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Abstract

Hermes is a system for exploring and visualizing the Internet struc-
ture at the level of the Autonomous Systems and their interconnections.
It relies on a three-tier architecture, on a large repository of routing infor-
mation coming from heterogeneous sources, and on sophisticated graph
drawing engine. Such an engine exploits static and dynamic graph draw-
ing techniques, specifically devised for the visualization of large graphs
with high density.
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1 Introduction and Overview

Computer networks are an endless source of problems and motivations for the
Graph Drawing and for the Information Visualization communities. Several sys-
tems aim at giving a graphical representation of computer networks at different
abstraction levels and for different types of users. To give only some examples
(an interesting survey can be found in [17]):

1. Application level: Visualization of Web sites structures, Web maps [18,
16], and Web caches [10].

2. Network level: Visualization of multicast backbones [23], Internet traf-
fic [24], routes, and interconnection of routers.

3. Data Link level: Interconnection of switches and repeaters in a local area
network [2].

We deal with the problem of exploring and visualizing the interconnections
between Autonomous Systems. An Autonomous System (in the following AS) is
a group of networks under the same administrative authority. Roughly speaking,
an AS can be seen as a portion of the Internet, and Internet can be seen as
the totality of its ASes. To maintain the reachability of any portion of the
Internet each AS exchanges routing information with a group of other ASes
mainly selected on the basis of economic and social considerations. Several
tools have been developed for analyzing and visualizing the Internet topology
at the ASes level [9, 12, 24, 30]. However, in our opinion, such tools are still
not completely satisfactory both in the interaction with the user and in the
effectiveness of the drawings. Some of them have the goal of showing large
portions of Internet, but the maps they produce can be difficult to read (see
e.g. [9]). Other tools point the attention on a specific AS, only showing that AS
and its direct connections (see e.g. [24]).

In this work we describe a new system, called Hermes, that provides a pub-
licly accessible service over the Web1. It has a three-tier architecture which
allows the user to visually explore the Internet topology by means of automat-
ically computed maps. Such maps are computed by a graph drawing module
based on the GDToolkit library [21] whose main features are the following:

• Its basic drawing convention is the podevsnef [20] model for orthogonal
drawings having vertices of degree greater than four. However, since the
handled graphs have often many vertices (ASes) of degree one connected
with the same vertex, the podevsnef model is enriched with new features
for representing such vertices.

• It is equipped with two different graph drawing algorithms. In fact, at
each exploration step the map is enriched and hence it has to be redrawn.
Depending on the situation, the system (or the user) might want to use a

1http://www.dia.uniroma3.it/∼hermes
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static or a dynamic algorithm. Of course, the dynamic and the static al-
gorithms have advantages and drawbacks. The dynamic algorithm allows
the user to preserve its mental map [19, 27] but can lead, after a certain
number of exploration steps, to drawings that are less readable than those
constructed with a static algorithm.

• The static algorithm is based on the topology-shape-metrics approach [14]
and exploits recent compaction techniques that can draw vertices with any
prescribed size [13]. The topology-shape-metrics approach has been shown
to be very effective and reasonably efficient in practical applications [15].

• The dynamic algorithm is a new dynamic graph drawing algorithm that
has been devised according to three main constraints. (1) It had to be
completely integrated within the topology-shape-metrics approach in such
a way to be possible to alternate its usage with the usage of the static al-
gorithm. (2) It had to be consistent with the variation of the podevsnef
model used by Hermes. (3) It had to allow vertices of arbitrary size.
Several algorithms have been recently proposed in the literature on dy-
namic graph drawing algorithms. A linear time algorithm for orthogonal
drawings is presented in [5]. In this algorithm the position of the vertices
cannot be changed after the initial placement. Four different scenarios for
interactive orthogonal graph drawings are studied in [29]. Each scenario
defines the changes allowed in the common part of two consecutive draw-
ings. An interactive version of Giotto [33] is described in [8]; it allows
the user to incrementally add vertices and edges to an orthogonal draw-
ing in such a way that the shape of the common part of two consecutive
drawings is preserved and the number of bends is minimized under this
constraint. A dynamic algorithm for orthogonal drawings that allows us
to specify the relative importance of the number of bends vs. the number
of changes between two consecutive drawings is given in [6]. Other algo-
rithms for constructing drawings of graphs incrementally, while preserving
the mental map of the user, are for example [26, 11, 28]. Also, a study on
different metrics that can be used to evaluate the changes between draw-
ings in an interactive scenario is presented in [7]. However, as far as we
know, none of the cited dynamic algorithms enforces all the constraints
(1), (2), and (3).

The paper is organized as follows. In Section 2 we give basic definitions
about graph drawing and AS level networking which are needed to understand
the rest of the work. The reader that is not interested in networking may skip
Section 2.1. In Section 3 we explain how the user interacts with Hermes and
provide a high level description of the functionalities of the system. In Section 4
we give some details about the three-tier architecture of Hermes. Section 5
shows the results of a study on the ASes interconnection graph. Such a study
has been performed in order to design the drawing convention and the drawing
algorithms of Hermes. In particular, we analyze the density of the graph and
its distribution, and we give measures on the average degree of the vertices.
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In Section 6 we describe in detail the drawing convention and the algorithms
used by system. The techniques we adopt are not limited to the application do-
main described in this paper, but they are suitable for exploring and visualizing
general large graphs with high density. In Section 7 some statistics about the
effectiveness of Hermes as a Web service are provided. Conclusions and open
problems are given in Section 8.

2 Background

2.1 Networking

Each AS groups a set of networks. An AS is identified over the Internet by
an integer number while each network is identified by its IP address. A route
is a (directed) path on the Internet that can be used to reach a specific set
of (usually contiguous) IP addresses, representing a set of networks. A route
is completely described by its destination IP addresses, its cost, and by the
ordered set of ASes that it traverses (usually called AS-path). Routes can be
seen as advertisements, from an AS to its adjacent ASes, meaning “through me
you can reach a certain set of networks, with a certain cost and traversing a
certain set of other ASes”.

In order to exchange information about the routes, the ASes adopt a routing
protocol called BGP (Border Gateway Protocol) [31]. Such a protocol is based
on a distributed architecture where border routers that belong to distinct ASes
exchange information about the routes they know. Two border routers that
directly exchange information are said to perform a peering session, and the
ASes they belong to are said to be adjacent. We define the ASes interconnection
graph as the graph having a vertex for each AS and one edge between each pair of
adjacent ASes. Note that, according to our definition, the ASes interconnection
graph is not a multigraph.

Each route is incrementally built. A route is originated by an AS and initially
it contains only such AS, then it is propagated to adjacent ASes which append
their identifiers to the AS-path of the route and propagate it again. Hence, in
the AS-path of a route two consecutive ASes are always adjacent.

2.2 Graph Drawing

We assume familiarity with elementary graph theory and graph connectiv-
ity [22].

A plane drawing Γ of a graph G maps each vertex of G to a point of the
plane, and each edge of G to a Jordan curve between the two points associated
with the end-vertices of the edge. A drawing Γ of G is planar if any two edges
never intersect except at common end-vertices. A graph is planar if it admits
a planar drawing. A planar drawing Γ of G induces for each vertex v of G a
circular clockwise ordering of the edges incident on v. Also, Γ subdivides the
plane into topologically connected regions, called faces. Exactly one of these
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faces is unbounded; it is called external face. The other faces are said to be
internal. Two planar drawings of G are said to be equivalent if (i) for each
vertex v of G they induce the same ordering of the edges around v, and (ii) they
have the same external face. Note that two equivalent drawings of G have the
same set of faces. An embedding φ of G is a class of equivalent planar drawings of
G. In other words, we can regard an embedding of G as the choice of a clockwise
ordering of the edges around every vertex plus the choice of the external face.
An embedded graph Gφ is a planar graph G with a given embedding φ.

An orthogonal drawing of G is a drawing of G such that all edges are rep-
resented as polygonal lines of horizontal and vertical segments. Clearly, an
orthogonal drawing of G exists if and only if G is 4-planar, that is, each vertex
of G has at most four incident edges. An orthogonal representation (or shape) of
G is an equivalence class of planar orthogonal drawings such that the following
hold:

1. For each edge (u, v) of G, all the drawings of the class have the same
sequence of left and right turns (bends) along (u, v), while moving from u
to v.

2. For each vertex v of G, and for each pair {e1, e2} of clockwise consecutive
edges incident on v, all the drawings of the class determine the same angle
between e1 and e2.

Roughly speaking, an orthogonal representation defines a class of orthogonal
drawings that may differ only for the length of the segments of the edges.

In order to orthogonally draw graphs of arbitrary vertex degree, different
drawing conventions have been introduced in the literature. Here we recall the
podevsnef (planar orthogonal drawing with equal vertex size and not empty
faces) drawing convention, defined by Fößmeier and Kaufmann [20]. In a pode-
vsnef drawing (see Figure 1 (a)):

1. Vertices are points of an integer coordinate grid (but it is easier to think
of them in terms of squares of half unit sides centered at grid points).

2. Two segments that are incident on the same vertex may overlap. Observe
that the angle between such segments has zero degree.

3. All the polygons representing the faces have area strictly greater than
zero.

4. If two segments overlap they are presented to the user as two very near
segments.

An algorithm that computes a podevsnef drawing of an embedded planar
graph with the minimum number of bends is presented in [20] . Further, the
authors conjecture that the drawing problem becomes NP-hard when Condi-
tion 3 is omitted. The podevsnef drawings generalize the concept of orthogonal
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1               1             1
2               2             0
3               0             0
4               0             0

6               0             0
7               0             0

5               0             1

1

2

(b)

Figure 1: (a) A podevsnef drawing; (b) A podavsnef drawing with the same
shape as the drawing in (a); the sizes of the vertices are specified in the table.

representation, allowing angles between two edges incident to the same vertex to
have a zero degree value. The consequence of the assumption that the polygons
representing the faces have area strictly greater than zero is that the angles
have specific constraints. Namely, because of Conditions 2 and 3, each zero
degree angle is in correspondence with exactly one bend [20]. An orthogonal
representation corresponding to the above definition is a podevsnef orthogonal
representation.

A drawing convention that allows the user to draw graphs in which each sin-
gle vertex has a prescribed size (width and height) has been introduced in [13].
Such a drawing convention is referred to as podavsnef (planar orthogonal draw-
ing with assigned vertex size and non-empty faces). A podavsnef drawing has
the following properties (see also Figure 1 (b)):

1. Each vertex is a box with specific width and height (assigned to each
single vertex by the user).
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2. Two segments that are incident on the same vertex may overlap. Again,
the angle between such segments has zero degree.

3. Consider any side of length l ≥ 0 of a vertex v and consider the set I of
arcs that are incident on such side.

(a) If l + 1 > |I| then the edges of I cannot overlap.

(b) If l+1 ≤ |I| then the edges of I are partitioned into l+1 non-empty
subsets such that all the edges of the same subset overlap.

4. The orthogonal representation constructed from a podavsnef drawing by
contracting each vertex into a single point is a podevsnef orthogonal rep-
resentation.

A polynomial time algorithm for computing podavsnef drawings of an em-
bedded planar graph with the minimum number of bends over a wide class of
podavsnef drawings is also described in [13].

3 Using Hermes

The user interacts with Hermes through a map (subgraph) of the ASes inter-
connection graph. A map is initially constructed using two possible starting
primitives.

AS selection An AS is chosen. The obtained map consists of such an AS plus
all the ASes that are connected to it. See Fig. 2(a).

Routes selection A set of routes is selected. The user has three possibilities:
(1) selection of all the routes traversing a specific AS (see Fig. 3(a)); (2)
selection of the routes starting from a specific AS (see Figs. 3(b)); (3)
selection of all the routes traversing a specific pair of ASes. The obtained
map consists of all the ASes and connections traversed by the selected
routes.

The user can explore and enrich the map by using the following primitive:

AS exploration an AS u among those displayed in the current map is selected.
The current map is augmented with all the ASes that are connected to
u. Further, for each AS v connected to u an edge (u, v) is added. Ob-
serve that, according to this definition, a map is a subgraph of the ASes
interconnection graph but in general it is not an induced subgraph.

Fig. 2 shows a sequence of exploration primitives applied to the map of Fig. 2(a).
ASes 5583, 5484, and 6715 are explored in Fig’s. 2(b), 2(c), and 2(d), respec-
tively. Fig. 2 highlights several features of Hermes. Hermes can construct
new drawings either using a static or a dynamic graph drawing algorithm. The
drawing of Fig. 2(b) has been constructed with a dynamic algorithm starting
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(a) Selection of AS 12300. (b) Exploration of AS 5583.

(c) Exploration of AS 5484. (d) Exploration of AS 6715.

Figure 2: Exploration steps in the ASes graph. The selected AS is always drawn
red.
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(a) Map containing all the routes traversing
AS 137.

(b) Map containing only routes starting from
AS 137.

Figure 3: Selection of the routes traversing AS 137.
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Figure 4: A map obtained with several exploration steps.

from the drawing of Fig. 2(a), and the drawing of Fig. 2(d) has been constructed
with the same algorithm starting from the drawing of Fig. 2(c). Conversely, the
drawing of Fig. 2(c) is obtained with a static algorithm. The choice of the al-
gorithm to be applied can be done by the system (see Section 6) or forced by
the user. Since the ASes degree can be large (see Section 5), in the project of
the drawing algorithms of Hermes, special attention has been devoted to the
representation of vertices of high degree. Fig. 2 shows how the vertices of degree
one are placed around their adjacent vertices. A more complex map obtained
with Hermes is depicted in Fig. 4. It contains more than 150 ASes.

Working on a map, independently on the way it has been obtained, the user
can get several information on any AS:

General Info name, maintainers, and description of the AS. See Fig. 5.

Routing Policies For each connected AS, an expression describing the policy
and its cost. See Fig. 5. This is possible both for in and for out policies.
The default AS is also displayed.

Internal Routers List of the known border routers with the IP-numbers of
the interfaces. Peering sessions with other routers are displayed.
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Figure 5: General Info and routing policies for AS 5484.

Routes List of the routes originated by the AS (see Fig. 6). It is also possible
to visualize the propagation of a given route in the ASes composing the
map.

AS Macros List of the macros [3] including the AS.

4 A Three-Tier Architecture

Hermes has a three-tier client/server architecture. The user interacts with a
top-tier client which is in charge of collecting user requests and showing results.
The requests are forwarded by the client to a middle-tier server which is in
charge to process the raw data extracted from a repository (bottom-tier).

The client is a multi-document GUI-based application. It allows the user to
carry-on multiple explorations of the ASes interconnection graph at the same
time. The Java technology has been used to ensure good portability. Snapshots
of the GUI have been shown in Section 3.

In Hermes the middle-tier server maintains the state of the session, that is
the current map, for each connected user. The client communicates with the
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Figure 6: Routes through AS 5583.
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server opening a permanent TCP connection for each user. This permits to
amortize the inefficiency of the connection set up over all the requests of ses-
sion. The protocol transported by such connections is specifically tailored for
our application. In particular, the server sends its reply in the form of serial-
ized software objects describing ASes, links, and related geometric information.
The Java run-time environment transparently encodes objects into bytes on the
middle-tier server and consistently decodes them on the client side.

The repository is updated off-line from a plurality of sources. At the moment
we access the following databases adopting, for representing data, the RPSL lan-
guage [1]: ANS, APNIC, ARIN, BELL, CABLE&WIRELESS, CANET, MCI,
RADB, RIPE, VERIO. Further, we access the routing BGP data provided by
the Route views project of the Oregon University [25]. However, the repository
is easily extensible to other data sources.

Data are filtered so that only the information used by Hermes are stored
in the database, but no consistency check or ambiguity removal is performed
in this stage. The overall size of the repository is about 50 MB. The adopted
DBMS technology is currently mysql.

The crucial part of the system is mainly located in the middle-tier. The
top-tier requests two types of service to the middle-tier.

General info services the top-tier queries about ASes, routes, and path prop-
erties.

Topology services the top-tier queries for a new exploration and gets back a
new map.

Info services requests are independent of each other and hence are independently
handled by the middle-tier. On the contrary, topology services requests are
always part of a drawing session. Each client may open one or more drawing
sessions. Each drawing session is associated with a map that can be enriched
by means of exploration requests.

Info services requests are directly dispatched to a mediator. The mediator
module is in charge to retrieve the data from the repository and to remove
ambiguities on-the-fly.

Topology services requests are handled by the kernel of the middle-tier. It
gets information from the mediator and inserts new edges and vertices into the
map. The drawing is computed by the drawing engine module (see Section 6).
The drawing engine is based on the GDToolkit [21] library.

5 AS Interconnection Data from a Graph Draw-

ing Perspective

In order to devise effective graph drawing facilities for Hermes, we have ana-
lyzed the ASes interconnection graph G. The data at our disposal2 show the
following structure for G.

2Observation of May 2000.
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Figure 7: AS degree distribution (log. scale)
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Figure 9: Percentage of ASes adjacent to an AS whose local graph has at least
a given value of density

The number of vertices of G is 6, 849 and the number of edges is 27, 686.
Fig. 7 illustrates the distribution of the degree of the vertices. The figure shows
that while there are many vertices (about 75%) with degree less than or equal to
4, there are also several vertices whose degree is more than 100. For improving
the readability of the chart, we have omitted two vertices with degree 862 and
1, 044, respectively. Further, consider that G contains 473 isolated vertices.

The density of G is 4.04. However, the “local” density can be much greater.
In order to estimate such a local density, we have computed, for each vertex
v, the density of the subgraph induced by the vertices adjacent to v. We call
such graphs local graphs. Fig. 8 illustrates the distribution of the densities of
the local graphs. From the figure it is possible to observe that about 5% of the
local graphs have density greater than 10.

We have also tried to estimate the probability, for a user that explores G, to
encounter a portion of G that is locally dense. Fig. 9 shows, for each value d of
density, what is the percentage of vertices that are adjacent to a vertex whose
local graph has density at least d. Note that more than 30% of the vertices are
adjacent to a vertex whose local graph has density at least 10.

Concerning connectivity, the graph has 480 connected components, including
the above mentioned 473 isolated vertices. One of them has 6, 360 vertices; each
of the remaining 6 components has less than 6 vertices.
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6 Drawing Conventions and Algorithms

We recall that the user interacts with the maps of the ASes interconnection
graph G by means of the AS exploration primitive, described in Section 3.
Namely, each time such a primitive is applied on a vertex u of the current map
M , such a map is enriched with the vertices and the edges that are directly
connected to u in G and that were not present in M . Then a drawing of the
new current map is computed and displayed.

The choice of our exploration primitive for G is mainly motivated by the
analysis performed on the structure of G (see Section 5). In particular, since
G has many vertices that are adjacent to a vertex whose local graph has high
density, we decided to discard a classical exploration approach based on induced
subgraphs, because it is often lead to extremely dense maps.

In Section 6.1 we describe the drawing convention we adopt for visualizing
the maps of G throughout a sequence of exploration steps performed by the
user. In Section 6.2 we provide two different strategies for computing drawings
of the maps within the defined drawing convention.

6.1 Drawing Convention

When the AS exploration primitive is applied on the current map M of G,
the vertices of G−M added to M will have degree one in the new current map.
Also, these vertices of degree one are often numerous, due to the structure of
G. Hence, for drawing a map we use a specific drawing convention that allows
us to optimize the space occupied by the vertices of degree one.

Such a drawing convention is based on a variation of the podevsnef model for
orthogonal drawings with high degree vertices (see Section 2.2). We modify the
podevsnef model as follows. Each vertex of degree one adjacent to a vertex v is
appropriately positioned on an integer coordinate grid around v and connected
to v with a straight-line edge. Namely, as shown in Figure 10, vertex v is
associated with a box partitioned into nine rectangles arranged into three rows
and three columns. Denote these rectangles as Bij , (i, j ∈ {1, 2, 3}). Rectangle
B22 is used for drawing v centered on a grid point. Rectangles B11, B13, B31,
and B33 are used for drawing the degree-one vertices adjacent to v. Their
incident edges are represented with straight-line segments, possibly overlapping
other degree-one vertices. Actually, they are drawn on the back of the vertices.
Rectangles B12, B21, B32, and B23 are used for hosting the connections of v to
the other vertices.

The height hc of the center row is equal to one grid unit as well as the width
wc of the center column. Rectangles B11, B13, B31, and B33 have all the same
width w and height h. The values of h and w are expressed in terms of grid
units and must guarantee enough room for placing all the degree-one vertices.
How w and h are computed will be detailed in Section 6.3.
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Figure 10: Using a box to make room around a vertex. (a) The nine rectangles
that partition the box. (b) Using the nine rectangles to place the degree-one
vertices. Each vertex in the box is centered on an integer grid point.

6.2 Algorithms Overview

In this section we describe two different strategies for computing drawings of the
maps within the defined drawing convention, during a sequence of exploration
steps. Namely, at each exploration step Hermes computes a new drawing of
the current map, by applying one of the two following algorithms:

Static algorithm The current map is completely redrawn, after the new ver-
tices and edges have been added.

Dynamic algorithm The new vertices and edges are added to the current
drawing in such a way that the shape of the existing edges and the position
of the existing vertices and bends are preserved “as much as possible”.

Both the dynamic and the static algorithms have advantages and drawbacks.
The dynamic algorithm allows the user to preserve its mental map but can lead,
after a certain number of exploration steps, to drawings that are less readable
than those constructed by the static algorithm. In fact, the dynamic algorithm
makes use of local optimization strategies. The optimization strategies of the
static algorithm are global and more effective. However, with the static algo-
rithm, the new drawing can be quite different from the previous one and the
user’s mental map can be lost.

Because of the above motivations, Hermes automatically chooses between
the static algorithm and the dynamic algorithm, according to the following cri-
teria. Suppose v is the vertex that the user wants to explore. Hermes computes
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a dynamic exploration cost associated with v. Such a cost represents an esti-
mate of the efficiency and effectiveness of the dynamic algorithm with respect
to the new exploration. In the current implementation of Hermes it simply
depends on the kind and the number of drawing primitives (see Section 6.5)
that would be needed for constructing the drawing of the new map with the
dynamic algorithm and on how many consecutive times the dynamic algorithm
has been invoked before the exploration of v. Once the exploration cost has
been computed, Hermes compares it with a threshold value that can be set-up
in a configuration menu of the system. If the exploration cost is lower than
the threshold value, Hermes applies the dynamic algorithm, else it applies the
static algorithm.

In the next two subsections we give details on how the static and the dynamic
algorithms work in practice.

6.3 The Static Algorithm

Let G be the ASes interconnection graph and let M be the current map. We
recall that M is a subgraph of G. Let v be the vertex of M explored by the
user at the generic step. Map M is enriched with the vertices and the edges
of G that are not present in M and are directly connected to v in G. The
new map, which we still call M for simplicity, is fully redrawn according to the
static algorithm, which consists of the following steps.

1. (Degree-one Vertex Removal) Vertices of degree one are temporarily re-
moved from M . We call M ′ the new map. Each vertex u of M ′ is labeled
by the number δ(u) of vertices of degree one that were attached to it.

2. (Planarization) A standard planarization [14] technique is applied to M ′.
In this phase a planar embedding ofM ′ is computed and crossings among
edges are represented by dummy vertices that will be removed later. We
call such vertices cross vertices.

3. (Orthogonalization) A podevsnef representation ofM ′ is constructed within
the computed embedding.

4. (Compaction) A drawing for M ′ is computed from its orthogonal repre-
sentation by assigning coordinates to vertices and bends. Since for each
vertex u, our drawing convention requires that δ(u) vertices of degree one
are placed around u, we must guarantee enough room for them (see Sec-
tion 6.1). To do that we compute a podavsnef drawing by applying the
algorithm described in [13]. Each vertex u is drawn as a box whose height
h and width w depend on δ(u). We set w = 	√δ(u)/2
. The height h
is set equal to = w − 1 if this ensures enough room for all the vertices to
be placed; else we set h = w. If δ(u) = 0 then we set h = w = 0. We
recall that w and h are expressed in terms of grid units. For example,
referring to Figure 10, we have that δ(u) = 32 (u is the vertex on the
center of the box and has 32 vertices of degree one connected to it) and
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then w = 3. Also, h = 2 is not sufficient for hosting all the 32 vertices
into the four rectangles B11, B13, B31, B33 (in fact, if h = 2 we can place
at most w × h × 4 = 3 × 2 × 4 = 24 vertices inside the box). Hence h
is set equal to 3 (in this way we can place up to 36 vertices inside the
box; we use 32 positions for placing vertices and 4 positions will be not
used). We also have to guarantee that the edges that connect u to non
degree-one vertices are always incident on the middle points of the sides
of the box. The basic version of the algorithm described in [13] allows the
edges to freely shift along the side they are incident on. However, it is
possible to easily adapt such an algorithm so that each edge is incident on
a pre-assigned point. Finally, cross vertices are removed.

5. (Degree-one Vertex Re-insertion) The drawing is completed by replacing
the box of each vertex u such that δ(u) > 0 with a half unit square (edges
that are incident on u are stretched). Also, the vertices of degree one that
are incident on u are distributed in the rectangles B11, B13, B31, and B33

and connected to u, according to the adopted drawing convention (see
Figure 10(b)).

6.4 The Dynamic Algorithm

As in the case of the static algorithm, we denote by G the ASes interconnection
graph and by M the current map. Also, denote by D the current drawing of
M . Let v be the vertex of M explored by the user at the generic step.

The dynamic algorithm enrichesM and D incrementally, by adding the ver-
tices and the edges of G that are not present inM and are directly connected to
v in G, in such a way that the user mental map is preserved as much as possible.
Before describing how the dynamic algorithm works, we need to introduce some
further notation.

Denote by ∆Ev and by ∆Vv the set of the edges and the set of the vertices
to be inserted for exploring v. We recall that all the edges in ∆Ev are incident
on v and that the vertices in ∆Vv will be degree-one vertices attached to v in the
final drawing. For simplicity, we always use the notationM and D to denote the
intermediate maps and drawings during the execution of the dynamic algorithm.
In other words, we are assuming thatM and D change dynamically throughout
the algorithm execution. However, at the generic step of the dynamic algorithm,
some of the vertices of M might be not explicitly represented in D. Namely,
each vertex u of D might absorb all the degree-one vertices adjacent to it and
implicitly represent the number of these vertices by a label δ(u), as in the case
of the static algorithm. We call V1 the set of degree-one vertices of M that
are not explicitly represented in D, and V2 all the vertices of M that are also
explicitly represented in D. Note that, V1 and V2 partition the set of vertices of
M , and that at the beginning of the dynamic algorithm V1 is empty. Sets ∆Vv,
V1, and V2 are modified during the algorithm execution.

A high level description of the dynamic algorithm is as follows (refer to
Figure 11):
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Figure 11: An example of the dynamic algorithm. (a) The initial drawing of a
map; the user chooses to explore vertex v; suppose that v is directly connected to
u1 and u2 in the ASes interconnection graph. (b) In the first step of the dynamic
algorithm all the degree-one vertices of the drawing are temporarily removed;
the remaining vertices are labeled with the number of vertices of degree one that
were connected to them. (c) Vertex v is reinserted by using the Attach-Vertex
primitive. (d) Vertex u1 is reinserted by using the Attach-Vertex primitive and
then edge (v, u1) is inserted by using the New-Edge primitive. (e) Edge (v, u2)
is inserted by using the New-Edge primitive. (f) The compaction step is applied
and the removed degree-one vertices are completely reinserted.

Step 1 We temporarily remove from D all the degree-one vertices. Each vertex
u of D is labeled with the number δ(u) of vertices of degree one that were
attached to it (see Figure 11 (b)). The deleted vertices are moved from
V2 to V1. Note that, D is now a podevsnef drawing in the standard sense,
where edge crossings are still replaced by cross vertices.

Step 2 We incrementally add to M the edges of ∆Ev and the vertices of ∆Vv.
At the same time, specific subsets of edges and vertices ofM are added to
D, by applying on D a sequence of two primitives that modify the drawing
within the podevsnef standard. The two primitives are as follows:

New-Edge(u,z) A new edge is added to the drawing between the two
vertices u and z; vertices u and z must be already explicitly repre-
sented in D.
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Attach-Vertex(u) A new vertex z is added toD and connected to u with
a new edge (u, z); vertex u must be already explicitly represented
in D.

How such primitives work in practice will be detailed in Section 6.5. The
insertion of vertices and edges in M and D is performed according to the
following ordered set of rules:

• If the explored vertex v belongs to V1 (that is, if v is a one-degree
vertex in M), we call w the vertex of V2 that is connected to v in
M . We reinsert v in D (that is, we explicitly represent v in D) by
performing primitive Attach-Vertex(w) (see Figure 11 (c)). Consis-
tently, we decrease δ(w) by a unit, set δ(v) = 0, and move v from V1

to V2.

• For each edge e = (v, u) of ∆Ev we insert in M vertex u, if it is not
already present in M , and edge e. After that, drawing D is modified
according to the following three cases:

1. If u is in V1, we reinsert (explicitly represent) u in D by per-
forming primitive Attach-Vertex(z), where z is the vertex of V2

connected to u in M ; then we add e to D, by applying primitive
New-Edge(v,u) (see Figure 11 (d)). Consistently, we decrease
δ(z) by a unit, set δ(u) = 0 and move u from V1 to V2 .

2. If u is in V2, we add edge e to D by performing primitive New-
Edge(v,u)(see Figure 11 (e)).

3. If u is in ∆Vv we just increase δ(v) by a unit, and move u from
∆Vv to V1 (u will be implicitly represented in D).

Once all edges in ∆Ev have been considered ∆Vv is empty, M is
completely updated with the vertices and edges selected for insertion
by the exploration of v, and the only vertices that remain to be added
to D (those in V1) are all the vertices (different from v) that have
degree one in M .

Step 3 We perform onD the Compaction step and the Degree-one Vertex Rein-
sertion step described for the static algorithm. The degree-one vertices
reinserted are those in V1 (see Figure 11 (f)).

6.5 Primitives of the Dynamic Algorithm

In this section we conclude the description of the dynamic algorithm by explain-
ing how primitive New-Edge and Attach-Vertex work.

We recall that these primitives modify a podevsnef drawing D preserving
this drawing standard. Both the primitives compute the position of the new
vertices and edges trying to optimize, at the same time, the following measures:
number of crossings, number of bends, and edge length. Each of these measures
has a prescribed cost that can be passed as a parameter to the primitives.
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1246

Figure 12: Collapsing the edges incident on the same side of a vertex. The labels
represent the thickness of the edges. The small circles are the chain vertices.

In this way it is possible to decide the priority of each measure in the whole
optimization. Once any of the primitives has been applied, the new drawing is
guaranteed to have the same shape as the previous one, for the common parts.

The two primitives use two auxiliary data structures to perform their work.
These data structures are a simplified orthogonal representation of the current
drawing and a directed network associated with this orthogonal representation.
We now describe these two data structures. After that, we shall describe how
they are used by the primitives.

Let H be the orthogonal representation of D. The first data structure is an
orthogonal representation H ′ obtained from H in the following way:

• H is simplified so that all vertices have degree less than or equal to
four. This is done with a standard technique adopted in the podevsnef
model [4], where all the edges incident on the same vertex from the same
side are collapsed into a chain of edges (see Fig. 12). Each edge of the
chain replaces a certain number of edges (possibly only one). We associate
with each edge a thickness representing the number of edges replaced by
it. We call the new vertices inserted by this operation chain vertices.

• Each face of H (including the external one) is decomposed into rectangles
by adding a suitable number of dummy edges and vertices, with the linear
time algorithm described in [32]. We call dashed the dummy edges and
solid the edges of the original orthogonal representation.

The second data structure is a directed network N associated with H ′. We
call such a network the incidence network ofH ′. N is used to implicitly describe
all the orthogonal paths that a new edge can follows inH ′. Further, N is defined
so that each path has an associated cost that reflects the cost of the new edge
in terms of bends, edge crossings, and edge length. We denote by χ, β, and λ
the costs of one crossing, one bend, and one edge length unit, respectively. As
already mentioned at the beginning of this section, these costs can be set-up by
the user in order to determine the priority level of the three different measures
during the optimization.

Network N is defined as follows (see Fig. 13(a)):
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• N has a node v associated with each edge e (solid or dashed) of H ′. Also,
v has an associated cost that represents the cost of crossing e. Namely:

– If e is a solid edge then the cost of v is set-up equal to the thickness
of e multiplied by χ (see Fig. 13(a)). This reflects the fact that a
path of N traversing v corresponds to a new edge of H ′ traversing
edge e, and hence to a new edge of H that crosses a number of edges
equal to the thickness of e.

– If e is a dashed edge then the cost of v is set-up equal to zero. This
is because dashed edges of H ′ are dummy and will be removed in the
final drawing. Hence, they do not really originate edge crossings.

• N has an arc between every pair of nodes associated with two edges e1
and e2 in the same face f of H ′. Such an arc represents an orthogonal
path inside f , which can be used to reach e2 from e1 (or vice-versa) in H ′.
We distinguish three different kinds of arcs of N with respect to a face f
of H ′ (refer to Fig. 13):

– An arc a between nodes associated with two horizontal (vertical)
edges that lie on different sides of f (see, for example, arc a1 in
Fig. 13(a)). In this case, we associate with a a straight-line path p (a
path with no bends) inside f , because it suffices to move from a side
of f to its opposite in the orthogonal representation (see Fig. 13(b)).
Hence, denoted by d1, d2 (d3, d4) the lengths (in terms of number of
edges) of the vertical (horizontal) sides of f , we assign cost dλ to arc
a, where d = max{d1, d2} (d = max{d3, d4}). Such a cost is a lower
bound on the length of p.

– An arc a between a node associated with a horizontal edge eh and a
node associated with a vertical edge ev of f (see, for example, arc a3
in Fig. 13(a)). In this case, we associate with a an orthogonal path p
with exactly one bend, as depicted in Fig. 13(c). Denoted by sv the
side of f on which ev lies, let dv be the number of edges of sv that
are necessarily spanned (completely or partially) by the projection of
p on sv. Analogously, denoted by sh the side of f on which eh lies,
let dh be the number of edges of sh that are necessarily spanned by
the projection of p on sh. Hence, the cost we assign to a is equal
to β + (dv + dh)λ. In particular, (dv + dh)λ still represents a lower
bound on the length of p, while β is the cost for one bend.

– An arc a between the nodes associated with two edges e1 and e2 that
lie on the same side of f (see, for example, arc a2 in Fig. 13(a)). In
this case, we associate with a an orthogonal path p with two bends,
as shown in Fig. 13(d). Denoted by s the side of f in which lie the
two edges, let d be the number of edges of s that are necessarily
spanned (completely or partially) by p. Hence, the cost we assign to
a is equal to 2β+(d+2)λ. The two extra units for the length are due
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(a) Nodes (little squares) and three arcs
of the incidence network for a face of a
simplified orthogonal representation.
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(b) The orthogonal path p associated
with arc a1.
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(c) The orthogonal path p associated
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(d) The orthogonal path p associated
with arc a2.

Figure 13: Example of construction of an incidence network and related orthog-
onal paths.
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Figure 14: Possible cases of orthogonal paths between two vertices of the same
face of an orthogonal representation.

to the fact that p consists also of two (unit-length) segments having
a direction (vertical or horizontal) orthogonal to the direction of s.

We now explain how primitives New-Edge and Attach-Vertex perform on
the current drawing D.

• Primitive New-Edge(u,v) computes from D the simplified orthogonal rep-
resentation H ′ and the associated network N ′ above described. Clearly,
from the point of view of the primitive interface, H ′ and N are transpar-
ent. It just needs to know u, v and D. After that, two different cases are
possible:

Case 1 Nodes u and v belong to two different faces of H ′. In this case,
the primitive completes network N by adding two extra nodes rep-
resenting u and v. For simplicity we still refer to these extra nodes
as u and v. Also, for each edge e of H ′ incident on u (resp. v) the
primitive adds to N an arc between u (resp. v) and the node of N
associated with e. All these extra arcs of N have zero cost. At this
point, the primitive computes on N a shortest path between u and
v. Such a path determines the route and the shape of the new edge
(u, v) in H ′, according to the rules illustrated in the construction of
N . Namely, the new edge is added to H ′ following the arcs of the
shortest path. Note that, the route and the shape of the new edge in
H ′ uniquely induces the route and the shape of the same edge in H .
Hence, the primitive adds edge (u, v) to H and computes the new



Carmignani et al., Hermes, JGAA, 6(3) 281–311 (2002) 306

drawing D by compacting H with a standard compaction algorithm
for podevsnef orthogonal representations [20, 4].

Case 2 Nodes u and v belong to the same face. In this case the shape
of edge (u, v) is simply chosen according to the set of cases shown in
Figure 14.

• Primitive Attach-Vertex(u) works much simpler then New-Edge. It must
add a new edge e that connects a new node to u. The primitive looks in
H ′ for a side s of u such that either no edge is incident on s or a dashed
edge is incident on s. If such a side s exists, the primitive add to H ′, and
therefore to H , edge e as a straight edge incident on s. Otherwise, the
primitive chooses an arbitrary side of u to insert edge e, and in this case
edge e will have one bend in H . Finally, the new drawing D is computed
by compacting H with a standard compaction algorithm for podevsnef
orthogonal representations.

Note that, if a sequence of consecutive dynamic primitives have to be applied
beforeD is displayed (as it often happens in a singleHermes’s exploration step),
the computation of D can be delayed until the end of the sequence. In this
case, H ′ and N can be kept up to date after each primitive is executed instead
of reconstructing them each time.

7 Statistics on the Hermes Service

We implemented Hermes as a service publicly available on the Web3. In this
section we intend to show the effectiveness of the service. To this aim we pro-
vide several statistics obtained from data collected from September 2000 to
November 2001. The total number of connections to the service during the con-
sidered period has been 4, 063. The number of distinct users (that is, distinct
IP addresses) that accessed the service has been 860.

Figure 15(a) shows how many connections (y-axis) have been performed by
a certain number of users (x-axis). Such a chart provides hints about the loyalty
of the users to the Hermes service. About 70 users have accessed the service
more than 10 times. For several of them we observed usage peaks of one or two
days at distance of months.

Figure 15(b) shows the percentage of connections (y-axis) in which the user
performed a certain number of exploration steps (x-axis). This chart provides
information about the overall usability of the service which may be affected
by drawing performances, reply speed, significance of the data, etc. A high
number of exploration steps suggests that the quality of the drawing engine
and its performance meet the user needs. However, consider that, due to the
high local density of the ASes interconnection graph, after a certain number of
exploration steps (usually 4 or 5) the visualized map often becomes quite large

3http://www.dia.uniroma3.it/∼hermes/
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(more than 200 vertices) and the information difficult to read. In these cases,
the user usually prefers to interrupt the exploration of the current map and
restarts the whole exploration from another AS. The chart shows that for about
20% of the connections, the number of exploration steps has been greater than
or equal to 3. In some cases the number of steps has been greater than 10.

Figure 15(c) shows the distribution of the users within the Internet top level
domains4. About half of the users belongs to domains .net and .com and are
mainly Internet service providers and companies with interests in networking.
About 20% of domains .it is due to system development and testing.

8 Conclusions

In this work we presented Hermes, a system for exploring and visualizing the
interconnections between Autonomous Systems. In particular, we discussed the
architecture of Hermes and we described efficient algorithms used by the system
to compute pleasing drawings of ASes interconnection subgraphs. We explained
how the adopted drawing convention and algorithms have been motivated by
the structure of the ASes interconnection graph.

In the near future we plan to enrich Hermes with new functionalities for
visualizing the internal structure of an AS, and with tools for evidencing incon-
sistency in the data sources.

From the point of view of the drawing algorithms, there are several open
problems that can be considered. A limited list of such problems follows:

• Often, after many exploration steps the drawing tends to become very
large, so increasing both the computational complexity of successive ex-
ploration steps and the difficulty for the user to understand and to interact
with the map. Hence, it would be interesting to devise strategies for delet-
ing “old vertices” in the maps throughout the exploration.

• To increase the effectiveness of the visualization, it could be useful to
assign to the vertices different sizes, depending on the different “impor-
tance” of the corresponding ASes. To this aim, an extension of the used
convention and algorithms to drawings with vertices of prescribed size is
needed.

• It would be interesting to extend the applicability of our drawing algo-
rithms to other domains, such as state diagrams, class diagrams, etc?
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Figure 15: (a) Number of connections (y-axis) performed by a certain number
of users (x-axis). (b) Percentage of connections (y-axis) in which the user per-
formed a certain number of exploration steps (x-axis). (c) Distribution of the
users within the Internet top level domains.
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