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Abstract. The rectilinear local crossing number, lcr(G), of a graph G is the smallest
k so that G has a straight-line drawing with at most k crossings along each edge. We
show that deciding whether lcr(G) ≤ k for a fixed k is complete for the existential
theory of the reals, ∃R.
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1 Introduction

One of the oldest crossing number variants is the local crossing number, introduced by Kainen [14]
in 1973. The local crossing number, lcr(D), of a drawing D of a graph G is the largest number
of crossings along any edge in D. The local crossing number, lcr(G) of G is the smallest lcr(D) of
any drawing D of G. Even older than the local crossing number is the rectilinear crossing number,
introduced by Harary and Hill [10] in the early sixties. For the rectilinear crossing number, cr,
drawings are restricted to be straight-line (rectilinear, geometric), every edge is drawn as a straight-
line segment. Both crossing numbers have received a fair amount of attention over the years, and
were rediscovered many times, see [22].

Combining the definitions of lcr and cr, we obtain lcr(G), the rectilinear local crossing number
of G. More formally, lcr(G) is the smallest lcr(D) for any straight-line drawing D of G. A graph
with lcr(G) ≤ k is called geometric k-planar.1

Our main result is that testing lcr(G) ≤ k is complete for the existential theory of the reals,
even for a fixed value of k.
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1The rectilinear local crossing number seems to have been introduced in the second version of [22], but there were
earlier cases of researchers studying the case of geometric 1-planarity (as rectilinear or straight-line 1-planarity).
For references, see [23, Remark 1].
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Theorem 1 Deciding whether lcr(G) ≤ 867 is ∃R-complete.

Remark 2 (Existential Theory of the Reals) The existential theory of the reals is the set of
all true existential statements over the real numbers; ∃R is the complexity class that captures the
complexity of deciding truth in this theory (for definitions and some background see [21, 24]; for
an in-depth introduction, see [18]). This class tends to be relevant whenever real coordinates are
needed; in the current example, the power of the existential theory of the reals allows us to place
the vertices of G and verify that the local crossing number is at most k. Showing that a problem
is ∃R-complete means, among other things, that there are instances of the problem which require
double exponential real precision.

It is known that NP ⊆ ∃R ⊆ PSPACE, the first containment being easy, the second highly
non-trivial and due to Canny [6]. Both containments are likely proper. �

It is known that testing lcr(G) ≤ 1 is NP-complete [23], and we will show below that testing
lcr(G) ≤ k is NP-hard for every fixed k ≥ 2. We do not know at what point the problem switches
from being in NP to being ∃R-complete. It is not even clear whether lcr(G) ≤ 2 can be decided
in NP: can the vertices of a drawing realizing lcr(D) ≤ 2 always be placed in a polynomial-size
grid?

In comparison, the local crossing number lcr is much better understood; it has long been known
that testing 1-planarity, that is lcr(G) ≤ 1, is NP-complete [9]. The notion of 1-planarity has been
studied extensively from many possible aspects, see [15] for a survey. Only recently was it shown
that testing lcr(G) ≤ k remains NP-complete for any k [26].

1.1 Context

The study of drawings with small, fixed crossing number parameters is a quickly growing area in
graph drawing known as “beyond planarity”, see [8] for a recent survey, or the book [12].

The rectilinear local crossing number has attracted some attention recently. Ábrego and
Fernández-Merchant determined lcr(Kn) for all n [2], and for complete bipartite graphs we have
lcr(K3,n) = d(n − 2)/4e, lcr(K4,n) = d(n − 2)/2e [1]. These are among the very few non-trivial
examples we have for crossing numbers on infinite families of graphs. The result for lcr(Kn) is par-
ticularly unusual and pleasing when we compare it to the situation of cr(Kn): while good progress
has been made for small values of n, up to the low thirties, we do not even have a conjecture for the
exact value of cr(Kn). Moving from cr to lcr removes some of the complications faced in studying
crossings in Kn.

In that sense, the study of lcr helps us take a small step towards understanding cr, and showing
that testing lcr(G) ≤ k is ∃R-hard for fixed k takes us a bit closer to answering an intriguing open
question we have asked before: How hard it is to tell whether cr(G) ≤ k for fixed values of k? Up
to k = 3 the problem is easy, since cr(G) = cr(G) as along as cr(G) ≤ 3 by a result of Bienstock
and Dean [4]. It follows that testing whether cr(G) ≤ k is in P, for k ≤ 3. Already the case k = 4
is wide open, as far as we know. It is not known whether this problem is NP-hard, or lies in NP.

Question 3 (Find the Drawing) Suppose we are given a graph G and a list L ⊆
(
E(G)

2

)
of pairs

of edges of G with the promise that there is a straight-line drawing of G in which exactly the pairs
of edges in L cross. How hard is it to find such a drawing? That is, how hard is it to determine
the coordinates of the vertices? What if |L|, the size of L, is fixed? This is a promise problem;
deciding whether a graph with a list L has a straight-line drawing in which exactly the pairs of
edges in L cross, is ∃R-complete (even if G is a matching, this is the segment intersection graph
problem [17]). �
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Another approach towards the rectilinear crossing number could be through ecr(G), the rec-
tilinear edge crossing number of G, the smallest number of edges involved in crossings in any
straight-line drawing of G.2 As far as we know, the complexity of ecr, or ecr, for that matter is
open, see [22] for references.

2 Bounded Rectilinear Local Crossing Number I

In Section 2.1 we create a gadget for the proof of Theorem 1; using this gadget, it is relatively easy
to show that testing lcr(G) ≤ k is NP-hard, which we do in Section 2.2. We return to the proof
of the main theorem in Section 3.

2.1 The Gadget Nk

Our goal is to build a gadget Nk which, in a straight-line drawing with local crossing number at
most k ≥ 2, forces a chosen edge to be free of crossings. We start with a simple observation.

Lemma 1 Any straight-line drawing D of a K2,(2k+1)` with local crossing number at most k con-
tains a crossing-free drawing of K2,`, for any k, ` ≥ 1.

Proof: Let A be the two vertices of degree (2k + 1)` and B be the (2k + 1)` vertices of degree 2
in K2,(2k+1)`. For any two distinct u, v ∈ B, the drawing D induces a C4 on A∪ {u, v}. Construct
a graph H on vertex set B by adding an edge uv to H if the induced C4 on A ∪ {u, v} has a
self-crossing. For any u there can be at most 2k such vertices v, since D has local crossing number
at most k (and u is incident to two edges in K2,(2k+1)`). It follows that H has degree at most 2k,
and therefore contains an independent set B′ ⊆ B of size at least (2k+ 1)`/(2k+ 1) = `. The Kk,`

induced by A and B′ is free of crossings. 2

We can now build the gadget Nk.

Lemma 2 For any k ≥ 2 we can build a graph Nk with an edge uv so that Nk has a drawing D
realizing lcr(D) ≤ k with u and v on the outer face of D; such a D can be drawn inside any convex
4-gon that has uv as a diagonal. Moreover, in any drawing D of G realizing lcr(D) ≤ k, edge uv
is involved in k crossings.

For the construction we extend a gadget that was introduced by Bienstock and Dean [4] to show
that there are graphs with crossing number 4 and arbitrarily large rectilinear crossing number, also
see [11].

Proof: Consider the gadget Nk pictured in Figure 1; each heavy black edge is replaced with 52k2

disjoint paths of length 2 (a K2,52k2).
Fix a straight-line drawing D of Nk with lcr(D) ≤ k. We first claim that we can assume

that each black edge is drawn as a crossing-free path of length 2. We know that each black edge
corresponds to the drawing of a K2,52k2 . By Lemma 1, this drawing contains a K2,14k+3 which is
free of self-crossings ((2k + 1)(14k + 3) < 52k2). This K2,14k+3 partitions the plane into 14k + 3
regions between their endpoints xy. One of these regions contains the vertex u in its interior (unless
u is x or y; in that case, we work with v; since there is no black edge between u and v this can
always be done). Since each vertex in Nk −{x, y} has distance at most 7 from u in Nk −{x, y}, it

2This may remind the reader of the skewness of G, but it is not the same.
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Figure 1: The gadget Nk with edge uv involved in k crossings; heavy black edges are replaced with
K2,52k2 .

follows that all vertices lie in regions which are at most 7k crossings away from that region, which
implies that there is a region which contains no vertices and no edges (of D) in its interior. We
can then draw the black as a path of length 2 in that region, crossing-free.

We can therefore assume that the black frame is drawn free of crossings (with each black edge
a path of length 2). It follows that the cycle C on ua2b2c2vc3b3c3u is free of crossings, so the path
c2d1c3 must lie in the inner or outer face of C. If c2d1c3 lies in the outer face of C, then the cycle
ua1b1c1vc4b4c4u must lie in the inner face of C, which forces the four chords uc2, uc3, vb2, and
vb3 to lie in the outer face of C; that is not possible, since the crossing of uc2 and vb2 would be
incident to the infinite face, which is not possible, since both edges are incident to edge uv.

The drawing is therefore essentially as shown in Figure 1. It follows that the paths c2d1c3 and
a2dia3, 2 ≤ i ≤ k, cross uv, forcing k crossings with uv.

On the other hand, a drawing D as in the statement can clearly be realized as long as k ≥ 2
(this is not true for k = 1, since va2 and va3 are both involved in two crossings); we can move
a1, c1 and a4, c4 close to uv so that all of Nk is contained in the 4-gon ub4vb1, and we can then
move b1 and b4 arbitrarily close to uv. 2
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2.2 NP-Hardness of Geometric k-Planarity

As a warm-up for Theorem 1 we show NP-hardness of testing lcr(G) ≤ k.

Theorem 4 Testing whether lcr(G) ≤ k is NP-hard for any fixed k ≥ 2.

We mentioned that testing lcr(G) ≤ k is NP-complete [26], but it seems hard to build on that
result to establish Theorem 4; instead we start with the NP-hardness of 1-planarity testing. This
has been shown several times [3, 9, 5, 16]; we need the strongest version.

Theorem 5 (Auer et al. [3]) Testing whether lcr(G) ≤ 1 is NP-complete even for 3-connected
graphs G.

Remark 6 For our proof 3-edge connectivity would be sufficient, and 3-edge connectivity can be
obtained from any of the 1-planarity proofs directly: From a graph G construct G′ by replacing
every edge of G with a diamond graph (a K4 − e), with vertices of G identified with the degree-
2 vertices of the diamond. Then G is 1-planar if and only if G′ is 1-planar, and G′ is 3-edge
connected, as long as G is connected. Verifying that G′ being 1-planar implies G being 1-planar
requires roughly ten different cases, so instead of lengthening the proof, we will work with the
stronger Theorem 5 instead.

Proof of Theorem 4: We reduce from testing whether lcr(G) ≤ 1 is NP-complete. By Theorem 5
we can assume that we are given a 3-connected graph G.

Let G′ be the result of subdividing each edge of G twice, and let E0 be the set of edges of G′

which are incident to original vertices of G, and let E1 contain the remaining edges of G′. If G′ has a
straight-line drawing D′ with lcr(D) ≤ 1 and edges in E0 are crossing-free, then lcr(G) ≤ 1 (we can
simply suppress the added vertices). The reverse is also true (as we argued in [23, Theorem 3.3]):
If G has a drawing with at most one crossing per edge, we can replace each crossing with a dummy
vertex, and then apply Fary’s theorem to get a plane straight-line drawing of the resulting graph.
Each dummy vertex is incident to four edges; then there is a small disk-shaped neighborhood of
the dummy vertex which only contains the dummy vertex and the ends of the four edges. Erase
the disk, create four vertices along the boundary and connect them by line-segments, to get a
straight-line drawing of G′ in which the edges of E0 are free of crossings.

Using Nk we can enforce that the edges in E0 are free of crossings. We need to build an
additional gadget to ensure that the edges in E1 = E(G′) − E0 cross at most one other edge in
E1. Let uv ∈ E1 be an edge for which we want to enforce that uv has at most crossing with an
E1-edge in a straight-line drawing with local crossing number at most k. By construction, there is
a w ∈ V (G) so that vw ∈ E0. We create two wheels W and W ′ with outer cycles w1, . . . , wk+3 and
w′1, . . . , w

′
k+3 on k + 3 vertices each. We identify w1 = w = w′1 and w2 = v = w′2, and add edges

wiw
′
k+4−i, 3 ≤ i ≤ k + 1, as well as edge w2wk+1. Identify each wheel edge with an Nk-gadget.

Call the resulting gadget the Ok-gadget for uv. See Figure 2 for the intended straight-line drawing
of the Ok-gadget (note that the entire gadget can be made to lie arbitrarily close to vw).

Consider a straight-line drawing D of the Ok-gadget with lcr(D) ≤ k. In D, all wheel edges
are free of crossings. Each wheel is 3-connected, so has a unique embedding in the plane (up to
an isomorphism); and neither wheel can lie in a triangular face of the other wheel without the
added edges causing crossings with wheel edges. We can therefore assume that W and W ′ lie on
either side of vw as shown in Figure 2. The endpoints of all added edges alternate pairwise along
the boundary of W and W ′, so every pair of added edges cross, implying that each such edge is
involved in k − 1 crossings.
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Figure 2: The gadget Ok with edge uv involved in k − 1 crossings; heavy black edges belong to
Nk-gadgets.

As part of a drawing of G′, we claim each of the wiw
′
k+4−i-edges must cross uv. Suppose some

wiw
′
k+4−i-edge does not cross uv; it must then cross every path from u to w, except uvw. Since G

is 3-connected, it is 3-edge connected, so, by Menger’s theorem, contains three edge-disjoint paths
from u to w, implying there are at least two such paths other than uvw. This forces at least two
additional crossings for wiw

′
k+4−i, which already had k − 1 crossings, making this impossible. We

conclude that uv has k− 1 crossings with the added edges, implying it can have at most one more
crossing.

Let G′′ be the result of equipping G′ with Nk-gadgets for edges in E0 and Ok-gadgets for edges
in E1. By the argument we made above, in a straight-line drawing of G′′ every E0-edge is free of
crossings, and every edge in E1 has at most one crossing with another edge in E1. After removing
the gadget edges, and contracting edges in E0 this gives us a drawing of G with at most one
crossing per edge. 2

3 Bounded Rectilinear Local Crossing Number II

We already built the gadget Nk, one of the main ingredients of the proof of the main theorem, in
Section 2.1. Before we tackle the proof, we discuss pseudo-segment arrangements in Section 3.1,
and study a puzzling issue we face in Section 3.2. Finally, Section 3.3 contains the proof of the
main theorem.
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3.1 Arrangements of Pseudo-Segments

For the ∃R-hardness proof we will work with arrangements of pseudo-segments; an arrangement
of pseudo-segments is a collection of simple curves so that every pair of curves crosses at most
once. We say an arrangement is stretchable, if it is isomorphic to an arrangement of straight-line
segments; that is, if there is an isomorphism of the plane which turns every pseudo-segment into
a straight-line segment. An arrangement is simple if no more than two pseudo-segments cross in
each point.

Figure 3: A simple (stretchable) pseudo-segment arrangement.

The stretchability of simple arrangements of pseudo-segments is ∃R-complete, since it is a spe-
cial case of the stretchability problem for pseudolines, which was shown ∃R-complete by Mnëv [19];
also see Shor [25], Richter-Gebert [20], and Matoušek [18]. It was only recently shown, however,
that the problem remains ∃R-complete if every pseudo-segment is involved in at most a finite
number of crossings, and that is the version we will need for the main theorem.

Theorem 7 (Schaefer [24]) Stretchability of simple pseudo-segment arrangements is ∃R-complete,
even if every pseudo-segment is involved in at most 72 crossings.

3.2 A Puzzle

Pseudo-segments are harder to control than pseudolines; here is one issue we will encounter in the
proof: Consider the part of a pseudo-segment arrangement shown in the left of Figure 4. When
drawing the arrangement, we make an unspoken assumption, namely that an intersection between
two curves, in particular an angled one as seen in the figure, is a crossing. But what if it is not,
and the two curves just touch at that point? Of course, we can exclude that possibility, but what
happens if we do not? Then the left drawing in Figure 4 is ambiguous; apart from the intended
interpretation (three crossings), we could also be looking at three touching points, as shown on
the right. In this case, while there is still a pseudo-segment connecting a to a, the other pseudo-
segments will no longer connect the same endpoints. Here then is the puzzle: Is it possible to
construct an arrangement of pseudo-segments which is ambiguous; that is, it can be interpreted
in at least two different ways depending on how intersections are read, but the pairs of endpoints
connected by the pseudo-segments remain the same?
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Figure 4: How to read it?

The possibility of the answer to this puzzle being yes throws a wrench into our intended con-
struction for the ∃R-hardness proof. Fortunately, there is a simple device which allows us to
side-step the issue, at the cost of increasing the number of crossings. Suppose we have available to
us a special type of pseudo-segment which we can assume is drawn as intended (all its intersections
are crossings), call them fixed. To an existing arrangement of pseudo-segments, we can add two
fixed pseudo-segments close to each crossing, each of them crossing two existing pseudo-segments,
so that the resulting arrangement has a unique interpretation as long as the fixed pseudo-segments
are drawn as intended.

This is easy to see; consider again the left drawing in Figure 4. Consider the intersection
between the two pseudo-segments which are not a. This intersection can, in principle, be resolved
as ×, �, or )(. Since the pseudo-segment a is fixed, and it cannot cross any other pseudo-segment
twice, we cannot have �. Similarly, adding a second pseudo-segment vertically intersection the two
curves close to the intersection, excludes the possibility of resolving the intersection as )(. This
only leaves ×, a crossing. This construction triples the number of crossings along each original
pseudo-segment.

Figure 5 shows the result of equipping all crossings of the pseudo-segment arrangement in
Figure 3 with two fixed pseudo-segments.

Figure 5: Adding fixed pseudo-segments (in gray) to the arrangement from Figure 3.
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3.3 Proof of Theorem 1

We reduce from simple pseudo-segment stretchability, so we are given a simple arrangement A of
pseudo-segments. By Theorem 7 we can assume that each pseudo-segment is involved in at most
72 crossings; the arrangement is also (topologically) connected by the proof of Theorem 7; we can
also assume that there are no pseudo-segments involved in a single crossings (they can always be
removed and added back without affecting stretchability). We extend the arrangement with a set
of fixed pseudo-segments, as described in Section 3.2 so that the resulting arrangement B is now
unambiguous, as long as the fixed pseudo-segments are resolved the way they are intended. Each
original pseudo-segment has at most 72 ∗ 3 = 216 crossings in B. The fixed pseudo-segments are
involved in two crossings each.

Let G be the dual graph of the arrangement B; that is, we place a vertex of G into each face of
B, and draw an edge between two vertices, if their faces share a boundary (the two vertices need not
be distinct). The result will be a plane multigraph, with loops for each end of a pseudo-segment,
and, possibly, multiple edges.

We use G as a guide in equipping the pseudo-segment arrangement with a framework that
encodes the topology of the arrangement; we build the framework in several steps.

First, we replace each edge of G by three parallel edges; each end of a pseudo-segment lies
inside a loop at some (facial) vertex v; we turn the pseudo-segment into an edge, and attach it to v
inside the loop. We then replace each vertex v with a wheel large enough so that the outer vertices
of the wheel attach to the same ends of edges as v in the same order (read clockwise around the
vertex and the wheel), and so that each outer vertex of the wheel is incident to exactly one such
end. At this point, there are no more loops and parallel edges. Call the resulting (simple) graph
F⊗ (with ⊗ suggesting the wheels). Figure 6 shows an example of F⊗, except that we suppressed
the fixed pseudo-segments to reduce the complexity of the drawing, so the figure shows F⊗ for A
rather than B.

Each outer vertex v of a wheel will later be assigned a number 0 ≤ c(v) ≤ k−1. If c(v) ≥ 1, we
modify the wheel as follows: Subdivide the edges to the left and right of v so as to create 2c(v) + 2
new vertices, s1, . . . , sv+1, t1 to the left of v, and t2, . . . , tv+1 to the right of v (in that clockwise
order); add edge siti, for 1 ≤ i ≤ c(v) + 1, as well as spokes connecting the new vertices to the
center of the wheel. We can route the siti edges close to the boundary of the wheel at v, so that
they only cross each other, and, for i ≥ 2, the non-wheel edge incident to v, see Figure 7. Call the
resulting graph F∗ (with ∗ suggesting the pairwise crossing siti-edges).

We are nearly done. Subdivide each wheel edge 72n2
B times, where nB is the number of pseudo-

segments in B, and add an N867-gadget to each subdivided wheel edge. Call this final graph F
and the drawing we described DF .

To complete the construction, we need to define the parameters c(v). A pseudo-segment with c
crossings in the arrangement B corresponds to an edge uv in DF with c(u) + c(v) + c+ 3(c+ 1) =
c(u) + c(v) + 4c + 3 crossings. Since c ≤ 216, we can let c(u) = 867 − 4c and c(v) = 0, so
that c(u) + c(v) + 4c + 3 = 867. An edge uv in F corresponding to an edge in G is involved in
c(u) + c(v) + 1 crossings. We choose c(u) = 866 and c(v) = 0, so again we have that the edge is
involved in c(u) + c(v) + 1 = 867 crossings. All other edges of F , which are either siti-edges, or
belong to an N867-gadget, also satisfy the 867 bound, so that lcr(DF ) ≤ 867.

Consider the case that the pseudo-segment arrangement A is stretchable. Then so is B, and we
can extend a straight-line drawing of B to a drawing of F⊗ in which all wheel-edges are crossing-
free (but not necessarily straight-line). In turn, we can extend this drawing to a drawing of F∗
in which the new siti-edges are straight-line, and the wheel edges remain crossing-free (but not
straight-line). At this point, each wheel is a plane graph lying in a face bounded by (pieces) of
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Figure 6: A drawing of F⊗ for A from Figure 3 (not, as it should be, B). Wheels are drawn as
thick black lines, pseudo=segments as thin black lines, with the framework lines in gray. The outer
wheel is shown without spokes and center.

straight-line segments, vertices, and intersection points; by Theorem 1 from [7], each wheel has a
straight-line embedding after each of its edges is subdivided at most 72n2

B times, where nB is the
number of pseudo-segments in B. (So the boundary of the face has at most

(
nB
2

)
+2nB ≤ n2

B points,
for nB ≥ 3.) Since the wheel edges remained crossing-free, we can now add N867-gadgets to each
(subdivided) wheel edge, to obtain a straight-line drawing D of F which satisfies lcr(D) = 867.

For the other direction, assume we have a straight-line drawing D of F with lcr(D) ≤ 867.
Then all N867-gadgets work, and all edges belonging to a (subdivided) wheel are free of crossings.
Therefore, each wheel separates the plane into several triangular regions and a region bounded
by the outer rim. No part of the graph can lie in a triangular region (since that would make it
impossible to connect to the remaining vertices of the wheel), so the region bounded by the outer
rim of the wheel can be assumed to only contain the spokes of the wheel. Note that one of the
wheels may have its center vertex in its outer face, but only one wheel can do so.

Since a subdivision of a 3-connected graph has a unique embedding up to surface isomorphism,
each wheel can, essentially, be embedded in one of two ways, depending on whether the wheel is
embedded as intended, or has flipped (reversed orientation). We next show that the siti-edges
work as intended. Let uv be an edge in F corresponding to an original edge in G. Then either
c(u) = 866 or c(v) = 866, let us assume the later. We added vertices s1, . . . , sc(v)+1, t1 to the
left, and t2, . . . , tc(v)+1 to the right of v. Since these edges are attached to the outer rim of a
crossing-free wheel each pair must cross, so every siti-edge is involved in 866 crossings with the
other siti-edges. We claim that each siti-edge with i ≥ 2 crosses uv: If one of them did not, it
would have to cross the two edges in F which were parallel to uv in G, leading to 866 + 2 > 867
crossings per edge, which is not possible. We conclude that each siti-edge, for i ≥ 2 crosses uv, so
uv is involved in 866 crossings (the siti edges are each involved in 867 crossings, except for s1t1
which has 866 crossings). It follows that uv can have at most one more crossing (which will be
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with a pseudo-segment edge).
We next argue that all wheels are oriented the same way, as intended; suppose not, then

there must be two adjacent vertices u and v in G so that the corresponding wheels have opposing
orientation. The three parallel edges connecting u and v turn into three edges connecting the outer
rims of two wheels. If the two wheels are not oriented the same way, then two of the edges must
cross3 This brings the total number of crossings for both of those edges to 867, which means they
have no further crossings, forcing the third edge to take a different path to its endpoint. Since each
facial boundary of B has length at least 3, the graph G is 3-edge connected. so the third edge must
cross at least two edge-disjoint paths, which it cannot, since it already has 866 crossings. Hence,
all wheels are oriented the same way, and the wheels with the connecting edges corresponding to
G edges are laid out like G.

Consider an edge uv in F corresponding to a pseudo-segment. We can assume that c(u) = 0,
and c(v) > 0. We claim that uv is involved in c(v) crossings with its corresponding siti-edges. Let
siti, for i ≥ 2 be such an edge belonging to v. Then si and ti lie on the boundary of the same
wheel. Since v is an end of a pseudo-segment, there is a loop at v in G corresponding to that end,
and that loop was replaced with three edges in F⊗. Among those three edges, let e be the closest
to v on the boundary of the wheel, see Figure 7.

u

v

si

ti

e

Figure 7: Segment siti is caught in face bounded by the wheel and e. (The siti-edges for e and
the other two edges are not shown.)

Then si and ti lie in the face bounded by the wheel and e, and are separated in that face by uv.
If siti does not cross uv, it must cross e (the wheel-edges being crossing-free), and it would have
to do so twice, to leave and to reenter the face. That is not possible in a straight-line drawing. We
conclude that every siti, for i ≥ 2, crosses uv, leading to c(v) crossings along uv.

Suppose now uv is an edge of F corresponding to a fixed pseudo-segment. A fixed pseudo-
segment is involved in c = 2 crossings in B, so in this case c(u) = 0 and c(v) = 867−4∗2−3 = 856.
We just argued that uv is involved in c(v) crossings with siti edges already. This leaves at most
11 other crossings. This corresponds to crossing three facial boundaries (3 ∗ 3) and two other
pseudo-segments; any other routing would require crossing at least four facial boundaries, which

3This corresponds to graph 18 in Figure 1 of [13].



40 Schaefer Complexity of Geometric k-Planarity for Fixed k

would lead to 3∗4 = 12 crossings, which is not possible; we conclude that the fixed pseudo-segment
is drawn as intended.

Since we made B unambiguous, as long as the fixed pseudo-segments are drawn as intended
(which they are), each of the remaining pseudo-segments uv has a unique way it can be drawn.
We set c(u) and c(v) so that uv is involved in exactly 867 crossings. We have therefore shown that
the pseudo-segments are drawn as part of F in the way they were specified, implying that B, and,
therefore, A was stretchable, completing the proof.
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