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Abstract. The following graph-drawing problems are known to be complete for the
existential theory of the reals (∃R-complete) as long as the parameter k is unbounded.
Do they remain ∃R-complete for a fixed value k?

• Do k graphs on a shared vertex set have a simultaneous geometric embedding?

• Is G a segment intersection graph, where G has maximum degree at most k?

• Given a graph G with a rotation system and maximum degree at most k, does G
have a straight-line drawing which realizes the rotation system?

We show that these, and some related, problems remain ∃R-complete for constant k,
where k is in the double or triple digits. To obtain these results we establish a new
variant of Mnëv’s universality theorem, in which the gadgets are placed so as to interact
minimally; this variant leads to fixed values for k, where the traditional variants of the
universality theorem require unbounded values of k.
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1 Introduction

The complexity class ∃R captures the complexity of deciding truth in the existentially quantified
theory of the reals. ∃R has turned out to be a successful model for describing the complexity
of many problems in graph drawing, and computational geometry, which require placement of
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geometric objects in the Euclidean plane (or some higher-dimensional space). A growing list of
problems complete for ∃R can be found at [34], also see [4] for a survey.

As in the case of NP, just at a smaller scale, these complete problems can be used to estab-
lish ∃R-hardness of new problems.1 And just as in the case of NP, it is sometimes necessary to
go back to the original problems, to see how they can be tweaked, to obtain new and stronger
hardness results. For NP, this has led to a rich list of NP-complete variants of the satisfiability
problem, as well as a few other core problems. For ∃R, two problems have been fundamental
in establishing hardness results in graph drawing and computational geometry: Stretchability of
(arrangements of) pseudolines and the dual problem of realizing abstract order types (oriented
matroids). These problems were first shown ∃R-complete by Mnëv [28], though it was arguably
Shor [33] who emphasized the computational implications of Mnëv’s universality theorem. Figure 1
shows a small example of a stretchability problem. On the left we have an arrangement of pseu-
dolines, x-monotone curves from −∞ to ∞ so that each pair crosses once; such an arrangement is
called stretchable if it is isomorphic to an arrangement of straight lines (the isomorphism being an
isomorphism of the plane).

Figure 1: The stretchability problem. A pseudoline arrangement (left), and its straight-line real-
ization, an isomorphic line arrangement (right). Both arrangements are simple in that at most two
pseudolines/lines pass through each point.

Let us illustrate the issue we are addressing in this paper through an example. A graph is
a segment intersection graph if each vertex can be assigned a line-segment in the plane so that
there is an edge in the graph if and only if the corresponding line-segments cross. Kratochv́ıl and
Matoušek [23] showed that SEG, the problem of deciding whether a graph is a segment intersection
graph, is ∃R-complete. They did so, by reducing the stretchability problem to SEG. In a first
step, each pseudoline is replaced by a pseudo-segment (a subarc of the pseudoline), containing all
crossings, as shown in the left illustration of Figure 2; then additional pseudo-segments are added
to ensure the topology of the original pseudoline arrangement is maintained (shown in the right of
the figure).

And here lies the issue: Each of the pseudo-segments has at least as many crossings as the
pseudoline it is based on. Since every two pseudolines cross, and the number of pseudolines is
unbounded, this implies that each pseudo-segments has an unbounded number of crossings, and
the corresponding segment intersection graph unbounded degree. So if we want to sfhow that SEG
remains ∃R-complete for bounded-degree graphs, we need to push beyond stretchability to Mnëv’s
result.

Here we face the real issue: The constructions underlying proofs of Mnëv’s theorem rely on
placing gadgets along a line. Mnëv [28], Shor [33], and Richter-Gebert [29] do so in slightly

1A problem is C-hard for a complexity class C if any problem in C reduces to it; the problem is C-complete if it
is C-hard, and belongs to C; membership in C is typically easy, so the emphasis tends to be on hardness results.
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Figure 2: Pseudo-segments, based on the pseudoline arrangement in Figure 1 (left), and the same
with additional pseudo-segments (in gray) encoding the topology of the pseudoline arrangement
as an intersection graph of pseudo-segments (curves) (right).

different ways, but all constructions are linear.2 To move information between the gadgets then
forces unbounded interaction between the various gadgets, which, so far, has precluded results
along the lines of the current paper.3

Overview of Contributions

Our main result, Theorem 1 in Section 2, shows that a partial variant of the abstract order type
problem (dual to the stretchability problem) remains ∃R-complete (details to be explained later).
In this variant, the various, partial abstract order types, only interact in a fixed, bounded number of
points. This allows us to apply Theorem 1 to establish ∃R-completeness of various graph-drawing
results for fixed parameters such as degree or number of crossings. We keep the, somewhat lengthy,
proof of Theorem 1 separate, it can be found in Section 6; we strongly recommend the reader be
familiar with the standard ∃R-completeness proof for stretchability before tackling that section
(the necessary background can be found in [27, 29], for example).

As a nearly direct consequence of Theorem 1, we can strengthen the result by Kratochv́ıl and
Matoušek and show that testing whether a bounded-degree graph is a segment intersection graph
is ∃R-complete, see Section 5.

For the remaining results, it is more convenient to work with radial systems, a notion introduced
recently in [2]. In Section 3 we state Corollary 4, the equivalent of Theorem 1 for radial systems.
Using Corollary 4, we can settle the complexity of various other problems, most directly the problem
of testing whether a bounded-degree graph with a given rotation system (a cyclic permutation of
ends of edges at each vertex) can be realized in a straight-line drawing. The problem is ∃R-complete
even for graphs of degree at most 131, see Corollary 5.

Finally, we consider the k-SGE (simultaneous geometric embedding) problem: Given k graphs
on the same vertex set, can the vertices be placed in the plane so that the straight-line drawing
of each graph, by itself, on the vertex set is planar? The problem is known to be ∃R-complete for

2The construction is never fully illustrated, because of scaling issues. Matoušek [27, page 26] shows what it looks
like to combine two gadgets.

3We should point out that it is not impossible that the standard construction can be adapted; this would be
the case, for example, if any polynomial can be computed using only a bounded amount of space, that is, storage
of intermediate results. While this is unlikely to be true for all polynomials, it may just be true for the class of
polynomials achieving universality, but we leave this as an open question.
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an unbounded number of graphs [24, 11]. We show in Theorem 6 in Section 4 that the 240-SGE
problem is ∃R-complete, and the problem remains ∃R-complete for a fixed number of paths, see
Corollary 8.

A Brief on The Existential Theory of the Reals

Let ETR be the set of true sentences in the existential theory of the reals, that is, sentence of
the form (∃x1) · · · (∃xn) ϕ(x1, . . . , xn), where ϕ is a Boolean formula with atomic conditions of
the form p(x) ◦ q(x), where ◦ ∈ {<,≤,=, >,≥}, and p(x) and q(x) are polynomials with integer
coefficients (in binary) in x = (x1, . . . xn). We define ∃R as the downward closure of ETR under
polynomial-time many-one reductions, rather like the complexity class NP is defined from SAT,
the satisfiability problem.4 It is easy to see that NP ⊆ ∃R, since we can turn a real quantifier into
a Boolean quantifier by requiring that x2 = x, and truth of a Boolean formula can be encoded as a
polynomial. It is also known that ∃R ⊆ PSPACE, a highly non-trivial result due to Canny [10].

The complexity class ∃R had been implicit in several papers, including Shor [33], Kratochv́ıl and
Matoušek [23], Bienstock [5], and Buss, Frandsen, and Shallit [9]; it was more formally introduced
in [30, 32]. For a very readable and rich introduction to the existential theory of the reals, we
recommend Matoušek [27].

2 Partial Order Type Realizability

If p, q, and r are three points in the plane, then either r lies on the line from p to q, or it lies to the
left or right of that line. We call this the order type (orientation), χ(p, q, r), of (p, q, r) and denote
it by 1 for left, 0 for collinear, and −1 for right. The order type χ of a larger point-set P ⊂ R2 is
the collection of order-types of triples of P , that is, χ : P 3 → {−1, 0, 1}. Order types satisfy some
rules, for example, the alternation axiom: χ(p, q, r) determines χ for any permutation of p, q, and
r, by multiplying with the parity of the permutation.

For an (abstract) universe of points U = {u1, . . . , un}, we can define an abstract order type as
any function τ : U3 → {−1, 0, 1}. If the points in U can be assigned locations in R2 so that the
order type of the points agrees with the abstract order type τ of the (abstract) points, we say
that the abstract order type is realizable.5 An abstract order type is uniform (simple, in general
position) if no three distinct points are collinear.

We want to introduce the notion of a partial abstract order type, where only some triples are
assigned an orientation (order type). We do not do so in full generality, but restrict ourselves to
defining partial abstract order types for set-covers of U .

Recall that a set-cover (Ui)i∈I of U has to satisfy U =
⋃

i∈I Ui. We can associate a set cover
(Ui)i∈I of U with a family τ = (τi)i∈I of abstract order types, where τi : U3

i → {−1, 0, 1}. In this
case, we say that a set of points P ⊂ R2 realizes τ , if Pi, the points in P corresponding to Ui,
realize τi or its reverse, −τi. If Pi realizes τi for all i, we call this a strict realization. We call τ
uniform if every τi, i ∈ I, is uniform. The family τ itself, we call a partial abstract order type (with
respect to set-cover (Ui)i∈I of U).

Our main result will be that realizing partial abstract order types remains ∃R-complete, even
while we control the interaction between elements of the set-cover. To make this precise, we say

4∃R, just like NP, has a machine model, a real RAM machine with certain restrictions [8, 15].
5One would typically require that an abstract order type satisfy some basic axioms, such as the alternation axiom

mentioned above. Since we are only interested in whether an abstract order type can be realized, at which point all
axioms are satisfied automatically, we ignore that issue.
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that the set cover (Ui)i∈I of U is thin if it satisfies the following conditions:

(i) |Ui| ∈ {28, 36, 40}, for every i ∈ I,

(ii) |Ui ∩ Uj | = 12 if Ui and Uj intersect, for every i 6= j ∈ I,

(iii) for every Ui, i ∈ I, there are at most five other Uj that intersect Ui; at most one of the six
sets contains 36 or 40 points; there are at most 92 points in sets intersecting Ui which do not
belong to Ui.

With this definition we can state the main result.

Theorem 1 Testing the realizability of a partial abstract order type τ = (τi)i∈I associated with a
set cover (Ui)i∈I of U is ∃R-complete, even under the following restrictions:

(i) τ is uniform;

(ii) (Ui)i∈I is thin;

(iii) the convex hull of every Ui has at least 4 extreme points;

(iv) if τ is realizable, then there is a strict realization in which the convex hull of the points in
Ui intersect the convex hull of at most one other Uj disjoint from Ui for every i ∈ I, and we
know which Uj has this property;

(v) we are given an abstract order type σ so that σ restricted to Ui is τi for all i ∈ I, and σ is
realizable if τ is.

Item (iii) refers to the convex hull of Ui; this is well-defined by the abstract order type τi on
Ui: pq is on the boundary of the convex hull of Ui, if τi(p, q, r) is either at least 0 or at most 0 for
all points r ∈ Ui.

In ∃R-completeness results so far, order types are rarely used directly; many examples start
with the dual problem, pseudoline stretchability, which we saw in Figure 1. Here we pursue some
different routes: in Section 5 we exhibit a reduction which is based on abstract order types via
pseudo-segments without using duality; in Sections 3 and 4, we explore radial systems, which are
an entirely different way to harness the power of abstract order types.

Following Directions

To round off this section, we include a problem, maybe somewhat artificial, that illustrates a more
or less direct application of Theorem 1.6 Suppose we are given a directed walk, with a direction,
(L)eft or (R)ight attached to each inner vertex of the walk (a vertex can appear arbitrarily often
along the walk, so, strictly speaking, a direction is assigned to the position of the vertex in the
walk, not just the vertex itself). We say a straight-line drawing of the walk realizes the directions
if for every e, u, f along the walk, f lies to the left or right of the line through e as determined by
the direction at u in the walk. We introduce, as far as we know, the directional walk problem which
asks whether the vertices of the walk can be placed so that the walk realizes the given directions.

Corollary 2 The directional walk problem is ∃R-complete, even if each edge of the graph is used
at most 336 times.

6A somewhat similar problem was recently studied in [14].
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Proof: Let σ, τ , and (Ui)i∈I , U be as in the statement of Theorem 1. For every 3-element set
{u, v, w} ⊂ Ui, we create a walk uv, v, vw (choosing v arbitrary), and assign to v, at this point in
the walk, the direction τi((u, v, w)). We can now combine two walks uv, v, vw and xy, y, yz so that
w and x do not belong to the same Ui for any i (most edges are like that). For the combined walk
uv, v, vw,w,wx, x, xy, y, yz we define the directions of w and x in the walk by using σ, to which
we have access, by property (v). Each edge occurs at most 2 ∗ 38 + 2 ∗ 26 ∗ 5 = 336 many times. 2

What is the complexity of the directional walk problem if each edge occurs at most once? If
each vertex occurs only once, the problem becomes trivial.

3 Radial Orderings and Radial Systems

For a set of points p1, . . . , pn in general position in the plane, we can determine the clockwise radial
ordering at p1, that is, the (cyclic) permutation of p2, . . . , pn we obtain by rotating a ray at p1
clockwise through a full turn, while recording which of the pi the ray intersects. Radial orderings
can also be defined for abstract order types, as shown in [2], the paper that introduced radial
orderings: Suppose χ is a uniform abstract order type on U . We can then define the clockwise
radial ordering at any point u ∈ U as follows: Pick an arbitrary point v ∈ U − {u}. Points w
with χ(v, u, w) = 1 come before points w with χ(v, u, w) = −1 in the radial ordering at u. Within
each of these two groups, a point w then occurs before another point w′ in the clockwise radial
rotation, if and only if χ(w, u,w′) = 1. A radial system for U is a collection of radial orderings for
each point in a set U . We call two radial systems equivalent if they are the same up to reversing
radial orderings of a subset U ′ ⊆ U of points.

Given a set cover (Ui)i∈I of U we can associate with it a family R = (Ri)i∈I , where Ri is a
radial system for Ui, i ∈ I. We call R a partial radial system (with respect to set-cover (Ui)i∈I of
U). We say a set of points P ⊂ R2 realizes R, if Pi, the points in P associated with Ui, have radial
system Ri up to equivalence. We say that P strictly realizes R, if each Pi has radial system Ri

(not up to equivalence).
While the uniform abstract order type uniquely determines its radial system, the reverse is not,

in general true (see Figure 3 in [2]). The following, however, is true [2, Theorem 1]:

Theorem 3 (Aichholzer, Cardinal, Kusters, Langerman, Valtr [2]) Let R be a radial sys-
tem on a set U equivalent to the radial system of some uniform abstract order type τ . If |U | ≥ 5,
we have the following:

(i) The size of the convex hull of any realization of R is uniquely determined; it equals the size
of the convex hull of τ , and it can be computed efficiently.

(ii) If the convex hull has at least 4 extreme points, then the only uniform abstract order types
with radial system R are τ and its reverse, −τ .

Cardinal and Kusters [11] showed that testing whether a radial system is strictly realizable is
∃R-complete. Theorem 3 allows us to restate Theorem 1 for radial systems to obtain a refined
version of their result.

Corollary 4 Testing the realizability of a partial radial system R = (Ri)i∈I associated with set
cover (Ui)i∈I of U is ∃R-complete, even under the following restrictions:

(i) (Ui)i∈I is thin;
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(ii) if R is realizable, then there is a strict realization in which the convex hull of the points in
Ui intersect the convex hull of at most one other Uj disjoint from Ui for every i ∈ I, and we
know which Uj has this property;

(iii) we are given a radial system S which determines the radial ordering of all points in U with
respect to all of U , and so that S induces R on the set cover (Ui)i∈I . If R is realizable, then
there is a strict realization of S that also satisfies condition (ii): all points are in general
position, and the convex hull of the points in Ui intersect the convex hull of at most one other
Uj disjoint from Ui for every i ∈ I, and we know which Uj has this property.

Proof: Let τ = (τi)i∈I , U and (Ui)i∈I of U be as in Theorem 1. As we saw, τ determines a radial
system Ri on each Ui. Let R = (Ri)i∈I be the family of these systems. We also have an abstract
order type σ, that induces τ on (Ui)i∈I . Let S be the radial system on U for all of U determined
by σ.

We need to show that R is realizable if and only if τ is, and that R satisfies the restrictions of
the corollary. The fact that the Ui are thin follows directly from Theorem 1(ii).

If τ is realizable, we know that σ, and therefore, S is realizable, by Theorem 1(v). In particular,
R is realized, and we know which Ui have intersecting convex hulls. This shows (iii).

Let P be a set of points in the plane strictly realizing τ . Since R is defined based on τ , the
points in P strictly realize the radial system R, and property (ii) of R follows from Theorem 1(iv).

On the other hand, if R is realizable, let P ⊂ R2 be a set of points realizing R. Let Pi be
the points realizing Ui. Since |Pi| = |Ui| ≥ 5, and the convex hull of each Ui contains at least 4
extreme points, we can invoke Theorem 3 to argue that Pi realizes τi or −τi, the reverse of τi, on
Ui. This is how we defined P realizing τ .7 2

The proof of Corollary 4 has an interesting consequence for a fundamental graph-drawing
problem. For a given graph, a rotation of a vertex is a cyclic permutation of the edges incident
to the vertex. A rotation system is the family of rotations for each vertex. A drawing of a graph
realizes a given rotation system, if the rotation at each vertex corresponds to the clockwise order
of the ends of edges at the vertex.

Corollary 5 Testing straight-line realizability of a graph with rotation system and maximum degree
at most 131 is ∃R-complete.

Kynčl showed that the straight-line realizability of a complete graph with a given rotation
system is ∃R-complete [24]; in comparison, the topological version can be decided in polynomial
time for complete graphs [24, 25]. There are results for non-complete graphs (same references), but
they are phrased for AT-graphs which, if the graph is not complete, is not the same as specifying
the rotation system.

Proof: Let R = (Ri)i∈I , (Ui)i∈I and S be as in the statement of Corollary 4. We want to define
a graph with rotation system which enforces all the radial systems Ri. Define G = (U,E), where
E =

⋃
i∈I
(
Ui

2

)
. For each u in Ui we need to define its rotation with respect to all its neighbors;

since u can belong to multiple Ui, we work with S restricted to u and its neighbors, to determine
the rotation at u. How many neighbors can u have? It has at most 40−1 = 39 neighbors in the set
Ui it belongs to; by property (iii) of being thin, there are at most 92 other neighbors in Uj which
intersect Ui (which they have to, if they also contain u). Therefore, u has at most 39 + 92 = 131
neighbors. 2

7Note that we do not have to show that P strictly realizes τ , since we are reducing from the realizability problem.
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The bound can be lowered to 103 by looking at the actual construction in the proof of Theorem 1
(rather than just working with the definition of thin). It is tempting to speculate that even the case
of cubic graphs with rotation system is ∃R-complete, but that would probably require a different
approach. Our proof allows rotations at vertices to arbitrarily reverse, and the problem remains
∃R-complete. For degree-3 vertices there are only two rotations, and they are reverses of each
other. This stops being true for degree 4.

4 Simultaneous Geometric Embeddings

As a second application of Corollary 4, we consider simultaneous geometric embeddings.

Theorem 6 The 240-SGE problem is ∃R-complete.

The 1-SGE problem is equivalent to planarity testing, which is in P. For two graphs, the
problem is known to be NP-hard [16]. There are some results that place 2-SGE in P, under
certain additional constraints [18], so it is not impossible to image that 2-SGE lies in NP, but it
may be ∃R-complete already.

We saw earlier that the unbounded version of the k-SGE problem was first shown to be ∃R-
complete by Kynčl [24]. Our proof is closer to the one given by Cardinal and Kusters [11] in that
it also works with radial systems. Cardinal and Kusters asked whether the k-SGE problem was
NP-complete for k = O(log n). Theorem 6 shows that this is not the case, unless ∃R = NP, which
seems unlikely.

Proof of Theorem 6: Let R = (Ri)i∈I and (Ui)i∈I be as in Corollary 4. We define a graph H
with vertex set I and edges ij if the convex hulls of Ui and Uj intersect (by property (ii) we can
build this graph, even if we do not know whether R is realizable); by (ii), graph H has degree at
most 5, so it is 6-colorable; let c(i) be the color of Ui in this coloring. Also, assume the vertices
in each Ui are ordered (arbitrarily) as ui,1, . . . , ui,ni

, where ni ≤ 40. We color each ui,j with color
(c(i), j). Note that the same vertex may belong to different Ui, and may therefore have more than
one color.

For every ui,j we create a modified wheel Wi,j centered at ui,j with the outer cycle being all
the neighbors of ui,j in Ui in the order determined by the radial system Ri, and each outer edge
subdivided once.

We now define graphs Gc,j , 1 ≤ c ≤ 6, 1 ≤ j ≤ 40, as follows: Gc,j =
⋃

i:c(i)=cWi,j . This is
a family of at most 240 graphs. Each wheel Wi,j enforces that ui,j has radial system Ri or its
reverse. Each wheel can be realized (by itself), whatever the angles are, because we subdivided the
outer edges of the wheel. Two wheels belonging to the same Gc,j cannot interfere: Since j is the
same, their centers must belong to two different Ui, say Ui1 and Ui2 , which have the same color:
c(i1) = c(i2). It follows that the convex hulls of Ui and Uj do not intersect, so the wheels (and
their convex hulls) do not intersect. 2

The bound of 240 can probably be reduced quite a bit if we take into account the structure of
the intersection graph of the Ui, where the large Ui, of size 40, are far from each other.

Remark 7 (Sunflowers and Geometric Thickness) Each edge in the construction belongs to
at most two graphs in the family of 240 graphs. Does the problem remain ∃R-complete, if every
edge belongs to exactly one graph? In the terminology of simultaneous graph drawing, we would
phrase this variant as saying that there are no public edges (edges belonging to more than one
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graph), all edges are private, they belong to a specific graph. Having no public edges is an extreme
case of the sunflower variant, where the set of public edges is the same for all graphs. Can the
sunflower variant, with or without public edges be shown ∃R-complete? Why would that be
interesting? Such a result could be a step towards showing that the geometric thickness problem
is ∃R-complete. The geometric thickness of a graph is the smallest k for which the graph has a
straight-line drawing in which the edges can be colored with k colors so that there are no crossings
between edges of the same color. This is similar to the k-SGE problem, except that we do not have
control over the coloring, and every edge belongs to at most one color. It was only shown recently
that testing for geometric thickness at most 2 is NP-hard [13]. It appears harder to control edges
for larger thickness. Is it possible that geometric thickness at most 2 is ∃R-hard? Or does it lie in
NP? �

We can extend our construction slightly to turn all graphs into paths; this is interesting, as one
of the first non-trivial results in the area was that any two paths have a simultaneous geometric
embedding [7]; the same paper also showed that it is not always possible to embed five paths
simultaneously (in a geometric embedding).

Corollary 8 Testing whether 9360 paths have a simultaneous geometric embedding is ∃R-complete.

In the proof we make use of the following result: If H is a subgraph of G and H is a straight-line
embedding of H so that G has a plane embedding extending H, then G has a plane embedding
in which each edge in G − H is a polygonal chain consisting of at most O(|V (H)|) straight-line
segments; this is Theorem 1 from [12].

Proof: Consider the 240 graphs Gc,i, 1 ≤ c ≤ 6, 1 ≤ i ≤ 40 constructed in the proof of Theorem 6.
Each of these graphs is a disjoint union of (subdivided) wheels on at most 40 vertices (counting
the center vertex). Each such wheel can be written as the union of 39 paths which start at the
center, use one of the 39 spokes, and then continue clockwise around the perimeter of the wheel as
far as possible (all but one edge of the perimeter belong to the path).

Figure 3: A (subdivided) wheel on eight spokes (gray). One of the eight subpaths that together
cover all pairs of independent edges in the wheel is shown in black.

Note that any two independent edges of a wheel belong to one of these at most 39 paths. We
can then define Gc,i,j , 1 ≤ j ≤ 39 as follows: replace each wheel in Gc,i with the path-device
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starting with the j-th spoke, and connect these paths into a single path. Such a path is plane,
and can be drawn so that is extends the path-device for each wheel; by the discussion before the
proof, we can assume that the path is drawn as a polygonal chain if we subdivide the edges used
to connect the individual paths sufficiently often (on the order of O(|V (G)|) times). This gives us
a collection of 39 ∗ 240 = 9360 paths. 2

5 Stretchability and Intersection Graphs

A family of curves in the plane is called an arrangement of pseudo-segments, if every pair of curves
crosses at most once. The arrangement is stretchable if it is isomorphic to a drawing in which all
curves are straight-line segments (an arrangement of straight-line segments). Isomorphism here
refers to an isomorphism of the plane, so it maintains the topological structure of the arrangement,
e.g. in which order the curves cross each other, not just which curves cross each other.

If the curves are x-monotone, from −∞ to∞, then we speak of an arrangement of pseudolines,
if every pair of curves crosses exactly once. Such an arrangement is stretchable if it is isomorphic
to an arrangement of straight lines.

An arrangement is simple if at most two pseudo-segments, pseudolines, segments, or lines pass
through each point.

Theorem 9 Testing the realizability of a simple pseudo-segment arrangement in which every
pseudo-segment is involved in at most 72 crossings is ∃R-complete.

The standard approach to the proof would be to work with the pseudoline arrangement dual to
the abstract order type σ from Theorem 1, and then restrict the pseudolines to pseudo-segments.
With our approach it seems hard to control the intersections along the resulting pseudo-segments
to just the local gadgets. We instead take a more simple-minded approach, that would not work
for pseudolines, but works fine for pseudo-segments. The proof modifies the proof of Theorem 1.

Proof: Let τ = (τi)i∈I , σ, U and (Ui)i∈I be as in the proof of Theorem 1 before we make
the abstract order type uniform. So the illustrations in Figures 4 to 7 accurately reflect what
each gadget looks like. Instead of viewing these figures as definitions of abstract order types, we
reinterpret them as illustrations of pseudo-segments, one for each line. This already gives us a
pseudo-segment arrangement whose stretchability implies that the original gadgets work correctly,
and thereby decide realizability of τ . We note that every point has at most seven lines passing
through it; the ∞ point of a von Staudt gadget has the most such lines: three from the gadget,
and one each from the incoming scale, two incoming variables, and one outgoing variable. We can
now use a trick that Shor attributes to Mnëv [28] and a preprint version of [21], but it’s just the
dual construction introduced by Las Vergnas to make point configurations uniform (see Lemma 3).
See Figures 12 and 13 in Shor [33], as well as his Lemma 4. The pseudo-segments in each gadget
are constructible (in the sense of constructibility for pseudolines), and chaining gadgets together
does not change that. Each pseudo-segments gets replaced with four new, but very close, pseudo-
segments. Each such replacement adds at most four crossings along existing pseudo-segments.
As we look at the varying gadgets, the line ` in the negated addition, and inverted gadgets are
involved in the most crossings: 6 within the gadget, and 3 each for the four gadgets transporting
information into or away from the gadget, leading to 18 pseudo-segments crossings overall. Since
each pseudo-segments gets replaced with at most 4 new pseudo-segments as we uniformize the
arrangement, each pseudo-segment has at most 72 crossings with other pseudo-segments. 2
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The pseudo-segment arrangement problem can be turned into a segment intersection graph
problem. The original reduction, due to Kratochv́ıl and Matoušek [23] was quite complicated;
we build on the simplified reduction from [30], which is also described in [27]. The reduction is
essentially as shown in Figure 2 except that it is missing the framing device, which can be adapted
to not interfere with the conclusion that each pseudo-segment after the reduction has at most three
times as many crossings as the original pseudo-segment, or if it is one of the new pseudo-segments,
at most three crossings.

Corollary 10 Realizability of segment intersection graphs of degree at most 216 is ∃R-complete.

Essentially the same reduction also establishes the hardness of recognizing intersection graphs
of convex sets [30], so we can draw the same conclusion in this case. The ∃R-completeness of the
unbounded version was first shown in [30]; Kratochv́ıl and Matoušek [23] had shown the problem
NP-hard.

Corollary 11 Realizability of convex set intersection graphs of degree at most 216 is ∃R-complete.

This last result makes it tempting to conjecture that disk or unit disk intersection graphs of
bounded degree are ∃R-complete. For graphs of unbounded degree, unit disk intersection graphs
are known to be ∃R-complete to recognize [22], while for disk intersection graphs only NP-hardness
is known [19].

6 Proof of Theorem 1

The ∃R-hardness proof follows the standard outline, with one major deviation, which is the place-
ment of the gadgets. Traditionally, gadgets are placed along a line (two intersecting lines, really),
but we will separate them and place them in a grid. We prepare the ground for that placement
in Section 6.1. The remaining parts are then relatively standard: We briefly review how to turn
polynomials into a normal form for evaluation in Section 6.2, and how the von Staudt gadgets can
be used to implement the steps of the evaluation of a polynomial, and the comparison of values
in Section 6.3; we also discuss constructibility, a notion we need to make the order type uniform.
Finally, in Section 6.4, we show how to combine these elements for the proof.

6.1 Drawing in General Position

To place the gadgets safely in a grid, where safely means that we can control the (abstract) order
type of points we place using the grid, we prove a graph-drawing result. In graph-drawing language
it states that we can assume that every graph has a subdivision with a 1-plane drawing in general
position on a polynomial-size grid. In a 1-plane drawing of a graph every edge is involved in at
most one crossing.

Lemma 1 Every graph G on n vertices has a subdivision H so that the vertices of H can be placed
on the points of an O(n5) × O(n5) square grid so that the vertices of H are in general position
(no line through two vertices of H contains a third vertex of H and no two vertices of H are on
the same grid-line), and so that every edge of H has at most one crossing. Each edge of G is
subdivided an odd number of times. The placement can be done efficiently.
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Since the placement is efficient, the abstract order type of the vertices of H can be computed
in polynomial time.

We combine two results from the literature to prove Lemma 1; the first is due to Biedl and
Kaufmann [3]. In an orthogonal drawing, edges follow the grid, with bends at grid-points only. In
a 1-bend drawing every edge has exactly one bend (so it looks like an L). Since grid-points have
at most four incoming edges, we relax the representation of a vertex, and allow it to be drawn as
an axis-parallel rectangle in the grid (the corners being grid-points). Edges attach to the outside
of the rectangle, and there are no vertices or edges inside the rectangle.

Theorem 12 (Biedl, Kaufmann [3]) Every connected graph on n vertices and m edges has a
1-bend orthogonal drawing on an n+m

2 × n+m
2 grid. Each vertex is represented by a rectangle of

perimeter at most twice its degree.

The second result we need is proved—in passing—in Brass, et al. [7, p.128-129]. The edge
resolution of a drawing is the smallest distance between a vertex and a non-incident edge in
the drawing. The result requires unit edge resolution, where a unit is the distance between two
neighboring grid-points.

Theorem 13 (Brass, et al. [7]) Suppose H has a planar straight-line drawing in an O(k)×O(k)
grid which has unit edge resolution. Then there is a straight-line drawing of H in an O(k2)×O(k2)
grid in which no three vertices of H are collinear and no two vertices of H lie on the same grid-line.
The new drawing of H can be found in polynomial time, and does not depend on the edges in H,
just the position of its vertices.

Proof of Lemma 1: We can assume that G is connected. Theorem 12 gives us a 1-bend drawing
of G in an O(n2) × O(n2) grid. Crossings between two edges occur at grid-points. We subdivide
the four segments coming together in each crossing close to the crossing. Tripling the number of
gridlines is sufficient to make sure the subdivision vertices are grid-points; we also replace the bend
in each edge by a vertex.

We assume that every rectangle has height and width at least 3. If that is not the case, we
can extend the rectangle slightly and add a new grid-line (or -lines) to ensure the rectangle has
sufficient width and height. We can then choose a grid-point in the interior of each rectangle as
the location of the vertex represented by that rectangle. We connect it by straight-line segments
to the ends of edges along the rectangle’s boundary, creating a new vertex at each such point.

This results in a grid drawing of a subdivision H of G with all vertices placed on grid-points,
and so that every crossing occurs between a horizontal and a vertical edge, and no edge is involved
in more than one crossing. Also, each edge of G was subdivided an odd number of times, once
for the initial 1-bend drawing, and twice for each crossing removed, and once for each of the two
endpoints.

To apply Theorem 13 we need to ensure unit edge resolution of the drawing. Outside the
rectangles, we have unit edge resolution, since the drawing is orthogonal. Inside the rectangles
we may have violations though: two edges from the center vertex to two boundary vertices of the
rectangle may get too close to each others end-vertices. To deal with these vertices, we refine the
grid by a factor of n (separating any two gridlines by n new gridlines). This achieves unit edge
resolution of the drawing.

We still cannot apply Theorem 13 to H directly, since H is not planar, however, we can apply
the theorem to the empty graph on the vertices of H. Since the redrawing performed by Theorem 13
depends only on the vertices of H and their location, not the edges which are present, any planar
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subgraph of H remains planar in the redrawing. Therefore, the redrawing does not introduce new
crossings into the drawing. We conclude that if we straight-line draw H in the new grid, this
drawing of H still has at most one crossing per edge, and the vertices of H are in general position.

2

6.2 Evaluating Polynomials

To prove ∃R-hardness, we will work with the problem STRICT INEQ, which consists of strict
inequalities between polynomials. To encode this problem we will need a way to express evaluating
a polynomial and comparing the values of two polynomials using abstract order types. This can be
done using the von Staudt gadgets, as we will see in Section 6.3, but to apply these gadgets, we need
to perform the polynomial evaluation carefully. Suppose, for example, we have to evaluate X + Y
from X and Y . If we do not know which of X and Y is larger, we cannot build the abstract order
type for the corresponding von Staudt gadget. Here is what looks to be an even worse problem:
suppose we have to decide whether there are X,Y, Z so that X2 + (Z − Y )Y −XY 2 > 0. Even if
we could calculate the value of the expression X2 + (Z −Y )Y −XY 2, how could we compare it to
0, if, to build the gadget we already need to know whether it is smaller or larger than 0? Which
also depends on the values of X, Y , and Z. There have been various, slightly different solutions
for this (Mnëv [28], Shor [33]); we follow the approach taken by Richter-Gebert [29], also used by
Matoušek [27].

A program in Richter-Gebert normal form (RG-NF) for a family of strict inequalities in variables
X1, . . . , Xn consists of a sequence of statements of the form

• V1 = 1; and

• Vi = Xj for some j, where Xj > 1; or

• Vi = −Vj , for j < i, where Vj > 1 or j = 1; or

• Vi = (−Vj) + Vk, for some j, k < i, where Vj < 0 and Vk > 1 or k = 1; or

• Vi = 1/Vj , for j < i, where Vj > 1; or

• Vi = (1/Vj) ∗ Vk, for some j, k < i, where 0 < Vj < 1 and Vk > 1;

together with a set of conditions Vi < Vj for some pairs (i, j) with 1 ≤ i, j ≤ m over the computed
variables Vi. We say a program in RG-NF is solvable if there is an assignment to all the variables
Xi, 1 ≤ i ≤ n, and Vi, 1 ≤ i ≤ m which satisfies all statements and restrictions, and all conditions.

Lemma 2 (Richter-Gebert [29]) Let (fi)i∈I be a family of (multivariate) polynomials with in-
teger coefficients. We can efficiently construct a program in RG-NF so that the program is solvable
if and only if there is a solution x ∈ R` to fi(x) > 0 for all i ∈ I.

Even more is true: any semialgebraic set is “essentially” the solution set of an RG-NF program,
and that result is shown in both [29, 27]. For our purposes, we only need equivalence of solvability,
which we illustrate with a simple example. Suppose we are given the single strict inequality
XY 2 − 5X > 0. We replace each variable by a difference of two new variables X = X ′ −X ′′ and
Y = Y ′ − Y ′′. This allows us to assume that all variables X ′, X ′′, Y ′, Y ′′ > 1. We then order
terms so there is no subtraction. The expression (X ′ − X ′′)(Y ′ − Y ′′)2 − 5(X ′ − X ′′) > 0 turns
into X ′Y ′2 + X ′Y ′′2 + 2X ′′Y ′Y ′′ + 5X ′′ > X ′′Y ′2 + X ′′Y ′′2 + 2X ′Y ′Y ′′ + 5X ′. To calculate the
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coefficient 5, we work with the binary presentation: 5 = 1 ∗ 22 + 1. The corresponding RG-NF
program would be V1 = 1, V2 = −V1, V3 = (−V2) + V1, which is 2, V4 = 1/V3, V5 = (1/V4) ∗ V3,
which is 4, and V6 = (−V2) + V5. Similarly, we can evaluate the monomials, and add them.

The main point of the RG-NF is that for every statement we exactly know the ordering of
the variables involved, both with respect to each other, and with respect to −∞, 0, and 1. For
example, in Vi = (1/Vj) ∗ Vk we assume that 0 < Vj < 1 and Vk > 1, so Vi > Vk, and the order is
−∞ < 0 < Vj < 1 < Vk < Vi; analogous claims are true for all the other statements. This is what
makes the construction of the von Staudt gadgets possible, as we will see in the next section.

6.3 Von Staudt Gadgets

Figure 4 shows the two main von Staudt gadgets as adapted by Richter-Gebert [29].

∞ −x 0 1 y

b

d
c

a

x+ y
ℓ

ℓ′

∞ 0 1/x 1 y

b

d

c

a

x ∗ y ℓ

ℓ′

Figure 4: Von Staudt gadgets for negated addition (top) and inverted multiplication (bottom).
Based on illustration by Richter-Gebert [29].

The workings of the gadgets are based on the notion of cross-ratios from projective geometry.
The cross-ratio of four points p, q, r, and s lying on a common line ` is defined as

(p, q; r, s) :=
d(p, r) · d(q, s)

d(p, s) · d(q, r)
,

where d(x, y) is the distance between points x and y. The cross-ratio is invariant under projective
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transformations, and can also be defined if one of the points lies at infinity. Consider the gadget
for negated addition. Then −(−x, 1, 0,∞) + (y, 1, 0,∞) = (x+ y, 1, 0,∞); in that sense, the point
labeled x + y represents the sum of x and y in the projective scale determined by 1, 0, and ∞.
Similarly, 1/(1/x, 1, 0,∞) ∗ (y, 1, 0,∞) = (x ∗ y, 1, 0,∞), for inverted multiplication.

Gadgets for V1 = 1, and Vi = Xj could be done using three or four points ordered on a line,
but we simply consider these special cases of the negated addition gadget. Similarly, Vi = −Vj
is a special case of the negated addition gadget, and Vi = 1/Vj a special case of the inverted
multiplication gadget. This allows us to treat all these cases with just the two von Staudt gadgets.
For Vi = (−Vj) +Vk, where k = 1 we identify the points y and 1; in that case, the addition gadget
has 9 points.

We also need a gadget to compare two values x, y > 1, given as −x and y. For that, as Richter-
Gebert [29] showed, we can use a slightly modified addition gadget: set y in the gadget to 0, and
think of x+ y as y, see Figure 5. Let c be the intersection of the line segment between −x and b
and a and 0. As we traverse move from 0 to a along the connecting line segment, we encounter c
before we encounter the intersection with ∞-to-d if and only if x < y.

∞ −x 0 1 y

b

d

a

c

ℓ

ℓ′

Figure 5: Von Staudt gadgets for ensuring x < y. Based on illustration by Richter-Gebert [29].

All von Staudt gadgets can be made arbitrarily flat by moving a and b out along `′ and reducing
the angle between `′ and `. A bit more formally: given a disk D of radius R and ε > 0, there is a
projective transformation which places either gadget at an arbitrary point inside D so that all the
points of the gadget lie in a disk of radius ε, and any line through two points of the gadget has
distance at most ε from ` inside D.

Finally, we need a way to transport ratios between point distances from one line (belonging to
one gadget) to another line (belonging to another gadget). We do this using the simple inversion
gadget shown in Figure 6.

The mappings from the points on `− to ` is projective, and therefore maintain ratios; it does
invert the order of the points, but that is not an issue. By moving a arbitrarily close to `, we can
make r, s, and t arbitrarily close to each other. To move information farther, we can chain the
inversion gadgets, and that can be done in two different ways: with two inversion gadgets having
their a-points close to the same line `, as in the top of Figure 7, or with the next inversion gadget
having its a-point close to the next line, as in the bottom of Figure 7.

Note that when chaining the gadget, the next gadget does not have to lie on the same side of
` as the previous gadget, it may lie on the opposite side, namely when `− and `+ are on opposite
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r s t

a

r−s−t−

ℓ

ℓ−

Figure 6: Moving ratios between lines. We have d(r, s)/d(s, t) = d(r−, s−)/d(s−, t−).

sides of ` (this will be well-defined). If we have control of the points on `−, we can then make sure
that a, b, r, s, and t lie within a disk of given radius ε and any line through two of these points has
distance at most ε from `, wherever we place the gadget in the disk D we use for the construction.
The same is true for the points r+, s+, t+ or any points on a later chained gadget.

We need one final ingredient to complete the proof. The gadgets we are using work with
collinear points, which we need to avoid. This cannot always be done, but it is possible for our
construction. The main result we need we take from Matoušek [27], but it can also be found in
Mnëv [28] and Shor [33] (Richter-Gebert [29] does not need constructibility for his purposes).

An abstract order type τ over U is constructible, if the elements of U can be arranged in a
linear order u1, . . . , un so that (i) no three points in {u1, . . . , u4} are collinear according to τ , and
(ii) every ui, i > 4, lies on at most two lines through points in {u1, . . . , ui−1}, according to τ .

Las Vergnas [26] described a method to turn a constructible order type into an equivalent (in
terms of realizability) uniform one. A formal proof that the method works, seems to have first
been given in [21]; that proof can also be found in [6, Proposition 8.6.3]; finally, Matoušek [27] also
sketches a proof.

Lemma 3 (Las Vergnas [26]) For every constructible abstract order type τ over U there is a
uniform abstract order type τ ′ over U ′ so that τ is realizable if and only τ ′ is. Moreover, |U ′| ≤
4|U | − 3.

In the construction all but the first three points get replaced by four new points which lie
“close-by”. The von Staudt gadgets are well-known to be constructible, but since we are chaining
them differently from the standard construction, let us include some more detail.

Lemma 4 The von Staudt and inversion gadgets are constructible.

Proof: For the negated addition gadget, we can order points as ∞, −x, 0, 1, y, b, d, c, a, x + y.
Similarly, for the inverted multiplication gadget, we use ∞, 0, 1/x, 1, y, b, d, c, a, x ∗ y. For the
comparison gadget, we use ∞, −x, 0, 1, y, b, d, a, c.

For the inversion gadget, we have t−, s−, r−, r, s, a, t, or any permutation of the r−, s−, t−
and any permutation of r, s, and t. 2

6.4 Putting Pieces Together

We have all the ingredients required to prove Theorem 1. Clearly, the realizability problem de-
scribed in the theorem lies in ∃R, so we are left with the proof of ∃R-hardness.
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r s t

a

r−s−t−

a′

r+s+t+

ℓ

ℓ− ℓ+

r s t

a

r−s−t−

a+

r+s+t+

ℓ

ℓ− ℓ+

Figure 7: Chaining two gadgets. In opposite direction (above), and the same direction (below).
We have d(r, s)/d(s, t) = d(r−, s−)/d(s−, t−) = d(r+, s+)/d(s+, t+).

We reduce from the problem STRICT INEQ, which is well-known to be ∃R-hard (see, for exam-
ple [32]). In the STRICT INEQ problem we are given a family (fi)i∈I of multivariate polynomials
and ask whether there is an x ∈ Rn so that fi(x) > 0 for all i ∈ I.

We saw in Lemma 2 that STRICT INEQ reduces to deciding whether the corresponding RG-NF
program is solvable. So we may as well suppose we have a program in RG-NF with underlying
variables X1, . . . , Xn, computed variables V1, . . . , Vm, and conditions Vi < Vj for some 1 ≤ i, j ≤ m.
From the program we create a directed graph G as follows: We start with a special vertex s, which
will encode the scale for ∞, 0, and 1. We then create a new vertex in G for each underlying
variable Xi, for each statement computing a variable Vi, and for each condition Vi < Vj in the
program. We need to connect s to all vertices corresponding to computed variables and conditions
(not to vertices corresponding to underlying variables); these are the vertices that contain −∞,
0, and 1. We do so by making these vertices leaves of a binary tree rooted in s (we need to
add the new vertices of the tree to G). For any two vertices u and v so that u corresponds to a
statement computing a variable which is used in v, we add an edge uv. Then v either corresponds
to a computation of another variable that uses the variable computed in u, or it is a comparison
involving the variable computed in u. By the definition of RG-NF, G is a directed acyclic graph.
See Figure 8 for an example.

By Lemma 1 there is a subdivision H of G so that the vertices of H can be placed on the points
of a polynomial-size grid with no two points on the same grid-line and no three points collinear.
Moreover, every edge in G corresponds to a path of even length in H. We can assume that each
path has length at least 4 (in the proof of Lemma 1, each path starts out as having length 2, but
each edge is then subdivided n times, giving length at least 2(n+ 1) ≥ 4).

Our goal now is to construct a partial abstract order type τ , as described in the statement of
the theorem. It is sufficient to construct σ and specify the set cover U , since together they induce
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s

V1 V2 V3 V4 V5 V6 V7 V8 V7 < V8

X Y Z

Figure 8: The inequality X(Y +1) > Z, where X,Y, Z > 1, translates into RG-NF V1 = 1, V2 = X,
V3 = Y , V4 = Z, V5 = −V1, V6 = −V5 + V3, V7 = 1/V2, V8 = 1/V7 ∗ V5 and V4 < V8. A directed,
acyclic graph G corresponding to this program is shown.

τ . To describe σ we will start by choosing locations for each gadget in a geometric grid, and
aligning them in that location. Roughly speaking, the local order type of each gadget, together
with the abstract order type forced by the geometry of the grid will give us σ.

We start with a sufficiently large square grid to place the vertices of H as points in the grid,
as in Lemma 1. We can assume that the whole grid lies inside a disk D of radius R. Vertices of H
are assigned to grid-points. Suppose v is a vertex of H that belongs to G. To each v we assign a
gadget.

If v is one of the interior vertices of the binary tree rooted at s, we create three collinear vertices
labeled∞, 0 and 1. If v corresponds to the underlying variable Xi, we create three collinear vertices
labeled ∞, 1, Xi. Both these cases, we can view as part of an inversion gadget with the three
vertices lying on a line `.

If v corresponds to a statement or a condition, there is a corresponding von Staudt gadget for
each type. We place each gadget so that its line ` lies on the horizontal grid-line through grid-point
v, just to the right of v. We know that there is an ε > 0 so that all points in the gadget for v lie in
an ε-neighborhood of v and any line through two points of the gadget has distance at most ε from
` inside D; since no other vertices will be placed on the gridline, these lines do not come close to
any other vertices of H.

The remaining vertices of H are vertices subdividing an edge of G. Let P be the path in H
resulting from subdividing an edge uv in G. By assumption, P has even length at least 4. We
replace P with a chain of inversion gadgets, each edge resulting in one inversion gadget. Each
inversion gadget starts and ends close to two grid-points containing points from other inversion
gadgets, or, at the end of P , points of a von Staudt gadget. We saw that there are two ways to
chain consecutive inversion gadgets. We orient all inversion gadgets towards the next vertex of P
(that is, the a-point of a gadget connecting x to y is close to the next vertex, y), with the exception
of the last edge of P where we place the point a close to the last P -vertex before v. That vertex
then has two a-points (from consecutive inversion gadgets) close to it, just as pictured in the top
of Figure 7.

The path P connects two vertices u, v in G, propagating the scale of three points (α, β, γ),
that is, we ensure that d(α, β)/d(β, γ) remains unchanged. If u is an interior vertex of the binary
tree rooted at s, we are propagating the scale of (α, β, γ) = (∞, 0, 1) from u to v; if u corresponds
to an underlying variable Xi, we are propagating (α, β, γ) = (∞, 1, Xi) from u to v. Otherwise,
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u corresponds to a variable Vi which is computed in u and used in v. In that case, we propagate
(α, β, γ), where the triple contains ∞, 0 and Vi in the right order (instead of ∞ and 0 we could
choose any two of {∞, 0, 1}). In all cases, v corresponds to a van Staudt gadget, and we identify
the three of its vertices labeled α, β, and γ with the corresponding three vertices of the inversion
gadget which are not close to a. Each inversion gadget in P reverses the order of the points (α, β, γ)
along the line. Since P has even length, the two gadgets corresponding to vertices u and v have
their points (α, β, γ) in the same order.

For each of the inversion gadgets, we can choose an ε > 0 so that the points of the gadget lie
in an ε-neighborhood of the grid-vertex it has been assigned to, with ` lying along the grid-line to
the right of the vertex, and a slightly above, or below the line.

Lines passing through two points of an inversion gadget either lie on the grid-line, along which `
is placed, or they pass through a and a point on `. In the later case, the line passes through a point
in another gadget, and it does not pass within a distance of ε of any other grid-point containing a
vertex of H.

With this set-up, we can now define the abstract order type σ. So we are given three points
and need to define the chirotope for those three points. We distinguish three cases.

The three points are close to three distinct grid-points. In this case, the geometry of the
grid determines the abstract order type of the vertices.

Two of the points are close to one grid-point, the third point to a different grid-point.
Look at the two points close to the same grid-point. If these two points belong to the same gadget,
we promised that a line through those two points will be arbitrarily close to ` within the disk D, so
the abstract order type of the three points is determined by the geometry of the grid-points. If the
two points belong to different gadgets, they must both be a-points of chained inversion gadgets.
In the later construction, we will ensure that the line through the two a-points intersects passes
through the shared grid-point of the two inversion gadgets, and otherwise remains close to `, which
determines the order type of the two a and the third vertex (remember that no two vertices of H
lie on the same horizontal grid-line).

The three points are close to the same grid-point. If all three points belong to the same
gadget, then this follows, because the abstract order type of the von Staudt and inversion gadgets
is fully determined. So two of the points must be a-points from an inversion gadget, and the third
point is a shared r, s, t-vertex. As we said in the previous case, we will ensure that the line through
the two a-points passes through the shared grid-vertex of the two gadgets, again determining the
order type of the three points.

For the i-th vertex of H, we let Ui be the set of points involved in the gadget. This defines τ
from σ.

We claim the following are true:

(a) If the program is solvable, then σ is realizable.

(b) If τ is realized, then the program is solvable.

Part (a). If the program is solvable, let (X1, . . . , Xn) = (x1, . . . , xn) ∈ Rn be a solution. This
determines a value val(Vi) for each variable Vi of the program. Each von Staudt gadget corre-
sponding to a statement of the program or a condition involves at most 6 points on a line together
with at most 4 additional points.

We can then find an ε > 0 so that the following is true. We can place the points of each von
Staudt gadget in a disk of diameter less than ε so that the cross-ratios corresponding to points
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labeled as Vi correctly represent their underlying value (that is, if pVi
represents Vi in the gadget,

then (pVi
, 1, 0,∞) = val(Vi)), and so that if the gadget is placed anywhere inside of D (the disk of

radius R containing the whole grid), then any line through two points of the gadget has distance
at most ε from the line through ` inside of D (we can do this by moving a and b out along `′ and
reducing the angle between ` and `′). We also require that d(∞, 0) = d(0, 1) = d(∞, 1)/2; this
allows us to work with the inversion gadgets which propagate ratios, not cross-ratios.

For each grid-point that has been assigned a von Staudt gadget, we then place that gadget just
to the right of the grid-point, so ` comes to lie on the horizontal line through the grid-point, and
all points of the gadget are within distance less than ε from the grid-point. We also do this for the
interior vertices of the binary tree rooted at s, which propagate the scale. For these vertices, we
also ensure that d(∞, 0) = d(0, 1) = d(∞, 1)/2.

We are left with placing the inversion gadgets. We remember that each path in H between
two vertices of G has even length at least 4. Consider a specific path P . Each inversion gadget is
assigned to a grid-point, and the last two gadgets belonging to P are assigned to the same grid-
point, y say. Suppose P starts at p and ends with xyz. We place the t-point of each gadget within
an ε-neighborhood of the grid-point assigned to the gadget. Draw a polygonal chain Pt, following
the t-points from the gadget corresponding to p via the inversion gadgets to z. See Figure 9.

ry sy tyy

x

tx

ℓy

ℓ′y

ℓx

ℓz

ay

sx rx

z

tz

a′y

sz rz

Pt

Figure 9: The end of path Pt (thin black edges) at grid-points x, y, and z, with the two inversion
gadgets assigned to y. In this case, both gadgets lie on the same side of `y. Note: In an actual
drawing, `x, `y, and `z would not overlap horizontally.

For y let us consider the case that the two gadgets sharing y are on the same side of ` (this is the
situation depicted in Figure 9). Let `′ be a line through the grid-point y. This line intersects Pt in
two points, these will be our a and a′ control points for the two gadgets at y. As we reduce the angle
between ` and `′, this defines r-, and s-points at y and x. By making the angle arbitrarily small,
we can ensure that these points are within an ε-neighborhood of their grid-points, and arbitrarily
close together. Moreover, we can ensure that the line through a and a′ is within distance ε from
` inside D. We can now choose a-points for the part of P connecting p to x. We can make all
of these arbitrarily close to their `-lines, and we can ensure that when the gadgets meet at x,
the points have exactly the same distance (whichever side is too large can be made smaller by
controlling either the a-points or `′). If two a-points belonging to y are on opposite sides of `, we
proceed essentially the same way, except we have two lines `′ and `′ we can control to make the
line through a and a′ arbitrarily close to `.
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This gives us a point configuration realizing σ, and, thereby, τ .

Part (b). This is because the von Staudt gadgets mimic the algebraic computation correctly,
individually. The inversion gadgets ensure that all the von Staudt gadgets use the same scale,
with d(∞, 0) = d(0, 1), which makes it possible to use the simple inversion gadgets to propagate
values between arbitrary von Staudt gadgets, and do so correctly. This then follows a standard
argument. Note that we do not have to assume that all of σ is realized; τ is sufficient, since then
each gadget works. It follows, then, that the program is solvable, and then, from part (a) we can
conclude that even σ is realizable.

By Lemma 3 all of the gadgets are constructible, but we still need to ensure that when we
combine them, constructibility is maintained. For that, consider any of the paths uPv in H, where
u and v are vertices of G. We will just consider the last two inversion gadgets, as shown in Figure 7
(left), since the preceding gadgets can be added similarly. If u is an interior vertex of the binary
tree rooted at s, the special vertex, we are propagating the scale from u to v; this includes the case
that v is a leaf of the tree, corresponding to a von Staudt gadget. The scale points get propagated
to v for the first time, so we can order the points as r−, s−, t−, t, s, a, r, t+, s+, a′, r+. If u is one of
the remaining vertices, then the von Staudt gadget already contains two of three vertices we are
propagating; without loss of generality, let those be t+ and s+. We can then order the points as
r−, s−, t−, t, s, a, r, a′, r+. We conclude that σ over U is constructible, so we can obtain uniform
abstract order types τ ′ and σ′ which are realizable if and only if τ and σ are, respectively. Let the
domain of τ ′i be U ′i . We know by Lemma 3, that |U ′i | ≤ 4|Ui|; duplicating points if necessary, we
can assume that |U ′i | = 4|Ui|.

We are left with verifying properties (ii)− (iv) of the Theorem, repeated here:

(ii) (Ui)i∈I is thin;

(iii) the convex hull of every Ui has at least 4 extreme points;

(iv) if τ is realizable, then there is a strict realization in which the convex hull of the points in
Ui intersect the convex hull of at most one other Uj disjoint from Ui for every i ∈ I, and we
know which Uj has this property;

By inspection, we can verify the following facts about the gadgets used in constructing τ and
σ: Inversion gadgets consist of 7 points, von Staudt gadgets have 9 or 10 points. Any two gadgets
that intersect do so in exactly 3 points. Von Staudt gadgets share points with at most four other
gadgets, all of them inversion gadgets: one for the scale, two for in-coming variables, and one for
the computed, out-going variable, so there are at most 4∗4 = 16 points in the inversion gadgets not
belonging to the von Staudt gadget. Most inversion gadgets intersect two or three other inversion
gadgets (depending on whether they are on a path or in the binary tree at the special vertex), with
the exception of the inversion gadgets that intersect a von Staudt gadget (corresponding to the
last interior vertex on a path P ). That inversion gadget on Ui intersects the von Staudt gadget,
the three other inversion gadgets intersecting the von Staudt gadget, and the inversion gadget
preceding it on P , for a total of five Uj . These Uj contain at most 4 + 7 + 3 ∗ 4 = 23 points not
belonging to Ui. When constructing τ ′ and σ′ from τ and σ, each of the numbers goes up by a
factor of 4, which implies that the partition of U ′ induced by τ ′ is thin.

To see (iii), we inspect each gadget; the von Staudt gadgets have three vertices on their convex
hull; after making these gadgets uniform, this ends up being 3 + 3 = 9 > 4 vertices. The inversion
gadgets start with four extreme vertices on their convex hull, so they already satisfy (iii), and they
will even have 3 ∗ 4 = 12 > 4 after making the order type uniform.
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If the convex hulls of Ui and Uj intersect, but Ui and Uj are disjoint, then Ui and Uj must
correspond to two inversion gadgets whose corresponding edges in H cross in the drawing of H.
By the way we drew H this can happen for at most one j for each i, proving (iv).

7 Conclusion

Are there other examples where ∃R-complete problems remain ∃R-complete even if one of the
parameters is small and fixed? Building on the work in this paper, the author shows that de-
ciding whether a graph has a straight-line drawing with local crossing number at most 867 is
∃R-complete [31]. A negative example is the planar slope number; as Hoffmann [20] showed, the
problem is ∃R-complete, but turns NP-complete if the number of slopes is fixed (based on a similar
result for segment intersection graphs by Kratochv́ıl and Matoušek [23] and extending an earlier
result for two slopes by Garg and Tammassia [17]).

Other problems which may be worth investigating include geometric thickness, see Remark 7,
recently shown NP-hard for two layers [13], and (unit) disk intersection graphs of bounded degree.
Another intriguing candidate is the recent result by Abrahamsen, Miltzow, and Seiferth [1] that
shows that packing puzzles are ∃R-complete. Does this remain true for a fixed number of (types
of) pieces, maybe even a single type of piece?

Returning to the results of the current paper, one can ask, whether the values of k can be
improved further? More precisely, can the parameters in Theorem 1 and Corollary 4 be lowered?
There is some flexibility in the construction that could probably be exploited to get set covers of U
that are thinner than the ones we defined as thin; also, as in the case of Theorem 9, one may not
need a uniform abstract order type, in which case the parameters reduce by a factor of 4. Are there
other ways to approach the construction, other gadgets, that lead of even smaller parameters?
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