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Abstract. We solve a class of optimization problems for (phylogenetic) X-trees
or their shapes. These problems have recently appeared in different contexts, e.g. in
the context of the impact of tree shapes on the size of TBR neighborhoods, but so
far these problems have not been characterized and solved in a systematic way. In
this work we generalize the concept and also present several applications. Moreover,
our results give rise to a nice notion of balance for trees, which plays an important
role in various different research areas, including mathematical phylogenetics as well as
computer science. Unsurprisingly, so-called caterpillars are the most unbalanced tree
shapes, but it turns out that balanced tree shapes cannot be described so easily as they
need not even be unique.

1 Introduction

Tree balance plays an important role in many different research areas, ranging from studies on
evolution (cf. [1, 2]) to theoretical computer science (cf. [14]). In this regard, recently various
balance indices for rooted trees have been studied in detail (cf. [5, 7, 16]). However, the balance
of unrooted trees has so far only been considered in few studies (e.g. [11, 23]). Many questions
concerning the balance of unrooted trees are therefore still open. In the present manuscript, we
suggest a general framework for balance indices for unrooted trees, with a special focus on unrooted
phylogenetic trees.

When such phylogenetic trees are considered, i.e. trees describing the evolutionary history of
n present-day species which label the leaves of the tree, one is often confronted with the need to
find the extreme values of the expression

Φf (τ) =
∑

σ∈Σ∗(τ)

f(‖σ‖).
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Here, τ varies over all phylogenetic trees with n leaves, and Σ∗(τ) is the set of so-called non-
trivial splits of X = {1, . . . , n} induced by τ . Recall that a split σ of a set X is just a bipartition
of this set into two non-empty subsets A and B (we then write σ = A|B), and a split is called
non-trivial whenever both parts of the bipartition have cardinality at least 2. Splits of the species
set X play an important role in mathematical phylogenetics, because every edge of a phylogenetic
tree induces such a split, and splits are non-trivial if and only if they are induced by an inner edge
of the tree (i.e. not by an edge connected to a leaf). Moreover, in the above definition of Φf (τ),
‖A|B‖ = min(|A|, |B|) denotes the cardinality of the smaller part of the split.

Such expressions recently appeared in different contexts, each time with a different choice of
the monotonic function f : {2, . . . , bn/2c} → R≥0:

1. The size of a TBR-neighborhood of the tree τ with f(k) = k(n−k), see [12]. This example is
also related to the so-called Wiener index of the tree [23]. For this index, you need to assign
edge lengths to all edges of τ . Then, the Wiener index is defined as W (τ) =

∑
u,v∈V (T )

dτ (u, v),

where V (τ) refers to the vertex set of τ and dτ refers to the pairwise distances between any
two vertices induced by the edge lengths.

2. An estimate of the diameter of the (unweighted) tree space under Gromov-type distance mea-
sures introduced in [15] with f(k) = k (`1−Gromov) and f(k) =

√
k · (1− k/n) (`2−Gromov).

3. The number of so-called cherries of a tree, i.e. splits σ = A|B with ‖A|B‖ = min(|A|, |B|) = 2,

can be described with f(k) =

{
1 k = 2
0 k > 2.

Note that the number of cherries is a simple

but well-known measure of tree balance for rooted trees [22], so the stated definition of f
generalizes this concept.

In many situations, it turns out that the extremal shapes (giving the minimal or maximal values
of the functional) are so-called caterpillars (i.e. rooted trees with just one cherry or unrooted trees
with just two cherries) and so-called semi-regular trees, i.e. trees which have at most one non-leaf
vertex that is not of maximum degree and that such a vertex, if it exists, cannot be adjacent to more
than one non-leaf vertex [23]. While the first kind of trees, the caterpillars, are often considered
the most unbalanced tree shapes, the latter kind, i.e. the semi-regular trees, are considered to be
most balanced. This reoccurence is challenging, as there seems to be no study of the whole family
of functionals with f broadly varying. We regard the present note as the beginning of this study.

But how is Φf (τ) measuring the balance of the shape of τ? Intuitively, splits σ ∈ Σ∗(τ) with a
high value of ‖σ‖ are very balanced, and it seems that the maximum of Φf (τ) should be attained
by the most balanced shapes. But, more importantly, the balanced tree shapes display more splits
σ with a small ‖σ‖, for example cherries. Thus they realise a smaller value of Φf than caterpillars.

In fact, the Arxiv version of [11], namely [12], provided already the main idea for deriving the
maximal value for increasing functions f . As this Arxiv version provides a few more details than
the published manuscript, we will subsequently refer to that version. Anyway, a lot of structure
is required for deriving the minimal value of Φf , whereas its maximum is significantly easier to
establish, cf. [12, 23].

We will show in the following that for general functions f , the main principle becomes even
more transparent when considering particular functionals. Last but not least, we also give further
applications to topological indices.



JGAA, 25(1) 133–150 (2021) 135

2 Preliminaries

Let Tn be the set of all (unrooted) phylogenetic trees (i.e. connected acyclic graphs with leaves
labelled by a so-called taxon set X) with |X| = n ≥ 6 leaves, and T 2

n the subset of Tn which contains
all fully resolved (i.e. binary, bifurcating) trees in Tn; i.e. the trees in T 2

n have the property that
all vertices have either degree 3 (inner nodes) or 1 (leaves). When there is no ambiguity, we often
just say tree when referring to a phylogenetic tree or, when the leaf labeling is not important, its
so-called tree shape, respectively.

Caterpillars with n leaves are binary phylogenetic trees with two leaves, say 1, n, such that every
vertex of the tree is on the path from 1 to n or adjacent to a vertex on this path. In the so-called
Newick format [6], which gives a nested list of all leaves such that leaves which are separated by
fewer edges in the tree are also separated by fewer brackets, caterpillars may be denoted by the
expression

τc = (((1, 2), 3), . . . , n).

If τ ∈ Tn, let Σ(τ) denote the set of all splits, i.e. all partitions of the leaf set X into two non-empty
subsets A and B, and let Σ∗(τ) be the set of all non-trivial splits σ = A|B induced by inner edges
of τ , i.e. Σ∗(τ) contains all splits for which both |A| ≥ 2 and |B| ≥ 2. For a split σ = A|B let
‖σ‖ = ‖A|B‖ = min(|A|, |B|) denote its size.

Now we introduce for any function f : {2, . . . , bn/2c} → R≥0 the functional Φf : Tn → R≥0 via

Φf (τ) =
∑

σ∈Σ∗(τ)

f(‖σ‖).

Clearly, a tree and its contraction, obtained by suppressing all inner vertices of degree 2, share
the same value of Φf . A rotation of the tree, which is obtained by permuting the leaf labels, does
not alter the value of Φf either. So Φf is just a function of the phylogenetic tree shape of τ .
Particularly, all caterpillars get the same value under Φf .

Another concept we need to introduce before we can present our results are so-called NNI-
moves on binary trees. NNI stands for Nearest Neighbor Interchange, and in order to perform an
NNI-move on a binary tree τ , you fix an inner edge of τ . This edge is connected to four subtrees,
two on either side. You then swap two of these subtrees from opposite sides of the edge. This
procedure is called NNI-move, and the resulting tree τ ′ is called an NNI-neighbor of τ . You can
also define a metric based on NNI in order to measure the distance between two trees τ , τ ′ such
that d(τ, τ ′) equals the minimum number of NNI moves needed to get from τ to τ ′.

Finally, recall that a vector or sequence s is called Pareto maximal (or Pareto minimal) in a
set S ⊆ Rn, if it is maximal (minimal) with respect to the componentwise order. This means that
none of its entries can be increased (decreased) within the set S without decreasing (increasing)
another one.

3 Results for increasing functions f

In this section, we consider a function f : {1, . . . , bn/2c} → R≥0 with the additional assumption
that f is increasing, i.e. if x > y, then f(x) ≥ f(y). The following theorem, which is based on
ideas presented in [12], shows that caterpillars maximize Φf in this case.

Theorem 1 Let τc ∈ Tn be a caterpillar and f : {2, . . . , bn/2c} → R≥0 increasing. Then for all
τ ∈ Tn

Φf (τc) ≥ Φf (τ).
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If f is strictly increasing and τ ∈ Tn is a point of maximum of Φf , then τ is a caterpillar.

Before presenting the proof, we consider the following elementary lemma, which we will need
subsequently.

Lemma 1 Let f : {2, . . . , bn/2c} → R≥0 be strictly increasing. Then for all m ∈ {2, . . . , n− 2}
and p ∈ {1, . . . , n− 3−m}

m∑
l=2

f(min(l, n− l)) <
m+p∑
l=2+p

f(min(l, n− l)).

Proof: For symmetry reasons we may assume that p ≤ b(n− 2−m)/2c and consider the function
g : {0, . . . , b(n− 2−m)/2c} → R≥0,

g(p) =

m+p∑
l=2+p

f(min(l, n− l)).

We find

g(p+ 1)− g(p) = f(min(m+ p+ 1, n−m− p− 1))− f(min(2 + p, n− 2− p)) > 0

since min(m+ p+ 1, n−m− p− 1) > min(2 + p, n− 2− p). �

Proof: [Proof of Theorem 1.] Consider first the case that f is strictly increasing and τ is such
that Φf (τ) is maximal. We now follow directly the arguments in the proof of [12, Lemma 4.1].

Fix two cherries x1, x2 and x3, x4 of τ and partition {1, . . . , n} by the edges of the path from
x1 to x4, see Fig. 1.

τ =

x1

x2

• • · · · • •

x3

x4

Y1 Yk

τ ′ =

Yi

x1

x2

• • • · · · • • · · · • •

x3

x4

Y1 Yi−1 Yi+1 Yk

Figure 1: The structure of the trees τ and τ ′ in the proof of Theorem 1. The labels with round
edges refer to leaves x1, . . . , x4, whereas the squares refer to subtrees Y1, . . . , Yk.

We just want to prove that the number of leaves in Yi, which we denote by |Yi| = yi, equals 1
for all i = 1, . . . , k, because this is equivalent to τ being a caterpillar. So let us assume there is an
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i with yi ≥ 2. We choose i minimal, i.e. y1 = y2 = · · · = yi−1 = 1. We now construct a new tree
τ ′ by moving Yi such that it is now a neighbor of x1, see again Figure 1. We now consider several
kinds of non-trivial splits in τ ′:

1. Splits σ which are not on the path from x1 to x4. For those splits ‖σ‖ is the same for τ ′ as
for τ .

2. Splits σ on the path from x1 to x4 before the edge splitting Yi−1 from Yi+1 (i.e. in Figure 1
to the left of this split). Enumerating these splits by their distance from x1 in τ and τ ′, the
size of the lth split changes from min(l + 1, n− l − 1) to min(l + yi, n− l − yi).

3. The edge on the path from x1 to x4 which separates Yi−1 from Yi+1. Here, the size of σ in
τ ′ equals the size of the split splitting Yi from Yi+1 in τ .

4. Splits σ on the path from x1 to x4 after the edge splitting Yi−1 from Yi+1, i.e. in Figure 1
at the right-hand side. Here, the size of σ remains unchanged from τ to τ ′.

Thus we find

Φf (τ ′)− Φf (τ) =

i∑
l=1

f(min(l + yi, n− l − yi))− f(min(l + 1, n− l − 1)) > 0

by Lemma 1. However, this implies that τ is not optimal. This is a contradiction, because τ was
chosen to be optimal. So we conclude that the assumption is wrong and yi = 1 for all i = 1, . . . , k.
Therefore, τ is a caterpillar.

If f is increasing but not strictly increasing take an arbitrary tree τ and a caterpillar τc. For
an arbitrary ε > 0 consider the function fε : {1, . . . , bn/2c} → R≥0,

fε(k) = f(k) + εk for all k = 1, . . . , bn
2
c.

fε is strictly increasing and we obtain from the previous arguments

Φfε(τc) ≥ Φfε(τ).

For ε ↓ 0 we have Φfε(τc) ↓ Φf (τc) and Φfε(τ) ↓ Φf (τ), which completes the proof. �

Looking for an unconstrained minimum over Tn does not make much sense since it is attained
at the most unresolved tree τ0 with no inner splits: Σ∗(τ) = ∅. Note that such a tree is also
often referred to as a star-tree. If we restrict our consideration to T 2

n , instead of considering the
minimum of an increasing function, we could equivalently consider decreasing functions f and look
again at the maximum. Anyway, the analysis is much more difficult, which is why we first need to
present an important concept needed in this context, namely the so-called split size sequences.

4 Results for split size sequences and minima

From now on, we focus on binary trees, and we now introduce so-called split size sequences. In
order to obtain these, we first associate to every binary tree τ ∈ T 2

n the (multi-)set of split sizes
{‖σ‖ : σ ∈ Σ∗(τ)}. However, for ease of notation, it is better to work with ordered n − 3 tuples
instead of (unordered) sets, which is why we continue with the following definition.
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Definition 1 Let τ ∈ T 2
n . Then, τ induces n−3 non-trivial splits, i.e. |Σ∗(τ)| = n−3. We assume

an arbitrary ordering σ1, . . . , σn−3 of these splits and define the (n− 3)-tuple s̃(τ) as follows:

s̃(τ)i = ‖σi‖ for all i = 1, . . . , n− 3.

We then define the split size sequence s(τ) as follows: Order the n− 3 entries of s̃(τ) increasingly
and call the resulting ordered sequence s(τ). This is the split size sequence. Moreover, we denote
by Sn =

{
s(τ) : τ ∈ T 2

n

}
the set of all split size sequences on n taxa.

As an example for the split size sequence, we now consider the caterpillar tree. Consider again
Figure 1. If τ in this figure is a caterpillar, denoted τc, it has |Y1| = · · · = |Yk| = 1. In order to
get an (unordered) sequence of all split sizes, we start at one cherry, say x1, x2 and subsequently
consider the splits {x1, x2, Y1}|X\{x1, x2, Y1}, . . . , {x1, x2, Y1, . . . , Yk}|X\{x1, x2, Y1, . . . , Yk}. It is
clear that the cherry contributes the value 2 to s̃(τc), then we get a 3, 4, 5, and so forth. However,
as soon as there are fewer leaves on the right-hand side, say in set B, than on the left-hand side,
say in set A, where σ = A|B, the sequence will continue with |B| = n − |A| instead of |A|. In
the end, we order the elements of s̃(τc) increasingly in order to derive s(τc). For example, if the
caterpillar has n = 6 leaves, we get s(τc) = (2, 2, 3), if n = 7, we get s(τc) = (2, 2, 3, 3), if n = 8,
we get s(τc) = (2, 2, 3, 3, 4), and so forth.

Note that there is an alternative equivalent definition of s(τ). At first, it might seem a little
less intuitive, but it proves to be useful in the following. Consider the increasing sequence m(τ) ∈
N{2,...,bn/2c} whose entries are defined as follows:

m(τ)j = |{σ ∈ Σ∗(τ) : ‖σ‖ ≤ j}| for all j = 2, . . . , bn/2c.

In order to clarify m(τ), consider again the above caterpillar examples. If n = 6, we have
s(τc) = (2, 2, 3), so we have 2 splits of size ≤ 2 and 3 splits of size ≤ 3. So we get m(τc) = (2, 3).
Similarly, if n = 7, we get m(τc) = (2, 4), and for n = 8, we have m(τc) = (2, 4, 5).

Now note that s(τ) ∈ Nn−3 is just the left inverse of m(τ):

s(τ)i = min {j : m(τ)j ≥ i} .

This means
s(τ)i = j if m(τ)j ≥ i and m(τ)j−1 < i.

The function m will be used in the subsequent proofs.

Note that it is not so clear how to characterize Sn, i.e. all possible split size sequences. However,
in the following we investigate them a bit further. Therefore, first of all we order Sn in the pointwise
sense. So we say that τ ∈ T 2

n is not less balanced1 than τ ′ ∈ T 2
n , denoted τ � τ ′, if

s(τ)i ≤ s(τ ′)i for all i = 1, . . . , n− 3,

or equivalently,
m(τ)j ≥ m(τ ′)j for all j = 2, . . . , bn/2c.

This leads to the following theorem.

1As we will show in the present manuscript, the balance definition as chosen here is sensible in the sense that it
for instance leads to caterpillars being the least balanced trees. Not only does this make sense intuitively, it also
coincides with the extremal behavior of commonly used balance indices for rooted trees, like e.g. the Sackin [7, 19],
Colless [3, 4] or Total Cophenetic [16] indices. So the definition as presented here provides a desirable generalization
of the rooted case.
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Theorem 2 Let τ, τ ′ ∈ T 2
n . Then, we have τ � τ ′ if and only if for all increasing f : {2, . . . , bn/2c} →

R≥0

Φf (τ) ≤ Φf (τ ′). (1)

Proof: First, let τ, τ ′ ∈ T 2
n such that τ � τ ′. Then, by definition, we have

Φf (τ) =

n−3∑
i=1

f(s(τ)i) ≤
n−3∑
i=1

f(s(τ ′)i) = Φf (τ ′),

where the inequality is due to τ � τ ′, which implies s(τ)i ≤ s(τ ′)i for all i = 1, . . . , n − 3, and f
being increasing. This completes the first part of the proof.

Now assume we have (1) for all increasing f : {2, . . . , bn/2c} → R≥0. Then, in particular (1)
holds for the following family of increasing functions: For each j ∈ {2, . . . , bn/2c}, define

fj(k) =

{
1 k ≥ j
0 k < j.

We obtain

n−3∑
i=1

fj(s(τ)i) = Φfj (τ) ≤ Φfj (τ ′) =

n−3∑
i=1

fj(s(τ
′)i) for all j = 2, . . . , bn/2c.

By the definition of fj , this implies

|{σ ∈ Σ∗(τ) : ‖σ‖ ≥ j}| ≥ |{σ ∈ Σ∗(τ ′) : ‖σ‖ ≥ j}|

and thus
|{σ ∈ Σ∗(τ) : ‖σ‖ ≤ j}| ≤ |{σ ∈ Σ∗(τ ′) : ‖σ‖ ≤ j}| .

This immediately leads to m(τ)j ≤ m(τ ′)j for all j = 2, . . . , bn/2c and thus τ � τ ′. �

Remark 1 From an abstract point of view the result is almost obvious: The functions

fj(k) =

{
1 k ≥ j
0 k < j,

which we used in the proof of the above theorem, generate the extremal rays of the convex cone
{f : {2, . . . , bn/2c} → R≥0 : f ↗} and thus determine the order �. On the other hand, Φfj (τ) =
n− 3−mj−1(τ).

Theorem 3 The only maximal point of Sn is derived from the sequence m(τ)j = min(2j−2, n−3)
or s(τ)i = b(i+ 3)/2c corresponding to caterpillar trees τ .

Proof: That caterpillars give the only maximal point on Sn is derived easily from the previous
two theorems, as for a caterpillar τc we have Φf (τc) ≥ Φf (τ) for all τ ∈ T 2

n by Theorem 1, and
thus, by Theorem 2 we conclude τ � τc for all τ . The split size sequence of caterpillars has already
been described above. �

Thus, the Pareto maximum of Sn is unique. It even corresponds to a unique tree shape.
Unfortunately, s(τ) does not determine the shape of τ in general. This means that � does not
induce a partial order on tree shapes. We illustrate this with the following example.
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Example 1 The basis for this example are the following two trees:

τ =
T1

T1

• •
T2

T2
and τ ′ =

T1

T2

• •
T1

T2

for two (rooted) subtrees T1, T2 on the same number of leaves with different shape. τ and τ ′ are
just one NNI-move apart, which means that only two subtrees have to swap their position across
one inner edge. Note that τ and τ ′ show the same split size sequences: First of all, both trees
contain the splits induced by edges inside T1 and T2, as well as the four splits separating either of
the two copies of T1 or either of the two copies of T2 from the rest of the tree. However, τ and τ ′

are different because they differ in the split induced by the central edge: this split separates the
two copies of T1 from the two copies of T2 in τ and thus differs from the edge separating one copy
of both T1 and T2 from another copy of T1 and T2. But even for these two splits the split size is
the same, namely n/2, because T1 and T2 have the same number of leaves. Clearly, τ and τ ′ differ
in shape if T1, T2 do so. The simplest situation is for |T1| = |T2| = 4, because for fewer than 4
leaves, there is only one rooted binary tree shape, respectively. However, for 4 leaves we have the
following two distinct trees:

T1 =

1 2

•

•

•

3 4

and T2 =

1 2

•

•

•

3 4

.

Using these two trees T1 and T2 in the construction of τ and τ ′ as described above leads to two
different binary unrooted trees, both of which share the same split size sequence:

s(τ) = s(τ ′) = (2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 8).

So τ and τ ′ have the same split size sequence but differ in shape. By exhaustive search we found
different (more complex) tree shapes with the same split size sequence already for n = 112. For
n ≤ 10, all binary trees with the same split size sequence have the same shape.

So far we have analyzed the maximum of Sn and have seen that it is achieved uniquely by the
caterpillar tree. However, we also want to find the most balanced tree shape(s), i.e. Pareto minima
of Sn. Surprisingly, they are not unique, as we will demonstrate now.

Example 2 Let n = 8 and consider the trees τ, τ ′ ∈ T 2
8 with split size sequences

s(τ) = (2, 2, 2, 2, 4)

s(τ ′) = (2, 2, 2, 3, 3)

2There are actually two pairs of trees with 11 taxa which share their split size sequence, respectively. We refrain
from depicting them here, because the construction explained in the example – even though it is not minimal – leads
to an entire class of counterexamples, whereas the examples for n = 11 seem a bit more arbitrary. The interested
reader can, however, find one example for n = 11 in Figure 3 of [21], where two trees on 11 taxa are depicted in a
different context, but both of them happen to share the same split size sequence.
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which are depicted in Figure 2. One could think of τ being mostly balanced with respect to the
edge 1234|5678 and τ ′ being mostly balanced with respect to the vertex which is incident to the
three edges 123|45678, 12345|678 and 123678|45.

For the increasing function f with

f(k) =

{
1 k ≥ 4
0 otherwise

,

we derive Φf (τ) = 1 > 0 = Φf (τ ′). On the other hand, for the increasing function g with

g(k) =

{
1 k ≥ 3
0 otherwise

,

we derive Φg(τ) = 1 < 2 = Φg(τ
′).

τ =

1

2

3

4

•

•

• •

•

•

5

6

7

8

τ ′ =

1

2 •

3

• •

•

• •

4

5

8

6

7

Figure 2: The structure of the trees τ and τ ′ with different Pareto minima of S8.

So depending on the underlying increasing function, either tree can be better than the other
one. However, that the split size sequences induced by these trees are both Pareto minimal, i.e.
that there is no tree which is more balanced than these two trees, can be seen when considering
the hypothetical split size sequence (2, 2, 2, 2, 3). This sequence would clearly dominate the above
sequences, but (2, 2, 2, 2, 3) /∈ S8: There are only eight leaves, so if there are four splits of size 2,
this implies that all leaves should be in cherries. However, this contradicts the existence of a split
of size 3.
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5 10 15 20

5
1
0

1
5

size of set of Pareto minima

n

S
n

Figure 3: Number of Pareto minima of Sn for n = 4, 5, . . . , 22.

As we have seen above, Pareto minima are not necessarily unique. The above example employed
eight leaves. The following example shows that for n = 12, there are even more Pareto minima,
namely three.

Example 3 There are more than 2 Pareto minima for large n. E.g., for n = 12,

(2, 2, 2, 2, 2, 2, 4, 4, 4)
(2, 2, 2, 2, 2, 3, 3, 4, 5)
(2, 2, 2, 2, 3, 3, 3, 3, 6)

(2)

are all minimal with respect to ≺.
We explicitly calculated the number of Pareto minima of Sn up to n = 223. Surprisingly,

the number of Pareto minima is not monotonical, see Figure 3. The sequence of the numbers of
Pareto minima had not been contained in the online encyclopedia of integer sequences before we
submitted it, which means that it seems to be unrelated to problems inducing other known integer
sequences. It can now be found as sequence A275882 in [20].

Next we want to focus on NNI-moves and the neighborhoods they induce.

Definition 2 Let f be increasing. Then τ ∈ T 2
n is called an NNI-local minimum of Φf if for τ ′

in the 1-NNI-neighborhood of τ , i.e. in the set of trees which can be reached from τ by performing
one NNI-move, we have Φf (τ ′) ≥ Φf (τ).

Lemma 2 Let τ ∈ T 2
n be a binary tree with its leaves labelled by X, |X| = n, and f be strictly

increasing. Then τ is an NNI-local minimum of Φf if and only if for all σ ∈ Σ∗(τ) such that
σ = X1 ∪X2|X3 ∪X4 and Xi|(X \Xi) ∈ Σ(τ) for all i = 1, . . . , 4, we have

3The R program containing all calculations is publicly available at: https://github.com/hvlieb/code/blob/

master/balancetrees_supp.R

https://github.com/hvlieb/code/blob/master/balancetrees_supp.R
https://github.com/hvlieb/code/blob/master/balancetrees_supp.R
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min{n1 + n2, n3 + n4} ≤ min{n1 + n3, n2 + n4, n1 + n4, n2 + n3}, (3)

where ni := |Xi| for i = 1, . . . , 4.

Proof: Let σ = X1 ∪X2|X3 ∪X4 ∈ Σ∗(τ) such that the splits Xi|(X \Xi) for all i = 1, . . . , 4 are
contained in Σ(τ). Note that this implies that τ looks as follows:

τ =
X1

X2

• •
X3

X4σ

Now, tree τ ′ in the 1-NNI-neighborhood of τ contains without loss of generality the edge X1 ∪
X3|X2 ∪X4 inducing split σ′ as depicted below.

τ ′ =
X1

X3

• •
X2

X4σ′

Note that τ and τ ′ differ only in this edge, i.e. all other splits are the same in Σ(τ) and Σ(τ ′).
Therefore, we can conclude that:

Φf (τ ′) ≥ Φf (τ)⇐⇒ f(‖σ′‖) ≥ f(‖σ‖)

⇐⇒

f(min{n1 + n3, n2 + n4}) ≥ f(min{n1 + n2, n3 + n4}).

Since f is strictly increasing, Φf (τ ′) ≥ Φf (τ) happens if and only if

min{n1 + n3, n2 + n4} ≥ min{n1 + n2, n3 + n4}.

Using an analogous argument for the other possible tree τ ′′ containing split σ′′ = X1∪X4|X2∪
X3 leads to the desired result. �

Remark 2 Note that (3) is just NNI-local minimality with respect to the function f(k) = k.

We now consider the role of NNI concerning the Pareto minima discussed earlier.

Lemma 3 Let f be an increasing function. Let τ ∈ T 2
n for some n ∈ N such that s(τ) is a Pareto

minimum. Then, τ is a local NNI minimum.

Proof: Any NNI-move changes at most one split size. Thus, Inequality (3) follows immediately
from Pareto minimality of s(τ). �

We are now in the position to state the following proposition.

Proposition 1 Let f be strictly increasing. Then for any minimal point τ ∈ T 2
n of Φf , the split

size sequence s(τ) is a Pareto minimum of Sn.
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Proof: Let τ be such that Φf (τ) is minimal, i.e.

Φf (τ) =

n−3∑
i=1

f(s(τ)i) ≤
n−3∑
i=1

f(s(τ̃)i) = Φf (τ̃) for all τ̃ ∈ T 2
n .

Now let τ ′ ∈ T 2
n be such that τ ′ dominates τ , i.e. τ ′ � τ , i.e. s(τ ′)i ≤ s(τ)i for all i =

1, . . . , n− 3. This immediately implies

n−3∑
i=1

f(s(τ ′)i) ≤
n−3∑
i=1

f(s(τ)i).

So altogether, this gives us

n−3∑
i=1

f(s(τ ′)i) =

n−3∑
i=1

f(s(τ)i).

So now assume that there is an i ∈ {1, . . . , n − 3} such that s(τ ′)i < s(τ)i and consequently
f(s(τ ′)i) < f(s(τ)i) and f(s(τ ′)j) ≤ f(s(τ)j) for j 6= i. We derive

n−3∑
i=1

f(s(τ ′)i) =

n−3∑
i=1

f(s(τ)i),

which is a contradiction and thus completes the proof. �

Following the convention of [23], we call a tree τ semi-regular, if for all representations

τ =

X1

X2

• • • · · · • •
X3

X4

Y1 Y2 Yk

(4)

with (without loss of generality) n1 ≤ n2 and n3 ≤ n4, we additionally have n2 ≤ n3 or n4 ≤ n1.
There is a unique semi-regular tree shape for every n ≥ 4 which is completely characterized [11].

Remark 3 Inequality (3) is just semi-regularity of τ as defined above and in [23], but restricted
to adjacent vertices.

We are now in the position to state and prove the following theorem.

Theorem 4 Let f : {1, . . . , bn/2c} → R≥0 be strictly increasing and strictly concave, i.e. 2f(k) ≥
f(k−1)+f(k+1) for all k = 2, . . . , bn/2c−1. If τ is a minimal point of Φf then τ is semi-regular.

Proof: First observe that we can extend f to a concave function
f : {1, . . . , n− 1} → R≥0 with f(n − k) = f(k). Now consider a tree of the form depicted in (4)
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and assume n2 > n3 and n4 > n1. Fix the trees

τ1 =

X1

X3

• • • · · · • •
X2

X4

Y1 Y2 Yk

and

τ2 =

X4

X2

• • • · · · • •
X3

X1

Y1 Y2 Yk

We set now λ = n2−n3

n2−n3+n4−n1
, and zj =

∑j
m=1 yj where z0 = 0. This way we obtain from

strict concavity and

n1 + n2 + zj = λ(n1 + n3 + zj) + (1− λ)(n4 + n2 + zj)

that

Φf (τ)− λΦf (τ1)− (1− λ)Φf (τ2)

=

k∑
j=0

f(n1 + n2 + zj)− λf(n1 + n3 + zj)− (1− λ)f(n4 + n2 + zj)

> 0.

Thus, at least one of Φf (τ1) or Φf (τ2) is less than Φf (τ). This contradicts minimality of τ , so the
assumption was wrong. This leads to the desired result. �

Remark 4 Note that the trees τ1, τ2 are exactly at NNI distance 2k + 1 from τ . This is due to
the fact that we first need to move the subtree with taxon set X2 (or X1 in case of τ2, respectively)
across all k + 1 inner edges on the path between X1 and X4. The last of these moves can be used
to swap X2 and X3 (or X1 and X4, respectively), which is why we then only need k more moves
to get X3 (or X4, respectively) across these inner edges into the right position.

Furthermore, this example shows that the size of the NNI-neighborhood for one NNI-move is
not sufficiently large for minimality (and maximality) for n ≥ 8, as the minimum (or maximum)
might be further away than just one NNI-step. This is consistent with the empirical observation
that tree search algorithms using too small NNI-neighborhoods often get stuck in local minima
[10, Section 3.3]. Note that it looks like strict concavity is not needed, but we are still lacking a
more general proof for this case.

Example 4 Also for non-concave f the semi-regular pattern can be the minimal point. For
n = 12 we saw that there are 3 different Pareto minima. For the convex function f(k) = k2 we
obtain the values 72, 79, 88 for the split sequences in (2). This means the semi-regular pattern
(2, 2, 2, 2, 2, 2, 4, 4, 4) is still the minimizer.

We conclude this section with the following lemma which is used in a later example.
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Lemma 4 Let τ ∈ T 2
n with n ≥ 4. Then, we have dn/3e ≤ s(τ)n−3 ≤ bn/2c.

Proof: Let σ be the split the size of which is s(τ)n−3. Consider the edge e of τ corresponding to
σ. Note that e splits τ into two parts, which we call the left-hand part and the right-hand part.
Moreover, e must be an inner edge (as n ≥ 4 and thus there is at least one inner edge giving rise
to one non-trivial split, so the split of size s(τ)n−3, which is maximal, has to refer to a non-trivial
split). Without loss of generality assume that the left-hand part of τ corresponds to s(τ)n−3.
Then, the left-hand side end vertex of edge e must have degree 3 (as e is an inner edge). The splits
corresponding to the two other edges coincident with this vertex must have a size not larger than
s(τ)n−3. Thus 3 · s(τ)n−3 ≥ n and the lower bound is derived. The upper bound is trivial. �

5 Applications

As we already mentioned in the introduction, functionals of the kind analyzed in the present
manuscript have recently occurred in various contexts, some of which we want to mention here.

Example 5 In [12] the authors considered the functional

Γ(τ) =
∑

A|B∈Σ∗(τ)

|A| · |B|,

which is equivalent to Φf for f(k) = k · (n−k). They considered the functional only on T 2
n , but for

the maximum there is no difference anyway. The application of Theorem 1 is just the same as [12,
Lemma 4.1], where we adapted our proof of Theorem 1 from. Further, the minimum is attained
for the semi-regular shape, since f is even strictly increasing.

There is also a close relation between Γ(τ) and the Wiener index of τ as described in the next
section, see also [23].

Example 6 Recently, the maximum parsimony distance was defined independently in [8] and
[17]. We will now briefly explain this concept before we show how it is related to the topic of this
manuscript.

Recall that a character χ is a function χ : Xτ → C from the leaf set Xτ of τ to an alphabet C.
In biology, C often refers to the four nucleotides in the DNA alphabet, but we do not restrict the
definition to this case. Then, an extension χ̄ : V (τ)→ C is a function from the vertex set V (τ) of
τ to C which agrees with χ on the leaf set X. For a character χ with extension χ̄, the changing
number of χ̄, denoted ch(χ̄), is defined as the number of edges e = {u, v} such that χ̄(u) 6= χ̄(v),
and the parsimony score PS(χ, τ) is then defined as the minimum number of changes over all
extensions χ̄ of χ on τ , i.e. PS(χ, τ) = min

χ̄
ch(χ̄). Note that the parsimony score of a character

on a binary tree can be easily calculated with the Fitch algorithm [9].
Now, the parsimony distance between two trees τ1 and τ2 is defined as follows: dMP (τ1, τ2) =

maxχ |PS(χ, τ1)−PS(χ, τ2)|. It has been shown [8, 13] that it is NP-hard to calculate this distance
for two given trees (even if both trees are binary). We now consider neighborhoods induced by
this metric.

In [17], the size of the 1-neighborhood of a tree τ ∈ Tn with respect to dMP was derived to be

np(τ) = 4
∑

A|B∈Σ∗(τ)

|A| · |B| − 4(n− 2)(n− 3) + 2|V2(τ)|+ 6|V3(τ)|
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where Vq(τ), q = 1, 2, 3 is the set of vertices of degree q after removal of all pendant edges. Clearly,
V1(τ) are just all cherries. Unfortunately, |V2(τ)| is not of the form Φf , but we can provide bounds
on the minimal and maximal values, since we have

4Γ(τ) + 2(n− 2− |V1(τ)|) ≤ np(τ) + 4(n− 2)(n− 3) ≤ 4Γ(τ) + 6(n− 2− |V1(τ)|).

To be precise, consider the parametric functions

fc(k) =

{
4k · (n− k) k > 2,
8(n− 2)− c k = 2.

We observe

4Γ(τ)− c|V1(τ)| = Φfc(τ)

such that c = 2 helps in deriving a lower bound for np, c = 6 for the upper bound likewise.

For all c < 2n + 2, f is strictly increasing and concave. Note that for binary trees, the first
instance with more than one unrooted tree shape is for n = 6 leaves. So for c = 2, 6, we find
maximal values of Φfc at caterpillars and its minimal values at semi-regular shapes. Those values
for c = 2, 6 can be used to bound np(τ).

Note that if you restrict the parsimony distance to binary characters, denoted d2
MP , and define

f(τ) = d2
MP (τ, τ0), where τ0 denotes the star-tree, i.e. the tree with no inner edges, then by Lemma

4, we have f(τ) ≤ bn/2c − 1 and f(τ) ≥ bn/3c − 1. It can easily be seen that f is maximized by
all trees containing an edge inducing a split σ = A|B with |A| = bn/2c and |B| = dn/2e. This is
due to the fact that if a binary character contains, say, |A| taxa in state a and |B| taxa in state b,
the parsimony score on the star-tree will be precisely min{|A|, |B|}, because the root state will be
chosen to be the state that occurs most often in the character, and all other taxa require changes.
Of course min{|A|, |B|} is maximized when |A| = bn/2c and |B| = dn/2e (or vice versa). On
the other hand, a binary character contains precisely two states, so at least one change is always
needed. So f(τ) = d2

MP (τ, τ0) ≤ bn/2c− 1, where equality is achieved if and only if τ contains the
split corresponding to a binary character with bn/2c many a’s and dn/2e many b’s (otherwise, the
parsimony score on τ would be strictly more than 1).

Thus, all trees containing an edge inducing a split σ = A|B with |A| = bn/2c and |B| = dn/2e
maximize f . For instance, caterpillar trees have this property, but they are not the only ones. On
the other hand, f is minimized by all trees containing a node which is adjacent to three subtrees
of size at least bn/3c. Therefore, the minimum is not unique, either.

Example 7 Consider the functional τ 7→ |V1(τ)|, the number of cherries. Clearly, this functional
is equal to Φf taking

f(k) =

{
1 k = 2,
0 otherwise.

Since f is decreasing and convex (on {2, . . . , bn/2c}), the minimum number 2 of cherries is attained
by caterpillars only. The maximal number of cherries is yielded by the semi-regular shapes. As
stated before, this functional is directly related to the so-called cherry tree balance index for rooted
trees [22].

Example 8 Another application are estimates of the diameter of Tn with respect to the Gromov-
type `p-distances on Tn introduced in [15] for p = 1, 2. We do not want to repeat the lengthy
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definition of these distances here. It is enough to note that Example 3 from that paper computed
Dp(τ, τ

′) if τ and τ ′ differ by one split, say A|B. Then

Dp(τ, τ
′) =

{
min(|A|, |B|) for p = 1,√
|A| · |B|/n for p = 2.

So we fix the functions f̃p, p = 1, 2, f̃1(k) = k, f̃2(k) =
√
k · (1− k/n) which are both strictly

increasing and concave on {2, . . . , bn/2c}. Let τ0 ∈ Tn denote the star tree, i.e. Σ∗(τ0) = ∅. We
see for all trees τ ∈ Tn:

Dp(τ0, τ) ≤ Φfp(τ).

Theorem 1 gives us for even n the estimates

diamD1(Tn) ≤ 2

n/2∑
k=2

2k = n2 − 2n− 4

and

diamD2(Tn) ≤ 2

n/2∑
k=2

2
√
k · (1− k/n) ∼ 4n3/2

∫ 1/2

0

√
x(1− x)dx = πn3/2

on the diameter of Tn.
Unfortunately, these bounds are less tight that the ones derived in [15, Lemma 9]. Nevertheless

the same technique would apply to any other tree distance if we had estimates for Robinson-Foulds
moves [18] in terms of ‖σ‖.

At least, Theorem 1 supports now the conjecture that the maximal distance is attained between
two caterpillars. But note that we are just dealing with upper bounds on the diameter here.

Example 9 Another simple functional is defined through

Φ(τ) = max {‖σ‖ : σ ∈ Σ∗(τ)} = s(τ)n−3.

This functional is not of the form Φf . Still, it is increasing with respect to ≺. Its extremal values
bn/2c, dn/3e were derived in Lemma 4. By the previous section, they are achieved by caterpillars
(cf. Theorem 3) and some Pareto minimum cf. Examples 2 and 3), possibly among others.

For n = 8 we computed the Pareto minima, see Example 2. (2, 2, 2, 3, 3) realizes the minimal
value 3 for Φ. But, the other (semi-regular) split size sequence (2, 2, 2, 2, 4) realizes the maximal
value for Φ.

6 Discussion

We derived necessary and sufficient criteria to compute minimal and maximal points of the func-
tionals Φf . There were a lot of specific functionals of this kind considered in the past, see the
previous section. By our theory, it is now less surprising that quite often caterpillars yielded max-
imal values and the semi-regular trees yielded minimal ones. But, we also saw that sometimes the
minimum of Φf could be achieved by a different Pareto minimum. So the set of split size sequences
Sn and their Pareto minima seems quite interesting to study. For instance, it would be nice to
know whether all Pareto minima, not only the semi-regular one, correspond to a unique tree shape.
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The Γ−index from Example 5 is closely related to the Wiener index of graphs, it is its leaf-
restricted form. Indeed it holds that:

Γ(τ) =
∑

u,v∈L(τ)

dτ (u, v),

where dτ is the metric induced by τ and L(τ) are the leaves of τ , see [23]. This kind of index is a
shape invariant of τ .

It is easy to see that we can derive a whole family of similar topological indices if we introduce
another metric on the tree, still just depending on the shape of τ . More precisely, introduce for
any σ ∈ Σ(τ) a weight w(σ, τ) = g(‖σ‖) ≥ 0 and the corresponding (semi-)metric dwτ on L(τ).
Then, setting

Γw(τ) =
∑

u,v∈L(τ)

dwT (u, v)

we obtain Γw(τ) = Φf (τ) for f(k) = g(k)k(n − k). If g is increasing, f is increasing as well.
Unfortunately, concavity is not so easy to derive. Nevertheless, our theory will apply to many of
these Γw−indices.

Clearly, these indices are linear in dτ . It is easy to derive similar functionals which are quadratic
in dτ or depending on triple partitions A|B|C compatible with the tree τ . For instance, the
functional Φ(τ) = |V2(τ)| from Example 6 is of this kind. It would be quite valuable to extend our
theory to this type of functionals.
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