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1 Introduction

The enumeration of trees, whether ordered, rooted or free, has been well-studied. (Rooted trees
are also called oriented trees, see [9]). Indeed, “Cayley’s formula”, which states that there are
precisely nn−2 free trees on n labelled vertices, dates back to Carl Wilhelm Borchard in the middle
of the nineteenth century [6]. In 1948, Otter [12] derived asymptotic estimates for the numbers of
both unlabelled free and rooted trees. In addition, generating functions for the numbers of both
unlabelled free and rooted trees have been obtained (see [9]). The exact counts for unlabelled free
trees with n vertices, for n ≤ 36, are listed as Sequence A000055 in the OEIS [2].

One of the first efficient algorithms for generating unlabelled rooted trees was developed by
Beyer and Hedetniemi [4] using a level sequence representation. This algorithm was extended by
Wright, Richmond, Odlyzko and McKay [14] to generate all unlabelled free trees. This algorithm
is referred to informally as the WROM algorithm, and is by far the most commonly used algorithm
to generate non-isomorphic free trees. An alternative algorithm was constructed by Li and Ruskey
[11] using the parent sequence representation. Indeed, a good survey of this topic can be found in
Li’s thesis [10]; see also [8]. Other work in this area has recently been conducted by Sawada [13],
who presented algorithms to generate both rooted and free plane (i.e., ordered) trees.

In this paper, we construct new recursive algorithms for generating rooted trees and free trees,
taking a different approach from previous authors. We introduce a new representation, the canon-
ical weight sequence, and use this rather than level or parent sequences. Unlike the latter represen-
tations, the weight sequence representation preserves referential transparency for subtrees. This
makes possible major improvements in efficiency by enabling us to efficiently cache the weight
sequences of rooted trees of small order, thereby eliminating many of the recursive calls.

We introduce a number of modifications to improve the efficiency of the basic algorithms. We
implemented the algorithms in Python, incorporating further improvements by using generators
to avoid having to store the long lists of trees returned by the recursive calls. We also show how
the algorithm can be amended to generate adjacency list and adjacency matrix representations for
free trees.

We compared the runtimes of our Python implementation for generating free trees with the
Python implementation of the well-known WROM algorithm taken from NetworkX [1], the popular
Python graph and network libary. The Python implementation of our new algorithm is over four
times as fast as the corresponding implementation of the WROM algorithm.

The programs were all written in Python 3.7 and executed using the PyPy3 compiler, although
the pseudo-code we present can easily be translated into other languages. The Python code is
available as additional material to this paper. Any graph-theoretic terminology and notation not
explicitly defined can be found in Bondy and Murty’s text [5].

In Section 2, we introduce the weight sequence representations for ordered trees, weighted
trees and free trees. In Sections 3 and 4, we present our algorithms for generating rooted and
free trees, respectively. Then, in Section 5, we discuss improvements to the algorithms and their
implementations, as well as the modifications required to generate the adjacency list and matrix
representations of the trees. In Section 6, we compare the runtimes of the Python implementations
of our algorithm with those of the WROM algorithm, and Section 7 contains our concluding
remarks.
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2 Preliminaries

2.1 Notation

A free tree T is an connected undirected graph that contains no cycles (conventionally, just called
a tree in the graph theory literature). The degree of a vertex v of T is the number of vertices
adjacent to v. A leaf of T is a vertex of degree 1; all other vertices of T are called branch vertices.
It is easy to show that there is a unique path between any pair of vertices of T .

A rooted tree R is a free tree with a distinguished vertex called its root. Let v be a vertex of R.
Any other vertex u on the path from the root to v is an ancestor of v, and v is a descendant of u.
A descendant w of v that is adjacent to v is a child of v, and v is the parent of w. Any other child
of v is a sibling of w. By definition, the root has no parent.

Let v be any descendant of the root of R. The subtree of R that consists of v together with all
of its descendants is a rooted tree with root v. We denote this subtree by R(v) and define wt(v),
the weight of v, to be the order of R(v); so the weight of the root of R is the order of R. If v is
a leaf then wt(v) = 1 and R(v) contains just the vertex v. R − R(v) is the rooted tree, with the
same root as R, obtained from R by deleting the subtree R(v) together with the edge between v
and its parent.

An ordered tree, sometimes called a plane tree [13], is a rooted tree in which there is an ordering
defined on the children of each vertex. By convention, when drawing a rooted tree, the root is
placed at the top of the diagram and, for an ordered tree, the order of the children is from left to
right. So we may refer to the first (left-most) or last (right-most) child of its parent. Similarly,
for any vertex v that is not the last child of its parent, we may refer to the next sibling of v. We
note that, if R is an ordered tree, the subtrees R(v) and R − R(v) are considered to be ordered
trees, inheriting the ordering of the sets of children from R. For convenience, when w is a child of
v, instead of saying that R(w) is subtree of R(v), we often say that R(w) is a subtree of v.

A tree is called a labelled tree if each vertex is assigned a unique label. For any unlabelled
ordered tree R with n vertices, we conventionally label the vertices as v1, v2, . . . , vn in preorder,
where v1 is the root of the tree. Preorder is the total ordering of the vertices of R defined recursively
as follows: for any vertex u with children u1, u2, . . . , up, preorder for the subtree R(u) starts with
u, followed by the vertices of R(u1) in preorder (if p ≥ 1), then the vertices of R(u2) in preorder
(if p ≥ 2), etc. We note that v2 is the first child of the root v1. It trivially follows that, for any
vertex vk of R, the preorder of the vertices of R(vk) is a contiguous subsequence of the preorder
of the vertices of R.

Two labelled free trees are isomorphic if there is a bijection between their vertex sets that
preserves adjacency and non-adjacency; two labelled rooted trees are isomorphic if there exists an
isomorphism between their underlying free trees that maps the root of one onto root of the other;
two labelled ordered trees are isomorphic if there exists an isomorphism between their underlying
rooted trees that preserves the orderings of the children of each vertex. We say that two trees
(whether ordered, rooted or free) are f-isomorphic if their underlying free trees are isomorphic, and
that two trees (whether ordered or rooted) are r-isomorphic if their underlying rooted trees are
isomorphic. For completeness, we will also say that two isomorphic ordered trees are o-isomorphic.

An integer sequence s is an (ordered) list of integers s1 s2 . . . sn. In this paper, we shall assume
that every element si in s is positive, and denote the length of s by |s|; so in this case |s| = n. If
t = t1 t2 . . . tm is another integer sequence, we denote the concatenation of the two sequences by
s⊕ t, i.e., s⊕ t = s1 s2 . . . sn t1 t2 . . . tm. For simplicity, we do not distinguish between a sequence
of length one and single integer, e.g., we may write s1 ⊕ t.
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We say that s is lexicographically greater than or equal to t, denoted s ≥ t, if and only if either
(a) or (b) below hold:

(a) si = ti, for 1 ≤ i < j, and sj > tj , for some j, 1 ≤ j ≤ min(n, m);

(b) si = ti for 1 ≤ i ≤ min(n, m) and n ≥ m.

Strict lexicographical inequality s > t holds if s ≥ t and s 6= t. We note that this defines a total
ordering on the set of integer sequences.

2.2 Weight sequences of ordered trees

A common way to represent an ordered tree is by a suitable integer sequence obtained by traversing
the tree in some specified order and recording some particular property of each vertex as it is visited.
The resulting sequence is called a representation sequence for the tree. A valid representation for
ordered trees is a representation by integer sequences such that any two ordered trees that have
the same representation sequence are o-isomorphic.

v1

v2

v3

v4 v5 v6

v7

v8

v9

v10

Figure 1: An ordered tree rooted at v1 labelled in preorder.

For example, consider the ordered tree of order 10 shown in Figure 1, in which the vertices
are labelled in preorder. If we record the level (where we define the level of the root to be 1, the
level of its children to be 2, etc.) of each vertex in a preorder traversal, we obtain the following
sequence: 1 2 3 4 4 4 3 2 3 2. This is called the level sequence of the tree. Similarly, if we record the
index of the label of the parent of each vertex in a preorder traversal, we obtain its parent sequence:
1 2 3 3 3 2 1 8 1 (note there is no parent for the root in the parent sequence representation). Both of
these sequence representations are well-known and have been shown to be valid representations for
ordered trees (see [4] [7]). They have been used in the design of algorithms for generating rooted
trees and free trees by Beyer and Hedetniemi [4], Wright et al. [14], Li and Ruskey [11], Sawada
[13] and Cook [7].

In this paper, we introduce a new representation sequence. This is constructed by recording
the weight of each vertex in a preorder traversal of the tree. We call this representation the weight
sequence of the tree, and denote the weight sequence of any ordered tree R by ws(R). For example,
for the tree R in Figure 1, ws(R) = 10 6 4 1 1 1 1 2 1 1.
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Lemma 1 Let R be an ordered tree of order n with weight sequence ws(R) = s1 s2 . . . sn, where
the vertices are labelled v1, v2, . . . , vn in preorder. Then

(a) s1 = n;

(b) for all vertices vk of R,

(i) sk = wt(vk), i.e., the order of R(vk);

(ii) ws(R) = x⊕ws(R(vk))⊕ y for some integer sequences x and y;

(iii) ws(R(vk)) = sk sk+1 . . . sk+sk−1;

(c) ws(R−R(v2)) = t ss2+2 ss2+3 . . . sn where t = n− s2.

Proof (a), (b)(i) and (b)(ii) follow immediately since the vertices of R are labelled in preorder.
(b)(iii) The weight of any vertex in R(vk) is the same as in R. Since R(vk) is of order sk, it

then follows that ws(R(vk)) = sk sk+1 . . . sk+sk−1.
(c) Since R(v2) is of order s2, the result follows easily from (b)(iii). �

Corollary 1 Let R be an ordered tree of order n. Suppose that u1, u2, . . . , up are the children of
the root of R, where ui+1 is the next sibling of ui for all i, 1 ≤ i ≤ p− 1. Then

ws(R) = n⊕ws(R(u1))⊕ws(R(u2))⊕ . . .⊕ws(R(up)). (1)

It therefore follows from Lemma 1(b) that, for any ordered tree R, the subsequence of ws(R) that
corresponds to R(vk) is just ws(R(vk)), where R(vk) is considered as an ordered tree in its own
right. This is the main reason why the weight sequence is a particularly useful representation for
the generation of trees of order n: we can construct the weight sequence of any ordered tree of
order n directly from the weight sequences of its subtrees. So, if r is the order of R(u1), it follows
from Lemma 1 and Corollary 1 that one way to accomplish this is to take the weight sequence of
an ordered tree of order r (corresponding to ws(R(u1))), and combine it appropriately with the
weight sequence of an ordered tree of order n − r (corresponding to ws(R − R(u1))). We shall
elaborate on this in Sections 3 and 4.

We note that, since the weight sequence of a tree is well defined, any o-isomorphic trees must
have the same weight sequence.

Lemma 2 The weight sequence is a valid representation for ordered trees.
Proof By inspection, the result holds when the order is less than four. So suppose that the

result holds for all ordered trees of order less than n, where n ≥ 4. Let R and R′ be labelled
ordered trees of order n such that ws(R) = ws(R′), where the vertices of the trees are labelled
v1, v2, . . . , vn and v′1, v

′
2, . . . , v

′
n, respectively, in preorder.

Consider the subtrees R(v2) and R − R(v2) of R, and R′(v′2) and R′ − R′(v′2) of R′. By parts
(b)(iii) and (c) of Lemma 1, ws(R(v2)) = ws(R′(v′2)) and ws(R − R(v2)) = ws(R′ − R′(v′2)).
Since these trees are of order less than n, it follows from the inductive hypothesis that R(v2) is
o-isomorphic to R′(v′2), and R − R(v2) is o-isomorphic to R′ − R(v′2). So, since v2 and v′2 are the
first children of the roots of R and R′, respectively, it follows that R is o-isomorphic to R′. Hence
the weight sequence is a valid representation for ordered trees. �

The following lemma will be used in Section 2.3.

Lemma 3 Let s and t be weight sequences of trees. If s > t then x⊕ s⊕ y > x⊕ t⊕ z, for any
integer sequences x, y and z.

Proof This follows immediately from Lemma 1(a) and the definition of lexicographical order.
�
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2.3 Canonical weight sequences of rooted trees

We extend the definition of a valid representation by integer sequences to rooted trees: a valid
representation for rooted trees is a well-defined representation such that any two rooted trees that
have the same representation sequence are r-isomorphic.

Now, since the weight sequence is a valid representation for ordered trees by Lemma 2, two
r-isomorphic ordered trees that are not o-isomorphic must have different weight sequences. For
example, the two r-isomorphic ordered trees in Figure 2 have weight sequences 10 1 6 1 4 1 1 1 2 1 and
10 2 1 1 6 1 4 1 1 1, respectively (they are also r-isomorphic but not o-isomorphic to the ordered tree
in Figure 1). So, in order to define a valid representation for rooted trees using weight sequences,
we need to choose a unique representative from each r-isomorphism class of ordered trees.

An ordered tree R of order n is canonically ordered if ws(R(u)) ≥ ws(R(v)), for each vertex u
of R having a next sibling v. Clearly, if R is canonically ordered then so is R(v), for each vertex v
of R. It is easy to see that the ordered tree in Figure 1 is canonically ordered, but those in Figure
2 are not.

v1

v2 v3

v4 v5

v6 v7 v8

v9

v10

v1

v2

v3

v4 v5

v6 v7

v8 v9 v10

Figure 2: Two trees that are r-isomorphic but not o-isomorphic.

Lemma 4 Let R and R′ be r-isomorphic canonically ordered trees. Then ws(R) = ws(R′), and
R and R′ are o-isomorphic.

Proof Let n be the order of R and R′. It is easy to see, by inspection, that the result holds
when n ≤ 3. So suppose that n ≥ 4 and that the result holds for all pairs of trees of order less
than n. Let u1, u2, . . . , up be the children of the root of R, where ui+1 is the next sibling of ui for
each ui. Let θ be an r-isomorphism from R to R′. Clearly, θ maps the children of the root of R to
the children of the root of R′. So the subtrees of the root of R′ are precisely the subtrees θ(R(ui))
in some order.

For each ui, both R(ui) and θ(R(ui)) are canonically ordered. Therefore, since R(ui) is r-
isomorphic to θ(R(ui)), it follows that R(ui) is o-isomorphic to θ(R(ui)) by the inductive hypoth-
esis. Hence ws(R(ui)) = ws(θ(R(ui))) for each ui. Since R and R′ are both canonically ordered,
it is now easy to see from (1) that ws(R) = ws(R′). Hence R and R′ are o-isomorphic by Lemma
2. �

Clearly, for any ordered tree R, by suitably permuting the subtrees of each vertex, we can obtain
a canonically ordered tree that is r-isomorphic to R. We therefore define cws(R), the canonical
weight sequence of R, to be the weight sequence of any canonically ordered tree that is r-isomorphic
to R. By Lemma 4, cws(R) is well defined.
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Lemma 5 The canonical weight sequence is a valid representation for rooted trees.
Proof Let R1 and R2 be rooted trees such that cws(R1) = cws(R2). Let R̃1 and R̃2 be

canonically ordered trees that are r-isomorphic to R1 and R2, respectively. Then

ws(R̃1) = cws(R1) = cws(R2) = ws(R̃2).

So R̃1 and R̃2 are o-isomorphic by Lemma 2, and thus r-isomorphic. Therefore R1 and R2 are
r-isomorphic. �

It immediately follows from this result that, subject to labelling, we may represent any rooted tree
by a unique canonically ordered tree.

It is straightforward to show that the ordered tree Rmax that has the lexicographically largest
weight sequence of all ordered trees r-isomorphic to R is canonically ordered, and that cws(R) =
ws(Rmax).

2.4 Free trees

We extend the definition of a valid representation by integer sequences to free trees: a valid
representation for free trees is a well-defined representation such that any two free trees that have
the same representation sequence are f -isomorphic.

Now, since the canonical weight sequence is a valid representation for rooted trees by Lemma
5, two f -isomorphic rooted trees that are not r-isomorphic must have different canonical weight
sequences. So, in order to define a valid representation for free trees using weight sequences, we
need to choose a unique representative from each f -isomorphism class of rooted trees.

Let T be a free tree of order n. Most algorithms for generating free trees of a given order choose
the root of T to be a central vertex (T contains either a single central vertex or two adjacent central
vertices). Instead, in keeping with our choice of the use of the weight sequence rather than the level
or parent sequence, we choose the root of T to be the centroid when T is unicentroidal; when T is
bicentroidal, we represent T as an ordered pair of subtrees rooted at the two centroidal vertices.

A centroidal vertex u of T is a vertex such that each component of the forest T − u is of order
at most n

2 . It is well known that a tree is either unicentroidal, having a single centroidal vertex (in
which case the largest component of T − u is of order at most n−1

2 ), or bicentroidal, having two
adjacent centroidal vertices (in which case the largest component of T − u is of order n

2 ); see [5].
Moreover, it is easy to show that the centroids of two f -isomorphic free trees must map to each
other under any f -isomorphism. We therefore consider the two types of free tree separately.

Suppose first that T is unicentroidal. We now define the free weight sequence fws(T ) of T to be
the canonical weight sequence of any tree R that is rooted at its centroid and is f -isomorphic to T ;
so fws(T ) = cws(R). We note that, since the centroid consists of a single vertex and the canonical
weight sequence is well defined, the free weight sequence is well defined for all unicentroidal trees.
It immediately follows from Lemma 5 that, subject to labelling, we may represent any unicentroidal
tree by a unique canonically ordered tree rooted at its centroid.

For example, suppose that the tree in Figure 1 is a free tree T (so not rooted). It is easy to
see that v2 is the unique centroidal vertex of T , and therefore T is f -isomorphic to the canonically
ordered tree in Figure 3, which is rooted at its centroid u. Therefore fws(T ) = 10 4 2 1 1 4 1 1 1 1.
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u

Figure 3: Unicentroidal free tree representation of the tree in Figure 1

Lemma 6 Let T and T ′ be two unicentroidal free trees. If fws(T ) = fws(T ′) then T is f -
isomorphic to T ′.

Proof Let R and R′ be two rooted trees, rooted at their centroids, that are f -isomorphic to
T and T ′, respectively. Suppose that fws(T ) = fws(T ′). Then cws(R) = cws(R′), so R is
r-isomorphic to R′ by Lemma 5. Hence T is f -isomorphic to T ′. �

We now consider the case when T is bicentroidal with centroidal vertices u and v. If we delete
the edge between u and v, we obtain disjoint trees Tu and Tv of order n

2 , which we may consider
to be rooted at u and v, respectively. We may therefore represent T as the ordered pair <Tu, Tv>
when cws(Tu) ≥ cws(Tv), or <Tv, Tu> when cws(Tv) ≥ cws(Tu). We define fws(T ), the free
weight sequence of T , to be cws(Tu)⊕ cws(Tv) in the former case, and cws(Tv)⊕ cws(Tu) in the
latter case. We note that the first and n+2

2 th elements of fws(T ) correspond to u and v, and are
both equal to n

2 .
Since the canonical weight sequence is well defined for rooted trees, it follows that the free

weight sequence is well defined for bicentroidal trees. It immediately follows from Lemma 5, that,
subject to labelling, we may represent any bicentroidal tree of order n by a unique ordered pair
of canonically ordered trees of order n

2 (not generally rooted at their centroids). For example,
the path P8 is f -isomorphic to the tree in Figure 4 with centroidal vertices u and v. Therefore
fws(P8) = 4 3 2 1 4 3 2 1.

u v

Figure 4: Representation of P8 as a ordered pair of canonically ordered trees of order 4

Lemma 7 Let T and T ′ be two bicentroidal free trees. If fws(T ) = fws(T ) then T is f -isomorphic
to T ′.

Proof Let {u, v} and {u′, v′} be the centroidal vertices of T and T ′, respectively, and let
<Tu, Tv > and <T ′u′ , T ′v′ > be the representations of T and T ′, respectively, described above.
Suppose that fws(T ) = fws(T ′). Then cws(Tu) = cws(T ′u′) and cws(Tv) = cws(T ′v′). So, by
Lemma 5, Tu and Tv are r-isomorphic to T ′u′ and T ′v′ , respectively. Since we can recover T from
Tu and Tv by adding an edge between u and v, and similarly for T ′, it immediately follows that T
is f -isomorphic to T ′. �
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Lemma 8 The free weight sequence is a valid representation for free trees.

Proof If two free trees are isomorphic then they are both unicentroidal or both bicentroidal.
The result then follows from Lemmas 6 and 7. �

3 Rooted tree generation

By Lemma 5, the canonical weight sequence is a valid representation for rooted trees. So, to
generate all rooted trees of order n, we only need to generate every possible canonical weight
sequence of length n.

An ordered set of integer sequences [a1, a2, . . . ,ap] is said to be reverse lexicographically (relex)
ordered if ai ≥ aj when i < j, for all i and j. Let B(n) denote the relex ordered set of the canonical
weight sequences of all rooted trees of order n. It follows from Lemmas 5 and 1 that, for each
element s = s1 s2 . . . sn of B(n), there exists a unique canonically ordered tree R, with vertices
labelled v1, v2, . . . , vn in preorder, such that ws(R) = s, where sk = wt(vk) for all k, 1 ≤ k ≤ n.

If s = s1 s2 . . . sn is an integer sequence, we let s# = s2 s3 . . . sn, i.e., s# is s with the first
element s1 removed. So if s is the weight sequence of an ordered tree R, then s# is the weight
sequence of the ordered forest obtained by removing the root of R.

We write s < t if t is some other integer sequence such that either s ≥ t or s is a prefix of t,
i.e., t = s⊕ x for some integer sequence x.

Let Aq(n) be the set of all ordered pairs <a, b> in B(q)×B(n− q) such that a < b#, and let

A(n, maxq) =
maxq⋃
q=1
Aq(n). We recall that if <a, b> is in Aq(n) then the first element of a is q,

|a| = q, the first element of b is n− q and |b| = n− q.

Lemma 9 There is a bijection β from A(n, n− 1) to B(n) defined by

β(<a, b>) = n⊕ a⊕ b#. (2)

Proof Suppose that <a, b> is in Aq(n), for some q, 1 ≤ q ≤ n− 1. We first show that
β(<a, b>) ∈ B(n).

Let R1 be a canonically ordered tree rooted at v such that ws(R1) = a, and let R2 be a
canonically ordered tree rooted at u such that ws(R2) = b. Let u1, u2, . . . , up be the children of
u in order, and let R be a new ordered tree rooted at u with children v, u1, u2, . . . , up, i.e., R is
obtained from R2 by adding R1 as the new first subtree of u. Now <a, b> is in Aq(n), so a < b#,
and thus wt(v) ≥ wt(u1). Therefore R is canonically ordered as both R1 and R2 are canonically
ordered. So ws(R) is in B(n) and, moreover, ws(R) = n ⊕ a ⊕ b# by Corollary 1. Therefore
β(<a, b>) ∈ B(n).

Suppose that <a0, b0> is in Ar(n), for some r, and that n ⊕ a0 ⊕ b#
0 = n ⊕ a ⊕ b#. Then

r = q since the first element of a0 must be equal to the first element of a. It follows that a0 = a
and b0 = b, as |a0| = |a|. Hence β is injective.

Now suppose that s = s1 s2 . . . sn is an element of B(n), and let R be the unique canonically
ordered tree such that ws(R) = s. By Lemma 1(b) and (c), ws(R(v2)) = s2 s3 . . . ss2+1 and
ws(R−R(v2)) = t ss2+2 ss2+3 . . . sn where t = n− s2. Since R is canonically ordered, so are R(v2)
and R − R(v2). Hence ws(R(v2)) ∈ B(s2) and ws(R − R(v2)) ∈ B(n − s2). Moreover, since R
is canonically ordered, it follows from Corollary 1 and the definition of < that s2 s3 . . . ss2+1 <
ss2+2 ss2+3 . . . sn. Therefore <ws(R(v2)), ws(R − R(v2))> is in As2(n). Hence β is onto, and is
therefore a bijection. �
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Corollary 2 For any n, B(n) can be constructed from the sets B(q), where 1 ≤ q ≤ n− 1.
Proof It is easy to construct all rooted trees, and therefore B(n), when n ≤ 3. The result then

follows using equation (2) and induction on n. �

The image of Aq(n) under the bijection β defined in (2) is denoted by Bq(n), i.e., Bq(n) corresponds
to those rooted trees of order n for which the first subtree of the root is of order q. So Bq(n) contains

those sequences in B(n) for which the second element is q. Clearly B(n) =
n−1⋃
q=1
Bq(n).

Following along the lines of the proofs of Lemma 9 and Corollary 2, we now construct a simple
recursive algorithm to generate the elements of B(n). For each q, 1 ≤ q ≤ n− 1, and for each a in
B(q), we need to find those elements b in B(n − q) for which a < b#. We then form the integer
sequence n⊕a⊕b# to obtain the appropriate element of B(n). We can avoid searching the whole
of B(n− q) for those elements b for which a < b#, by noting that we only need to consider those
elements that are in Br(n− q), where 1 ≤ r ≤ min(n− q − 1, q).

In the pseudocode we use in the rest of the paper, we represent lists in square brackets; we use⊕
for concatenating lists, and continue to use ⊕ for concatenating integer sequences. If L is a list,

then L[start ...] denotes the sublist beginning at element L[start] and ending at the last element
of L.

The following function RootedTrees(n) generates B(n). It makes use of the helper function
RTHelper(n, q) that generates Bq(n).

Function RootedTrees(n)

if n = 1 then return [1]

Bn ← [ ]

for q from n− 1 downto 1 do

Bn ← Bn
⊕

RTHelper(n, q)

return Bn

Function RTHelper(n, q)

Bqn ← [ ]

newq ← min(n− q − 1, q)

if newq = 0 then

for a in RootedTrees(q) do Bqn ← Bqn
⊕

[n⊕ a ]

else

for a in RootedTrees(q) do

for r from newq downto 1 do

for b in RTHelper(n− q, r) do

if a < b# then Bqn ← Bqn
⊕

[n⊕ a ⊕ b#]
return Bqn

There are two key points to note about the recursive calls in RTHelper. Firstly, the length of the
subsequence corresponding to the first subtree of the root must be smaller than the order of the tree itself;
so we always have q < n. Secondly, if q = n − 1 then the sequence represents a tree in which the root
has only one subtree; so we simply return n concatenated with the subsequence that corresponds to this
subtree.
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We note that Br(n− q), the list returned by RTHelper(n− q, r), will clearly require too much space for
most values of r when n− q is large. This problem is addressed by returning a generator instead of a list
(see Section 5.3). We note further that, in the loops in RootedTrees and RTHelper, the variables q and r
are counting down, so Bn and Bqn will be relex ordered, as required.

For example, consider the sets B(4) = [4 3 2 1, 4 3 1 1, 4 2 1 1, 4 1 1 1], B(3) = [3 2 1, 3 1 1], B(2) = [2 1]
and B(1) = [1], which correspond to the canonically ordered trees in Figure 5 (we have omitted the vertex
labels for simplicity).

a b c d e f g h

Figure 5: All canonically ordered trees of order at most 4

Recalling that Bq(n) contains those sequences in B(n) for which the second element is q, it is straight-
forward to show that the call RootedTrees(5) yields the set

B(5) = [5 4 3 2 1, 5 4 3 1 1, 5 4 2 1 1, 5 4 1 1 1, 5 3 2 1 1, 5 3 1 1 1, 5 2 1 2 1, 5 2 1 1 1, 5 1 1 1 1].

These correspond to the canonically ordered trees in Figure 6, where the label indicates which pair of trees
in Figure 5 - corresponding to a and b in equation (2) - are used to construct the tree.

We discuss some optimisations of the function RTHelper in Section 5.

ah bh ch dh eg fg ge gf hd

Figure 6: Canonically ordered trees of order 5

4 Free tree generation

By Lemma 8, the free weight sequence is a valid representation for free trees. So, in order to generate all
free trees of order n, we only need to generate every possible free weight sequence of length n. We recall
that a free tree is either unicentroidal or bicentroidal, which have slightly different definitions of the free
weight sequence.

We denote the relex ordered set of the free weight sequence representations of all free trees, unicentroidal
free trees and bicentroidal free trees of order n by F(n), FU (n) and FB(n), respectively. So F(n) =
FU (n)⊕FB(n), i.e., the elements of FU (n) followed by those of FB(n).
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4.1 Unicentroidal

We recall from Section 2.4 that the free weight sequence fws(T ) of a unicentroidal free tree T is the
canonical weight sequence of any tree rooted at its centroid that is f -isomorphic to T . So
FU (n) ⊆ B(n). We can therefore generate FU (n) using a simple modification of the algorithm RootedTrees
from Section 3: the canonically ordered tree R that represents a unicentroidal free tree T is rooted at its
centroid, so the sub-trees of the root are of order at most n−1

2
. It follows that |a| ≤

⌊
n−1
2

⌋
for every pair

<a, b> in A(n, n− 1) for which β(<a, b>) is in FU (n).

Lemma 10 The mapping β defined in equation (2) is a bijection from A(n,
⌊
n−1
2

⌋
) to FU (n).

Proof We may represent any unicentroidal free tree T by a unique canonically ordered tree R in which
the weight of each child of the root of R is at most

⌊
n−1
2

⌋
. So the result can be proved in a similar

manner to Lemma 9, with the additional restriction that |a| ≤
⌊
n−1
2

⌋
, i.e., we use A(n,

⌊
n−1
2

⌋
) instead of

A(n, n− 1). �

Corollary 3 For any n, FU (n) can be constructed from the sets B(q), where 1 ≤ q ≤ n− 1. �

The following function UFT(n) generates the set FU (n). It also makes use of the helper function RTHelper(n, q).

Function UFT(n)

if n = 1 then return [1]

UFn ← [ ]

maxq ←
⌊
1
2 (n− 1)

⌋
for q from maxq downto 1 do

UFn ← UFn
⊕

RTHelper(n, q)

return UFn

For example, we can construct FU (8) using the call UFT(8) to obtain

FU (8) = [ 8 3 2 1 3 2 1 1, 8 3 2 1 3 1 1 1, 8 3 2 1 2 1 2 1, 8 3 2 1 2 1 1 1, 8 3 2 1 1 1 1 1]⊕
[8 3 1 1 3 1 1 1, 8 3 1 1 2 1 2 1, 8 3 1 1 2 1 1 1, 8 3 1 1 1 1 1 1]⊕
[8 2 1 2 1 2 1 1, 8 2 1 2 1 1 1 1, 8 2 1 1 1 1 1 1, 8 1 1 1 1 1 1 1].

This corresponds to the set of canonically ordered trees in Figure 7.

4.2 Bicentroidal

We recall from Section 2.4 that the free weight sequence of a bicentroidal free tree with centroidal vertices
u and v is cws(Tu)⊕ cws(Tv), where cws(Tu) ≥ cws(Tv).

Lemma 11 For any n, FB(n) can be constructed from the set B(n
2

). �
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Figure 7: Canonically ordered trees corresponding to unicentroidal free trees of order 8

The following function BFT(n) generates the set FB(n).

Function BFT(n)

BFn ← [ ]

for a1 in RootedTrees(n2 ) do

for a2 in RootedTrees(n2 ) do

if a1 ≥ a2 then BFn ← BFn
⊕

[a1 ⊕ a2 ]
return BFn

For example, we can construct FB(8) using the call BFT(8) to obtain

FB(8) = [ 4 3 2 1 4 3 2 1, 4 3 2 1 4 3 1 1, 4 3 2 1 4 2 1 1, 4 3 2 1 4 1 1 1]⊕
[4 3 1 1 4 3 1 1, 4 3 1 1 4 2 1 1, 4 3 1 1 4 1 1 1] (3)⊕
[4 2 1 1 4 2 1 1, 4 2 1 1 4 1 1 1, 4 1 1 1 4 1 1 1]

This corresponds to the set of ordered pairs of canonically ordered rooted trees of order 4 (see Figure 5),
with an additional edge joining their roots, as shown in Figure 8.

By combining the unicentroidal and bicentroidal free tree algorithms, we can generate all free trees of
order n using the following function FreeTrees(n).

Function FreeTrees(n)
return UFT(n)

⊕
BFT(n)
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Figure 8: Bicentroidal free trees of order 8 constructed from canonically ordered pairs of rooted
trees of order 4

For example, the 23 free trees of order 8 is the ordered union of FU (8) and FB(8), i.e., the trees in
Figures 7 and 8.

5 Improvements and implementation of the algorithms

We now outline some of the changes we have made to improve the efficiency of the functions described in
Sections 3 and 4 above, and their implementations in Python. We use ak to denote the integer sequence
that is formed by the concatenation of k copies of the integer sequence a.

5.1 Improvements to RTHelper

Firstly we note that, since there is only one rooted tree of order 1 and one of order 2, having canonical
weight sequences 1 and 2 1, respectively, we may compute the result in a more efficient and explicit manner
when q is 1 or 2. If q = 1 then the function should return the single sequence n⊕ 1n−1, and if q = 2 then
it should return the ordered set of sequences (2 1)t ⊕ 1n−1−2t for t from

⌊
n−1
2

⌋
down to 1. We also note

that, when q = n − 2, the second subtree of the root contains just a single vertex, so b is just 1 in this
case. These observations enable us to remove the recursive calls to RTHelper when q ∈ {1, 2, n − 2}, as
in the more efficient function RTHelper2(n, q) below. (In practice, in the implementation, we subsume the
case q = 1 into the case q = 2 by reducing the lower limit of t from 1 to 0, and correspondingly increasing
the lower limit of q from 1 to 2 in RootedTrees.)

Next we note that, during the execution of RTHelper, checking whether a < b# is only necessary when
the order r of the second child of the root is the same as the order q of the first child. We further note
that after a < b# for the first time, this will also hold for all subsequent sequences b, since B(n) is relex
ordered. This removes the necessity to check whether a < b# from then on.
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Function RTHelper2(n, q)

if q = 1 then return n ⊕ 1n−1

Bqn ← [ ]

if q = 2 then

for t from
⌊
1
2 (n− 1)

⌋
downto 1 do

Bqn ← Bqn
⊕

[n ⊕ (2 1)t ⊕ 1n−1−2t]

else if q = n− 1 then

for a in RootedTrees(q) do Bqn ← Bqn
⊕

[n⊕ a ]

else if q = n− 2 then

for a in RootedTrees(q) do Bqn ← Bqn
⊕

[n⊕ a ⊕ 1]

else

newq ← min(n− q − 1, q)

for a in RootedTrees(q) do

for r from newq downto 1 do

RTHelperList ← RTHelper2(n− q, r)
start ← 1

if r = q then

for b in RTHelperList do

if a < b# then break

start ← start+ 1

for b in RTHelperList[start . . .] do Bqn ← Bqn
⊕

[n⊕ a ⊕ b#]
return Bqn

We shall assume from now on that the functions RootedTrees and UFT use the helper function RTHelper2
instead of RTHelper.

5.2 Caching of B(k) for smaller values of k

We now discuss how we can further improve the efficiency of the tree generation algorithms by caching
B(k) for small values of k.

RTHelper2(n, q) calls RootedTrees(q) and RTHelper2(n − q, r), where r ≤ q, and RootedTrees(q) calls
RTHelper2(q, q′), where q′ < q. It follows that n′ ≤ q in all the calls to RootedTrees(n′) made by
RTHelper2(n, q), whether directly or indirectly. It therefore follows that we can obtain a significant in-
crease in the efficiency of the function call RTHelper2(n, q) if we cache in memory B(k), for 1 ≤ k ≤ q.
This will increase the efficiency of both RootedTrees and UFT.

For rooted tree generation, RootedTrees(n) makes calls to RTHelper2(n, q), where 1 ≤ q ≤ n − 1.
However, for large values of n, the space requirements to cache B(k), for 1 ≤ k ≤ n − 1, would be
prohibitive. For unicentroidal free tree generation, q ≤

⌊
n−1
2

⌋
for all calls to RTHelper2(n, q) made by

UFT(n). Furthermore, since BFT(n) only makes calls to RootedTrees(n
2

), caching B(k) for 1 ≤ k ≤ n
2

would
avoid all calls of RootedTrees for both UFT(n) and BFT(n), and thus also FreeTrees(n). So, for example,
to generate all 109, 972, 410, 221 free trees of order 32, this would mean caching B(k) for 1 ≤ k ≤ 16,
which is perfectly feasible since there only 235, 381 rooted trees of order 16. On the other hand, in order
to generate all rooted trees of order 32 whilst avoiding all calls of RootedTrees, we would need to cache
B(k) for 1 ≤ k ≤ 31. Since there are nearly 1012 rooted trees of order 31, the cache space requirements for
generating all rooted trees of order 32 would be of the order of at least 10 terabytes, and thus infeasible
on practically all current computers (see [2] and [3] for tree counts).
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Suppose that we cache B(k) for 1 ≤ k ≤ L, and store the sets B(1), B(2), . . . ,B(L) in the list RTList.
We can then replace all calls of RootedTrees(q) in RTHelper2(n, q) by references to RTList[q], provided
L ≥ q.

As there are very few rooted trees of order less than five, we explicitly create B(1), B(2), B(3) and B(4)
before calling RootedTrees(k) for larger values of k, as follows:

Procedure InitialiseRTList(L)

RTList[1] = [1]

RTList[2] = [2 1]

RTList[3] = [3 2 1, 3 1 1]

RTList[4] = [4 3 2 1, 4 3 1 1, 4 2 1 1, 4 1 1 1]

for k from 5 to L do RTList[k] ← RootedTrees(k)

In this initialisation, when computing RootedTrees(k), we note that we will already have computed
the previous elements of RTList; so the recursive calls of RootedTrees in RTHelper2 may be replaced by
references to RTList.

As explained above, we can replace all calls to RootedTrees from FreeTrees(n) by references to RTList if
L ≥

⌊
n
2

⌋
. In practice, as explained below, in order to improve the efficiency of the code when q =

⌊
n−1
2

⌋
,

we henceforth assume that L ≥
⌊
n
2

⌋
+ 1.

To avoid all calls to RootedTrees(q) in RTHelper2(n, q), we require that L ≥ q. This is clearly always
true for FreeTrees. We will see that we can also avoid the recursive calls to RTHelper2(n − q, r) when
q ≥ n− L.

When q, the order of the first subtree of the root, is at least
⌊
n−1
2

⌋
, then newq = n − q − 1 ≤ L.

So the r-loop (where r is the order of the second subtree of the root) can be dispensed with by letting b
iterate through RTList[n− q]. Now, when q is at least

⌊
n+1
2

⌋
, then r ≤ newq < q, so we can dispense with

checking whether a < b#. When q =
⌊
n−1
2

⌋
and r = q, we can also avoid checking whether a < b# by

skipping the initial elements of RTList[n− q], as we now explain.
Suppose that r = q =

⌊
n−1
2

⌋
and a = RTList[q][k]. When n is odd, n−q−1 = q, so we can start with the

element b for which b# = a; this is easily seen to be RTList[n−q][k]. When n is even, n−q−1 = q+1 = n
2

,
so we can skip the |B(n

2
)| elements for which the first subtree is of order n

2
, and start with the element b

for which b# = a⊕ 1; this is easily seen to be RTList[n− q][k + s], where s = |B(n
2

)|.
When

⌊
n−1
2

⌋
> q ≥ n−L, we can again dispense with the r-loop, letting b iterate through part of the

RTList[n − q]. We pre-compute an array RTqstart, where RTqstart[n][q] is the index of the first element
in the list RTList[n] for which the first subtree of the root of the corresponding rooted tree is of order q.
We store in memory RTqstart[n][q], where 1 ≤ q < n ≤ L. Since a < b# cannot hold for any element
b in RTList[n − q] with index less than RTqstart[n − q][q], we only need to consider those elements b in
RTList[n− q] from this index on.

We note that, following the above changes, we can replace newq by q when q < n − L, since q ≤ L.
Making these changes to RTHelper2 yields the function RTHelper3. We shall assume from now on that the
functions RootedTrees and UFT use the helper function RTHelper3 instead of RTHelper2.
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Function RTHelper3(n, q) # This assumes that L ≥ q and L ≥
⌊
n
2

⌋
+ 1.

if q = 1 then return n ⊕ 1n−1

Bqn ← [ ]

if q = 2 then

for t from
⌊
1
2 (n− 1)

⌋
downto 1 do

Bqn ← Bqn
⊕

[n ⊕ (2 1)t ⊕ 1n−1−2t]

else if q = n− 1 then

for a in RTList[q] do Bqn ← Bqn
⊕

[n⊕ a ]

else if q = n− 2 then

for a in RTList[q] do Bqn ← Bqn
⊕

[n⊕ a ⊕ 1]

else if q ≥
⌊
n+1
2

⌋
then

for a in RTList[q] do

for b in RTList[n− q] do Bqn ← Bqn
⊕

[n⊕ a ⊕ b#]

else if q =
⌊
n−1
2

⌋
then

start ← 1

if n ≡ 0 (mod 2) then start ← length(RTList[n2 ]) + 1

for a in RTList[q] do

for b in RTList[n− q][start . . .] do Bqn ← Bqn
⊕

[n⊕ a ⊕ b#]

start ← start+ 1
else if q ≥ n− L then

start ← RTqstart[n− q, q]
for a in RTList[q] do

for b in RTList[n− q][start . . .] do
if a < b# then break

start ← start+ 1

for b in RTList[n− q][start . . .] do Bqn ← Bqn
⊕

[n⊕ a ⊕ b#]

else

for a in RTList[q] do

for r from q downto 1 do

RTHelperList ← RTHelper3(n− q, r)
start ← 1

if r = q then

for b in RTHelperList do

if a < b# then break

start ← start+ 1

for b in RTHelperList[start . . .] do Bqn ← Bqn
⊕

[n⊕ a ⊕ b#]
return Bqn
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In practice, as well as caching the B(k) in RTList(k), we also cache, in RFList(k), the relex ordered set
of sequences that is obtained by replacing each sequence b in B(k) by b#. We can then make b# iterate
through the corresponding forest sequences instead of b iterating through the tree sequences, obviating
the need to remove the first element of b each time. We therefore return a ⊕ b# instead of n ⊕ a ⊕ b#

in the function RFHelper that generates the sequence s# for each sequence s generated by RTHelper3. We
prepend the weight of the root to each forest in the functions RootedTrees and UFT. Although we have
not included the pseudocode for RFHelper, we use this function in our Python implementations instead of
RTHelper3.

We note that, we may improve the efficiency of the function BFT by using the same idea as that used
for the case q =

⌊
n−1
2

⌋
in the function RTHelper3. This yields the following function BFT2.

Function BFT2(n)

BFn ← [ ]

start ← 1

for a1 in RTList[n2 ] do

for a2 in RTList[n2 ][start...] do BFn ← BFn
⊕

[a1 ⊕ a2 ]

start ← start+ 1
return BFn

We shall assume from now on that the function FreeTrees uses the function BFT2 instead of BFT.

5.3 Generators

The size of B(n) grows exponentially, so the list Bqn may become prohibitively large for large values of
n, except when q is small. Therefore, to avoid creating and returning the list Bqn in RTHelper3, we
instead return a generator. The changes necessary to effect this are, in essence, to simply replace all the
assignments of the form Bqn ← Bqn

⊕
[c] by the statement yield c, and make corresponding changes to

the other algorithms.

5.4 Strings for sequences

We store the weight sequences of the trees as alphanumeric strings, instead of lists, both to save storage
and to create the canonical weight sequences more efficiently. We use the digits 1 to 9 for the corresponding
weights, and the letters A, B, C, . . . for weights 10, 11, 12, . . .. So the weight sequence of the free tree T
in Figure 3 is denoted by the string “A421141111” instead of the sequence 10 4 2 1 1 4 1 1 1 1.

5.5 Adjacency lists and matrices

Although weight sequences are useful for generating trees, for most purposes a more conventional repre-
sentation is required, such as adjacency lists or adjacency matrices. Most other tree generation algorithms
also initially generate the trees using non-conventional representations (e.g., level sequences or parent se-
quences, as mentioned in the introduction). The adjacency lists or matrices are then constructed from the
particular representation used.

We now give a brief explanation of how we can incorporate the construction of the adjacency lists of
the free trees of order n into our algorithm FreeTrees, using a caching approach similar to that outlined in
Section 5.2. We assume that the vertices are labelled 1 to n in preorder.

The algorithm AdjListFromWS below returns the adjacency list of a single free tree given its weight
sequence. In the algorithm, we denote the jth element of the weight sequence ws by ws[j], and the list of
n empty lists by [ ]n.
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Function AdjListFromWS(ws)

n ← length(ws)

A ← [ ]n

for i from 1 to n do

j = i+ 1

while j < i+ ws[i] do

A[i] ← A[i]
⊕

[j]

A[j] ← A[j]
⊕

[i]

j ← j+ws[j]

if ws[1] = n
2 then

hn = n
2 + 1

A[1] ← A[1]
⊕

[hn]

A[hn] ← A[hn]
⊕

[1]
return A

We note that, given the weight sequence of any ordered tree (or indeed any ordered forest), whether
canonically ordered or not, this algorithm will return its adjacency list if we remove the assignment
A[j] ← A[j]

⊕
[i] and the if statement (which, for a bicentroidal tree, adds the edge between the two

centroids).
We extend the procedure InitialiseRTList to construct the adjacency list representations of the rooted

trees, by calling the function AdjListFromWS on each weight sequence in RTList[k]. We store these repre-
sentations in a hash table (implemented as a Python dictionary RTDict) using the weight sequence as the
key.

We can now construct the adjacency list representation of all the free trees of order n while we construct
their weight sequences: for each subtree of the root, we look up its adjacency list representation in the
hash table, and then increase the label of each vertex by a suitable offset value. For a unicentroidal free
tree represented by the integer sequence n ⊕ a ⊕ b#, we offset the labels of the vertices of the subtree
correponding to a by 1, and those of the vertices of the forest corresponding to b# by |a| + 1. For a
bicentroidal free tree, we only need to offset the labels of the vertices corresponding to the subtree rooted
at the second bicentroid by n

2
.

It is fairly straightforward to modify the above procedure in order to generate adjacency matrices
instead of adjacency lists in a similar manner. The Python code for generating both the adjacency list and
matrix representations is available as additional material to this paper.

6 Free tree generation runtimes and comparisons

As n, the order of the trees we are generating, is never large, we assume a uniform cost criterion, i.e.,
that the string operations, such as concatentation, take constant time. It is straightforward to prove, by
induction, that the runtimes of RootedTrees(n) and RTHelper(n, q) would be at most proportional to the
number of sequences returned by these functions if we removed from RTHelper the test a < b#. We have
computed empirically that the additional time taken for scanning along the list until a < b# is equivalent
to increasing the runtime by less than 5%. Therefore, under the uniform cost criterion assumption, the
generation time per tree would be approximately constant.
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We now present an empirical comparison of our algorithm with the popular WROM algorithm. We
implemented our algorithms in Python and compared these with the Python implementation of the WROM
algorithm taken from NetworkX. All computations were performed using Python 3.7 and the JIT compiler
PyPy3.6-v7.3.1, running on a Pentium i7 with 16GB RAM. We set L, the order of the largest tree for
which we cache the representations, to be n

2
+ 1.

Table 1 shows the times in seconds to generate all free trees of order n and return the count of the
number of trees, without saving the representations. BRFE refers to the algorithm FreeTrees described
above and WROM to the algorithm described in [14]. BRFE(ls) and BRFE(mat) include converting
the weight sequences into the adjacency list and matrix representations, respectively; WROM(ls) and
WROM(mat) are defined similarly.

n No. of trees BRFE BRFE(ls) BRFE(mat) WROM WROM(ls) WROM(mat)

18 123867 0.02 0.06 0.08 0.22 0.33 0.38
19 317955 0.04 0.10 0.10 0.29 0.53 0.69
20 823065 0.08 0.24 0.24 0.53 1.14 1.58
21 2144505 0.21 0.58 0.55 1.10 2.62 3.82
22 5623756 0.54 1.46 1.47 2.64 6.79 10.12
23 14828074 1.49 4.07 3.96 6.50 17.95 27.34
24 39299897 3.30 11.28 10.49 17.72 48.41 75.49
25 104636890 9.87 30.26 26.38 49.73 129.57 207.03
26 279793450 23.27 87.00 76.48 127.31 364.85 594.39
27 751065460 71.33 244.83 199.45 336.57 − −
28 2023443032 161.89 − − − − −
29 5469566585 600.90 − − − − −

Table 1: Runtimes in seconds of the implementations of the BRFE and WROM algorithms

As can be seen, the runtimes for generating the weight sequences using BRFE are less than a quarter of
those for generating the level sequences using WROM. The speed-ups for the times to create the adjacency
list and matrix representations are similar. Due to the excessive times involved, we have not run some of
the algorithms for the larger values of n.

We note that the runtimes for BRFE are about four times as long using the standard CPython imple-
mentation as those in Table 1, and the run times for WROM are about ten times as long. We further note
that, by increasing the value of L, we could significantly reduce the runtimes of our algorithms for larger
values of n, e.g., the runtime when n = 29 and L = 19 is around 556 seconds.

Li and Ruskey presented an alternative algorithm in [10] [11] that generates parent sequences, and
compared a PASCAL implementation of their algorithm and the WROM algorithm. It can be seen from
Table 5.2 in [10] that the runtime of their algorithm is about 70% of that of WROM. We can deduce from
this that BRFE would take about a third of the time of their algorithm.

In Table 2, we show the corresponding generation times per tree in nanoseconds. For the smaller values
of n, the times are inflated by the start-up times of the PyPy3 JIT compiler. These times seem to be
approximately constant for n ≥ 22, although for the BFRE algorithms there is some additional fluctuations
between odd and even n, as the bicentroidal tree algorithm is faster than the unicentroidal. The increases
in the times for the largest values of n for the BRFE algorithms are probably due to an increase in the
number of hardware cache misses.



JGAA, 25(1) 219–240 (2021) 239

n No. of trees BRFE BRFE(ls) BRFE(mat) WROM WROM(ls) WROM(mat)

18 123867 137.12 499.29 641.44 1766.34 2643.35 3101.38
19 317955 122.34 313.76 323.00 900.57 1665.94 2175.35
20 823065 96.38 288.43 287.50 641.24 1386.23 1919.2
21 2144505 99.76 272.52 254.87 515.16 1222.02 1779.22
22 5623756 95.87 259.45 260.88 469.36 1207.92 1799.06
23 14828074 100.77 274.29 266.75 438.12 1210.62 1843.91
24 39299897 83.93 287.13 267.04 450.94 1231.72 1920.81
25 104636890 94.28 289.22 252.06 475.30 1238.24 1978.52
26 279793450 83.18 310.95 273.34 455.02 1303.99 2124.39
27 751065460 94.97 325.98 265.56 448.12 − −
28 2023443032 80.81 − − − − −
29 5469566585 109.86 − − − − −

Table 2: Generation times per tree in nanoseconds of the implementations of the algorithms

n No. of trees BRFE BRFE(ls) BRFE(mat) WROM WROM(ls) WROM(mat)

18 123867 7.62 27.74 35.64 98.13 146.85 172.30
19 317955 6.44 16.51 17.00 47.40 87.68 114.49
20 823065 4.82 14.42 14.37 32.06 69.31 95.96
21 2144505 4.75 12.98 12.14 24.53 58.19 84.72
22 5623756 4.36 11.79 11.86 21.33 54.91 81.78
23 14828074 4.38 11.93 11.60 19.05 52.64 80.17
24 39299897 3.50 11.96 11.13 18.79 51.32 80.03
25 104636890 3.77 11.57 10.08 19.01 49.53 79.14
26 279793450 3.20 11.96 10.51 17.50 50.15 81.71
27 751065460 3.52 12.07 9.84 16.60
28 2023443032 2.86 − − − − −
29 5469566585 3.79 − − − − −

Table 3: Ratio of the generation times per tree to n in nanoseconds

Although appoximately constant, there is an increase in the times in Table 2 as n increases, presum-
ably because of the over-simplification in assuming a uniform cost criterion. If we assume the cost of
string/list/matrix operations is proportional to the length, and divide the times in Table 2 by n, we obtain
the times in Table 3. As we might expect, the times are now generally decreasing with n, since many of
the operations involve smaller strings/lists/matrices.

7 Conclusion

In this paper we have presented new canonical representations for ordered, rooted and free trees. We
constructed recursive algorithms for generating all rooted trees and all free trees of order n using these
representations; each of these algorithms returns a list of the trees generated. We made a number of
improvements to the algorithms and their Python implementations, including using generators to avoid
having to explicitly construct and store the long lists of trees returned by the recursive calls. Moreover,
in order to eliminate many of the recursive calls for small values of n, we cached the lists of rooted trees
of small order. Our main interest is in the generation of free trees and, in this case, in order to eliminate
a large proportion of the recursive calls, it is only necessary to cache the lists of rooted trees up to order
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around n
2

. We then described how the algorithm could be modified to generate the adjacency list or matrix
representations of the trees.

We compared our Python implementation of the algorithm for generating free trees with the Python
implementation of the well-known WROM algorithm taken from NetworkX. We used our algorithm to
generate the free trees of order n, for 18 ≤ n ≤ 29, but because of the longer runtimes, we only ran the
WROM algorithm up to n = 27. It can be seen from Table 1 that the runtimes for the new algorithm are
less than a quarter of those for the WROM algorithm (the improvement in the runtimes for the algorithms
that generate adjacency lists or matrices is similar ). From the comparisons in [10], we may deduce that
our algorithm would take less than a third of the time of the algorithm presented there.
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