanar graphs admit two-dimensional
book-embeddings and we discuss the area requirements of such representations. Second, in Sec-
tion 6, we show that, if a finite resolution rule is imposed, then there are graphs that do not admit
any two-dimensional book-embedding and we present an O(n4)-time algorithm that tests whether
an n-vertex graph admits such a representation.

Conclusions and open problems are presented in Section 7.
Throughout the paper, we assume that basic operations on input weights, like the comparison,

the addition, or the division between two of such weights, can be performed in O(1) time per oper-
ation. This assumption can indeed be made by analyzing our algorithms in the real-RAM model,
which is widely used in computational geometry and which allows one to handle basic operations
on real numbers in O(1) time per operation. However, let us mention that our algorithms for
constructing one-dimensional representations of weighted graphs only require to perform compar-
isons and additions between pairs of input weights; the number of bits needed to perform one of
such operations can be upper bounded by a constant factor times the number of bits needed to
represent two input weights, hence employing the real-RAM model for analyzing these algorithms
might even be considered as an overkill.

2 Preliminaries

We introduce some definitions and preliminaries.
Block-cut-vertex tree. A cut-vertex in a connected graph G is a vertex whose removal

disconnects G. A graph with no cut-vertex is biconnected. A block of G is a maximal (in terms
of vertices and edges) subgraph of G which is biconnected. The block-cut-vertex tree T of G [6, 8]
has a B-node for each block of G and a C-node for each cut-vertex of G; a B-node b and a C-node
c are adjacent if c is a vertex of the block of G represented by b. We denote by G(b) the block of
G represented by a B-node b. We often identify a C-node of T and the corresponding cut-vertex
of G.

Planar drawings. A drawing of a graph maps each vertex to a point in the plane and each
edge to a Jordan arc between its end-vertices. A drawing is planar if no two edges intersect, except
at common end-vertices. A planar drawing partitions the plane into connected regions, called faces.
The bounded faces are internal, while the unbounded face is the outer face.

Outerplanar graphs. An outerplanar drawing is a planar drawing such that all the vertices
are incident to the outer face. An outerplanar graph is a graph that admits an outerplanar drawing.
Two outerplanar drawings are equivalent if the clockwise order of the edges incident to each vertex
is the same in both drawings. An outerplane embedding is an equivalence class of outerplanar
drawings. A biconnected outerplanar graph has a unique outerplane embedding [11, 14]. Given
the outerplane embedding Γ of an n-vertex biconnected outerplanar graphG, we define the extended
dual tree T of Γ as follows (refer to Figure 2). We first construct the dual graph D of Γ; we then
split the vertex of D corresponding to the outer face of Γ into n degree-1 vertices, each incident to
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Figure 2: The extended dual tree T of an outerplane embedding of a 2-connected outerplanar graph
G; the vertices and the edges of T are represented by white disks and thick curves, respectively.

an edge that is dual to an edge of G incident to the outer face of Γ. Note that T can be constructed
in O(n) time. Further, each edge of T is dual to an edge of G; moreover, the edges incident to
leaves of T are dual to edges incident to the outer face of Γ.

Book-embeddings. Given a graph G and a linear order L of its vertices, we write u ≺L v
to represent the fact that u precedes v in L; we say that two edges (u, v) and (w, z) of G cross if
u ≺L w ≺L v ≺L z. A 1-page book-embedding of a graph is a linear order L of its vertices such
that no two edges cross. The flip of a 1-page book-embedding L is a 1-page book-embedding L′
such that, for any pair of distinct vertices u and v, we have that u ≺L′ v if and only if v ≺L u.

For a linear order L of the vertices of a graph, by u �L v we mean that u ≺L v or u = v. For
a pair of distinct edges e1 = (u1, v1) and e2 = (u2, v2) of G such that u1 �L u2 ≺L v2 �L v1, we
say that e2 is nested into e1 (denoted as e2 c e1) and e1 wraps around e2 (denoted as e1 b e2).
A subgraph G′ of G lies under (resp. lies strictly under) an edge (u, v) of G, where u ≺L v, if for
every vertex w of G′, we have u �L w �L v (resp. u ≺L w ≺L v). Then a subgraph G′ of G lies
under (resp. lies strictly under) a subgraph G′′ of G if there exists an edge (u, v) of G′′ such that
G′ lies under (resp. lies strictly under) (u, v).

Consider a vertex v in a book-embedding L. The lowest-left edge incident to v is the edge
(u, v) such that: (i) u ≺L v and (ii) no neighbor w of v is such that u ≺L w ≺L v; note that the
lowest-left edge incident to v is undefined if no neighbor of v precedes v in L. The lowest-right
edge incident to v is defined analogously.

In the rest of this paper, a weighted graph G = (V,E, ω) is a graph equipped with a function ω
that assigns a positive weight to each edge of E.

3 max-Constrained Book-Embeddings

In this section, we study a first type of one-dimensional representations. We are given a weighted
graph G = (V,E, ω). We draw the vertices in V as a sequence of points linearly ordered on the
boundary of a disk and the edges in E as non-intersecting arcs positioned outside the disk, placing
edges with larger weight outside edges of smaller weight.

More formally, a max-constrained book-embedding of a weighted outerplanar graphG = (V,E, ω)
is a 1-page book-embedding L such that, for any two distinct edges e1 = (u, v) and e2 = (x, y)
in E with u �L x ≺L y �L v, we have that ω(e1) > ω(e2). That is, if e1 wraps around e2, then
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ω(e1) > ω(e2). We do not specify the actual drawing of the edges since, if G has a max-constrained
book-embedding, then they can be easily represented by non-crossing Jordan arcs. An example
of max-constrained book-embedding is in Figure 1a. Observe, for instance, how the edges (5, 6)
and (6, 7) that have weight 5 and 6, respectively, are below the edge (5, 7) that has weight 11 and
how such edge is below the edge (3, 7) whose weight is 12. We have the following preliminary
observation.

Property 1 Let G = (V,E, ω) be a weighted outerplanar graph and let eM ∈ E be an edge such
that ω(eM ) ≥ ω(e), for every e ∈ E. In any max-constrained book-embedding of G, there exists no
edge that wraps around eM .

The goal of this section is to prove the following theorem.

Theorem 1 Let G = (V,E, ω) be an n-vertex weighted outerplanar graph. There exists an
O(n log n)-time algorithm that tests whether G admits a max-constrained book-embedding and,
in the positive case, constructs such an embedding.

We call max-be-drawer the algorithm in the statement of Theorem 1. We first describe such
an algorithm for biconnected graphs and later extend it to simply-connected graphs. We have the
following structural lemma.

Lemma 1 Let G = (V,E, ω) be an n-vertex biconnected weighted outerplanar graph. If there exists
a max-constrained book-embedding L of G then

1. there is a single edge eM ∈ E of maximum weight;

2. eM is incident to the outer face of the outerplane embedding of G;

3. the endvertices of eM are the first and the last vertex of L; and

4. L is unique, up to a flip.

Proof: Suppose that a max-constrained book-embedding L of G exists, as otherwise there is
nothing to prove. Since G is a biconnected outerplanar graph, there exists an edge e′ of G such
that e′ b e in L, for each e ∈ E such that e 6= e′; note that L induces an outerplanar drawing of G
such that e′ is incident to the outer face. By Property 1 and by the fact that L is a max-constrained
book-embedding, we have that ω(e′) > ω(e) for any edge e 6= e′ in E. Therefore e′ = eM is the
unique edge of G with maximum weight. Since eM b e, for each edge e ∈ E such that e 6= eM , it
follows that the end-vertices of eM are the first and the last vertex in L. Since G is biconnected,
it has a unique 1-page book-embedding in which the end-vertices of eM are the first and the last
vertex [11, 14]. Therefore, L is unique, up to a flip. �

A first algorithmic contribution is given in the following lemma.

Lemma 2 Let G = (V,E, ω) be an n-vertex biconnected weighted outerplanar graph. There exists
an O(n)-time algorithm that tests whether G admits a max-constrained book-embedding and, in
the positive case, constructs such an embedding in O(n) time.

Proof: First, we determine in O(n) time whether G has a unique edge eM with maximum weight;
if not, by Lemma 1 we can conclude that G admits no max-constrained book-embedding. By [3,
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10, 15], we can determine in O(n) time the unique, up to a flip, 1-page book-embedding L such
that eM b e for each edge e ∈ E with e 6= eM .

It remains to test whether ≺L meets the requirements of a max-constrained book-embedding.
We construct in O(n) time the extended dual tree T of the outerplane embedding of G. We root
T at the leaf ρ such that the edge of T incident to ρ is dual to eM . We visit T and perform the
following checks in total O(n) time. Consider an edge (α, β) of T such that α is the parent of
β and let e be the edge of G dual to (α, β). Consider the edges (β, γ1), . . . , (β, γk) of T from β
to its children and let e1, . . . , ek be the edges of G dual to (β, γ1), . . . , (β, γk), respectively. For
i = 1, . . . , k, we check whether ω(e) > ω(ei). If one of these checks fails, we conclude that G admits
no max-constrained book-embedding, otherwise L is a max-constrained book-embedding of G. �

We now show how Algorithm max-be-drawer deals with a not necessarily biconnected n-
vertex outerplanar graph G. We can assume without loss of generality that G is connected, given
that G admits a max-constrained book-embedding if and only if every connected component of it
admits a max-constrained book-embedding.

First, we compute in O(n) time the block-cut-vertex tree T of G [6, 8]. We root T at any
block b∗ containing an edge eM with maximum weight. For a B-node b of T , we denote by G+(b)
the subgraph of G consisting of all the blocks G(b′) such that b′ is a B-node in the subtree of T
rooted at b. Also, for each B-node b of T we compute in overall O(n) time the value W+(b) of the
maximum weight of an edge of G+(b).

We visit (in arbitrary order) T . For each B-node b, we perform the following checks and
computations.

1. We check whether G(b) admits a max-constrained book-embedding; this can be done in a
time that is linear in the number of vertices of G(b), by Lemma 2. If not, we conclude that
G admits no max-constrained book-embedding (Failure Condition 1). If yes, we compute a
max-constrained book-embedding (again by Lemma 2) and call it L(b).

2. If b 6= b∗, consider the C-node c that is the parent of b in T . We check in constant time
whether c is the first or the last vertex of L(b). If not, we conclude that G admits no max-
constrained book-embedding (Failure Condition 2). Otherwise, we possibly flip in constant
time L(b) so that c is the first vertex of L(b).

3. For each C-node c of T that is adjacent to b, we store two values `b(c) and rb(c). These
are the weights of the lowest-left and lowest-right edges incident to c in L(b), respectively;
if a vertex preceding or following c in L(b) does not exist, then we set `b(c) or rb(c) to ∞,
respectively. This can be done in constant time for each C-node.

Algorithm max-be-drawer now performs a bottom-up visit of T . After visiting a B-node b,
we either conclude that G admits no max-constrained book-embedding or we determine a linear
order L+(b) for the vertices in G+(b) such that, if b 6= b∗, the parent of b in T is the first vertex of
L+(b). This is done as follows.

If b is a leaf of T , then we set in constant time L+(b) = L(b).
If b is an internal node of T , then we proceed as follows. We initialize L+(b) to L(b); recall

that the parent of b in T , if b 6= b∗, is the first vertex of L(b).
Let c1, . . . , ck be the C-nodes children of b in T . For each i = 1, . . . , k, let bi,1, . . . , bi,mi

be the
B-nodes children of ci. Since we already visited bi,j , for i = 1, . . . , k and j = 1, . . . ,mi, we have a
linear order L+(bi,j) of the vertices of G+(bi,j) such that ci is the first vertex of L+(bi,j). We now
process each C-node ci independently, for each i = 1, . . . , k.
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Figure 3: A figure to illustrate how an ordering L+(bi,j) is inserted into an ordering L+(b). (a) The
ordering L+(b) before the insertion of L+(bi,j); only ci and the lowest-left and lowest-right edges
incident to ci in L+(b) are shown; in this example, L(ci) = 25 and R(ci) = 15. (b) The ordering
L+(b) if L+(bi,j) is inserted to the right of ci, as it happens if G+(bi,j) is such that W+(bi,j) = 10;
in this example, rbi,j (ci) = 5. (c) The ordering L+(b) if L+(bi,j) is inserted to the left of ci, as it
happens if G+(bi,j) is such that W+(bi,j) = 20; in this example, rbi,j (ci) = 7.

We order the B-nodes bi,1, . . . , bi,mi
children of ci in decreasing order of value W+(bi,j); that

is, W+(bi,1) ≥ W+(bi,2) ≥ · · · ≥ W+(bi,mi
). This can be done in O(mi logmi) time. We now

process the B-nodes bi,1, . . . , bi,mi
in this order (see Figure 3). When processing a node bi,j , for

j = 1, . . . ,mi, we insert the vertices of G+(bi,j) into the ordering L+(b), by replacing ci with either
L+(bi,j) (that is, L+(bi,j) is inserted to the right of ci) or the flip of L+(bi,j) (that is, L+(bi,j) is
inserted to the left of ci). This operation can be performed in constant time. Further, the choice
on whether we insert L+(bi,j) to the left or to the right of ci is performed as described in the
following.

We use two variables, called L(ci) and R(ci), and maintain the invariant that, while processing
the B-nodes bi,1, . . . , bi,mi

, they represent the weight of the lowest-left and lowest-right edges inci-
dent to ci in L+(b). The variables L(ci) and R(ci) are initialized to `b(ci) and rb(ci), respectively,
hence the invariant is satisfied before any B-node bi,j is processed.

• If W+(bi,j) ≥ L(ci) and W+(bi,j) ≥ R(ci), then we conclude that G admits no max-
constrained book-embedding (Failure Condition 3).

• Otherwise, if W+(bi,j) < R(ci), as in Figs. 3a and 3b, then we insert the vertices of G+(bi,j)
into the ordering L+(b), by replacing ci with L+(bi,j); we update R(ci) with the value of
rbi,j (ci).

• Otherwise, we have W+(bi,j) ≥ R(ci) and W+(bi,j) < L(ci), as in Figs. 3a and 3c; then
we insert the vertices of G+(bi,j) into the ordering L+(b), by replacing ci with the flip of
L+(bi,j); we update L(ci) with the value of rbi,j (ci).

When visiting the root b∗ of T , the algorithm computes an order L := L+(b∗) of all the vertices
of G.

The next two lemmata prove the correctness of Algorithm max-be-drawer.
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Lemma 3 If Algorithm max-be-drawer constructs an ordering L, then L is a max-constrained
book-embedding of G.

Proof: We prove, by induction on T , that the linear order L+(b) constructed by the algorithm is
a max-constrained book-embedding of G+

b . This implies the statement of the lemma with b = b∗.
Our inductive proof also proves the following property for the constructed book-embeddings: If
b 6= b∗, then the parent c of b is the first vertex in L+(b).

In the base case, b is a leaf of T . Since Algorithm max-be-drawer did not terminate because
of Failure Condition 1, by Lemma 2 we have that the order L+(b) = L(b) constructed by the
algorithm is a max-constrained book-embedding of G+(b) = G(b). Further, since Algorithm max-
be-drawer did not terminate because of Failure Condition 2, we have that the parent c of b is
the first vertex in L+(b) = L(b).

In the inductive case, b is a non-leaf node of T . Let c1, . . . , ck and, for i = 1, . . . , k, let
bi,1, . . . , bi,mi

be defined as in the algorithm’s description. By the property, we have that the linear
order L+(bi,j) is such that ci is the first vertex of L+(bi,j), for each i = 1, . . . , k and j = 1, . . . ,mi.
Further, since the algorithm did not terminate because of Failure Condition 2, we have that, if
b 6= b∗, the parent c of b is the first vertex in L(b). Recall that the algorithm initializes L+(b) = L(b).

Recall that the algorithm processes independently each C-node ci child of b. In order to argue
that the insertion of the orders L+(bi,j) into the order L+(b) results in a max-constrained book-
embedding ofG+(b) satisfying the property, we show that, for each j = 1, . . . ,mi, after the insertion
of the order L+(bi,j) into L+(b), we have that L(ci) and R(ci) are the weights of the lowest-left
and of the lowest-right edges incident to ci, respectively (where L(ci) = ∞ or R(ci) = ∞ if the
lowest-left edge of ci or the lowest-right edge of ci is undefined, respectively). Observe that this
is the case before the insertion of any order L+(bi,j) into L+(b), given that L(ci) and R(ci) are
initialized to `b(ci) and rb(ci), respectively.

When we insert an order L+(bi,j) into L+(b), we insert L+(bi,j) to the right of ci only if
W+(bi,j) < R(ci). Since R(ci) is the weight of the lowest-right edge incident to ci in L+(b) before
the insertion of L+(bi,j) and since all the edges of G+(bi,j) lie under the lowest-right edge incident
to ci, no edge of G+(bi,j) has a weight larger than the weight of the lowest-right edge incident to
ci. Then L+(b) after the insertion is a max-constrained book-embedding, given that L+(b) before
the insertion and L+(bi,j) are both max-constrained book-embeddings. Note that the lowest-right
edge incident to ci after the insertion in L+(b) is the lowest-right edge incident to ci in L+(bi,j),
and indeed the algorithm updates R(ci) = rbi,j (ci), which is the weight of such an edge. For each
cut-vertex cj different from ci, both the lowest-right edge and the lowest-left edge incident to cj
remain unchanged and so do the values L(cj) and R(cj). The case in which L+(bi,j) is inserted
to the left of ci in L+(b) is analogous. Observe that, since Algorithm max-be-drawer did not
terminate because of Failure Condition 3, we have that W+(bi,j) < L(ci) or W+(bi,j) < R(ci)
holds true.

If b 6= b∗, then, since the algorithm did not terminate because of Failure Condition 2, the parent
c of b is the first vertex of L(b). Since the only block of G+(b) vertex c belongs to is G(b), we have
that c is the first vertex of L+(b). �

Lemma 4 If Algorithm max-be-drawer fails, then G does non admit a max-constrained book-
embedding.

Proof: Suppose that Algorithm max-be-drawer fails. This can happen because of Failure
Condition 1, 2, or 3. We discuss the three cases.
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Suppose that Failure Condition 1 is verified for a B-node b of T . It is immediate that a max-
constrained book-embedding of G restricted to the vertices and edges of G(b) would yield a max-
constrained book-embedding of G(b). Hence, if G(b) admits no max-constrained book-embedding,
neither does G.

eM

e′M

c

p

Figure 4: Illustration for the proof of the extreme-parent property. The shaded region represents
G+(b).

In order to prove that, if Failure Condition 2 is verified for a B-node b 6= b∗ of T , then G
admits no max-constrained book-embedding, we prove the following stronger statement (which
we call the extreme-parent property). Let L be any max-constrained book-embedding of G, let b
be any B-node of T different from b∗, let c be the C-node parent of b in T , and let L+(b) be the
max-constrained book-embedding of G+(b) obtained by restricting L to the vertices and edges of
G+(b). Then c is the first or the last vertex of L+(b). The extreme-parent property implies that,
if Failure Condition 2 is verified for a B-node b 6= b∗ of T , that is, if the parent c of b is neither
the first nor the last vertex in the unique (up to a flip) max-constrained book-embedding of G(b),
then G admits no max-constrained book-embedding.

We now prove the extreme-parent property. Suppose, for a contradiction, that c is neither the
first nor the last vertex of L+(b); refer to Figure 4. We show that there exists a path p connecting
c with one of the end-vertices of eM (recall that eM is an edge of G with maximum weight and
belongs to G(b∗)) that crosses an edge e′M of G; this contradiction to the planarity of the book-
embedding proves the extreme-parent property. The proof is as follows. First, since c belongs to
exactly one block of G+(b), namely G(b), and since G+(b) is connected, the assumption that c is
neither the first nor the last vertex of L+(b) implies that there exists an edge e′M of G+(b) whose
end-vertices are one before and one after c in L+(b). Consider any path p in G whose end-vertices
are c and one of the end-vertices of eM different from c. Since c is the cut-vertex parent of b and
eM belongs to G(b∗), where b∗ is the root of T , we have that neither p nor eM contains any vertex
of G+(b) except, possibly, for c; in particular, neither p nor eM contains either of the end-vertices
of e′M . Since ω(eM ) ≥ ω(e′M ), we have that eM is not nested into e′M in L+(b). Hence, p crosses
e′M , a contradiction which proves the extreme-parent property.

Suppose that Failure Condition 3 is verified for a B-node bi,j which is a child of a C-node ci
whose parent B-node is b, that is, W+(bi,j) ≥ L(ci) and W+(bi,j) ≥ R(ci). We prove that this
implies that G admits no max-constrained book-embedding. In order to do that, we are going to
exploit the extreme-parent property, as well as the following observation: Let b′ 6= b∗ be a B-node
of T , let c′ be the parent of b′ in T , and let L+(b′) be a max-constrained book-embedding of
G+(b′) such that c′ is the first (resp. last) vertex of L+(b′); then the weight of the lowest-right
(resp. lowest-left) edge incident to c′ in L+(b′) is equal to the smallest weight of any edge incident
to c′ in G+(b′). Indeed, if the observation were not true, the smallest-weight edge incident to c′

in G+(b′) would wrap around a different edge incident to c′ in L+(b′), which would violate the
conditions of a max-constrained book-embedding. Let w+(b′) denote the minimum weight of any
edge incident to the parent c′ of b′ in G+(b′).

Recall that L(ci) and R(ci) are the weights of the lowest-left and lowest-right edges incident
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to ci in L+(b) before the temptative insertion of L(bi,j). Let bi,` and bi,r the B-nodes such that
L+(bi,`) and L+(bi,r) were the last orders inserted to the left and to the right of ci, respectively,
before processing bi,j . Observe that one or both of bi,` and bi,r may not exist. We distinguish four
cases.

• Suppose first that both bi,` and bi,r exist. Then the lowest-left and lowest-right edges incident
to ci in L+(b) before the temptative insertion of L(bi,j) belong to G+(bi,`) and G+(bi,r), re-
spectively. Then, by the above observation, the inequalities W+(bi,j) ≥ L(ci) and W+(bi,j) ≥
R(ci) of Failure Condition 3 imply that W+(bi,j) ≥ w+(bi,`) and W+(bi,j) ≥ w+(bi,r).

By the extreme-parent property, in any max-constrained book-embedding of G, the vertex ci
is the first or the last vertex among the ones of G+(bi,`), of G+(bi,r), and of G+(bi,j); that is,
G+(bi,`) lies entirely to the left or entirely to the right of ci, and so do G+(bi,r) and G+(bi,j).

Further, G+(bi,`) and G+(bi,r) cannot lie on the same side of ci. Namely, because of the
ordering of the B-nodes that are children of ci, we have that W+(bi,`) ≥ W+(bi,j); by
W+(bi,j) ≥ w+(bi,r) it then follows that W+(bi,`) ≥ w+(bi,r), and hence G+(bi,`) cannot lie
under G+(bi,r). Analogously, we have that W+(bi,r) ≥ W+(bi,j) ≥ w+(bi,`), hence G+(bi,r)
cannot lie under G+(bi,`).

By W+(bi,j) ≥ w+(bi,`), it directly follows that G+(bi,j) cannot lie under G+(bi,`). Moreover,
G+(bi,`) cannot lie under G+(bi,j), given that W+(bi,`) ≥ W+(bi,j) ≥ w+(bi,j). Hence,
G+(bi,`) and G+(bi,j) cannot lie on the same side of ci. An analogous proof shows that
G+(bi,r) and G+(bi,j) cannot lie on the same side of ci.

Since at least two out of G+(bi,`), G
+(bi,r), and G+(bi,j) lie on the same side of ci, it follows

that G admits no max-constrained book-embedding.

• Suppose next that bi,` exists and bi,r does not. Then the lowest-left edge incident to ci in
L+(b) before the temptative insertion of L(bi,j) belongs to G+(bi,`). By the above observa-
tion, the inequality W+(bi,j) ≥ L(ci) of Failure Condition 3 implies that W+(bi,j) ≥ w+(bi,`).
Further, since W+(bi,j) ≥ R(ci), we have that the lowest-right edge er incident to ci in L+(b)
before the temptative insertion of L(bi,j) exists (as otherwise we would have R(ci) =∞) and
belongs to G(b); then W+(bi,j) ≥ R(ci) implies that W+(bi,j) ≥ ω(er).

By the extreme-parent property, in any max-constrained book-embedding of G, the graph
G+(bi,`) lies entirely to the left or entirely to the right of ci, and so does G+(bi,j).

By W+(bi,j) ≥ w+(bi,`), it directly follows that G+(bi,j) cannot lie under G+(bi,`). Moreover,
G+(bi,`) cannot lie under G+(bi,j), given that W+(bi,`) ≥ W+(bi,j) ≥ w+(bi,j). Hence,
G+(bi,`) and G+(bi,j) cannot lie on the same side of ci.

Further, neitherG+(bi,j) norG+(bi,`) can lie under er. This follows byW+(bi,`) ≥W+(bi,j) ≥
ω(er). Hence, neither G+(bi,j) nor G+(bi,`) can lie under G(b).

Finally, G(b) cannot lie under G+(bi,j) or G+(bi,`), as this would violate the extreme-parent
property (if b 6= b∗) or would imply that eM is nested into an edge of G+(bi,j) or G+(bi,`) (if
b = b∗).

• The case in which bi,r exists and bi,` does not is symmetric to the previous one.

• Finally, suppose that neither bi,` nor bi,r exists. Since W+(bi,j) ≥ L(ci) and W+(bi,j) ≥
R(ci), it follows that the lowest-left and lowest-right edges incident to ci in the unique (up to
a flip) embedding L(b) of G(b) both exist and have a weight not larger than W+(bi,j). Hence,
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(a) (b)

Figure 5: Schematic representations of biconnected graphs. (a) A sum-constrained book-
embedding. (b) A minres-constrained two-dimensional book-embedding; for simplicity the vertices
are aligned on a straight-line.

G+(bi,j) cannot lie under G(b); further, ci is neither the first nor the last vertex of L(b) (as
otherwise we would have L(ci) = ∞ or R(ci) = ∞, respectively). The latter, together with
the biconnectivity of G(b), also implies that G(b) cannot lie under G+(bi,j). It follows that
G admits no max-constrained book-embedding.

This concludes the proof of the lemma. �

Lemmata 3 and 4 prove the correctness of Algorithm max-be-drawer. Its running time is
dominated by the O(mi logmi)-time sorting that is performed on the mi children of each C-node
ci. Hence, the overall time complexity is O(n log n). This concludes the proof of Theorem 1.

The upper bound in Theorem 1 is tight, as computing a max-constrained book-embedding has
a time complexity that is lower-bounded by that of a sorting algorithm. Indeed, given a set S of n
distinct real numbers, one can construct a star T with a center c whose n edges have the weights
in S. Any max-constrained book-embedding of T partitions the edges into two ordered sequences,
one to the left of c and one to the right of c; a total ordering of S can be constructed by merging
these sequences in O(n) time.

4 sum-Constrained Book-Embeddings

Even if in a max-constrained book-embedding an edge cannot wrap around an edge with a larger
weight, we may still have that an edge e that wraps around a sequence of edges e1, . . . , ek with
ω(e) <

∑k
i=1 ω(ei). This might cause the resulting visualization to not effectively convey the

information related to the edge weights. Hence, we study a second type of one-dimensional repre-
sentations that are more restrictive than max-constrained book-embeddings and that allow us to
better take into account the relationships between the weights of the edges.

A sum-constrained book-embedding of a weighted outerplanar graph G = (V,E, ω) is a 1-page
book-embedding L satisfying the following property. Let e = (u, v) be any edge in E with u ≺L v.
Let e1 = (u1, v1), . . . , ek = (uk, vk) be any sequence of edges in E such that u �L u1 ≺L v1 �L
· · · �L uk ≺L vk �L v. Then ω(e) >

∑k
i=1 ω(ei). Observe that the max-constrained book-

embedding of Figure 1a is not a sum-constrained book-embedding, since it contains vertices 3, 4,
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5, and 7 (in this order) and the sum of the weights of (3, 4) and (5, 7) is 14, while the weight of
(3, 7) is 12. An example of sum-constrained book-embedding is in Fig. 5a.

The goal of this section is to prove the following theorem.

Theorem 2 Let G = (V,E, ω) be an n-vertex weighted outerplanar graph. There exists an
O(n3 log n)-time algorithm that tests whether G admits a sum-constrained book-embedding and,
in the positive case, constructs such an embedding.

We first deal with biconnected outerplanar graphs. Note that Lemma 1 holds true also in
the current setting, given that a sum-constrained book-embedding is a max-constrained book-
embedding. We get the following lemma, whose proof follows almost verbatim the one of Lemma 2.

Lemma 5 Let G = (V,E, ω) be an n-vertex biconnected weighted outerplanar graph. There exists
an O(n)-time algorithm that tests whether G admits a sum-constrained book-embedding and, in the
positive case, constructs such an embedding.

Proof: First, we determine in O(n) time whether G has a unique edge eM with maximum weight;
if not, by Lemma 1 we can conclude that G admits no max-constrained book-embedding (and
hence no sum-constrained book-embedding). By [3, 10, 15], we can determine in O(n) time the
unique, up to a flip, 1-page book-embedding L such that eM b e for each edge e ∈ E with e 6= eM .

It remains to test whether ≺L meets the requirements of a sum-constrained book-embedding.
We construct in O(n) time the extended dual tree T of the outerplane embedding of G. We root
T at the leaf ρ such that the edge of T incident to ρ is dual to eM . We visit T and perform the
following checks in total O(n) time. Consider an edge (α, β) of T such that α is the parent of
β and let e be the edge of G dual to (α, β). Consider the edges (β, γ1), . . . , (β, γk) of T from β
to its children and let e1, . . . , ek be the edges of G dual to (β, γ1), . . . , (β, γk), respectively. For

i = 1, . . . , k, we check whether ω(e) >
∑k
i=1 ω(ei). If one of these checks fails, we conclude that G

admits no sum-constrained book-embedding, otherwise L is a sum-constrained book-embedding of
G. �

We now deal with a not necessarily biconnected n-vertex outerplanar graph G. As for max-
constrained book-embeddings, we can assume that G is connected. We present an algorithm,
called sum-be-drawer, that tests in O(n3 log n) time whether G admits a sum-constrained book-
embedding and, in the positive case, constructs such an embedding.

First, we compute in O(n) time the block-cut-vertex tree T of G [6, 8]. We root T at any
B-node b∗ containing an edge with maximum weight. Then, for a B-node b, the graph G+(b) is
defined as for max-constrained book-embeddings; further, for a C-node c of T , we denote by G+(c)
the subgraph of G consisting of all the blocks G(b′) such that b′ is a B-node in the subtree of T
rooted at c. We equip each B-node b with the maximum weight W (b) of any edge of G(b).

We visit (in arbitrary order) T . For each B-node b, the algorithm sum-be-drawer performs
the following checks and computations.

1. We check whether G(b) admits a sum-constrained book-embedding; this can be done in a
time that is linear in the number of vertices of G(b), by Lemma 5. If not, we conclude that
G admits no sum-constrained book-embedding (Failure Condition 1). If yes, we compute a
sum-constrained book-embedding (again by Lemma 5) and call it L(b).

2. If b 6= b∗, consider the C-node c that is the parent of b in T . We check in constant time
whether c is the first or the last vertex of L(b). If not, we conclude that G admits no sum-
constrained book-embedding (Failure Condition 2). Otherwise, we possibly flip in constant
time L(b) so that c is the first vertex of L(b).
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(a) τL = 21, αL = 1, λL(4) = 9, ρL(4) = 12
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(b) τL = 21, αL = 2, λL(4) = 9, ρL(4) = 12
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(c) τL = 21, αL = 2, λL(4) = 9, ρL(4) = 12
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(d) τL = 23, αL = 1, λL(4) = 9, ρL(4) = 14

Figure 6: (a) and (b) are left-right equivalent w.r.t. 4; (c) left-right dominates (d) w.r.t. 4; (b)
and (c) are up-down equivalent; (b) up-down dominates (a).

We introduce some definitions (refer to Figure 6). Let L be a 1-page book-embedding of G.
We say that a vertex c is visible if there exists no edge e of G such that c is strictly under e in L;
for example, the vertices 1, 4, and 9 in Figure 6a are visible.

The total extension τL of L is the sum of the weights of all the edges e that satisfy the following
property: there is no edge e′ such that e′ b e in L. Consider Figure 6a and let L be the 1-page
book-embedding therein. The edges (1, 4) and (4, 9) are the only edges such that no edge wraps
around any of them; then the total extension τL of L is 21, which is the sum of the weights of such
edges.

Let c be a visible vertex of L. Then the extension of L to the left of c is the sum of the weights
of all the edges e that satisfy the following properties: (i) there is no edge e′ such that e′ b e in L;
and (ii) for each end-vertex v of e, we have v �L c. The extension of L to the right of c is defined
analogously. The extensions of L to the left and to the right of c are denoted by λL(c) and ρL(c),
respectively. Consider Figure 6d and let L be the 1-page book-embedding therein. The extension
of L to the left of the vertex 4 is 9, as the edge (1, 4) is the only edge such that no edge wraps
around it in L and whose every end-vertex v is such that v �L 4; further, the extension of L to
the right of the vertex 4 is 14, as the edges (4, 9) and (9, 8) are the only edges such that no edge
wraps around any of them in L and whose every end-vertex v is such that 4 �L v.

Let u be the first vertex of L. The free space αL of L is the weight of the lowest-right edge
(u, v) of u in L minus the total extension of the subgraph of G induced by v and by the vertices
that are strictly under (u, v). Consider again Figure 6a and let L be the 1-page book-embedding
therein. The free space αL of L is 1. Indeed, the weight of the lowest-right edge (1, 3) of the
vertex 1, which is the first vertex of L, is equal to 2; further, the total extension of the subgraph
of G induced by 1 and by the vertices that are strictly under the edge (1, 3) is equal to 1 (such a
subgraph consists only of the edge (2, 3) and of its end-vertices).

Now, let L and L′ be two 1-page book-embeddings of G and let c be a vertex of G that is
visible both in L and in L′. We say that L and L′ are left-right equivalent with respect to c if
λL(c) = λL′(c) and ρL(c) = ρL′(c). We also say that L left-right dominates L′ with respect to
c if λL(c) ≤ λL′(c), ρL(c) ≤ ρL′(c), and at least one of the two inequalities is strict. Consider
Figures 6a and 6b, and let L and L′ be the 1-page book-embeddings therein, respectively. Then
L and L′ are left-right equivalent with respect to the vertex 4, as the extensions of L and L′ to
the left of the vertex 4 are both equal to 9, and the extensions of L and L′ to the right of the
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vertex 4 are both equal to 12. Now consider Figures 6c and 6d, and let L and L′ be the 1-page
book-embeddings therein, respectively. Then L left-right dominates L′ with respect to the vertex
4, as the extensions of L and L′ to the left of the vertex 4 are both equal to 9, and the extensions
of L and L′ to the right of the vertex 4 are equal to 12 and 14, respectively.

If the first vertex of L is the same as the first vertex of L′, we say that L is up-down equivalent
to L′ if τL = τL′ and αL = αL′ . Further, we say that L up-down dominates L′ if τL ≤ τL′ ,
αL ≥ αL′ , and at least one of the two inequalities is strict. Consider Figures 6b and 6c, and let L
and L′ be the 1-page book-embeddings therein, respectively. Then L is up-down equivalent to L′,
as the total extensions of L and L′ are both equal to 21, and the free spaces of L and L′ are both
equal to 2. Now consider Figures 6a and 6b, and let L and L′ be the 1-page book-embeddings
therein, respectively. Then L′ left-right dominates L, as the total extensions of L and L′ are both
equal to 21, and the free spaces of L and L′ are equal to 1 and 2, respectively.

The algorithm sum-be-drawer now performs a bottom-up visit of T .
After visiting each C-node c, the algorithm sum-be-drawer either concludes that G admits no

sum-constrained book-embedding or determines a sequence of sum-constrained book-embeddings
L+
1 (c), . . . ,L+

k (c) of G+(c) such that:

(C1) for any i = 1, . . . , k, we have that c is visible in L+
i (c);

(C2) λL+
1 (c)(c) < · · · < λL+

k (c)(c) and ρL+
1 (c)(c) > · · · > ρL+

k (c)(c); and

(C3) for every sum-constrained book-embedding L of G+(c) that respects (C1), there exists an
index i ∈ {1, . . . , k} such that L+

i (c) left-right dominates or is left-right equivalent to L with
respect to c.

Note that no sum-constrained book-embedding L+
i (c) left-right dominates or is left-right equiv-

alent to a distinct embedding L+
j (c) with respect to c, by Property (C2).

After visiting a B-node b 6= b∗, the algorithm sum-be-drawer either concludes that G ad-
mits no sum-constrained book-embedding or determines a sequence of sum-constrained book-
embeddings L+

1 (b), . . . ,L+
k (b) of G+(b) such that:

(B1) the parent c of b in T is the first vertex of L+
i (b), for i = 1, . . . , k;

(B2) αL+
1 (b) < · · · < αL+

k (b) and τL+
1 (b) < · · · < τL+

k (b); and

(B3) for every sum-constrained book-embedding L of G+(b) that respects (B1), there exists an
index i ∈ {1, . . . , k} such that L+

i (b) up-down dominates or is up-down equivalent to L.

Note that no sum-constrained book-embeddings L+
i (b) up-down dominates or is up-down equiv-

alent to a distinct embedding L+
j (b), by Property (B2).

Restricting the attention to embeddings satisfying Condition (C1) or Condition (B1) is not a
loss of generality, because of the following two lemmata.

Lemma 6 Suppose that G admits a sum-constrained book-embedding L. Let c be a C-node of T
and let L+(c) be the restriction of L to the vertices and edges of G+(c). Then c is visible in L+(c).

Proof: This proof is very similar to the one of the extreme-parent property in Lemma 4.
Suppose, for a contradiction, that c is not visible in L+(c); that is, there exists an edge e′M

of G+(c) whose end-vertices are one before and one after c in L+(c). Consider the path P in T
from c to b∗. Further, consider any path p in G whose vertices and edges belong to the blocks
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corresponding to B-nodes in P and whose end-vertices are c and one of the end-vertices of eM
different from c (recall that eM is an edge of G with maximum weight and belongs to G(b∗)). Since
b∗ is the root of T , we have that neither p nor eM contains any vertex of G+(c) except, possibly, for
c; in particular, neither p nor eM contains either of the end-vertices of e′M . Since ω(eM ) ≥ ω(e′M ),
we have that eM is not nested into e′M in L+(b). Hence, we have that p crosses e′M , a contradiction.

�

Lemma 7 Suppose that G admits a sum-constrained book-embedding L. Let b 6= b∗ be a B-node
of T and let L+(b) be the restriction of L to the vertices and edges of G+(b). Then the parent c of
b in T is either the first or the last vertex of L+(b).

Proof: The lemma asserts that L+(b) satisfies the extreme-parent property; this property, which
was stated in the context of max-constrained book-embeddings, was shown to be satisfied in the
proof of Lemma 4. Since the sum-constrained book-embedding L+(b) is also a max-constrained
book-embedding, that proof can be followed verbatim to prove the statement of the lemma. �

We will also use the following two lemmata, which bound the number of distinct sum-constrained
book-embeddings we construct during the visit of T .

Lemma 8 Let H = (VH , EH , ωH) be an n-vertex weighted outerplanar graph. For a vertex c of
H, let S be a set of sum-constrained book-embeddings of H such that:

(γ1) for each L ∈ S, we have that c is visible in L; and

(γ2) for any L,L′ ∈ S, we have that L does not left-right dominate and is not left-right equivalent
to L′ with respect to c.

Then S contains O(n) embeddings.

Proof: The proof is based on the following two claims.
First, for any value λ ≥ 0, there exists at most one sum-constrained book-embedding L ∈ S

whose extension λL(c) to the left of c is equal to λ. Indeed, suppose, for a contradiction, that
S contains two sum-constrained book-embeddings L and L′ in which c is visible with λL(c) =
λL′(c) = λ. If τL(c) < τL′(c), or τL(c) = τL′(c), or τL(c) > τL′(c), we have that L left-right
dominates L′, or that L is left-right equivalent to L′, or that L′ left-right dominates L with respect
to c, respectively; in all the cases, this contradicts Property (γ2). It follows that the number of
embeddings L in S is at most equal to the number of distinct values λ ≥ 0 such that H admits a
sum-constrained book-embedding L in which c is visible and λL(c) = λ.

c` c1 c2 c3

G(b1) G(b2) G(b4)

Figure 7: Illustration for the proof of Lemma 8. In this sum-constrained book-embedding, only c
and the vertices to the left of c are shown.

Second, for every vertex ` of H, all the sum-constrained book-embeddings in which c is visible
and ` is the first vertex have the same extension to the left of c. This claim, together with the
previous one, implies that the number of embeddings in S is at most n. We now prove the claim;
refer to Figure 7. Consider any vertex ` of H. If there is no sum-constrained book-embedding of H
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in which c is visible and ` is the first vertex, then the claim is vacuously true. Otherwise, let L be
any sum-constrained book-embedding of H in which c is visible and ` is the first vertex. If ` = c,
then obviously we have λL(c) = 0 and there is nothing to prove. Assume hence that ` 6= c. Let
TH be the block-cut-vertex tree of H and let (b1, c1, b2, c2, . . . , bk−1, ck−1, bk) be the shortest path
in TH such that b1, b2, . . . , bk are B-nodes, c1, c2, . . . , ck−1 are C-nodes, ` belongs to G(b1), and c
belongs to G(bk). For sake of simplicity, let c0 := ` and ck := c. Since ` and c are visible in L, and
since no two edges cross in L, it follows that: (i) `, c1, c2, . . . , ck−1, c occur in this order in L; and
(ii) for j = 1, . . . , k, all the vertices of G(bj) occur between cj−1 and cj in L. By Lemma 1, the
edges (c0, c1), . . . , (ck−1, ck) belong to H; further, since ` is the first vertex of L, since c is visible
in L, and since no two edges cross in L, it follows that none of the edges (c0, c1), . . . , (ck−1, ck)
lies under another edge of H in L. Hence, the extension λL(c) of L to the left of c is equal to∑k
j=1 ωH((cj−1, cj)). As no assumption was made on L, other than c is visible and ` is the first

vertex, the claim and hence the lemma follow. �

Lemma 9 Let H = (VH , EH , ωH) be an n-vertex weighted outerplanar graph. Let S be a set of
sum-constrained book-embeddings of H such that:

(β1) all the orderings L ∈ S have the same first vertex `; and

(β2) for any L,L′ ∈ S, we have that L does not up-down dominate and is not up-down equivalent
to L′.

Then S contains O(n) embeddings.

Proof: The proof is based on two claims, very similarly to the proof of Lemma 8.
First, for any any value τ ≥ 0, there exists at most one sum-constrained book-embedding

L ∈ S whose total extension τL is equal to τ . Indeed, if there were two such embeddings L and
L′, then either one would up-down dominate the other one, or they would be up-down equivalent,
depending on the values αL and αL′ of their free space.

Second, for every vertex r of H, all the sum-constrained book-embeddings in which ` and r
are the first and the last vertex, respectively, have the same total extension. This claim, together
with the previous one, implies that the number of embeddings in S is at most n (in fact, at most
n − 1 if n > 1, as in this case r 6= `). We now prove the claim. Consider any vertex r of H.
If there is no sum-constrained book-embedding of H in which ` and r are the first and the last
vertex, respectively, then the claim is vacuously true. Otherwise, let L be any sum-constrained
book-embedding of H in which ` and r are the first and the last vertex, respectively. If ` = r, then
obviously we have τL = 0 and there is nothing to prove. Assume hence that ` 6= r. Let TH be
the block-cut-vertex tree of H and let (b1, c1, b2, c2, . . . , bk−1, ck−1, bk) be the shortest path in TH
such that b1, b2, . . . , bk are B-nodes, c1, c2, . . . , ck−1 are C-nodes, ` belongs to G(b1), and r belongs
to G(bk). For sake of simplicity, let c0 := ` and ck := r. Since ` and r are the first and the last
vertex in L, respectively, since no two edges cross in L, and by Lemma 1, it follows that the total
extension τL of L is equal to

∑k
j=1 ωH((cj−1, cj)). As no assumption was made on L, other than `

and r are the first and the last vertex in L, respectively, the claim and hence the lemma follow. �

We now describe the bottom-up visit of T performed by the algorithm sum-be-drawer.
Processing a leaf. If b is a leaf of T , then the sequence of sum-constrained book-embeddings

of G+(b) constructed by the algorithm sum-be-drawer contains a single embedding L+
1 (b) = L(b).

Hence, this sequence can be computed in constant time. We have the following.
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Lemma 10 We have that L+
1 (b) is a sum-constrained book-embedding satisfying Properties (B1)–

(B3).

Proof: Note that L+
1 (b) = L(b) is a sum-constrained book-embedding because sum-be-drawer

did not terminate because of Failure Condition 1. Further, L(b) satisfies Property (B1) because
sum-be-drawer did not terminate because of Failure Condition 2. Observe that L+

1 (b) vacuously
satisfies Property (B2) and satisfies Property (B3) because G(b) admits a unique sum-constrained
book-embedding in which the parent of b is the first vertex, by Lemma 1. �

Processing a C-node. We process a C-node c as follows. Let b1, . . . , bh be the B-nodes
children of c. By the bottom-up visit, we assume to have, for each bi with i = 1, . . . , h, a se-
quence L+

1 (bi),L+
2 (bi), . . . ,L+

ki
(bi) of sum-constrained book-embeddings of G+(bi) satisfying Prop-

erties (B1)–(B3). We relabel the B-nodes b1, . . . , bh in such a way that W (bi) ≤ W (bi+1), for
i = 1, . . . , h − 1; this takes O(n log n) time. We now process the B-nodes b1, . . . , bh in this order.
While processing these nodes, we construct h sequences S1, . . . ,Sh; the sequence Si contains O(n)
sum-constrained book-embeddings of G+(b1) ∪ · · · ∪G+(bi) satisfying Properties (γ1) and (γ2) of
Lemma 8. When constructing an ordering L in a sequence Si, we also compute λL(c) and ρL(c).

When processing b1, we let S1 consist of two sum-constrained book-embeddings, namely L+
1 (b1)

and its flip, in this order. Then S1 clearly satisfies Properties (γ1) and (γ2) of Lemma 8. Note
that the extensions of L+

1 (b1) to the left and to the right of c are 0 and τL+
1 (b1)

, respectively, while

the extensions of the flip of L+
1 (b1) to the left and to the right of c are τL+

1 (b1)
and 0, respectively.

Also note that L+
1 (b1) and its flip are sum-constrained book-embeddings of G+(b1) with minimum

total extension. Namely, for every sum-constrained book-embedding L of G+(b1), by Condition
(B3), there exists an index j ∈ {1, . . . , k1} such that L+

j (b1) up-down dominates or is up-down
equivalent to L, hence τL+

j (b1)
≤ τL. Further, by Condition (B2), we have τL+

1 (b1)
≤ τL+

j (b1)
.

Suppose that, for some i ∈ {2, . . . , h}, the B-node bi−1 has been processed and that the sequence
Si−1 has been constructed. We process bi as follows; refer to Figure 8. We initialize Si = ∅. We
individually consider each of the embeddings in Si−1, say L; since Si−1 satisfies Properties (γ1) and
(γ2) of Lemma 8, there are O(n) of these embeddings. We now consider each embedding L+

j (bi),
with j = 1, . . . , ki, and we try to combine it with L; note that, by Lemma 9, we have ki ∈ O(n).
This is done as follows.

• If αL+
j (bi)

> ρL(c), then we construct a sum-constrained book-embedding of G+(b1) ∪ · · · ∪
G+(bi) by placing the vertices of L+

j (bi) \ {c} to the right of L, in the same relative order

as they appear in L+
j (bi); we insert the constructed embedding into Si and note that its

extension to the left of c is equal to λL(c), while its extension to the right of c is equal to
τL+

j (bi)
.

• Symmetrically, if αL+
j (bi)

> λL(c), we construct a sum-constrained book-embedding of

G+(b1) ∪ · · · ∪ G+(bi) by placing the vertices of L+
j (bi) \ {c} to the left of L, in the op-

posite relative order as they appear in L+
j (bi). We insert the constructed embedding into Si

and note that its extension to the right of c is equal to ρL(c), while its extension to the left
of c is equal to τL+

j (bi)
.

After we considered each of the O(n) embeddings in Si−1, if Si is empty, we conclude that G
admits no sum-constrained book-embedding. Otherwise, we order and polish the sequence Si by
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Figure 8: (a) A sum-constrained book-embedding L of G+(b1) ∪ · · · ∪G+(bi−1) in Si−1. Only the
edges that do not lie under any other edge are shown. (b)–(c) Combining an embedding L+

j (bi)

with L. If αL+
j (bi)

> ρL(c), then a sum-constrained book-embedding of G+(b1) ∪ · · · ∪ G+(bi) is

constructed by placing the vertices of L+
j (bi) \ {c} to the right of L, in the same relative order as

they appear in L+
j (bi), as in (b). If αL+

j (bi)
> λL(c) , then a sum-constrained book-embedding of

G+(b1) ∪ · · · ∪G+(bi) is constructed by placing the vertices of L+
j (bi) \ {c} to the left of L, in the

opposite relative order as they appear in L+
j (bi), as in (c).

removing left-right dominated embeddings and by leaving only one copy of left-right equivalent
embeddings. This is done in O(n2 log n) time as follows.

Since |Si−1| and ki are both in O(n), it follows that the cardinality of Si before the polishing
is O(n2). We order Si in O(n2 log n) time primarily based on the value of the left extension with
respect to c and secondarily based on the value of the right extension with respect to c. Then we
scan Si; during the scan, we process the elements of Si one by one.

When we process an element L, we compare it with its predecessor L′. Note that, because of
the ordering, we have λL′(c) ≤ λL(c). If ρL′(c) ≤ ρL(c), then we remove L from Si. Note that this
scan takes O(n2) time.

This concludes the description of the processing of bi and the consequent construction of the
sequence Si. As described, this processing takes O(n2 log n) time, and hence O(hn2 log n) time
over all the B-nodes that are children of c. After processing the last B-node bh, the sequence Sh
contains the required sum-constrained book-embeddings of G+(c) satisfying Properties (C1)–(C3),
as proved in the following.

Lemma 11 We have that Sh is a (possibly empty) sequence L+
1 (c), . . . ,L+

k (c) of sum-constrained
book-embeddings of G+(c) satisfying Properties (C1)–(C3).

Proof: We show that every embedding of G+(c) in Sh is a sum-constrained book-embedding
satisfying Property (C1); namely, we prove, by induction on i, that every embedding of G+(b1) ∪
· · · ∪G+(bi) in Si is a sum-constrained book-embedding such that c is visible.

In the base case, we have i = 1. Then S1 contains L+
1 (b1) and its flip. These two embeddings

are sum-constrained book-embeddings such that c is visible, by definition and since L+
1 (b1) satisfies

Property (B1),
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Now inductively assume that, for some i ∈ {2, . . . , h}, every embedding of G+(b1) ∪ · · · ∪
G+(bi−1) in Si−1 is a sum-constrained book-embedding such that c is visible. Every embedding
L∗ we insert into Si is constructed from an embedding L in Si−1 and an embedding L+

j (bi) of G+(bi)

taken from the sequence L+
1 (bi),L+

2 (bi), . . . ,L+
ki

(bi). Indeed, L∗ is either constructed by placing

the vertices of L+
j (bi)\{c} to the right of L, in the same relative order as they appear in L+

j (bi), or

is constructed by placing the vertices of L+
j (bi) \ {c} to the left of L, in the opposite relative order

as they appear in L+
j (bi). In both cases, c is visible in the resulting embedding. Further, L∗ is a

sum-constrained book-embedding. Namely, assume that the vertices of L+
j (bi) \ {c} are placed to

the right of L in L∗, the other case is analogous. Then L∗ is a sum-constrained book-embedding
given that L and L+

j (bi) are sum-constrained book-embeddings and given that the free space of

L+
j (bi) is larger than the extension of L to the right of c, by construction.

Concerning Property (C2), let L+
p (c) and L+

q (c) be any two embeddings in Sh such that p < q.
By the ordering of Sh, we have that L+

q (c) does not left-right dominate L+
p (c) with respect to c.

Suppose, for a contradiction, that:

(i) L+
p (c) left-right dominates or is left-right equivalent to L+

q (c) with respect to c; that is
λL+

p (c)(c) ≤ λL+
q (c)(c) and ρL+

p (c)(c) ≤ ρL+
q (c)(c); and

(ii) there are no two embeddings L+
r (c) and L+

s (c) with r < s such that L+
r (c) left-right dominates

or is left-right equivalent to L+
s (c), and such that s− r < q− p; that is, L+

p (c) and L+
q (c) are

the “closest” embeddings in Sh such that L+
p (c) left-right dominates or is left-right equivalent

to L+
q (c).

If q − p = 1 (that is, L+
p (c) and L+

q (c) are consecutive in Sh), then we would have removed L+
q (c)

from Sh during its processing, a contradiction. If q− p > 1, then consider any ordering L+
x (c) that

appears between L+
p (c) and L+

q (c) in Sh. Because of the ordering of the embeddings in Sh, we have
λL+

p (c)(c) ≤ λL+
x (c)(c) ≤ λL+

q (c)(c). Since L+
p (c) left-right dominates or is left-right equivalent to L,

we have that ρL+
p (c)(c) ≤ ρL+

q (c)(c). If ρL+
x (c)(c) ≥ ρL+

p (c)(c), then L+
p (c) left-right dominates or is

left-right equivalent to L+
x (c) with respect to c, contradicting the minimality of q − p. Otherwise,

ρL+
x (c)(c) < ρL+

p (c)(c), which implies that ρL+
x (c)(c) < ρL+

q (c)(c), hence L+
x (c) left-right dominates

L+
q (c) with respect to c, again contradicting the minimality of q − p. This contradiction proves

that no embedding in Sh left-right dominates or is left-right equivalent to a distinct embedding
in Sh with respect to c. Hence, no two embeddings have the same extension to the left or to the
right of c. By the ordering of the embeddings in Sh, we have λL+

1 (c)(c) < · · · < λL+
k (c)(c) and

ρL+
1 (c)(c) > · · · > ρL+

k (c)(c). Property (C2) follows.

Finally, we prove that Sh satisfies Property (C3). Suppose, for a contradiction, that there
exists a sum-constrained book-embedding L� of G+(c) satisfying Property (C1) and such that
no embedding in Sh left-right dominates or is left-right equivalent to L� with respect to c. For
i = 1, . . . , h, let L�i be the restriction of L� to the vertices and edges of G+(b1)∪ · · · ∪G+(bi); note
that L�h = L�. We prove, by induction on i, the following statement, which contradicts the above
supposition: There exists a sum-constrained book-embedding L∗i in Si which left-right dominates
or is left-right equivalent to L�i with respect to c.

In the base case, we have i = 1. Then since L+
1 (b1),L+

2 (b1), . . . ,L+
k1

(b1) satisfy Property (B3),

there exists an index j ∈ {1, . . . , k1} such that L+
j (b1) up-down dominates or is up-down equivalent

to L�1, hence the total extension of L+
j (b1) is smaller than or equal to the total extension of L�1.

By Property (B2), we have that the total extension of L+
j (b1) is larger than or equal to the total
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extension of L+
1 (b1) (where equality holds only if j = 1). Hence, the total extension of L+

1 (b1)
is smaller than or equal to the total extension of L�1. Since L�1 satisfies Property (C1), we have
that either all the vertices of L�1 \ {c} are to the right of c, or they all are to the left of c; then,
respectively, either L+

1 (b1) or its flip left-right dominates or is left-right equivalent to L�1 with
respect to c. Since both L+

1 (b1) and its flip are in S1, the base case of the statement follows.
Now inductively assume that, for some i ∈ {2, . . . , h}, there exists a sum-constrained book-

embedding L∗i−1 in Si−1 which left-right dominates or is left-right equivalent to L�i−1 with respect
to c.

We construct a sum-constrained book-embedding which left-right dominates or is left-right
equivalent to L�i with respect to c and such that it belongs to Si.

Let L�(bi) be the restriction of L�i to the vertices and edges of G+(bi). Since the embeddings
L+
1 (bi),L+

2 (bi), . . . ,L+
ki

(bi) satisfy Property (B3), there exists an index j ∈ {1, . . . , ki} such that

L+
j (bi) up-down dominates or is up-down equivalent to L�(bi) (or its flip). Since W (b1) < · · · <

W (bi), it follows that G+(bi) does not lie under any edge of G+(b1)∪· · ·∪G+(bi−1) in L�i . Further,
since L�i satisfies Property (C1), it follows that either all the vertices of G+(bi)\{c} lie to the right
of c in L�i , or they all lie to the left of c; suppose that we are in the former case, as the discussion
for the latter case is analogous.

Let L∗i be the embedding obtained by placing the vertices of L+
j (bi) \ {c} to the right of L∗i−1,

in the same relative order as they appear in L+
j (bi). Then λL∗i (c) = λL∗i−1

(c) ≤ λL�i−1
(c) = λL�i (c),

where the inequality exploits the inductive hypothesis. Further, ρL∗i (c) coincides with the total

extension of L+
j (bi), which is smaller than or equal to the total extension of L�(bi), given that

L+
j (bi) up-down dominates or is up-down equivalent to L�(bi); hence, ρL∗i (c) ≤ ρL�i (c). This

proves that L∗i left-right dominates or is left-right equivalent to L�i .
Finally, we prove that Si (before the polishing) contains L∗i . By induction, Si−1 contains L∗i−1.

Hence, by construction, Si contains L∗i as long as αL+
j (bi)

> ρL∗i−1
(c). We prove that this is

indeed the case. First, since L+
j (bi) up-down dominates L�(bi), we have that αL+

j (bi)
≥ αL�(bi).

Second, since L�i is a sum-constrained book-embedding, we have that αL�(bi) > ρL�i−1
(c). Finally,

since L∗i−1 left-right dominates or is left-right equivalent to L�i−1 with respect to c, we have that
ρL�i−1

(c) ≥ ρL∗i−1
(c). The three inequalities imply αL+

j (bi)
> ρL∗i−1

(c).

Since, before the polishing, Si contains L∗i , after the polishing it contains either L∗i or a different
sum-constrained book-embedding of G+(b1)∪· · ·∪G+(bi) which left-right dominates or is left-right
equivalent to L∗i with respect to c; indeed, L∗i is removed from Si only if it is compared with such an
embedding. In both cases, Si contains a sum-constrained book-embedding of G+(b1)∪· · ·∪G+(bi)
which left-right dominates or is left-right equivalent to L�i . This concludes the induction and hence
the proof of the lemma. �

Processing an internal B-node different from the root. We now describe how to process
an internal B-node b 6= b∗ of T . The goal is either to conclude that G+(b) does not admit a sum-
constrained book-embedding satisfying Property (B1), which by Lemma 7 implies that G does not
admit any sum-constrained book-embedding, or to construct a sequence L+

1 (b),L+
2 (b), . . . ,L+

k(b)(b)

of sum-constrained book-embeddings satisfying Properties (B1)–(B3).
First, if the algorithm sum-be-drawer did not terminate because of Failure Conditions 1–2,

we have a sum-constrained book-embedding L(b) = (v0, v1, . . . , vk) of G(b) in which the par-
ent c of b in T is the first vertex, that is, v0 = c. Further, let c1, . . . , ch be the C-nodes that
are children of c, labeled in the same order as they appear in L(b). Since the algorithm sum-
be-drawer did not terminate when visiting c1, . . . , ch, we have, for each ci with i = 1, . . . , h,
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a sequence L+
1 (ci),L+

2 (ci), . . . ,L+
ki

(ci) of sum-constrained book-embeddings of G+(ci) satisfying
Properties (C1)–(C3).

Observe that some vertices vi might not be in {c, c1, . . . , ch}. Specifically, we distinguish the
case in which v1 = c1 from the one in which v1 6= c1.

Suppose first that v1 6= c1 is not a cut-vertex of G+(b). In this case, if the algorithm sum-
be-drawer constructs a sequence L+

1 (b),L+
2 (b), . . . ,L+

k(b)(b) of sum-constrained book-embeddings

satisfying Properties (B1)–(B3), that is, if it does not conclude then k(b) = 1, that is, the sequence
contains a single embedding. The idea is to process the C-nodes c1, . . . , ch in this order and, for
each C-node ci, to choose a sum-constrained book-embedding L+

j (ci) for G+(ci) in such a way that

the extension of L+
j (ci) to the right of ci is minimum. However, by Property (C2), the smaller the

extension of L+
j (ci) to the right of ci, the larger the extension of L+

j (ci) to the left of ci. Hence, we

need to select L+
j (ci) so that its extension to the right of ci is minimum, subject to the constraint

that it “fits” on the left. We formalize this idea as follows.
We process the C-nodes c1, . . . , ch in this order. Before any C-node is processed, we initialize

L∗0 := L(b) and, for i = 1, . . . , k, we initialize a variable `(vi) to the weight of the edge (vi−1, vi);
roughly speaking, throughout the embedding construction, `(vi) represents the amount of “remain-
ing free space” to the left of vi.

When we process ci, we construct a sum-constrained book-embedding L∗i of G(b) ∪ G+(c1) ∪
· · · ∪G+(ci). This is done by choosing a sum-constrained book-embedding L+

j (ci) for G+(ci) and

by replacing ci with L+
j (ci) in L∗i−1. The choice of L+

j (ci) is performed as follows. Let x be such

that ci = vx. Then we let L+
j (ci) be the embedding such that:

(i) λL+
j (ci)

< `(vx), that is, L+
j (ci) fits to the left of vx; and

(ii) λL+
j (ci)

is maximum, among all the embeddings in L+
1 (ci), . . . ,L+

ki
(ci) that satisfy (i).

If no such embedding exists, then we conclude that G admits no sum-constrained book-
embedding. Otherwise, if x < k, we check whether ρL+

j (ci)
< `(vx+1). In the negative case, that

is, if L+
j (ci) does not fit to the right of vx, then we conclude that G admits no sum-constrained

book-embedding. In the positive case, we constructed L∗i ; then we decrease `(vx+1) by ρL+
j (ci)

, as

the remaining free space to the left of vx+1 decreased by ρL+
j (ci)

when replacing ci with L+
j (ci), and

proceed. If ni denotes the number of vertices in G+(ci), by Lemma 8 we have O(ni) embeddings
for G+(ci), hence ci is processed in O(ni) time and then the C-nodes c1, . . . , ch are processed in
total O(n) time.

Suppose next that v1 = c1. In this case, it might be possible that the algorithm sum-be-
drawer constructs a sequence L+

1 (b),L+
2 (b), . . . ,L+

k(b)(b) of sum-constrained book-embeddings

satisfying Properties (B1)–(B3) with k(b) > 1. Differently from the case in which v1 6= c1, we
cannot perform an “optimal” choice for the embedding of G+(c1). Namely, on one hand we would
like to select an embedding of G+(c1) among L+

1 (c1), . . . ,L+
k1

(c1) that “consumes” as little space
as possible to the left of c1, so that the free space αL of the sum-constrained book-embedding L
of G+(b) we are constructing is large. On the other hand, we would like to select an embedding
of G+(c1) among L+

1 (c1), . . . ,L+
k1

(c1) that “consumes” as little space as possible to the right of
c1, in order to leave room for an embedding of G+(c2). These two objectives are in contrast, by
Property (C2) of the sequence L+

1 (c1), . . . ,L+
k1

(c1). Hence, we will consider all the O(n) possible
choices for the embedding of G+(c1). For each of these choices, we process the C-nodes c2, . . . , ch
in this order, similarly to the case in which v1 6= c1. Namely, for each C-node ci with i ≥ 2, we
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choose a sum-constrained book-embedding L+
j (ci) for G+(ci) in such a way that the extension of

L+
j (ci) to the right of ci is minimum subject to the constraint that L+

j (ci) “fits” on the left. We
formalize this idea as follows.

We initialize L∗1,0 := L∗2,0 := · · · := L∗k1,0 := L(b). Recall that k1 is the number of embeddings

L+
1 (c1), . . . ,L+

k1
(c1) of G+(c1), and k1 ∈ O(n), by Lemma 8.

Starting from each embedding L∗j,0, we will try to construct a sum-constrained book-embedding
L∗j,h of G+(b). For each j = 1, . . . , k1, we process the C-nodes c1, . . . , ch in this order. When we

process ci, we possibly construct a sum-constrained book-embedding L∗j,i of G(b) ∪G+(c1) ∪ · · · ∪
G+(ci). Before any C-node is processed, for j = 1, . . . , k1 and for i = 1, . . . , k, we initialize a
variable `j(vi) to the weight of the edge (vi−1, vi), similarly to the case v1 6= c1.

For j = 1, . . . , k1, we start by processing c1. Namely, we check whether λL+
j (c1)

≥ `j(v1), that

is, whether L+
j (c1) does not fit to the left of v1; in the positive case, we discard the embedding

L∗j,0 and proceed. Further, we check whether ρL+
j (c1)

≥ `j(v2), that is, whether L+
j (c1) does not fit

to the right of v1; in the positive case, we discard the embedding L∗j,0 and proceed. If both checks

fail, then we replace c1 with L+
j (c1), thus constructing a sum-constrained book-embedding L∗j,1 of

G(b) ∪G+(c1); further, we decrease `j(v2) by ρL+
j (c1)

.

Now, for j = 1, . . . , k1 and for i = 2, . . . , h, when we process ci, we construct a sum-constrained
book-embedding L∗j,i of G(b)∪G+(c1)∪ · · · ∪G+(ci). This is done by choosing a sum-constrained
book-embedding L+

m(ci) for G+(ci) and by replacing ci with L+
m(ci) in L∗j,i−1. The choice of L+

m(ci)
is performed as in the case in which v1 = c1. Namely, let x be such that ci = vx. Then we let
L+
m(ci) be the embedding such that:

(i) λL+
m(ci)

< `j(vx); and

(ii) λL+
m(ci)

is maximum, among all the embeddings in L+
1 (ci), . . . ,L+

ki
(ci) that satisfy (i).

If no such embedding exists, then we discard the embedding L∗j,0 and proceed. Otherwise, if x < k,
we check whether ρL+

m(ci)
< `j(vx+1). In the negative case, we discard the embedding L∗j,0 and

proceed. In the positive case, we constructed L∗j,i; then we decrease `j(vx+1) by ρL+
m(ci)

(ci) and
proceed.

If the above algorithm did not construct any embedding L∗j,h of G+(b), then G admits no sum-
constrained book-embedding. Otherwise, we have at most k1 ∈ O(n) embeddings L∗1,h, . . . ,L∗k1,h
of G+(b).

We discuss the time complexity of the algorithm. For each of the O(n) embeddings L∗j,0 of

G(b), we select a single embedding L+
j (c1) for G+(c1) and, for every i = 2, . . . , h, we select a

single embedding L+
m(ci) for G+(ci) by choosing it among O(ni) embeddings, where ni denotes the

number of vertices in G+(ci). Thus, the algorithm takes O(n) time for each of the O(n) embeddings
L∗j,0 of G(b), and thus O(n2) time in total.

Denote by S the sequence of constructed embeddings. We polish S so that no embedding
up-down dominates or is up-down equivalent to another embedding in the sequence. This could
be done in O(n log n) time by following the same approach employed when dealing with C-nodes.
However, this can actually be done easily in O(n) time in this case, as the embeddings of G+(b)
have been constructed in decreasing order of free space. Hence, it suffices to check whether each
embedding L in S is up-down dominated or is up-down equivalent to the embedding preceding
it; in the positive case, L can be removed from S. Finally, S is inverted so that the embeddings
appear in increasing order of free space.
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This concludes the description of the algorithm for an internal B-node different from the root.

Lemma 12 We have that S is a (possibly empty) sequence L+
1 (b), . . . ,L+

k(b)(b) of sum-constrained

book-embeddings of G+(b) satisfying Properties (B1)–(B3).

Proof: First, we show that every embedding L+
j (b) ∈ S of G+(b) is a sum-constrained book-

embedding satisfying Property (B1). Namely, L+
j (b) is constructed starting from a sum-constrained

book-embedding L(b) = (v0, v1, . . . , vk) of G(b) in which c = v0 and by then replacing, for i =
1, . . . , h, the vertex ci with a sum-constrained book-embedding of G+(ci); since v0 /∈ {c1, . . . , ch},
we have that L+

j (b) satisfies Property (B1). We denote by L+
f(j,i)(ci) the sum-constrained book-

embedding of G+(ci) that replaces ci in L+
j (b). With a slight abuse of notation, we also denote by

`j(v1), . . . , `j(vk) the variables used in the construction of L+
j (b).

Since L+
f(j,1)(c1), . . . ,L+

f(j,h)(ch) are sum-constrained book-embeddings, in order to prove that

L+
j (b) is a sum-constrained book-embedding, it suffices to prove that, for x = 0, . . . , k − 1, the

weight of the edge (vx, vx+1) of G(b) is larger than the sum of:

(i) the extension ρL+
f(j,p)

(cp)
(cp) of L+

f(j,p)(cp) to the right of cp, if vx = cp (or 0 if vx is not a

cut-vertex of G+(b)); and

(ii) the extension λL+
f(j,q)

(cq)
(cq) of L+

f(j,q)(cq) to the left of cq, if vx+1 = cq (or 0 if vx+1 is not a

cut-vertex of G+(b)).

Assume that vx = cp and that vx+1 = cp+1; the case in which at most one of vx and vx+1 is a
cut-vertex of G+(b) is analogous and simpler. Recall that the value `j(vx+1) is initialized to the
weight of the edge (vx, vx+1). By construction, when vx = cp is replaced by L+

f(j,p)(cp) we have

ρL+
f(j,p)

(cp)
(cp) < `j(vx+1); further, when such a replacement is performed, the value of `j(vx+1)

is decreased by ρL+
f(j,p)

(cp)
(cp). Further, when vx+1 = cp+1 is replaced by L+

f(j,p+1)(cp+1) we have

λL+
f(j,p+1)

(cp+1)
(cp+1) < `j(vx+1). This implies that the weight of the edge (vx, vx+1) is larger than

ρL+
f(j,p)

(cp)
(cp) + λL+

f(j,p+1)
(cp+1)

(cp+1).

Property (B2) is trivially satisfied if v1 6= c1, as in this case S contains a single sum-constrained
book-embedding; further, it is directly ensured by the final ordering and polishing that is performed
on the sequence S, in the case in which v1 = c1.

Finally, we prove that S satisfies Property (B3). Suppose, for a contradiction, that there
exists a sum-constrained book-embedding L� of G+(b) satisfying Property (B1) and such that no
embedding in S up-down dominates or is up-down equivalent to L�. Let L�0 be the restriction of
L� to G(b); further, for i = 1, . . . , h, let L�i (ci) be the restriction of L� to G+(ci) and let L�i be the
restriction of L� to G(b) ∪G+(c1) ∪ · · · ∪G+(ci); note that L�h = L�. Finally, for i = 1, . . . , h, let
x(i) be such that vx(i) = ci. Throughout this proof, we assume that v1 = c1. The case in which
v1 6= c1 is analogous and simpler.

We prove, by induction on i, the following statement: The algorithm sum-be-drawer con-
structs (and does not discard) a sum-constrained book-embedding L∗j,i ofG(b)∪G+(c1)∪· · ·∪G+(ci)
such that:

(1) L∗j,i up-down dominates or is up-down equivalent to L�i ; and

(2) let L∗j,i(ci) be the restriction of L∗j,i to G+(ci); if i < h and x(i+ 1) = x(i) + 1 (that is, if the
cut-vertices ci and ci+1 are consecutive in L(b)), then the extension ρL∗j,i(ci)(ci) of L∗j,i(ci) to
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the right of ci is smaller than or equal to the extension ρL�i (ci)(ci) of L�i (ci) to the right of ci;
roughly speaking, this ensures that the “remaining free space” to the left of vx(i+1) in L∗j,i is
at least as much as the one in L�i .

By construction, the algorithm sum-be-drawer constructs (and does not discard) k1 sum-
constrained book-embeddings L∗1,0, . . . ,L∗k1,0; the restriction of each of such embeddings to G(b) is
L(b). Further, L�0 also coincides with L(b), by Lemma 1 and by the assumption that L� satisfies
Property (B1). This ensures that each of L∗1,0, . . . ,L∗k1,0 is up-down equivalent to L�0.

We now prove the induction. In the base case, we have i = 1. Since L+
1 (c1), . . . ,L+

k1
(c1)

satisfy Properties (C1)–(C3), there exists a sum-constrained book-embedding L+
j (c1) that left-right

dominates or is left-right equivalent to L�1(c1) with respect to c1; that is, λL+
j (c1)

(c1) ≤ λL�1(c1)(c1)

and ρL+
j (c1)

(c1) ≤ ρL�1(c1)(c1). Since L�1 is a sum-constrained book-embedding, the weight of the

edge (vx(1)−1, vx(1)) is larger than λL�1(c1)(c1), hence it is larger than λL+
j (c1)

(c1), and the weight

of the edge (vx(1), vx(1)+1) is larger than ρL�1(c1)(c1), hence it is larger than ρL+
j (c1)

(c1). It follows

that the algorithm sum-be-drawer constructs (and does not discard) a sum-constrained book-
embedding L∗j,1 of G(b) ∪G+(c1) by replacing c1 with L+

j (c1) in L∗j,0.
We prove that L∗j,1 satisfies Condition (1).

• If x(1) > 1, then the free spaces of L∗j,1 and L�1 both coincide with the weight of the edge
(v0, v1) of G(b), hence αL∗j,1 = αL�1 . If x(1) = 1, then the free space of L∗j,1 coincides with the

weight of the edge (v0, v1) minus the extension λL+
j (c1)

(c1) of L+
j (c1) to the left of c1, while the

free space of L�1 coincides with the weight of the edge (v0, v1) minus the extension λL�1(c1)(c1)
of L�1(c1) to the left of c1. Since λL+

j (c1)
(c1) ≤ λL�1(c1)(c1), it follows that αL∗j,1 ≥ αL�1 .

• If x(1) < k, then the total extensions of L∗j,1 and L�1 both coincide with the weight of the edge
(v0, vk) of G(b), hence τL∗j,1 = τL�1 . If x(1) = k, that is, c1 = vk, then the total extension of

L∗j,1 coincides with the weight of the edge (v0, vk) plus the extension ρL+
j (c1)

(c1) of L+
j (c1) to

the right of c1, while the total extension of L�1 coincides with the weight of the edge (v0, vk)
plus the extension ρL�1(c1)(c1) of L�1(c1) to the right of c1. Since ρL+

j (c1)
(c1) ≤ ρL�1(c1)(c1), it

follows that τL∗j,1 ≤ τL�1 .

We also observe that L∗j,1 satisfies Condition (2). Indeed, by construction, the extension
ρL∗j,1(c1)(c1) of L∗j,1(c1) to the right of c1 is smaller than or equal to the extension ρL�1(c1)(c1)

of L�1(c1) to the right of c1.
Now suppose that, for some i ∈ {2, . . . , h}, the algorithm sum-be-drawer constructs (and does

not discard) a sum-constrained book-embedding L∗j,i−1 of G(b)∪G+(c1)∪· · ·∪G+(ci−1) such that

Conditions (1) and (2) are satisfied. Since L+
1 (ci), . . . ,L+

ki
(ci) satisfy Properties (C1)–(C3), there

exists a sum-constrained book-embedding L+
p (ci) that left-right dominates or is left-right equivalent

to L�i (ci) with respect to ci; that is, λL+
p (ci)

(ci) ≤ λL�i (ci)(ci) and ρL+
p (ci)

(ci) ≤ ρL�i (ci)(ci). By

Condition (2) for L∗j,i−1, we have ρL∗j,i−1(ci−1)(ci−1) ≤ ρL�i−1(ci−1)(ci−1). We distinguish two cases.

• Suppose first that x(i) > x(i− 1) + 1, that is, ci−1 and ci are not consecutive in L(b). Since
L�i is a sum-constrained book-embedding, the weight of the edge (vx(i)−1, vx(i)) is larger
than λL�i (ci)(ci), hence it is larger than λL+

p (ci)
(ci), and the weight of the edge (vx(i), vx(i)+1)

is larger than ρL�i (ci)(ci), hence it is larger than ρL+
p (ci)

(ci). It follows that the algorithm
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sum-be-drawer constructs (and does not discard) a sum-constrained book-embedding L∗j,i
of G(b) ∪ G+(c1) ∪ . . . G+(ci) by replacing ci with an embedding L+

q (ci) in L∗j,i−1. The

embedding L+
q (ci) is the embedding among L+

1 (ci), . . . ,L+
ki

(ci) whose extension to the left
of ci is smaller than ω((vx(i)−1, vx(i))) and is maximum, subject to the previous constraint;

note that at least one embedding among L+
1 (ci), . . . ,L+

ki
(ci) exists whose extension to the

left of ci is smaller than ω((vx(i)−1, vx(i))), namely L+
p (ci).

• Suppose next that x(i) = x(i− 1) + 1, that is, ci−1 and ci are consecutive in L(b). Since L�i
is a sum-constrained book-embedding, the weight of the edge (vx(i)−1, vx(i)) is larger than
λL�i (ci)(ci) + ρL�i−1(ci−1)(ci−1), hence it is larger than λL+

p (ci)
(ci) + ρL+

j,i−1(ci−1)
(ci−1), and the

weight of the edge (vx(i), vx(i)+1) is larger than ρL�i (ci)(ci), hence it is larger than ρL+
p (ci)

(ci).

It follows that the algorithm sum-be-drawer constructs (and does not discard) a sum-
constrained book-embedding L∗j,i of G(b) ∪G+(c1) ∪ . . . G+(ci) by replacing ci with an em-

bedding L+
q (ci) in L∗j,i−1. The embedding L+

q (ci) is the embedding among L+
1 (ci), . . . ,L+

ki
(ci)

whose extension to the left of ci is smaller than ω((vx(i)−1, vx(i))) − ρL+
j,i−1(ci−1)

(ci−1) and

is maximum, subject to the previous constraint; note that at least one embedding among
L+
1 (ci), . . . ,L+

ki
(ci) exists whose extension to the left of ci is smaller than ω((vx(i)−1, vx(i)))−

ρL+
j,i−1(ci−1)

(ci−1), namely L+
p (ci).

The proofs that L∗j,1 satisfies Condition (2) and that the total extension of L∗j,i is smaller
than or equal to the one of L�i are the same as for the case in which i = 1, except that x(i),
ci, L∗j,i, L�i replace x(1), c1, L∗j,1, and L�1, respectively. Further, the free spaces of L∗j,i and
L�i coincide with the free spaces of L∗j,i−1 and L�i−1, respectively, hence by induction we have
αL∗j,i = αL∗j,i−1

≥ αL�i−1
= αL�i . This concludes the induction.

By Condition (1), the algorithm sum-be-drawer constructs (and does not discard) a sum-
constrained book-embedding L∗j,h of G+(b) that up-down dominates or is up-down equivalent to
L�h = L�. Since L∗j,h is in S, then after the polishing, we have that S contains either L∗j,h or an
embedding that up-down dominates or is up-down equivalent to L∗j,h, and hence up-down dominates
or is up-down equivalent to L�. This contradicts the above supposition and concludes the proof
that S satisfies Property (B3). �

Processing the root. The way we deal with the root b∗ of T is similar, and actually simpler,
than the way we deal with a B-node b 6= b∗.

First, since sum-be-drawer did not terminate because of Failure Condition 1, we have a
sum-constrained book-embedding L(b∗) = (v0, v1, . . . , vk) of G(b∗). Further, let c1, . . . , ch be the
C-nodes that are children of c, labeled in the same order as they appear in L(b∗). Since the
algorithm sum-be-drawer did not terminate when visiting c1, . . . , ch, we have, for each ci with
i = 1, . . . , h, a sequence L+

1 (ci),L+
2 (ci), . . . ,L+

ki
(ci) of sum-constrained book-embeddings of G+(ci)

satisfying Properties (C1)–(C3).
Differently from the case in which b 6= b∗, it might happen that c1 = v0, that is, the first

vertex of L(b∗) corresponds to a C-node that is a child of b∗ in T , whereas for a B-node b 6= b∗ the
vertex v0 always corresponds to the C-node that is the parent of b in T . However, here we do not
need to construct all the Pareto-optimal (with respect to the free space and the total extension)
sum-constrained book-embeddings of G, but we just need to test whether any sum-constrained
book-embedding of G exists (and in case it does, to construct such an embedding). Hence, if
c1 = v0, we can choose L+

k1
(c1) as the embedding for G+(c1), given that L+

k1
(c1) is an embedding

of G+(c1) that satisfies Property (C1) and that has a minimum extension to the right of c1 and
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hence leaves most room for the embedding of G+(c2). After this choice, the algorithm continues
as in the case of a B-node b different from b∗.

In the case in which c1 6= v0, we process b∗ exactly as we process a B-node b 6= b∗ in the case
in which c1 6= v1.

The proof of the following lemma is very similar (and in fact simpler) to the proof of Lemma 12,
and is hence omitted.

Lemma 13 If G admits a sum-constrained book-embedding, then the algorithm sum-be-drawer
constructs such an embedding, otherwise it concludes that G admits no sum-constrained book-
embedding.

Running time. The algorithm sum-be-drawer processes a B-node in O(n2) time and a
C-node in O(hn2 log n) time, where h is the number of children of the C-node. Since the block-
cut-vertex tree T has O(n) nodes and edges, the running time of the algorithm sum-be-drawer
is in O(n3 log n). This completes the proof of Theorem 2.

5 Two-Dimensional Book-Embeddings

In order to deal with weighted outerplanar graphs that admit no max-constrained and no sum-
constrained 1-page book-embedding, a possibility is to give to each edge not only a length but also
a thickness, so that the area of the lune representing an edge is proportional to its weight.

Given a weighted outerplanar graph G = (V,E, ω) a two-dimensional book-embedding Γ of G
consists of a 1-page book-embedding L and of a representation R of G satisfying the following
conditions:

1. Each vertex v ∈ V is assigned an x-coordinate x(v) such that if u ≺L v then x(u) < x(v);
further, each vertex v ∈ V is assigned the y-coordinate y(v) = 0.

2. For each edge e = (u, v) ∈ E such that u ≺L v we have that:

(a) The edge e is represented by an axis-parallel rectangle
R(e) := [xmin(e), xmax(e)]× [ymin(e), ymax(e)], where ymin(e) ≥ 0.

(b) We have that xmin(e) = x(u) and xmax(e) = x(v).

(c) The area
(
xmax(e)− xmin(e)

)
×
(
ymax(e)− ymin(e)

)
is equal to ω(e).

(d) Let e1, . . . , ek be the edges in E that are nested into e. We have that ymin(e) =
maxi=1,...,k{ymax(ei)}.

The area of Γ is the area of the bounding box of R, which is the smallest axis-parallel rect-
angle enclosing R. We say that L is the 1-page book-embedding supporting Γ and that R is the
representation underlying Γ. Further, Γ has the following property.

Property 2 Let e1 and e2 be two distinct edges of G. We have that R(e1) and R(e2) are internally
disjoint.

Proof: Suppose, for a contradiction, that two rectangles R(e1) and R(e2) are not internally
disjoint, where e1 = (u, v) and e2 = (w, z). Assume, w.l.o.g., that u ≺L v and w ≺L z. Since
R(e1) andR(e2) are not internally disjoint and by Condition 1, we have neither v ≺L w nor z ≺L u.
Since L is a 1-page book-embedding, we have neither u ≺L w ≺L v ≺L z nor w ≺L u ≺L z ≺L v.
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It remains to consider the cases u �L w ≺L z �L v and w �L u ≺ v �L z. Suppose that
u �L w ≺L z �L v (the other case being analogous). This implies that (u, v) b (w, z) in L. By
Condition 2(d) we have that ymin(e1) ≥ ymax(e2), which contradicts the assumption that R(e1)
and R(e2) are not internally disjoint. �

In the Introduction, we proposed to represent each vertex of G as a point on the boundary
of a disk and each edge (u, v) of G as a lune that connects the points representing u and v and
that has an area equal to the weight of (u, v). On the contrary, in the above definition, vertices
are placed along a straight line and edges are represented as rectangles. This has been done to
simplify the geometric constructions. However, Property 3 below allows us to connect the rectangle
representing an edge (u, v) with the points representing u and v, without intersecting the internal
points of any other rectangle, thus showing the topological equivalence of the two representations.
See Figure 1b.

Property 3 Let e ∈ E and consider the rectangle R(e). Let ` (let r) be the segment connect-
ing the points (xmin(e), ymin(e)) and (xmin(e), 0) (respectively, the points (xmax(e), ymin(e)) and
(xmax(e), 0)). For each edge e′ ∈ E, the segments ` and r do not contain any internal point of the
rectangle R(e′).

Proof: If e′ = e, then the statement follows from the definition of ` and r and from Condition
2(a). Otherwise, suppose, for a contradiction, that ` contains an internal point of R(e′); the case in
which r contains an internal point of R(e′) is analogous. Let u and v be the end-vertices of e and
let w and z be the end-vertices of e′. Assume, w.l.o.g., that u ≺L v and w ≺L z. Since ` contains
an internal point of R(e′), we have that w ≺L u ≺L z. We cannot have z ≺L v, as this would
imply that L is not a 1-page book-embedding. Hence, w ≺L u ≺L v ≺L z. However, by Condition
2(d), this implies that R(e′) lies above R(e), hence ` cannot intersect R(e′), a contradiction. �

The next theorems show that all weighted outerplanar graphs admit two-dimensional book-
embeddings.

The first theorem shows that a weighted biconnected outerplanar graph G = (V,E, ω) admits
a two-dimensional book-embedding Γ in area

∑
e∈E ω(e). This bound is clearly optimal, as each

edge e ∈ E occupies area ω(e) in any two-dimensional book-embedding of G; in other words, the
representation R underlying Γ fills its bounding box, leaving no “holes” inside, where a hole is
a maximal connected region of the plane that lies inside the bounding box of R and does not
intersect the interior or the boundary of any rectangle R(e). Before proving the theorem, we show
a simple property of such area-optimal embeddings, which will be used in the following.

Property 4 Let Γ be a two-dimensional book-embedding of a weighted biconnected outerplanar
graph G = (V,E, ω) with area

∑
e∈E ω(e) and let L be the 1-page book-embedding supporting Γ.

We say that an edge e1 directly wraps around an edge e2 in L if e1 b e2 and there is no edge e3
such that e1 b e3 b e2.

Let e be any edge in E and let e1, . . . , ek be the edges in E such that e directly wraps around
e1, . . . , ek. Then ymin(e) = ymax(e1) = · · · = ymax(ek).

Proof: Since e directly wraps around e1, . . . , ek, it follows that e1, . . . , ek are nested into e. By
Condition 2(d) of a two-dimensional book-embedding, we have ymin(e) = maxi=1,...,k{ymax(ei)},
which implies that ymin(e) ≥ ymax(ei), for i = 1, . . . , k. Since G is biconnected and since e di-
rectly wraps around e1, . . . , ek, we have that e, e1, . . . , ek induce a cycle (u1, . . . , uk+1), where
ei = (ui, ui+1), for i = 1, . . . , k, and e = (u1, uk+1); further, again since e directly wraps around
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e1, . . . , ek, by Conditions 1 and 2(b) of a two-dimensional book-embedding, we have that ei-
ther x(u1) < x(u2) < · · · < x(uk+1) or that x(u1) > x(u2) > · · · > x(uk+1). Hence, if
ymin(e) > ymax(ei), for some i ∈ {1, . . . , k}, then there would be a hole above the rectangle
R(ei), contradicting the assumption that the area of Γ is

∑
e∈E ω(e). �

We are now ready to present the following theorem; see Figure 1b for an example of a drawing
produced by the algorithm described in the proof of the theorem.

Theorem 3 Let G = (V,E, ω) be an n-vertex weighted biconnected outerplanar graph; further, let
s and t be two vertices that are consecutive in the clockwise order of the vertices of G along the
outer face of the outerplane embedding of G. Finally, let L > 0 and H > 0 be two real values such
that L×H =

∑
e∈E ω(e). There exists an O(n)-time algorithm that constructs a two-dimensional

book-embedding Γ in area L × H such that s and t are the first and the last vertex of the 1-page
book-embedding supporting Γ, respectively.

Proof: First, we construct in O(n) time the 1-dimensional book-embedding L supporting Γ as
the unique 1-dimensional book-embedding of G in which s and t are the first and the last vertex,
respectively [3, 10, 15]. Note that L defines an outerplane embedding OG of G such that s is
encountered immediately before t when traversing the cycle delimiting the outer face of OG in
clockwise direction. We construct in O(n) time the extended dual tree T of OG; further, we
root T at the leaf ρ that is incident to the edge (ρ, σ) of T that is dual to the edge e∗ = (s, t).
Second, for each edge e ∈ E, we compute a value A(e) which is equal to the sum of ω(e) plus the
weights of the edges that are nested into e in L. This is done in total O(n) time by means of a
bottom-up traversal of T .

The proof now proceeds by induction. The induction receives as an input:

(1) a weighted biconnected outerplanar graph K = (V, E , κ), which is a subgraph of G;

(2) a 1-dimensional book-embedding K of K, whose first and last vertex are denoted by s′ and t′,
respectively;

(3) an assignment for x(s′) and x(t′) with x(t′)− x(s′) = L′ > 0; and

(4) a rectangle B = [x(s′), x(t′)]× [0, H ′] such that L′ ×H ′ =
∑
e∈E κ(e).

The induction defines an output which is a two-dimensional book-embedding Γ of K whose
underlying representation has B as bounding box and whose supporting 1-dimensional book-
embedding is K, so that s′ and t′ have x-coordinates x(s′) and x(t′), respectively. The induction
implies the theorem with K = G, K = L, s′ = s, t′ = t, κ = ω, L′ = L, H ′ = H, x(s′) = x(s) = 0,
and x(t′) = x(t) = L.

In the base case, K is a single edge e◦. Then the representation R underlying Γ consists only
of the rectangle R(e◦), which coincides with B.

In the inductive case, K has more than one edge; refer to Figure 9a. Let OK be the outerplane
embedding of K associated to K; in particular, s′ is encountered immediately before t′ when
traversing the cycle delimiting the outer face of OK in clockwise direction. Since K is biconnected
and e◦ is incident to the outer face of OK , there exists an internal face of OK that is delimited
by a simple cycle containing e◦. Let (s′ = u1, u2, . . . , uk+1 = t′) be such a cycle, where we define
ei = (ui, ui+1), for i = 1, . . . , k; then e◦ directly wraps around e1, . . . , ek in K and u1 ≺K u2 ≺K
· · · ≺K uk+1.

For i = 1, . . . , k−1, we set x(ui+1) = x(ui) + A(ei)
H′−κ(e◦)/L′ and y(ui+1) = 0. We apply induction

k times, namely, for i = 1, . . . , k, we apply induction with:
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Figure 9: Illustration for the inductive case of the proof of Theorem 3. (a) The graphs
K,K1, . . . ,Kk, the edges e◦, e1, . . . , ek, and the vertices u1, . . . , uk+1. In this example, k = 4. (b)
Construction of a two-dimensional book-embedding Γ of K from two-dimensional book-embeddings
Γ1, . . . ,Γk of K1, . . . ,Kk.

(1) the weighted biconnected outerplanar graph Ki = (Vi, Ei, κi) induced by ei and by the edges
nested into ei in K, where the weight function κi is the restriction of κ to the edges in Ei;

(2) a 1-dimensional book-embedding Ki of Ki, whose first and last vertex are ui and ui+1, respec-
tively; this book-embedding is the restriction of K to Ki;

(3) the assignment for x(ui) and x(ui+1) defined above; and

(4) the rectangle Bi = [x(ui), x(ui+1)]× [0, H ′ − κ(e◦)
L′ ].

We denote by Γi the two-dimensional book-embedding of Ki constructed by induction. Finally,

we draw e◦ as the rectangle R(e◦) = [x(s′), x(t′)]× [H ′ − κ(e◦)
L′ , H

′]. See Figure 9b.
We now prove the correctness of the above-described algorithm. First, we prove that, in the

inductive case, the area of Bi is equal to
∑
e∈Ei κi(e) =

∑
e∈Ei κ(e) =

∑
e∈Ei ω(e), which ensures

the correctness of the inductive calls.
If i ≤ k− 1 then, by construction, we have x(ui+1) = x(ui) + A(ei)

H′−κ(e◦)/L′ , hence the area of Bi
is equal to A(ei)

H′−κ(e◦)/L′ × (H ′ − κ(e◦)
L′ ) = A(ei) =

∑
e∈Ei ω(e).

We now prove that the area of Bk is equal to
∑
e∈Ek κ(e). By construction, we have x(uk) =

x(s′) +
∑k−1

i=1 A(ei)

H′−κ(e◦)/L′ = x(s′) + H′×L′−κ(e◦)−A(ek)
H′−κ(e◦)/L′ = x(s′) + L′ − A(ek)

H′−κ(e◦)/L′ = x(t′) − A(ek)
H′−κ(e◦)/L′ ,

where the second equality exploits the fact that the sum of the weights of the edges in E is equal

to H ′×L′ and to κ(e◦)+
∑k
i=1A(ei). It follows that the area of Bk is equal to A(ek)

H′−κ(e◦)/L′ × (H ′−
κ(e◦)
L′ ) = A(ek) =

∑
e∈Ek ω(e).

We now prove that the constructed representation satisfies Condition (1) and Conditions (2)a–
(2)d of a two-dimensional book-embedding.
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• Condition (1): As described above, we have ui ≺K ui+1, for i = 1, 2, . . . , k. We prove that
x(ui+1) > x(ui), for i = 1, 2, . . . , k.

If i ≤ k − 1 then, by construction, we have x(ui+1) = x(ui) + A(ei)
H′−κ(e◦)/L′ . Since H ′ =∑

e∈E κ(e)

L′ > κ(e◦)
L′ , we have that A(ei)

H′−κ(e◦)/L′ > 0, and hence x(ui+1) > x(ui).

We now prove that x(t′) = x(uk+1) > x(uk). As argued above, we have x(uk) = x(t′) −
A(ek)

H′−κ(e◦)/L′ . Since H ′ > κ(e◦)
L′ , it follows that x(uk+1) = x(t′) > x(uk).

By induction, for i = 1, 2, . . . , k, we have that the 1-dimensional book-embedding supporting
Γi is Ki. Since Γi satisfies Condition (1), the order of the vertices of Ki by increasing x-
coordinates is Ki; in particular, ui and ui+1 are respectively the vertex with the smallest and
the largest x-coordinate in Γi.

Now consider any two distinct vertices u and v of K respectively belonging to Ki and Kj ,
for some i, j ∈ {1, . . . , k}; we assume w.l.o.g. that i ≤ j. If i = j, then we have that
u ≺K v if and only if x(u) < x(v), given that the same property is satisfied in Γi, as
argued above, and given that the restriction of Γ to Ki is Γi. If i < j, then we have
u � ui+1 � uj � v, where one of the three precedence relationships is strict, given that u
and v are distinct. Further, x(u) ≤ x(ui+1), given that ui+1 is the vertex with the largest
x-coordinate in Γi; analogously, x(uj) ≤ x(v), given that uj is the vertex with the smallest
x-coordinate in Γj ; finally, x(ui+1) ≤ x(uj), where the equality holds only if j = i+1. Hence,
x(u) ≤ x(ui+1) ≤ x(uj) ≤ x(v), where one of the three inequalities is strict, given that u and
v are distinct. It follows that Γ satisfies Condition (1).

• Condition (2)a: At each step of the induction, by construction, we represent a single edge e◦

by an axis-parallel rectangle R(e◦). Hence, every edge of K is represented by an axis-parallel
rectangle.

• Condition (2)b: At each step of the induction, by construction, we draw a single axis-
parallel rectangle R(e◦) representing the edge e◦ = (s′, t′) of K, so that xmin(e◦) = x(s′)
and xmax(e◦) = x(t′). Hence, every edge e = (u, v) of K is such that xmin(e) = x(u) and
xmax(e) = x(v).

• Condition (2)c: At each step of the induction, we draw a single axis-parallel rectangle R(e◦)
representing the edge e◦ of K. In the base case, the area of R(e◦) is (x(t′) − x(s′)) ×H ′ =
L′ × H ′ =

∑
e∈E κ(e) = κ(e◦), as requested. In the inductive case, the area of R(e◦) is

[x(s′), x(t′)]× [H ′ − κ(e◦)/L′, H ′] = L′ × κ(e◦)/L′ = κ(e◦), as requested. Hence, every edge
e of K is represented by an axis-parallel rectangle R(e) whose area is κ(e).

• Condition (2)d: At each step of the induction, we assign the value ymin(e◦) = H ′ − κ(e◦)/L′

for the edge e◦. Further, the inductive calls ensure that every edge e of K different from e◦

is represented by a rectangle whose y-coordinates are in [0, H ′ − κ(e◦)/L′], hence ymax(e) ≤
ymin(e◦).

Finally, we discuss the running time of the above-described algorithm. The 1-page book-
embedding L, the extended dual tree T of the outerplane embedding OG of G, and the value A(e)
for each edge e ∈ E can be computed in total O(n) time, as discussed above. Assume that each
edge e of G stores a linear list L(e), which represents what follows. Let (a, b) be the edge of T
that is dual to e, where a is the parent of b. If b is a leaf of T (and hence e is an edge incident
to the outer face of OG and different from e∗), then L(e) = ∅. Otherwise, L(e) represents the
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counter-clockwise order of the vertices along the cycle delimiting the internal face of OG that is
dual to b, where the end-vertices of e are the first and the last vertex of L(e). Such lists can be
set-up in total O(n) time by means of a visit of OG.

In the base case of the inductive algorithm, the computation time is obviously constant. In
the inductive case, the vertices u1, u2, . . . , uk+1 are found in O(k) time, as these are the vertices
in the list L(e◦). Then the coordinates x(u1), x(u2), . . . , x(uk+1) can also be found in O(k) time
from the pre-computed labels A(ei). The graphs K1, . . . ,Kk and the 1-page book-embeddings
K1, . . . ,Kk do not need to be computed explicitly; indeed, the lists L(e1), . . . ,L(ek) represent all
the information that is needed for the induction to continue. Hence, the algorithm spends O(k)
time when processing e◦. Since k is the degree in T of the vertex that is dual to the internal face
of OK incident to e◦, and since the sum of the degrees of the vertices of T is in O(n), it follows
that the running time of the algorithm is in O(n), as well. �

Theorem 4 For any constant ε > 0, every n-vertex weighted outerplanar graph G = (V,E, ω)
admits a two-dimensional book-embedding whose area is smaller than or equal to

∑
e∈E ω(e) + ε.

Such an embedding can be constructed in O(n) time.

Proof: If G is biconnected, then it suffices to apply Theorem 3 with arbitrary positive values for
L and H such that L×H =

∑
e∈E ω(e), and with s and t as any two vertices that are consecutive

in the clockwise order of the vertices of G along the outer face of the unique outerplane embedding
of G.

If G is connected, but not biconnected, we augment it to a weighted biconnected outerplanar
graph G′, by adding at most n dummy edges of weight ε/n to it; then we construct a two-
dimensional book-embedding of G′, and finally we remove the rectangles corresponding to dummy
edges, obtaining a two-dimensional book-embedding of G.

More formally, we start by computing a 1-page book-embedding L of G; this can be done in
O(n) time [3, 10, 15].

We then augment G = (V,E, ω) to a weighted biconnected outerplanar graph G′ = (V,E′, ω′);
this can be done in O(n) time as follows. First, we initialize G′ to G. Second, we add to G′ an
edge of weight ε/n between any two vertices of G that are consecutive in L, if such an edge is not
already in G. Third, we add to G′ an edge of weight ε/n between the first vertex s and the last
vertex t of L, if such an edge is not already in G. This augmentation guarantees the outerplanarity
of G′; note that the number n′ of dummy edges that are added to G in order to obtain G′ is smaller
than or equal to n. Also, G′ has a cycle connecting all its vertices and is, hence, biconnected.

We apply Theorem 3 to G′ with arbitrary positive values for L and H such that L × H =∑
e∈E′ ω(e) + n′ε/n. We thus obtain a two-dimensional book-embedding Γ′ of G′. Finally, we

remove from Γ′ each rectangle R(e) corresponding to a dummy edge e, thus obtaining a drawing
Γ of G.

We now prove that Γ is a two-dimensional book-embedding of G. In fact, Conditions (1), (2)a,
(2)b, and (2)c of the definition of two-dimensional book-embedding are satisfied by Γ since they
are satisfied by Γ′. As far as Condition (2)d is concerned, we observe what follows. Consider any
edge e of G; let e1, . . . , ek be the edges e directly wraps around; further, let R(e1), . . . ,R(ek) be
the rectangles representing e1, . . . , ek in Γ′. By Property 4, we have that ymin(e) = ymax(e1) =
· · · = ymax(ek). Since G is connected, at least one of e1, . . . , ek belongs to G. Hence, at least one
of R(e1), . . . ,R(ek) belongs to Γ, satisfying Condition (2)d.

By Theorem 3, the area of Γ′ is
∑
e∈E ω(e) + n′ε/n ≤

∑
e∈E ω(e) + ε. Since Γ only consists of

the vertices of G′ and of some rectangles of Γ′, its area is at most the one of Γ′.
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Finally, a reduction from the case in which G is not connected to the one in which it is can be
performed analogously as above, by means of the addition of at most n dummy edges of weight
ε/n. It is necessary for this augmentation that the 1-page book-embedding L be chosen so that no
vertex of a connected component lies under an edge of a different connected component, so that
Condition (2)d is satisfied by the resulting representation. �

6 2D Book-Embeddings with Finite Resolution

The algorithms in the proofs of Theorems 3 and 4 may produce 2-dimensional book-embeddings in
which the rectangles representing some edges can be arbitrarily small in terms of height or width.
This is clearly undesirable for visualization purposes.

Hence, we study two-dimensional book-embeddings that are constrained to adopt a finite res-
olution rule. A minres-constrained two-dimensional book-embedding of a weighted outerplanar
graph G = (V,E, ω) is a two-dimensional book-embedding such that:

(A) For each edge e in E, we have that xmax(e)− xmin(e) ≥ 1.

(B) For each edge e in E, we have that ymax(e)− ymin(e) ≥ 1.

(C) For each pair u, v of distinct vertices in V , we have that |x(v)− x(u)| ≥ 1.

A trivial necessary condition for a weighted outerplanar graph to have a minres-constrained
two-dimensional book-embedding is that all its edges have weight greater than or equal to one.
More generally, we have the following characterization. Let L be a 1-page book-embedding of a
graph G and let e be an edge of G. We call burden of e in L, and denote it by β(e), the number
of vertices that lie strictly under e in L.

Theorem 5 An n-vertex weighted outerplanar graph G = (V,E, ω) admits a minres-constrained
two-dimensional book-embedding if and only if it admits a 1-page book-embedding L such that, for
each edge e ∈ E, we have that ω(e) ≥ β(e) + 1. Also, if a 1-page book-embedding L satisfying this
condition is given, a minres-constrained two-dimensional book-embedding supported by L can be
constructed in O(n) time.

Proof: The necessity is easy to prove. In fact, consider a weighted outerplanar graph that,
in every 1-page book-embedding L, has an edge e such that ω(e) < β(e) + 1. By Condition
(C), in any minres-constrained two-dimensional book-embedding supported by L, we have that
xmax(e) − xmin(e) ≥ β(e) + 1. Hence, we obtain ω(e) < β(e) + 1 ≤ xmax(e) − xmin(e). Condition
(2)a of the definition of two-dimensional book-embedding requires that (xmax(e) − xmin(e)) ×
(ymax(e)− ymin(e)) = ω(e). Therefore, we have (ymax(e)− ymin(e)) = ω(e)/(xmax(e)− xmin(e)) <
(xmax(e)− xmin(e))/(xmax(e)− xmin(e)) = 1, contradicting Condition (B).

Now we deal with the sufficiency. Namely, suppose that G admits a 1-page book-embedding L
such that, for each edge e ∈ E, we have that ω(e) ≥ β(e) + 1. We construct a minres-constrained
two-dimensional book-embedding Γ for G as follows.

Let L = (v1, v2, . . . , vn). For i = 1, . . . , n, we set x(vi) = i and y(vi) = 0, so that Condition (1) of
the definition of two-dimensional book-embedding and Condition (C) of the definition of minres-
constrained two-dimensional book-embedding are satisfied. We also assign, for every edge e =
(u, v) ∈ E such that u ≺L v, the value xmin(e) = x(u) and xmax(e) = x(v) to the rectangle R(e)
representing e in Γ, so that Condition (A) of the definition of minres-constrained two-dimensional
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book-embedding and Condition (2)b of the definition of two-dimensional book-embedding are
satisfied.

We now assign values ymin(e) and ymax(e) to the rectangle R(e) representing each edge e. If e is
such that there is no edge e′ with e′ c e, we set ymin(e) = 0 and ymax(e) = ω(e)/(xmax(e)−xmin(e)).
Otherwise, we assign ymin(e) and ymax(e) to an edge e only after assigning ymin(e′) and ymax(e′)
to all edges e′ such that e′ c e. Then we set ymin(e) = maxe′ce ymax(e′) and ymax(e) = ymin(e) +
ω(e)/(xmax(e) − xmin(e)). In this way we satisfy Conditions (2)c and (2)d of the definition of
two-dimensional book-embedding.

Since by hypothesis ω(e) ≥ β(e) + 1 and since by construction β(e) + 1 = xmax(e)−xmin(e), we
have that ymax(e)−ymin(e) = ω(e)/(xmax(e)−xmin(e)) = ω(e)/(β(e)+1) ≥ (β(e)+1)/(β(e)+1) = 1,
satisfying Condition (B) of the definition of minres-constrained two-dimensional book-embedding.

The described construction is easily implemented to run in O(n) time. �

A 1-page book-embedding with the properties in the statement of Theorem 5 is said to be
supporting a minres-constrained representation or, that it is a minres-supporting embedding.

A first algorithmic contribution in the direction of testing whether an outerplanar graph has a
minres-constrained two-dimensional book-embedding is given in the following lemma.

Lemma 14 Let G = (V,E, ω) be an n-vertex weighted biconnected outerplanar graph and let
(s, t) ∈ E be a prescribed edge. There exists an O(n)-time algorithm that tests whether G admits
a minres-constrained two-dimensional book-embedding in which s and t are the first and the last
vertex of the supporting 1-page book-embedding, respectively. In the positive case, such a represen-
tation can be constructed in O(n) time.

Proof: First, we determine in O(n) time the unique outerplane embedding of G, up to a flip, and
verify whether the edge (s, t) is incident to the outer face of it. In the negative case, we conclude
that G does not admit the required minres-constrained two-dimensional book-embedding. In the
positive case, we construct in O(n) time the 1-page book-embedding L such that s and t are the
first and the last vertex of L, respectively; note that (s, t) b e, for each e ∈ E such that e 6= (s, t).

It remains to test whether L is a minres-supporting embedding. We construct in O(n) time
the extended dual tree T of the outerplane embedding of G. We root T at the leaf r such that the
edge of T incident to r is dual to (s, t). We perform a bottom-up visit of T in O(n) time. During
this visit, we compute, for each edge (α, γ) of T , the burden β(e) of e in L, where e is the edge
that is dual to (α, γ); this is done as follows. Assume, w.l.o.g., that γ is the child of α in T . If γ is
a leaf, then we set β(e) = 0. Otherwise, let e1, . . . , eh be the edges of G that are dual to the edges
from γ to its children in T ; then we set β(e) = h− 1 +

∑
i=1,...,h β(ei).

We check in total O(n) time whether ω(e) ≥ β(e) + 1 for each edge e ∈ E. By Theorem 5, if
one of these checks fails, a minres-constrained two-dimensional book-embedding in which s and t
are respectively the first and last vertex of the supporting 1-page book-embedding does not exist.
Otherwise, by means of the same theorem, we construct such a representation in O(n) time. �

The rest of this section is devoted to a proof of the following theorem.

Theorem 6 Let G = (V,E, ω) be an n-vertex weighted outerplanar graph. There exists an O(n4)-
time algorithm that tests whether G admits a minres-constrained two-dimensional book-embedding
and, in the positive case, constructs such an embedding.

We present an algorithm, called minres-be-drawer, that tests in O(n4) time whether G
admits a minres-supporting embedding and, in the positive case, constructs such an embedding.
Then the statement follows by Theorem 5.
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We compute in O(n) time the block-cut-vertex tree T of G [6, 8]. Also, for each B-node b of
T we compute the number of vertices n(b) and the unique (up to a flip) outerplane embedding of
G(b); this can be done in overall O(n) time.

We now present an algorithm, called minres-be-drawer(e∗), that tests whether a minres-
supporting embedding of G exists with the further constraint that a given edge e∗ is not nested
into any other edge of G. Then minres-be-drawer simply calls minres-be-drawer(e∗) for
each edge e∗ of G. Hence, the time complexity of minres-be-drawer is O(n) times the one of
minres-be-drawer(e∗).

We root T at the B-node b∗ containing e∗; then, for every B-node b of T (for every C-node c of
T ), the graph G+(b) (resp. G+(c)) is defined as for max- and sum-constrained book-embeddings.
For every B-node b of T (for every C-node c of T ), we compute the number of vertices of G+(b)
(resp. of G+(c)) and denote it by n+(b) (resp. by n+(c)); this can be done in total O(n) time by
means of a bottom-up traversal of T .

Let e∗ = (u, v). By means of Lemma 14, we check in O(n(b∗)) time whether G(b∗) admits
a minres-supporting embedding L(b∗, e∗) in which u and v are the first and the last vertex,
respectively. If yes, we store L(b∗, e∗). If not, then minres-be-drawer(e∗) concludes that G
admits no minres-supporting embedding in which e∗ is not nested into any other edge of G
(Failure Condition 1); the correctness of this conclusion descends from considerations analogous
to those in the proof of Lemma 4.

We visit T in arbitrary order. For each B-node b 6= b∗, minres-be-drawer(e∗) performs the
following checks and computations. Let c be the C-node that is the parent of b in T . Let (c, x)
and (c, y) be the two (not necessarily distinct) edges incident to c that lie on the outer face of the
outerplane embedding of G(b). We check whether G(b) admits a minres-supporting embedding
L(b, (c, x)) in which c and x are the first and the last vertex, respectively. If yes, we store L(b, (c, x)).
Then we do an analogous check for the edge (c, y), possibly storing L(b, (c, y)). By Lemma 14, this
can be done in O(n(b)) time. Hence, these checks require overall O(n) time. If both the test for
the edge (c, x) and the test for the edge (c, y) fail, then minres-be-drawer(e∗) concludes that
G admits no minres-supporting embedding in which e∗ is not nested into any other edge of G
(Failure Condition 2); the correctness of this conclusion descends from considerations analogous
to those in the proof of Lemma 4.

We introduce some definitions. Let L = (v0, v1, . . . , vh) be a 1-page book-embedding of a
connected graph H and let vi be a vertex that is visible in L. We denote by n`(vi,L) and nr(vi,L)
the number of vertices to the left and to right of vi in L, respectively (that is, n`(vi,L) = i and
nr(vi,L) = h − i). For each vertex vi, we define a value r(vi), which is called the right residual
capacity of vi, as follows. Consider the set Ei that contains all the edges (vi′ , vj′) of H such that
i′ ≤ i and i+ 1 ≤ j′; that is, Ei consists of the edges vi lies strictly under and of the edges incident
to vi and to a vertex that follows vi in L. We set r(vi) = mine∈Ei

(ω(e) − (β(e) + 1)). The left
residual capacity `(vi) of vi is defined analogously. By convention, we set r(vh) = `(v0) =∞. The
residual capacity r(L) of L is the right residual capacity of v0. Let L and L′ be two 1-page book-
embeddings of H and c be a vertex that is visible both in L and in L′. We say that L and L′ are
left-right equivalent with respect to c if n`(c,L) = n`(c,L′). This implies that nr(c,L) = nr(c,L′).

Algorithm minres-be-drawer(e∗) now performs a bottom-up visit of T .

After visiting each C-node c, minres-be-drawer(e∗) either concludes that G admits no
minres-supporting embedding such that e∗ is not nested into any edge of G, or determines a
sequence of minres-supporting embeddings L+

1 (c), . . . ,L+
k (c) of G+(c) such that:

(C1) for any i = 1, . . . , k, we have that c is visible in L+
i (c);
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(C2) n`(c,L+
1 (c)) < n`(c,L+

2 (c)) < · · · < n`(c,L+
k (c)); and

(C3) for every minres-supporting embedding L of G+(c) that respects (C1), there exists an index
i ∈ {1, . . . , k} such that L+

i (c) is left-right equivalent to L with respect to c.

Note that, by Property (C2), no two minres-supporting embeddings among L+
1 (c), . . . ,L+

k (c)
are left-right equivalent with respect to c.

After visiting a B-node b 6= b∗, algorithm minres-be-drawer(e∗) either concludes that G ad-
mits no minres-supporting embedding such that e∗ is not nested into any edge of G, or determines
a single minres-supporting embedding L+(b) of G+(b) such that:

(B1) the parent c of b in T is the first vertex of L+(b); and

(B2) G+(b) admits no minres-supporting embedding that respects (B1) and whose residual ca-
pacity is larger than the one of L+(b).

Restricting the attention to minres-supporting embeddings satisfying Condition (C1) or Con-
dition (B1) is not a loss of generality, because of the following two lemmata.

Lemma 15 Suppose that G admits a minres-supporting embedding L such that e∗ is not nested
into any edge of G. Let c be a C-node of T and let L+(c) be the restriction of L to the vertices
and edges of G+(c). Then c is visible in L+(c).

Lemma 16 Suppose that G admits a minres-supporting embedding L such that e∗ is not nested
into any edge of G. Let b 6= b∗ be a B-node of T and let L+(b) be the restriction of L to the vertices
and edges of G+(b). Then the parent c of b in T is either the first or the last vertex of L+(b).

The proofs of Lemmata 15 and 16 follow almost verbatim the proofs of Lemmata 6 and 7
and are hence omitted. The only difference is that here e∗ is not nested into any edge of G by
assumption, while in the proofs of Lemmata 6 and 7 the edge eM with maximum weight is not
nested into any edge of G by the constraints of a sum-constrained book-embedding.

Similarly as for sum-constrained book-embeddings, we provide a bound on the number of
minres-supporting embeddings that are pairwise not left-to-right equivalent.

Lemma 17 Let H = (VH , EH , ωH) be an n-vertex weighted outerplanar graph. For a vertex c of
H, let S be a set of minres-supporting embeddings of H such that:

(γ1) for each L ∈ S, we have that c is visible in L; and

(γ2) for any L,L′ ∈ S, we have that L is not left-right equivalent to L′ with respect to c.

Then S contains at most n embeddings.

Proof: Similarly to the proof of Lemma 8, the statement descends from the following two claims.
First, for any value λ ≥ 0, there exists at most one minres-supporting embedding L ∈ S

such that n`(c,L) = λ. Namely, if S contains two minres-supporting embeddings L,L′ with
n`(c,L) = n`(c,L′) = λ, we have nr(c,L) = n − n`(c,L) and nr(c,L′) = n − n`(c,L′), hence
nr(c,L) = nr(c,L′), which implies that L and L′ are left-right equivalent with respect to c; this is
not possible, by assumption.

Second, the value n`(c,L) for an embedding L ∈ S is an integer value in {0, . . . , n−1} (namely,
it is the number of vertices to the left of c in L). �

Before describing minres-be-drawer(e∗), we need the following algorithmic lemma.
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Lemma 18 Let H = (VH , EH , ωH) be an n-vertex weighted outerplanar graph and let L be a 1-
page book-embedding of H. Then it is possible to determine in O(n) time whether L is a minres-
supporting embedding; further, in the positive case, it is possible to determine in O(n) time the
residual capacity of L.

Proof: We first discuss the case in which H is biconnected. We compute, for each edge e ∈ EH ,
the burden βH(e) of e in L; this is done in total O(n) time, as described in the proof of Lemma 14.
Then, in order to determine whether L is a minres-supporting embedding, it suffices to check
whether ωH(e) ≥ βH(e) + 1, for each edge e ∈ EH ; this takes O(1) time per edge, and hence
O(n) time in total. If L is a minres-supporting embedding, the residual capacity of L is equal to
min(ωH(e)− (βH(e) + 1)), where the minimum is taken over all the edges e ∈ EH incident to the
first vertex of L; this takes O(n) time in total.

If H is not biconnected, we augment it to a weighted biconnected outerplanar graph H ′ in O(n)
time, as follows. First, we initialize H ′ to H. Then we add to H ′ an edge of weight 1 between
any two consecutive vertices of L, if such an edge is not already in H. Finally, we add to H ′ an
edge e of weight n − 1 between the first and the last vertex of L, if such an edge is not already
in H. Let H ′ = (VH′ , EH′ , ωH′). Since VH′ = VH , we can define L′ = L and obtain that L′ is a
1-page book-embedding of H ′. As in the proof of Theorem 4, we have that H ′ is outerplanar and
biconnected.

We claim that no edge in EH′ \ EH has a weight smaller than its burden plus one. Namely,
consider any edge e 6= e in EH′ \EH ; by construction, ωH′(e) = 1, while the burden of e in L′ is 0,
given that e connects two consecutive vertices of L′. Further, if e ∈ EH′ \EH , then ωH′(e) = n−1,
while the burden of e in L′ is n− 2, as the end-vertices of e are the first and the last vertex of L′.

By the above claim and since the weight and the burden of every edge e ∈ EH is the same
in L as in L′, it follows that L is a minres-supporting embedding if and only if L′ is a minres-
supporting embedding. Thus, in order to determine whether L is a minres-supporting embedding,
it suffices to test whether L′ is a minres-supporting embedding. Since H ′ is biconnected, this can
be done in O(n) time as described above; in particular, such a computation determines the burden
βH′(e) of every edge e ∈ EH′ in L′. If the test succeeds, in order to compute the residual capacity
of L, it suffices to compute min(ωH′(e) − (βH′(e) + 1)), where the minimum is taken over all the
edges e ∈ EH (hence, the edges in EH′ \ EH are excluded from this computation) incident to the
first vertex of L′; again, this takes O(n) time in total. �

We now describe the bottom-up visit of T performed by the algorithm minres-be-drawer(e∗).
Processing a leaf. Let b be a leaf of T . Since the algorithm minres-be-drawer(e∗) did not

terminate because of Failure Condition 2, we stored one or two minres-supporting embeddings of
G+(b) = G(b) in which the parent c of b is the first vertex. For each of such embeddings, say L,
we compute the residual capacity of L in O(n(b)) time, by Lemma 18.

We now select as L+(b) = L(b) the minres-supporting embedding of G+(b) = G(b) with the
largest residual capacity (between the at most two stored embeddings). Hence, the single minres-
supporting embedding L+(b) of G+(b) satisfies Properties (B1) and (B2) and can be constructed
in O(n(b)) time.

Processing a C-node. We process a C-node c of T as follows. Let b1, . . . , bh be the B-
nodes that are children of c in T . Since the algorithm minres-be-drawer(e∗) did not terminate
when visiting b1, . . . , bh, we have, for i = 1, . . . , h, a minres-supporting embedding L+(bi) of
G+(bi) satisfying Properties (B1)–(B2); further, we assume to have already computed the residual
capacity r(L+(bi)). We relabel the B-nodes b1, . . . , bh in such a way that r(L+(bi)) + n+(bi) ≤
r(L+(bi+1)) + n+(bi+1), for i = 1, . . . , h− 1; this takes O(n log n) time.
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We now process the B-nodes b1, . . . , bh in this order. When processing bi, we construct a
sequence Si of at most n minres-supporting embeddings of G+(b1)∪ · · · ∪G+(bi) satisfying Prop-
erties (C1)–(C3). When constructing an ordering L in a sequence Si, we also compute n`(c,L)
and nr(c,L). We now describe the processing of the nodes b1, . . . , bh.

When processing b1, we let S1 consist of L+(b1) and its flip, in this order.
Suppose that, for some i ∈ {2, . . . , h}, the B-node bi−1 has been processed and that the sequence

Si−1 has been constructed. We process bi as follows. We initialize Si = ∅. We individually consider
each of the at most n embeddings in Si−1, say L. We now consider the embedding L+(bi) and we
try to combine it with L. This is done as follows.

• If the residual capacity of L+(bi) is larger than nr(c,L), then we construct a minres-
supporting embedding L′ of G+(b1) ∪ · · · ∪ G+(bi) by placing the vertices of L+(bi) \ {c}
to the right of L, in the same relative order as they appear in L+(bi); we insert L′ into Si
and note that n`(c,L′) = n`(c,L) and that nr(c,L′) = nr(c,L) + n+(bi)− 1.

• Analogously, if the residual capacity of L+(bi) is larger than n`(c,L), then we construct a
minres-supporting embedding L′ ofG+(b1)∪· · ·∪G+(bi) by placing the vertices of L+(bi)\{c}
to the left of L, in the opposite order as they appear in L+(bi); we insert L′ into Si and note
that n`(c,L′) = n`(c,L) + n+(bi)− 1 and that nr(c,L′) = nr(c,L).

After we considered each of the at most n embeddings in Si−1, if Si is empty then we conclude
that G admits no minres-supporting embedding such that e∗ is not nested into any edge of G (we
call this Failure Condition 3). Otherwise, we order and polish the sequence Si by leaving only one
copy of left-right equivalent embeddings. This is done in O(n log n) time as follows.

Since |Si−1| is at most n, it follows that the cardinality of Si before the polishing is at most
2n. We order Si in O(n log n) time by increasing value of the number of vertices to the left of c.
Then we scan Si; during the scan, we process the elements of Si one by one. When we process an
element L, we compare L with its predecessor L′. If L and L′ are left-right equivalent with respect
to c, then we remove L from Si. Note that this scan takes O(n) time. After this scan, we have
that no two embeddings in Si are left-right equivalent with respect to c. By Lemma 17, there are
at most n embeddings in Si.

This concludes the description of the processing of the B-node bi and the subsequent construc-
tion of the sequence Si. After processing the last child bh of c, the sequence Sh contains the required
minres-supporting embeddings of G+(b1)∪· · ·∪G+(bh) = G+(c). The proof that such a (possibly
empty) sequence Sh satisfies Properties (C1)–(C3) is similar to the proof of Lemma 11 and is hence
omitted. We only note here that, in a minres-supporting embedding of G+(c) in which c is visible,
if G+(bi+1) lies under an edge of G+(bi), then r(L+(bi)) > n+(bi+1); however, if that is the case,
the inequality r(L+(bi)) + n+(bi) ≤ r(L+(bi+1)) + n+(bi+1) ensures that r(L+(bi+1)) > n+(bi),
and hence that G+(bi) can lie under an edge of G+(bi+1) as well. This is the core of the argument
for proving that choosing the ordering b1, . . . , bh for the B-nodes that are children of c does not
introduce any loss of generality.

Since we process each B-node bi that is child of c in T in O(n log n) time, the overall time
needed to process c is O(hn log n). This sums up to O(n2 log n) time over all the C-nodes of T .

Processing an internal B-node different from the root. We now describe how to process
an internal B-node b 6= b∗ of T . The goal is to either conclude that G admits no minres-supporting
embedding such that e∗ is not nested into any edge of G, or to construct a minres-supporting
embedding L+(b) of G+(b) satisfying Properties (B1)–(B2). In the latter case, we also compute
the residual capacity of L+(b).
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Since minres-be-drawer(e∗) did not terminate because of Failure Condition 2, we have either
one or two minres-supporting embeddings of G(b) in which c is the first vertex. We process each
embedding L of G(b) at our disposal independently, by means of a procedure which tries to extend
L to an embedding of G+(b), as described below. If the procedure fails for every minres-supporting
embedding of G(b) at our disposal, we conclude that G admits no minres-supporting embedding
such that e∗ is not nested into any edge of G (we call this Failure Condition 4). If the procedure
succeeds in constructing a minres-supporting embedding of G+(b) satisfying Properties (B1)–
(B2) for a single minres-supporting embedding of G(b), then we retain the computed embedding
of G+(b). Finally, if the procedure succeeds in constructing a minres-supporting embedding of
G+(b) satisfying Properties (B1)–(B2) for two minres-supporting embeddings of G(b), then we
retain the embedding of G+(b) with the maximum residual capacity.

Let L be the current embedding of G(b). Let c1, . . . , ch be the C-nodes that are children of b,
labeled in the same order as they appear in L. Since minres-be-drawer(e∗) did not terminate
when visiting c1, . . . , ch, we have, for each i = 1, . . . , h, a sequence L+

1 (ci),L+
2 (ci), . . . ,L+

ki
(ci) of

minres-supporting embeddings of G+(ci) satisfying Properties (C1)–(C3). Further, for i = 1, . . . , h
and j = 1, . . . , ki, we have already computed the values n`(ci,L+

j (ci)) and nr(ci,L+
j (ci)).

Our strategy is to process the C-nodes that are children of b in the order ch, . . . , c1 and, for
each i = h, . . . , 1, to choose a minres-supporting embedding L+

j (ci) of G+(ci) in such a way

that n`(ci,L+
j (ci)) is minimum, subject to the constraint that the embedding resulting from the

replacement of ci with L+
j (ci) is a minres-supporting embedding. We formalize this idea as follows.

We process the C-nodes ch, . . . , c1 in this order. Before any C-node is processed, we initialize
L∗h+1 := L. Then, for each i = h, . . . , 1, when processing ci, we try to construct a minres-
supporting embedding L∗i of G(b) ∪ G+(ch) ∪ · · · ∪ G+(ci). This is done by trying to insert the
minres-supporting embedding L+

j (ci) of G+(ci) into L∗i+1, for i = 1, . . . , ki. That is, we replace

ci with L+
j (ci) in L∗i+1, and then check whether the resulting embedding is a minres-supporting

embedding; this can be done in O(n) time by Lemma 18. The first time a check succeeds, we
stop the computation and set L∗i to be the resulting embedding of G(b) ∪ G+(ch) ∪ · · · ∪ G+(ci).
If no check succeeds, then we let the procedure fail for the current embedding L of G(b). When
i = 1, if the procedure did not fail, we constructed a minres-supporting embedding; by means of
Lemma 18, we compute in O(n) time the residual capacity of this embedding.

We have the following.

Lemma 19 If minres-be-drawer(e∗) constructs an embedding of G+(b), this is a minres-
supporting embedding satisfying Properties (B1)–(B2). Further, if minres-be-drawer(e∗) con-
cludes that G admits no minres-supporting embedding such that e∗ is not nested into any edge of
G, this conclusion is correct.

Proof: We first discuss the case in which the algorithm minres-be-drawer(e∗) constructs an
embedding L+(b) of G+(b). Recall that L+(b) is constructed starting from an embedding L∗h+1 of

G(b) by replacing, for i = h, . . . , 1, the vertex ci with an embedding L+
j (ci) of G+(ci) into L∗i+1

in order to obtain L∗i . Since after each of such replacements a check is performed on whether the
resulting embedding is a minres-supporting embedding, it follows that L+(b) = L∗1 is indeed a
minres-supporting embedding.

Since minres-be-drawer(e∗) did not terminate because of Failure Condition 2, it follows
that the parent c of b is the first vertex of the embedding L∗h+1 of G(b) in L+(b). Further, for

i = h, . . . , 1, the replacement of ci with an embedding L+
j (ci) of G+(ci) into L∗i+1 does not change

the first vertex of the embedding, given that c 6= ci; it follows that c is the first vertex of L+(b) as
well, hence L+(b) satisfies Property (B1).
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We now prove that L+(b) satisfies Property (B2). Suppose, for a contradiction, that there exists
a minres-supporting embedding L� of G+(b) satisfying Property (B1) whose residual capacity
is larger than the one of L+(b). Let L�h+1 be the restriction of L� to G(b); further, for i =
h, . . . , 1, let L�i (ci) be the restriction of L� to G+(ci) and let L�i be the restriction of L� to
G(b) ∪G+(ch) ∪ · · · ∪G+(ci); note that L�1 = L�.

Since L� satisfies Property (B1), we have that L�h+1 satisfies Property (B1) as well; that is,
c is the first vertex of L�h+1. Then L = L�h+1 is one of the (at most two) embeddings of G(b)
processed by minres-be-drawer(e∗). We show that processing L leads to the construction of a
minres-supporting embedding L∗1 of G+(b) whose residual capacity is larger than or equal to the
one of L�; by construction, the residual capacity of L+(b) is larger than or equal to the one of L∗1,
which provides the desired contradiction.

In order to prove that, when processing L, minres-be-drawer(e∗) constructs a minres-
supporting embedding L∗1 of G+(b) whose residual capacity is larger than or equal to the one
of L�, we actually prove a stronger statement. Let L = (v0, . . . , vk) and, for i = 1, . . . , h, let x(i)
be such that vx(i) = ci. We prove, by reverse induction on i, that, when processing L, minres-be-
drawer(e∗) constructs a minres-supporting embedding L∗i of G(b) ∪G+(ch) ∪ · · · ∪G+(ci) such
that, for any j ∈ {0, . . . , x(i)−1} and for any edge e incident to vj , the burden of e in L∗i is smaller
than or equal to the one in L�i . By using the values i = 1 and j = 0, this statement implies that
the residual capacity of L∗1 is indeed larger than or equal to the one of L�.

We now prove the induction. In the base case, we have i = h+1. Then the statement is clearly
satisfied, as L∗h+1 and L�h+1 both coincide with L. Now suppose that the statement is true for some

i+ 1 ∈ {2, . . . , h+ 1}. We prove that the statement is true for i, as well. Since L+
1 (ci), . . . ,L+

ki
(ci)

satisfy Properties (C1)–(C3), there exists a minres-supporting embedding L+
p (ci) that is left-right

equivalent to L�i (ci) with respect to ci; that is, n`(ci,L+
p (ci)) = n`(ci,L�i (ci)) and nr(ci,L+

p (ci)) =
nr(ci,L�i (ci)). This implies that, if ci is replaced with L+

p (ci) in L∗h+1, then the resulting em-
bedding is a minres-supporting embedding; in fact, the edges whose burden might change after
the replacement are of three types: (i) edges (vy, vx(i)) with y < x(i); (ii) edges (vx(i), vz) with
x(i) < z; and (iii) edges (vy, vz) with y < x(i) < z. By the inductive hypothesis, the burden of
any of such edges in L∗i+1 is smaller than or equal to the one in L�i+1, hence the same is true after
the replacement happens in both embeddings (as such burden is decreased by the same quantity,
possibly 0, in both embeddings); then the resulting embedding is a minres-supporting embed-
ding given that L�i is. Since minres-be-drawer(e∗) replaces ci with the first embedding among
L+
1 (ci), . . . ,L+

ki
(ci) such that the resulting embedding is a minres-supporting embedding and since

the replacement of ci with L+
p (ci) does result in minres-supporting embedding, it follows that L∗i

is a minres-supporting embedding.

In order to prove the inductive hypothesis, however, we need to address the fact that the
embedding of G+(ci) that is used in L∗i might not be L+

p (ci), but rather an embedding L+
q (ci)

with q < p; recall that n`(ci,L+
q (ci)) < n`(ci,L+

p (ci)) and nr(ci,L+
q (ci)) > nr(ci,L+

p (ci)). For
an edge (vy, vz) with y < x(i) < z, using L+

q (ci) rather than L+
p (ci) makes no difference, as the

burden of such an edge increases by n+(ci) − 1 in any case. The burden of an edge (vy, vx(i))
with y < x(i) after the replacement of ci with L+

q (ci) is actually smaller than the burden of
(vy, vx(i)) after the replacement of ci with L+

p (ci), given that n`(ci,L+
q (ci)) < n`(ci,L+

p (ci)). On
the contrary, the burden of an edge (vx(i), vz) with x(i) < z after the replacement of ci with
L+
q (ci) is larger than the burden of (vx(i), vz) after the replacement of ci with L+

p (ci), given that
nr(ci,L+

q (ci)) > nr(ci,L+
p (ci)); however, the inductive hypothesis only needs to provide guarantees

about the burden of the edges incident to vertices vj with j ∈ {0, . . . , x(i) − 1}, and (vx(i), vz) is
not among such edges. This completes the induction and hence the proof that, if minres-be-
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drawer(e∗) constructs an embedding of G+(b), then this is a minres-supporting embedding
satisfying Properties (B1)–(B2).

We now prove that, if minres-be-drawer(e∗) concludes that G admits no minres-supporting
embedding such that e∗ is not nested into any edge of G, then this conclusion is correct. During
the processing of b, it is concluded that G admits no minres-supporting embedding such that e∗

is not nested into any edge of G only if the algorithm minres-be-drawer(e∗) incurs in Failure
Condition 4. Assume that minres-be-drawer(e∗) incurs in Failure Condition 4. If G admits
no minres-supporting embedding LG such that e∗ is not nested into any edge of G, then the
conclusion is indeed correct, so assume the contrary. By Lemma 16, the restriction of LG to G+(b)
is a minres-supporting embedding L� satisfying Property (B1). The rest of the proof is the same as
the proof that L+(b) satisfies Property (B2). Namely, it is proved by reverse induction that minres-
be-drawer(e∗) constructs a minres-supporting embedding L∗i of G(b) ∪ G+(ch) ∪ · · · ∪ G+(ci)
such that, for any j ∈ {0, . . . , x(i) − 1} and for any edge e incident to vj , the burden of e in L∗i
is smaller than or equal to the one in L�i ; this implies that minres-be-drawer(e∗) constructs a
minres-supporting embedding L∗1 (whose residual capacity is larger than or equal to the one of
L�). The fact that minres-be-drawer(e∗) constructs such an embedding implies that it does not
incur in Failure Condition 4, a contradiction. �

By Lemma 17, for any C-node ci that is a child of b, the number ki of minres-supporting
embeddings L+

1 (ci), . . . ,L+
ki

(ci) of G+(ci) is at most n+(ci); each of these embeddings is processed
in O(n) time, hence the overall time complexity for processing b is in O((n+(c1)+· · ·+n+(ch))·n) ∈
O(n2). This sums up to O(n3) over all the B-nodes of T .

Processing the root. Since algorithm minres-be-drawer(e∗) did not terminate because of
Failure Condition 1, it constructed a minres-supporting embedding L(b∗, e∗) of G(b∗) in which the
end-vertices of e∗ are the first and the last vertex. We apply the same algorithm as for a B-node
b 6= b∗, while using L(b∗, e∗) in place of the at most two embeddings of G(b). This again requires
O(n2) time.

The proof of the following lemma is very similar to the one of Lemma 19, and is hence omitted.

Lemma 20 If G admits a minres-supporting embedding such that e∗ is not nested into any edge
of G, then the algorithm minres-be-drawer constructs such an embedding, otherwise it concludes
that G admits no minres-supporting embedding such that e∗ is not nested into any edge of G.

Running time. As proved above, the C-nodes of T are processed in overall O(n2 log n) time,
while the B-nodes of T are processed in overall O(n3) time. Hence, the running time of the
algorithm minres-be-drawer(e∗) is in O(n3) and the one of the algorithm minres-be-drawer
is in O(n4). This concludes the proof of Theorem 6.

7 Conclusions and Open Problems

We introduced a new visualization paradigm for representing biconnected graphs consisting of
a large component plus several smaller components. In this paradigm, the large component is
represented as a disk, the separation pairs of vertices are arranged along the disk boundary, and
the smaller components are represented as non-intersecting lunes that lie outside the disk and
connect their separation pairs. With the aim of constructing such schematic representations,
we studied several types of constrained 1-page book-embeddings and presented polynomial-time
algorithms for testing whether a graph admits such book-embeddings. The algorithms presented
in this paper have been implemented (source code for the implemented algorithms is available at
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https://compunet.ing.uniroma3.it/#!/researchtopics/schematic); Figs. 1 and 5 have been
generated by means of such implementations.

Our paper opens several problems.

1. Our algorithms allow us to represent only an outerplanar arrangement of small components
around a large component. How to generalize the approach to the non-outerplanar case? One
could study the problem of minimizing the crossings between components and/or minimizing
the violations to the constraints on the weights of the nesting components.

2. We proposed to linearly arrange the vertices of the separation pairs of the large component
on the boundary of a disk. What happens if such an arrangement is instead circular? It is
probably feasible to generalize our techniques in this direction, but an extra effort is required.

3. We focused our attention on a “flat” decomposition of a graph with just one large compo-
nent plus many small components. What happens if the small components have their own
separation pairs with further levels of decomposition? In other words, how to represent the
decomposition of a biconnected graph in all its triconnected components?

4. The algorithms in Section 6, which construct two-dimensional book-embeddings with finite
resolution, may output drawings whose area is not minimum. Can one minimize the area of
such drawings in polynomial time?

5. It would be interesting to confirm that the visualization paradigm we introduced is effective
for supporting specific network analysis tasks. This could be done by conducting user studies
to evaluate the effectiveness of our proposal, comparing it with alternative approaches.

Acknowledgments. Thanks to an anonymous reviewer for observing that computing a max-
constrained book-embedding has a time complexity that is lower-bounded by the one of sorting.
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