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Abstract

In order to have a compact visualization of the order type of a given

point set S, we are interested in geometric graphs on S with few edges that

unambiguously display the order type of S. We introduce the concept of

exit edges, which prevent the order type from changing under continuous

motion of vertices. That is, in the geometric graph on S whose edges

are the exit edges, in order to change the order type of S, at least one

vertex needs to move across an exit edge. Exit edges have a natural

dual characterization, which allows us to e�ciently compute them and to

bound their number.
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1 Introduction

Let S, T ⊂ R2 be two sets of n labeled points in general position, that is, such
that no three points in a set are collinear. We say that S and T have the same
order type if there is a bijection ϕ : S → T such that any triple (p, q, r) ∈ S3 of
three distinct points has the same orientation (clockwise or counterclockwise) as
the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3. The resulting equivalence relation on planar
n-point sets has a �nite number of equivalence classes, the order types [14].
Representatives of all the distinct order types of �ve and six points are illustrated
in Figure 1. Among other things, the order type determines which geometric
graphs can be drawn on a point set without crossings. Thus, order types appear
ubiquitously in the study of extremal problems on geometric graphs.

Figure 1: Representatives of the three order types of �ve points and the sixteen
order types of six points in general position. Exit edges are drawn in black.

Now, suppose we have found that an order type is interesting for a problem,
and we would like to illustrate it in a publication. One solution is to give explicit
coordinates of a representative point set S; see Figure 2 (left). This is unlikely
to satisfy most readers. We could also present S as a set of dots in a �gure. For
some point sets (particularly those with extremal properties), the reader may
�nd it di�cult to discern the orientation of an almost collinear point triple. To
mend this, we could draw all lines spanned by two points in S. In fact, it su�ces
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to present only the segments between the point pairs (the complete geometric
graph on S). The orientation of a triple can then be obtained by inspecting
the corresponding triangle; see Figure 2 (middle). However, such a drawing is
rather dense, and we may have trouble following an edge from one endpoint to
the other. Therefore, we want to reduce the number of edges in the drawing
as much as possible, but so that the order type remains uniquely identi�able.
In Figure 2 (right) the triple orientations are unambiguously displayed since
continuous deformations that keep the edges straight do not allow to change
the orientation of any triple.

(-1,1)

(1,1)

(-1,-1)

(1,-1)

(-0.6,0.4)

(-0.6,-0.4)

Figure 2: Three di�erent representations of an order type of six points.

Results We introduce the concept of exit edges to capture which edges are
su�cient to uniquely identify a given order type in a robust way under con-
tinuous motion of vertices. Exit graphs, de�ned as the geometric graphs whose
edges are the exit edges, are supporting for a point set: in an exit graph at least
one vertex needs to move across an (exit) edge in order to change the order
type. (For precise de�nitions of these concepts we refer to De�nitions 1 and 2.)
Though exit edges are de�ned on a point set, the set of exit edges only depends
on the order type and not on the particular representative.

We give an alternative characterization of exit edges in terms of the dual line
arrangement, where an exit edge corresponds to one or two empty triangular
cells. This allows us to e�ciently compute the set of exit edges for a given set
of n points in O(n2) time and space.

Using the more general framework of abstract order types and their dual
pseudoline arrangements, we prove that every set of n ≥ 4 points has at least
(3n−7)/5 exit edges. We also describe a family of n points with n−3 exit edges,
showing that the best possible lower bound is of order Ω(n). An upper bound
of n(n − 1)/3 follows from known results on the number of triangular cells in
line arrangements [15]. Thus, compared to the complete geometric graph with
n(n−1)/2 edges, using only exit edges saves at least one third of the edges. We
present a random construction with a quadratic expected number of exit edges.

Exit graphs are not always minimal supporting graphs. In particular, the
requirement of keeping the edges straight together with the non-stretchability
of certain pseudoline arrangements can result in exit edges being sometimes
unnecessary. The relation between the number of exit edges and the minimum
number of edges in a supporting geometric graph is an open question.
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Identi�cation of order types Let S be a set of n labeled points in the
plane. A geometric graph on S is a graph with vertex set S whose edges are
line segments between their endpoints. A geometric graph is thus a drawing of
an abstract graph. Two geometric graphs G and H are isomorphic if there is
an orientation-preserving homeomorphism of the plane transforming G into H.
Each class of this equivalence relation may be described combinatorially by the
cyclic orders of the edge segments around vertices and crossings, and by the
incidences of vertices, crossings, edge segments, and faces. In the following,
we will consider topology-preserving deformations. An ambient isotopy of the
Euclidean plane is a continuous map f : R2 × [0, 1] → R2 such that f(·, t) is
a homeomorphism for every t ∈ [0, 1] and f(·, 0) = Id. Note that if there is
an ambient isotopy transforming a geometric graph G into another geometric
graph H, then no vertex can cross through an edge and G and H are isomorphic.
Figure 3 shows an illustration.

Figure 3: The geometric graph on the left can be transformed by an ambient
isotopy into the geometric graph in the middle, but not into the geometric graph
on the right.

De�nition 1 Let G be a geometric graph on a point set S. We say that G is
supporting for S if every ambient isotopy f of R2 that, for every t ∈ [0, 1],
keeps the images of the edges of G straight (thus, transforming G into another
geometric graph) and allows at most one triple of collinear points of f(S, t) also
preserves the order type of the vertex set.

Clearly, every complete geometric graph is supporting since all the triangles
preserve their orientation, but there are supporting graphs with fewer edges,
like the one in Figure 3 (left).

Related work The connection between order types and geometric graphs has
been studied intensively, both for planar drawings and for drawings minimizing
the number of crossings. For example, it is NP-complete to decide whether a
planar graph can be embedded on a given point set [6]. Continuous movements
of the vertices of plane geometric graphs have also been considered [2]. The
continuous movement of points maintaining the order type was considered by
Mnëv [11, 19]. He showed that there are point sets with the same order type such
that there is no ambient isotopy between them preserving the order type, settling
a conjecture by Ringel [20]. The orientations of triples that have to be �xed to
determine the order type are strongly related to the concept of minimal reduced
systems [5]. Compact encodings of order types using few bits and allowing for
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fast orientation queries have also been studied. Cardinal et al. [7] presented
such an encoding for order types of n points that uses O(n2(log log n)2/ log n)
bits, while there are 2Θ(n log n) order types.

Outline We introduce the concept of exit edges for a given point set. The
resulting exit graphs are always supporting, though they are not necessarily
minimal. In Section 2 we show that some exit edges are rendered unnecessary
by non-stretchability of certain pseudoline arrangements. Despite being non-
minimal in general, we argue that exit graphs are good candidates for support-
ing graphs by discussing their dual representation in pseudoline arrangements
(Section 3). This connection allows us to both compute exit edges e�ciently
and give bounds on their number (Section 4). Supporting graphs in general
need not be connected, and two minimal geometric graphs that are supporting
for point sets with di�erent order types can be drawings of the same abstract
graph; see Figure 1 (right). Thus, the structure of the drawing is crucial. In
Section 5 we provide some further properties of the exit graphs. We conjecture
that geometric graphs whose edges are the exit edges are not only supporting
but also they encode the order type, as discussed in Section 6.

2 Exit edges

To obtain a supporting graph with fewer edges than the complete geometric
graph, we select edges so that no vertex of the resulting geometric graph can
be continuously deformed (as in De�nition 1) to change the order type while
preserving isomorphism.

De�nition 2 Let S ⊂ R2 be �nite and in general position. Let a, b, c ∈ S be
distinct. Then, ab is an exit edge with witness c if there is no p ∈ S such that
the line ap separates b from c or the line bp separates a from c. We say that ab is
an exit edge if there exists a point c such that ab is an exit edge with witness c.
The geometric graph on S whose edges are all the exit edges is called the exit
graph of S.

Equivalently, ab is an exit edge with witness c if and only if the double-wedge
through a between b and c and the double-wedge through b between a and c
contain no point of S in their interior; see Figure 4 (left). We note that the exit
graph is invariant under nondegenerate a�ne transformations.

An exit edge has at most two witnesses. If |S| ≥ 4 and ab is an exit edge
in S with witness c, neither ac nor bc can be an exit edge with witness b or a,
respectively, as otherwise the union of empty regions would cover the rest of the
whole plane except the points a, b, and c. We illustrate the set of exit edges for
sets of 5 points in Figure 1 (top).

Exit edges can be characterized via 4-holes. For an integer k ≥ 3, a (general)
k-hole in S is a simple polygon P spanned by k points of S whose interior
contains no point of S. If P is convex, we call P a convex k-hole. A point a ∈ S
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a b
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Figure 4: Characterizing exit edges. Left: If the gray region is empty of points,
then the edge ab is an exit edge. Right: An illustration of the proof of Propo-
sition 1.

or an edge ab of the complete geometric graph on S is extremal for S if it lies on
the boundary of the convex hull of S. A point or an edge that is not extremal
in S is internal in S.

Proposition 1 Let S ⊂ R2 be a point set in general position and let a, b ∈ S.
Then, ab is not an exit edge of S if and only if the following conditions hold:

1. If ab is extremal for S, then ab is an edge of at least one convex 4-hole
in S.

2. If ab is internal in S, then there are two 4-holes abxy and bauv, in coun-
terclockwise order, such that their re�ex angles (if any) are incident to ab.

We remark that an internal exit edge either has a witness on both sides or is
incident to at least one (not necessarily convex) 4-hole on one side.

Proof: Let ab be an exit edge with a witness c that lies, without loss of gener-
ality, to the left of

−→
ab. Suppose there is a general 4-hole abxy, traced counter-

clockwise, such that the re�ex angle of abxy (if it exists) is incident to ab. We
can assume that y lies to the left of

−→
ab, as in Figure 4 (right). First, suppose

that abxy is convex (this must hold if ab is extremal). Since ab is an exit edge
with witness c, the line ax does not separate c from b and the line by does not
separate c from a. Thus, c must be inside the 4-hole abxy, which is impossible.
Second, suppose that abxy is not convex (then, ab is internal), and x is to the
right of

−→
ab. Since ab is an exit edge with witness c, the line bx does not separate

a from c and the line ay does not separate b from c, so c lies inside the 4-hole
abxy, again a contradiction.

Conversely, assume that ab is not an exit edge. First, let ab be extremal,
and let p be the closest point in S \ {a, b} to the line ab. The triangle abp is
a 3-hole in S. Since p is not a witness for ab, there is a point q ∈ S \ {a, b, p}
such that, without loss of generality, the line bq separates a from p. Since ab is
extremal, q lies on the same side of

−→
ab as p and, in particular, the polygon abpq

is convex. If we choose q so that it is the closest such point to the line ap, the
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triangles bpq and abq are 3-holes in S. Altogether, we obtain a convex 4-hole
abpq in S.

Second, let ab be internal. Let p be closest in S \ {a, b} to the line ab such
that p lies to the left of

−→
ab. The triangle abp is a 3-hole in S. Since p is not

a witness for ab, there is a point q ∈ S \ {a, b, p} such that either the line bq
separates a from p or the line aq separates b from p. If q lies to the left of

−→
ab,

we obtain a convex 4-hole as in the previous case. Thus, we can assume that
all such points q lie to the right of

−→
ab. We choose the point q so that it is (one

of the) closest to the line ab among all points that prevent ab from being an
exit edge with witness p. Without loss of generality, we assume that the line bq
separates a from p. The choice of q guarantees that bpq is a 3-hole in S. Thus,
abqp is a 4-hole in S incident to ab from the left. An analogous argument with
a point p′ from S \ {a, b} that is closest to ab such that p′ lies to the right of

−→
ab

shows that there is an appropriate 4-hole in S incident to ab from the right. �

Proposition 2 Let S ⊂ R2 be �nite and in general position and, for every
t ∈ [0, 1], let S(t) be a continuous deformation of S at time t. More formally,
let f : R2 × [0, 1] → R2 be an ambient isotopy and S(t) = {f(s, t) | s ∈ S},
for t ∈ [0, 1]. Suppose that for every t ∈ [0, 1], there is at most one collinear
triple of points in S(t). Let (a, b, c) be the �rst triple to become collinear, at
time t0 > 0. If c lies on the segment ab in S(t0), then ab is an exit edge of S(0)
with witness c.

Proof: For t ∈ [0, t0), the triple orientations in S(t) remain unchanged, and in
S(t0), the point c lies on ab and the orientations of all triples except (a, b, c) are
still unchanged. Thus, for t ∈ [0, t0), there is no line through two points of S(t)
that strictly separates the relative interior of ab from c. In particular, there is
no such separating line through a or b in S(0). Hence, ab is an exit edge with
witness c. �

Corollary 1 The exit graph of every point set is supporting.

A line separates c from the relative interior of ab if and only if there is
such a separating line through a or b. This may suggest that the exit edges
are necessary for a supporting graph. However, this is not true in general.
For example, in Figure 5 (left), we see a construction by Ringel [20]: ab is an
exit edge with witness c, but c cannot move over ab without violating Pappus'
theorem. In this situation, we might consider the abstract order type for the
triple orientations we would obtain after moving c over ab. Since there is no
planar point set with this set of triple orientations, this abstract order type
is not realizable. Deciding realizability is (polynomial-time-)equivalent to the
existential theory of the reals [19]. We will revisit these concepts in Section 4.

We note that there are point sets where two or more other exit edges pre-
vent a witness c from crossing its corresponding exit edge ab; see, for example,
Figure 5 (bottom right). Since the two geometric graphs in Figure 5 (right) are
not isomorphic, they cannot be transformed into each other by a continuous
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a
b

c

c

a b

c

a b

Figure 5: Left: moving c over ab to orient (a, b, c) clockwise, without changing
the orientation of other triples, would contradict Pappus's theorem [20]. Right:
it is not always possible to move a witness c continuously to the corresponding
exit edge ab.

deformation as the one used in De�nition 1. However, in this example, while c
cannot move to ab without changing the order type in Figure 5 (bottom right),
if ab were not present, we could �rst change the point set to the one in Figure 5
(top right) and then move c over ab. Thus, ab indeed has to be in a supporting
graph.

3 Exit edges and empty triangular cells

The (real) projective plane P2 is a non-orientable surface obtained by augment-
ing the Euclidean plane R2 by a line at in�nity. This line has one point at
in�nity for each direction, where all parallel lines with this direction intersect.
Thus, in P2, each pair of parallel lines intersects in a unique point.

For a point set S in the Euclidean plane, add a line `∞ to obtain the pro-
jective plane. We use a duality transformation that maps a point s of P2 to a
line s∗ in P2. In this way, we get a set of lines S∗ dual to S, giving a projective
line arrangement A. The removal of a line from A does not disconnect P2.
Since P2 has non-orientable genus 1, removing any two lines `1 and `2 from P2

disconnects it into two components. We call the closure of each of the two com-
ponents a halfplane1 determined by `1 and `2. The marked cell c∞ is the cell
of A that contains the point `∗∞ dual to the line `∞. By appropriately choosing
the duality transformation, we can assume that `∗∞ lies at vertical in�nity. We
denote by w(`1, `2) the halfplane determined by `1 and `2 that does not contain
the marked cell.

The combinatorial structure of A, together with the marked cell, determines
the order type of S. We show how to identify exit edges and their witnesses in
dual line arrangements.

We use the marked cell c∞ to orient the lines from S∗: �rst, we orient

1Here we follow the notation in [15]. In the literature halfplanes are also called wedges.
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the lines on the boundary of c∞ in one direction. Then, we iteratively remove
lines that have already been oriented, and we de�ne the orientation for the
remaining lines from S∗ by considering the new lines on the boundary of c∞.
Then, c∞ is the only cell whose boundary is oriented consistently, that is, it
can be traversed completely along the resulting orientation. In particular, for
an unmarked triangular cell 4 in A, the directed edges of 4 form a transitive
order on its vertices, with a unique vertex of 4 in the middle. We call this
vertex the exit vertex of 4 and the line through the other two vertices of 4 the
witness line of 4.

Note that if we consider the duality mapping a point p = (px, py) from
the real plane to the (non-vertical) line p∗ : y = pxx − py, then the described
orientation procedure corresponds to orienting these dual lines from left to right.

Note that for two points p, q ∈ S and their dual lines p∗, q∗ ∈ S∗, w(p∗, q∗)
does not contain the marked cell and therefore its boundary is not oriented
consistently.

The next theorem characterizes exit edges and their witnesses in the dual. In
its proof we use the following property of projective duality: since it preserves
incidences, the condition that no line spanned by two points of S intersects the
edge pq is equivalent in S∗ to w(p∗, q∗) not containing any vertex of A.

Theorem 1 Let S ⊂ R2 be in general position, and let a, b, c ∈ S. Then, ab
is an exit edge with witness c if and only if the lines a∗, b∗, and c∗ bound an
unmarked triangular cell 4 in the arrangement A of lines from S∗ so that c∗ is
the witness line of 4 and the point ab

∗
= a∗ ∩ b∗ is the exit vertex of 4.

Proof: Let 4 be the triangular region determined by the intersection of the
two halfplanes w(a∗, c∗) and w(b∗, c∗). By the projective duality, ab is an exit
edge with witness c in S if and only if no line of S∗ intersects a∗ inside w(b∗, c∗)
or b∗ inside w(a∗, c∗). In other words, if and only if two sides of 4, lying on
a∗ and b∗, contain no intersection with lines from S∗. This is equivalent to 4
being a cell of the arrangement A. Moreover, we can recognize a∗ and b∗ in S∗.
In the triangular cell 4 that is the intersection of w(a∗, c∗) and w(b∗, c∗) the
exit vertex is the intersection of a∗ and b∗; see Figure 6. Consequently, the exit
vertex a∗∩b∗ is the dual of the line containing the exit edge ab (and vice versa).

�

Since line arrangements can be e�ciently constructed in O(n2) time [8, 10],
Theorem 1 can be used to e�ciently compute the set of exit edges.

Corollary 2 Let S ⊂ R2 be a set of n points in general position. Then the
exit edges of S can be enumerated in O(n2) time by constructing the dual line
arrangement of S and checking which cells are unmarked triangular cells.

4 On the number of exit edges

Line arrangements can be generalized to so-called pseudoline arrangements. A
pseudoline is a closed curve in the projective plane P2 whose removal does not
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c∗

a∗ b∗

w(b∗, c∗)w(a∗, c∗)

4

Figure 6: An illustration of the proof of Theorem 1. If ab is an exit edge with
witness c in S, then the two bold drawn segments of the corresponding triangular
cell are unintersected, and thus, bound an unmarked triangular cell in S∗. The
exit vertex is represented with a black disk.

disconnect P2. A set of pseudolines in P2, where any two pseudolines cross
exactly once, determines a (projective) pseudoline arrangement. If no three
pseudolines intersect in a common point, the pseudoline arrangement is simple.
All notions that we have introduced for line arrangements, such as consistent
orientations, exit vertices, or witness lines, naturally extend to pseudolines.

Two pseudoline arrangements are isomorphic if there is an isomorphism of
the cell complexes into which they partition P2. A pseudoline arrangement is
stretchable if it is isomorphic to a line arrangement, that is, the corresponding
cell complexes into which the two arrangements partition P2 are isomorphic. De-
ciding if a pseudoline arrangement is stretchable is (polynomial-time-)equivalent
to the existential theory of the reals [11, 19]. The combinatorial dual analogues
of line arrangements and pseudoline arrangements are order types and abstract
order types, respectively.

As a consequence of Theorem 1, the maximum number of triangular cells
in a simple projective pseudoline arrangement gives an upper bound on the
number of exit edges of a point set. However, one triangular cell could be c∞,
and there could be pairs of triangular cells with the same exit vertex. We call a
con�guration of the latter type an hourglass; see Figure 7. We say that the two
pseudolines p and q that de�ne the exit vertex of the two triangular cells of an
hourglass H slice H and that H is sliced by p and by q.

41

42

v1

v2

41

42

v

Figure 7: Left: the two triangular cells 41 and 42 do not form an hourglass,
because they share a vertex that is not an exit vertex. Right: the two triangular
cells 41 and 42 form an hourglass because they share an exit vertex.
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Observation 1 A triangular cell can be a part of at most one hourglass.

Observation 2 An exit edge ab with two witness points is dual to an hourglass
with exit vertex ab

∗
.

Any projective arrangement of n ≥ 4 lines has at least n triangular cells,
as each line is incident to at least three triangular cells [17]. This is known
to be tight. Therefore, taking into account the marked cell c∞ and possible
hourglasses, any set of n ≥ 4 points has at least dn−1

2 e exit edges. We improve
this lower bound by bounding from below the di�erence between the number of
triangular cells and the number of hourglasses.

Proposition 3 Any set of n ≥ 4 points in the plane has at least (3n−7)/5 exit
edges.

For the proof of Proposition 3 we use the following two lemmas. The �rst is
a theorem by Grünbaum [15, Theorem 3.7 on p. 50], and the second can be
derived from the proof of that theorem.

Lemma 1 (Grünbaum [15]) In a simple pseudoline arrangement L every
pseudoline from L is incident to at least three triangular cells.

Lemma 2 (Grünbaum [15]) Let L be a simple arrangement of pseudolines,
and let H be a closed halfplane determined by two pseudolines `1, `2 ∈ L. If two
other pseudolines of L cross in the interior of H, then there is a triangular cell
in H that is incident to `1 but not to `2.

Proof of Proposition 3: Let L be a simple projective line arrangement of
n ≥ 4 pseudolines `1, `2, . . . , `n. For each pseudoline `i ∈ L, let ti be the
number of triangular cells incident to `i and hi the number of hourglasses sliced
by `i. Set xi = ti − hi/2. For each pseudoline `i ∈ L, there are three possible
cases.

Case (i): there is no hourglass sliced by `i. By Lemma 1, every pseudoline
is incident to at least three triangular cells. Thus, we have xi = ti ≥ 3.

Case (ii): the pseudoline `i slices an hourglass together with some pseudo-
line `j and the interior of each of the two halfplanes determined by `i and `j
contains at least one crossing of some other pair of pseudolines. By Lemma 2,
`i is incident to the two triangular cells of the hourglass plus at least two other
triangular cells, one in each closed halfplane. Thus, ti ≥ 4. Observation 1
implies hi ≤ ti/2. Overall we get xi = ti − hi/2 ≥ ti − ti/4 ≥ (3/4) · 4 = 3.

Case (iii): the pseudoline `i slices an hourglass together with some pseudo-
line `j , and one of the two closed halfplanes H1 and H2 determined by `i and `j
contains no crossing of any other pair of pseudolines in its interior. Suppose the
closed halfplane that contains no further crossing is H1. Then, the hourglass
sliced by `i and `j is in H1, as the other two lines de�ning the hourglass do not
cross in that halfplane; see Figure 8 (left). Since H1 contains no crossing in its
interior, it is divided by the other pseudolines into 4-gons and the two triangular
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`i

`j

`i

`j

H1

Figure 8: In case (iii), both `1 and `2 must bound the marked cell, shown striped
on the right picture. Moreover, that cell is bounded by four pseudolines.

cells of the hourglass. In particular, the marked cell is bounded by at most four
pseudolines, two of them being `i and `j ; see Figure 8 (right). Thus, there can
be at most four pseudolines for which case (iii) applies. Notice that in this case
hi = 1, since any other hourglass sliced by `i would have one triangular cell in
each of the two halfplanes H1 and H2 and the two triangular cells in H1 form the
already-counted hourglass (and by Observation 1 they cannot be part of another
hourglass). Thus, we can only guarantee that xi ≥ 3− 1/2 = 5/2. However, as
we showed, this case can happen for at most two pairs of pseudolines.

Let T be the total number of triangular cells in L and let H be the total
number of hourglasses. Summing the contributions of cases (i)�(iii), we have

3T −H =

n∑
i=1

ti −
1

2

n∑
i=1

hi =

n∑
i=1

xi ≥ 3 · (n− 4) + 4 ·
(

5

2

)
= 3n− 2.

By Observation 1, we have T ≥ 2H. Combining these inequalities, we get

T −H =
3T −H + 2(T − 2H)

5
≥ 3T −H

5
≥ 3n− 2

5
.

By Theorem 1, the number of exit edges in a point set is equal to the number of
exit vertices in its dual line arrangement. In general, the number of exit vertices
in a pseudoline arrangement is bounded from below by T −H − 1. Therefore,
there are at least 3

5n−
7
5 exit edges. �

We do not know if the lower bound in Proposition 3 is tight. The smallest
number of exit edges we could achieve is n − 3 for n ≥ 9; see Figure 9. We
exhaustively checked the set of exit edges for all order types of up to 10 points
using the order type database [1] and obtained that this construction with n−3
exit edges is optimal for n = 9, 10. Moreover, the order type represented in
Figure 9 (left) is the only order type of 9 points that requires 6 exit edges.

The number of triangular cells in a simple arrangement of n lines in the
projective plane P2 is at most n(n − 1)/3 [15], so there are at most n2/3 +
O(n) exit edges. This means that representing an order type with the exit
graph instead of the complete geometric graph saves at least one third of the
edges. Palásti and Füredi [13] showed that for every value of n there is a
simple arrangement of n lines in P2 with n(n− 3)/3 triangular cells. Moreover,
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Figure 9: Construction with n− 3 exit edges.

Roudne� [21] and Harborth [16] proved that the upper bound n(n−1)/3 is tight
for in�nitely many values of n (see also [4]). The point sets that are dual to
the currently-known arrangements that maximize the number of triangular cells
have n2/6 +O(n) exit edges, since most of their exit edges have two witnesses.
This gives a quadratic lower bound in the worst case, but the leading coe�cient
remains unknown. It is worth noting that there are line arrangements with no
pair of adjacent triangular cells [18], which implies the existence of point sets
where every exit edge has precisely one witness.

We now show a random construction with a quadratic expected number of
exit edges.

Theorem 2 Let S = {p1, . . . , pn} be a set of n points in the plane with pi =
(i, yi) for every i = 1, . . . , n, where each yi is chosen uniformly at random from
the real interval [1, n]. Then the expected number of exit edges in S is Θ(n2).

The main idea of the proof of Theorem 2 is inspired by the proof of Theo-
rem 2.3 from [3].

Proof: The upper bound O(n2) on the number of exit edges in S follows from
the fact that the number of pairs of points from S is

(
n
2

)
. In the rest of the

proof we establish the lower bound Ω(n2).
First, note that all points of S lie in the rectangle R = [1, n]× [1, n]. Assume

for convenience that n is divisible by 5. In the following, we identify each point
pi with the number i, which is the x-coordinate of pi. Let A = {1, . . . , n5 },
B = { 2n

5 +1, . . . , 3n
5 }, and C = { 4n

5 +1, . . . , n}. Let a, b, and c be �xed integers
with a ∈ A, b ∈ B, and c ∈ C. We now �nd a lower bound on the probability
that papc is an exit edge of S with witness pb.

The probability that the point pb has vertical distance at most 1 from the
line segment papc is at least 1

n , because the points from {b}×R lying at distance
at most 1 from papc form a vertical line segment of length 2, and at least one
half of this line segment is contained in R.

In the following, we assume that pb has distance at most 1 from papc. Con-
sider a point pd with d ∈ {a+ 1, . . . , n} \ {b, c}. Since a ∈ A and b ∈ B, we have
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pa

pb

pcpd

a b d c

A B C

Figure 10: An illustration of the proof of Theorem 2.

b− a ≥ n/5 and d− a ≤ n. Since pb has vertical distance at most 1 from papc,
the vertical side of the triangle T bounded by the vertical line {b} × R and by
the rays −−→papb and −−→papc has length at most 1; see Figure 10. Since the triangle T ′

bounded by these two rays and by the vertical line {d}×R is similar to T , and
since d − a ≤ 5(b − a), the vertical side of T ′ has length at most 5. Thus,
the probability that pd lies in the convex wedge spanned by the rays −−→papb and−−→papc is at most 5/n. An analogous argument shows that the probability that a
point pd with d ∈ {1, . . . , c− 1} \ {a, b} lies in the convex wedge spanned by the
rays −−→pcpa and −−→pcpb is at most 5/n. In total, the probability that papc is an exit
edge of the point set {pa, pb, pc, pd} with witness pb is at least 1− 10/n.

Altogether, the probability that papc is an exit edge of S with witness pb
and that pb is at vertical distance at most 1 from papc is at least

1

n
·

∏
d∈{1,...,n}\{a,b,c}

(
1− 10

n

)
=

1

n
·
(

1− 10

n

)n−3

≥ 1

n · e20
,

where we use the inequality 1− x ≥ e−2x for every real x with 0 ≤ x ≤ 1/2.
Since every exit edge of S has at most two witnesses, the expected number

of exit edges of S is at least

1

2

∑
a∈A

∑
b∈B

∑
c∈C

1

n · e20
≥ Ω(n2).

�

Combining the point-line duality that maps a point (a, b) to the line {(x, y) ∈
R2 : y = ax− b} with Theorem 2, we obtain the following result.

Corollary 3 Let L = {`1, . . . , `n} be a set of lines, where `i = {(x, y) ∈ R2 : y =
i·x−bi} and where bi is chosen uniformly at random from the real interval [1, n].
Then the expected number of triangular cells in the line arrangement induced
by L is Θ(n2).

5 Properties of exit graphs

We present some further results on supporting graphs and exit graphs.
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Theorem 3 Any geometric graph supporting a point set S ⊂ R2, with |S| ≥ 9,
contains a crossing.

Proof: Let G be a geometric graph with vertex set S without crossings. There
is a point set S′ with a di�erent order type that also admits G: Dujmovi¢ [9]
showed that every plane graph admits a plane straight-line embedding with at
least

√
n/2 points on a line; as we have a point set with a collinear triple that

admits G, there are at least two point sets in general position with a di�erent
order type that admit G. Moreover, one can continuously morph S to S′ while
keeping the corresponding geometric graph planar and isomorphic to G (see, for
example, [2]). Therefore, G does not support S. �

Proposition 4 Let S be a point set in general position in R2 and let G be its
exit graph. Every vertex in the unbounded face of G is extremal, that is, it lies
on the boundary of the convex hull of S.

Note that, as shown in Figure 5 (left), an analogous statement does not hold
for general supporting graphs.

Proof: Suppose for contradiction that there is a point p ∈ S incident to the
unbounded face of the exit graph of S and that is internal in S, that is, lies
in the interior of the convex hull conv(S) of S. This means that there is a
polygonal path inside conv(S) from p to the boundary of conv(S) such that the
interior of this path intersects no exit edge of S. Let δ(p) be the in�mum of the
lengths of such paths. Since conv(S) and S are both compact sets, there is a
polygonal path Pp of length δ(p) > 0 from p to the boundary of conv(S) that
has no crossing with exit edges but may pass through other points of S. Among
all such points p, let r ∈ S be the point for which δ(r) is the minimum possible.
Then Pr is a single segment. Let q be the endpoint of Pr on the boundary of
conv(S).

If q coincides with an extremal point in S, we slightly perturb the point q
so that q lies in the interior of an edge of conv(S) and the line segment rq does
not intersect any exit edge of S. Let s and t be the endpoints of the edge of
conv(S) containing q; see Figure 11 for an illustration.

s t

r

q s t

r

q

p

Figure 11: An illustration of the proof of Proposition 4. The path between r
and q is drawn as a red dotted line segment.
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Since exit edges are invariant to nondegenerate a�ne transformations we as-
sume without loss of generality that the following three conditions are satis�ed.

(i) The points r and q lie on the y-axis, s has negative x-coordinate and t has
positive x-coordinate,

(ii) the point r lies above the line st, and

(iii) all points of S have distinct x-coordinates.

To obtain a contradiction, we will show that the segment rq intersects the
interior of an exit edge of S. We will prove this in a dual setting.

By applying the duality transformation mentioned in Section 3 that maps
each point p = (px, py) to the (non-vertical) line p∗ : y = pxx− py, we map the
point set S to the dual line arrangement S∗. Due to the three conditions above,
the lines r∗ and q∗ are horizontal and the lines s∗ and t∗ have a negative and a
positive slope, respectively; see Figure 12. By Theorem 1, a triple of points of S
representing the endpoints of an exit edge together with its witness, such that
the x-coordinate of the witness is between the x-coordinates of the endpoints
of the exit edge, corresponds to a triangular cell in S∗ where the dual of the
witness is the line with median slope bounding this cell.

q∗r

q
s

t

r∗
∆

t∗s∗

Figure 12: Applying the dual transformation to the point set S (left) and ob-
taining the line arrangement S∗ (right).

Let 4 be the triangular region bounded by the lines r∗, s∗, and t∗. Since
the line segment st is not an exit edge in S, the triangular region 4 is not a
cell in S∗. Thus, the interior of 4 is intersected by some line from S∗. Since
s and t are vertices of conv(S), their duals s∗ and t∗ are incident to the upper
envelope of S∗.

Moving a point p vertically down from r to q corresponds to sweeping the
dual S∗ by a horizontal line p∗ from r∗ to q∗. Thus, meeting an exit edge of S
with p corresponds to the situation in the dual in which the sweeping line p∗

meets a vertex of a triangular cell of S∗ such that the vertex is an intersection of
a line with a positive slope and a line with a negative slope. Therefore, the line
segment rq crosses an exit edge of S if and only if there is a triangular cell 4′
of S∗ between r∗ and q∗ such that 4′ is bounded by a line with positive slope
and a line with negative slope. To obtain a contradiction, we will show that 4
contains such a triangular cell 4′.
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t∗s∗

r∗

t∗s∗

r∗
∆

∆+

Figure 13: Inserting the set of lines L+ from S∗ with positive slope that
intersect the interior of 4. Left: the dashed line cannot be in L+ since the
intersection of s∗ and t∗ must be on the upper envelope. Thus, the lines in L+

must intersect s∗ on the boundary of 4. Right: �nding a triangular region 4+

inside 4 bounded by s∗.

We start with the line arrangement containing the lines r∗, s∗, and t∗. First,
we insert the set L+ of lines from S∗ with positive slope that intersect the
interior of 4. The goal is to �nd a triangular region 4+ in 4 with one edge
on s∗ such that no line from S∗ with positive slope intersects the interior of 4+.

Since the lines s∗ and t∗ must bound the upper envelope (and are consecutive
on it), no line from S∗ with positive slope can intersect s∗ above its intersection
with t∗. Thus, the lines from L+ cannot intersect both r∗ and t∗ on the boundary
of 4. By de�nition, the lines from L+ must intersect two of the segments
bounding 4 and therefore they must intersect s∗ on the boundary of 4; see
Figure 13 (left).

Consider the intersection point in 4 closest to s∗ produced by two lines r̃∗

and t̃∗ (that possibly coincide with r∗ or t∗) from {r∗, t∗} ∪ L+. We assume
that the slope of t̃∗ is larger than the slope of r̃∗. Since all the lines from L+

intersect s∗ on the boundary of 4, the intersection of r̃∗ and t̃∗ is the leftmost
vertex of a triangular cell 4+ (of {r∗, s∗, t∗}∪L+) bounded by s∗; see Figure 13
(right) for an illustration. Moreover, 4+ is contained in 4 and it is thus a cell
of the arrangement de�ned by r∗ and s∗ together with all the lines with positive
slope from S∗ (including t∗ and all the lines in L+).

We now consider the lines from S∗ with negative slope. We denote by L−

the set of lines from S∗ with negative slope that intersect the interior of 4+.
Analogously as before, we show that there is a triangular cell4′ of S∗ inside4+

with one edge on t̃∗.
Since the lines s∗ and t∗ must bound the upper envelope, lines from S∗

with negative slope and steeper than s∗ must intersect s∗ above its intersection
with t∗ (and therefore above its intersection with t̃∗). Thus, the lines from L−

cannot intersect both r̃∗ and s∗ on the boundary of 4+; see Figure 14 (left). By
de�nition, the lines from L− must intersect two of the segments bounding 4+

and therefore they must intersect t̃∗ on the boundary of 4+.
In an analogous manner as before, the intersection in4+ closest to t̃∗ de�nes

a triangular cell 4′ inside 4+ bounded by t̃∗; see Figure 14 (right). Thus, we
found a triangular cell 4′ of S∗ contained in 4 bounded by a line with positive
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t̃∗s∗s∗

∆+ ∆′

t̃∗

r̃∗ r̃∗

Figure 14: Inserting the set of lines L− from S∗ with negative slope that intersect
the interior of4+. Left: the dashed line cannot be in L− since the intersection of
s∗ and t̃∗ must be on the upper envelope. Thus, the lines in L− must intersect t̃∗

on the boundary of 4+. Right: �nding a triangular cell 4′ inside 4+ bounded
by t̃∗.

slope and a line with negative slope. Altogether, by duality, this implies that
the segment rq crosses an exit edge of S, which is a contradiction. �

6 Concluding remarks

We conjecture that the geometric graph G of exit edges not only is supporting
for S, but also that any point set S′ that is the vertex set of a geometric graph
isomorphic to G has the same order type as S. One might conjecture that
already knowing all exit edges and their witnesses (in the dual line arrangement,
all triangular cells and their orientations) is su�cient to determine the order
type. Surprisingly, this turns out to be false.

A counterexample is sketched in Figure 15 as a dual (stretchable) pseudoline
arrangement of 14 lines in the projective plane, based on an example by Felsner
and Weil [12]. It consists of two arrangements of six lines in the Euclidean plane
that are combinatorially di�erent, but share the set of triangular cells and their
orientations. While the exit edges and their witnesses are the same for the two
di�erent order types, the corresponding exit graphs are not isomorphic.

In the dual of that example the order of the triangular cells along each pseu-
doline di�ers, but that extra information is not enough to distinguish the two
order types: We can modify the pseudoline arrangements in Figure 15 by, es-
sentially, duplicating pseudolines 1�6 and making a pseudoline and its duplicate
cross between the crossings with two red pseudolines (7�14). In Figure 16 we
present an illustration. It shows two pseudoline arrangements with the same
triangular cells (including their orientations) and the same order of triangular
cells along each pseudoline. However, the corresponding order types are not
the same (see for example the number of extremal points). Note that the dual
point sets of the pseudoline arrangements in Figure 16 can be obtained from the
ones in Figure 15 by adding a copy of points 1�6 close to the original respective
points. Thus, we cannot reconstruct the order type from that information.
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Figure 15: Top: two arrangements of 14 pseudolines with the same set of trian-
gular cells (extending [12, Figure 3]). No triangular cell is crossed by the line
at in�nity. Bottom: corresponding dual point sets and exit graphs. The order
types are not the same (see for example the number of extremal points).
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