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Abstract

A One-Way Road Network is an ordered pair OWRN = (Wx,Wy)
comprising of a set Wx of m directed horizontal roads along with another
set Wy of n directed vertical roads. An OWRN can also be viewed as a
directed grid graph GG = (V,E), where V corresponds to intersections
between every pair of horizontal and vertical roads, and there is a directed
edge between every pair of consecutive vertices in V in the same direction
corresponding to that road. A vehicle c is defined as a 3-tuple (t, s, P ),
where c starts moving at time t and moves with a constant speed s from
its start vertex to destination vertex along pre-specified directed path P ,
unless a collision occurs. A collision between a pair of vehicles ci and
cj(i 6= j) occurs if they reach a vertex v ∈ V (a junction in OWRN)
orthogonally at the same time. A traffic configuration on an OWRN is
a 2-tuple TC = (GG,C), where C is a set of vehicles, each travelling on
a pre-specified path on GG. A collision-free TC is a traffic configuration
without any collision. We prove that finding a maximum cardinality subset
Cmax ⊆ C, such that TC = (GG,Cmax) is collision-free, is NP-hard. We
also show that GG can be preprocessed into a data-structure in O(n + m)
time and space, such that the length of the shortest path between any pair
of vertices in GG can be computed in O(1) time and the shortest path can
be computed in O(p) time, where p is the number of vertices in the path.
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1 Introduction

The rapid development in the existing motor vehicle technology has led to an
increase in the demand for automated vehicles, which are themselves capable
of various decision activities such as motion-controlling, path planning. This
has motivated many researchers to address a large number of algorithmic and
optimisation problems. Automated transportation is a field with a rich history
and great relevance. One shall find the reason to address the problem that
we study in this paper, one-way road networks or OWRN , in the fields that
involve automated transportation. Imagine a port with thousands of evenly
spaced shipping containers. The job at hand is to fill the containers with their
respective goods, which are to be shipped. We have automated trolleys that
transport the goods from the warehouse to the containers and the only available
paths (one-way) are the space between containers. The objective is to find the
maximum number of trolleys that can be deployed in this setting so that all the
trolleys reach their designated containers and no two trolleys collide. This is the
type of setting where OWRN shall manifest in practice.

The field of automated guided vehicles, AGV , has a rich history and has a
close relation to our work. We refer the reader to a paper by Vis [11] for an
elaborate review on the field of AGV s. For a more recent survey, the reader is
referred to the survey by Hyla and Szpytko [4]. A very important topic of interest
in the field of AGV s has been collision avoidance between the automated vehicles.
Kim and Tanchoco [6] propose an algorithm based on Dijkstra’s algorithm, for
conflict-free routing of AGV s. The algorithm runs in O(v4n2) time, where v
is the number of vehicles and n is the number of nodes. Arora et al. [1] study
the problem of collision avoidance on junctions. They design a game theory
based methodology for AGV traffic control. Yan et al. [12] propose a digraph
based technique for collision-free routing of AGV s on both unidirectional and
bi-directional paths. We refer the reader to [7, 8, 13] for more studies on the
conflict-free routing of AGV s. For an elaborate survey on routing and scheduling
algorithms for AGV s, we refer the reader to [9]. While these studies are focused
on the problem of finding efficient and collision-free routing for a given set of
AGV s, our work is concerned with the problem of computing, for a given set
of vehicles C and a one-way road network, the subset of maximum cardinality
Cmax ⊆ C such that all the vehicles c ∈ Cmax move through their pre-specified
paths without colliding with each other.

The 1939 paper by Robbins [10], which gives the idea of orientable graphs and
the paper by Masayoshi et al. [5], which considered one-way paths as graphs and
the optimal closed-loop is determined on the graph, motivated us to formulate
our graph network. Another work from which we got motivated is by Dasler and
Mount [2], which basically considers motion coordination of a set of vehicles at
a traffic-crossing (intersection). However, unlike their work, we consider a much
simpler version of a grid graph and mainly concentrate on analysing essential
properties and proving the hardness of a collision-free movement of traffic in the
given graph network. Furthermore, our work suggests a suitable algorithm and
data structure to find the shortest path in a one-way road network.
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2 Preliminary definitions and results

A road is a directed line, which is either parallel to (oriented along) X-axis (Yi)
or Y-axis (Xi) and it is uniquely defined by its direction and distance from the
corresponding parallel axis. Here direction is the constraint which restricts the
movement of a vehicle on the road.

Definition 1 A road is a 2-tuple, Yi = (di, xi), Xj = (dj , yj). Here xi is the
length of the road Yi from X-axis such that xi < xi+1, similarly, we define yj.
dk is the direction of the road i.e., dk ∈ {−1, 1} (where −1 represents negative
direction and 1 represents positive direction of the respective axis).

Definition 2 A One Way Road Network (OWRN) is a network with a set of
m horizontal and n vertical Roads. Formally an OWRN is a 2-tuple, OWRN =
(Wx,Wy), where, Wx = {Y1, Y2, Y3 . . . , Ym} and Wy = {X1, X2, X3 . . . , Xn}.

vij Yi

Xj

Figure 1: Graphical representation of an OWRN

Definition 3 Let V = {vij |vij is the intersection of the roads Yi and Xj, for
i ≤ m, j ≤ n} .

Definition 4 A directed edge e = (u, v), u, v ∈ V , is a connection between two
adjacent intersections on a road. Every edge is a part of a road Xi or Yj and is
in the same direction of the road to which it belongs.

Definition 5 The boundary roads of an OWRN are the outermost roads, i.e.,
X1, Xn, Y1 and Ym. The vertices on the boundary roads are denoted as boundary
vertices. The edges joining two boundary vertices are called boundary edges. The
OWRN is defined within these four boundary roads. The non-boundary vertices
(edges) are the vertices (edges) other than boundary vertices (edges).

Definition 6 Let GG(V,E) be a directed grid graph defined on an OWRN ,
where the vertex set V and the edge set E are defined in Definition 3 and
Definition 4, respectively.
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Definition 7 A directed path π(uαi , uαk
), from uαi to uαk

in GG is a sequence
of consecutive directed edges between a sequence of consecutive intersections
uαi

, uαi+1
, . . . uαk

, such that the edges are directed (uαi
, uαi+1

), (uαi+2
, uαi+3

), . . . ,
(uαk−1

, uαk
).

From the above set of definitions, it becomes clear that every road Yi = (di, xi)
is a directed path. But every directed path is not necessarily a road. A road
Yi = (di, xi) is a directed path, parallel to the positive x axis, that does not
change direction. Its direction is suggested by the variable di, which is set to
−1 if its direction is opposite to the direction of positive x axis, and 1 if it is
directed along the direction of positive x axis. The same is true for all road
Xj = (dj , yj) parallel to the positive y axis.

Definition 8 A vehicle c is a 3-tuple (t, s, P ), where c starts moving at time t
and moves with a constant speed s from its start vertex to its destination vertex
along pre-specified directed path P , unless a collision occurs. In this paper, we
assume that all the vehicles move with the same constant velocity.

Definition 9 A traffic configuration TC(GG,C) is a set of vehicles over an
OWRN , where C is the set of vehicles {c1, c2, . . . , ck}.

Definition 10 A collision is said to occur when two vehicles ci and cj (i 6= j)
reach the same vertex orthogonally at the same time. So a collision-free traffic
configuration is a TC without any collisions.

2.1 Main results

In this work, we consider the problem of collision-free traffic configuration TC
in GG. Our objective is to find a maximum cardinality subset Cmax ⊆ C such
that TC = (GG,Cmax) is collision-free. We prove that finding a maximum
cardinality subset Cmax ⊆ C such that TC = (GG,Cmax) is collision-free, is
NP- hard. We reduce the problem of finding the maximum independent set
of a graph (MIS) to the problem of Collision-free Traffic Configuration. Our
reduction is a gap preserving reduction and thus, it is as hard as MIS. It is
proven that no algorithm can give n1−ε factor approximation of MIS, for any
ε > 0 [3]. We also design a data structure in O(n+m) preprocessing time and
space such that the length of the shortest path between any pair of vertices in
GG can be computed in O(1) time and shortest path can be computed in O(p)
time, where p is the number of nodes in the path. We also characterize the
connectedness of an OWRN or GG.

2.2 Strongly-Connectedness in a One Way Road Network

A grid graph GG(V,E) is strongly-connected if and only if every ordered pair of
vertices u, v ∈ V is connected by a directed path. The following lemmas capture
the strongly-connectedness property of a grid graph.
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Lemma 1 For every non-boundary vertex v, there always exist two boundary
vertices w and x such that there exist directed paths π(v, w) and π(v, x) and
there always exists two boundary vertices w′ and x′ such that there exist directed
paths π(w′, v) and π(x′, v).

Proof: Follows directly from the properties of the roads of the OWRN . �

Lemma 2 If all the boundary vertices of an OWRN form a cycle, then the grid
graph GG is strongly-connected.

Proof: Let u and v be pair of vertices in an OWRN . We prove that there
always exists a directed path π(u, v) by considering the following cases.

• Case 1: Both u and v are boundary vertices. Since the boundary vertices
form a cycle, therefore π(u, v) exists.

• Case 2: If at least one of them is boundary vertex. Lemma 1 ensures that
there exists a directed path from the boundary to the interior and vice
versa.

• Case 3: Both are non-boundary vertices. From Lemma 1, We can find
two boundary vertices x and w such that there exists π(u, x) and π(w, v).
So there exists a directed path from u to v because we have directed paths
π(u, x), π(x,w) and π(w, v). Therefore π(u, v) exists.

This concludes the proof. �

Lemma 3 If GG(V,E) is strongly-connected, then all the boundary vertices of
GG form a cycle.

Proof: We prove the lemma by contradiction. The boundary vertices are either
of degree 2 or 3. The degree three vertices have two boundary edges adjacent to
them, one is incoming and the other is outgoing. We assume that the boundary
vertices do not form a cycle. Therefore, there exists a boundary vertex of degree
2, such that either both the boundary roads are incoming or outgoing. If both
roads are incoming, we will not be able to reach any another vertex from that
vertex. If both are outgoing edges, it will not be possible to reach that vertex
from any other vertex. Therefore the graph is not strongly-connected, which is
a contradiction. �

Theorem 1 A One Way Road Network is strongly-connected if and only if the
boundary roads form a cycle.

Proof: The proof of this theorem follows from Lemma 2 and Lemma 3. �
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3 Hardness of Collision-Free Traffic Configura-
tion

In this section, we show that finding a solution to the traffic configuration
problem is NP-Hard. We reduce the Maximum Independent Set problem
(MIS) of a graph to the Traffic Configuration problem. For this, we have the
following theorem.

Theorem 2 Given an undirected graph G = (V,E), there exists a traffic con-
figuration (GG,C), computable in polynomial-time, such that the cardinality of
MIS of G is k if and only if the cardinality of Cmax is k.

For the simplicity of reduction, we first show how to construct a TC for a
complete graph Kn that satisfies the properties in Lemma 4.

Lemma 4 For any complete graph Kn, it is possible to construct a TC such
that every vertex v of the Kn corresponds to a vehicle c in TC, and for every
edge e = (u, v) of Kn the vehicles corresponding to vertex u and v collide.

Proof: We prove this lemma by constructing a TC for a Kn.

1. We construct an OWRN with 2n horizontal roads Yi = (di, xi) and n
vertical roads Xj = (dj , yj) as follows:

(a) For the road Yi, we have

di =

{
1 1 < i ≤ 2n

−1 i = 1
, and xi =

{
−1 i = 1

xi−1 + δ 1 < i ≤ 2n

(b) For the road Xj , we have

dj =

{
−1 1 < j ≤ n
1 j = 1

, and yj =

{
−1 j = 1

yj−1 + δ 1 < j ≤ n

where δ is a positive real valued constant.

2. The set C of vehicles is defined as {c1, c2, c3 . . . , cn}, each vehicle ci(ti, si, Pi)
is as follows:

(a) ti = 0.

(b) si = ω.

(c) Pi =
{
vri, v(r−1)i . . . , vqi, vq(i+1) . . . , vqn

}
, where r = n+ i− 1, q =

n− i+ 1.

Now we can observe that the two paths Pi and Pj corresponding to vehicles
ci and cj , (i < j), intersect at only one vertex v(n−i+1)(j). The length of the
paths Pi and Pj from their respective start vertices to the vertex v(n−i+1)(j) is
same which is equal to (i+ j − 2)× δ. Since all the vehicles start at the same
time and travel with the same constant speed, ci and cj will reach the vertex
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c2c1

cr

cn−1

cn

vn2

vnr v(n)(n−1)
vnn

v(n−1)(r) v(n−1)(n−1)
v(n−1)(n)

v(n−r+1)(n−1)
v(n−r+1)(n)

v2n

vn1

v(n+r−1)(r)

v(2n−2)(n−1)

v(2n−1)(n)

v(n+1)2

v(n−r+1)(r)

v1n

v2(n−1)

v(n−1)2

Figure 2: Paths for vehicles {c1, c2, . . . , cn} in the TC obtained from Lemma 4

v(n−i+1)(j) at same time in mutually orthogonal directions. Hence, a collision
occurs. Thus, we obtain the corresponding TC = (GG,C) for a Kn. �

Before we reduce the MIS problem for general graphs to the TC problem,
for better understanding, we first explain the characterizations of the paths Pi’s
of TC that is constructed from Kn. Each path Pi has (n+ i− 2) edges. Pi is
the concatenation of two subpaths Pi = P xi P

y
i of lengths 2(i− 1) and (n− i),

respectively. Each edge in the subpath P xi is vertical and directed downwards
while the edges in the subpath P yi is horizontal and directed towards right.

Now we show how to reduce the MIS problem on any simple graph G with
n vertices to a TC. We first construct the TC for a complete graph Kn. We
construct modified TCm by an incremental method from TC. We will consider
the vertices of G in any arbitrary order U = (u1, u2, . . . , un) to create the set of
vehicles C such that a vehicle ci ∈ C corresponds to a vertex ui ∈ G.

To achieve the above construction of modified TCm, we construct a modified
OWRNm by inserting few horizontal and vertical roads on OWRN of Kn from
Lemma 4 as follow:

1. We insert four equally spaced horizontal roads with directions {1,−1, 1,−1}
between every two adjacent roads Yi, Yi+1 and name them Y 1

i , Y
2
i , Y

3
i , Y

4
i .

2. We insert one vertical road between every two adjacent roads Xj , Xj+1,
which is the perpendicular bisector of lines containing roads Xj and Xj+1

and directed downwards, and name it X0
j .
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For convenience in the modified OWRN we name the vertex formed by the
intersection of Xj and Y ki as vkij , where k = 1, . . . , 4, the vertex formed by the

intersection of Xj and Yi as vij , the vertex formed by intersection of X0
j and

Yi as v0ij , and the vertex formed by intersection of X0
j and Y ki as vk0ij , refer to

Figure 3.(b).

Y3

Y2

Y1

X3X2X1

v21 v23

v32 Y3

Y2

Y1

Y 4
2

Y 3
2

Y 2
2

Y 1
2

Y 4
1

Y 3
1

Y 2
1

Y 1
1

X3X2X1 X0
1 X0

2

v21 v22 v23

v122

v222

v322

v422

v32

v022

v1022

v2022

v3022

v4022

v023v31 v33

v22

v11 v12 v13

(a) (b)

Figure 3: (a) A portion of OWRN and (b) A portion of OWRNm

Note that, now we have a modified OWRN of (10n− 4)× (2n− 1) roads,
with (10n− 4) horizontal roads and (2n− 1) vertical roads.

We redefine the path of vehicles in the OWRNm such that every vehicle still
collides (like OWRN of Kn) with all other vehicles. For each vehicle ci in TCm
we define its path in OWRNm as

Pi =
{
vri, v

4
(r−1)i, v

3
(r−1)i, v

2
(r−1)i, v

1
(r−1)i, v(r−1)i . . . , vqi, v

0
qi, vq(i+1) . . . , vqn

}
, where

r = n+ i− 1, q = n− i+ 1.

Note that, Pi ∈ TCm is obtained by subdividing Pi ∈ TC with new vertices
because we have inserted horizontal and vertical roads in between. Now onwards
Pi ∈ TCm would mean same path Pi ∈ TC with those extra vertices. Thus, we
also define Pi = P xi P

y
i in TCm. From Lemma 4, it is evident that every pair of

vehicles still collide.

We propose two types of delays. A delay is a small detour in a path Pi ∈ TCm,
between any two specified vertices, particularly on the vertical subpath P xi . Let

P xi =
{
. . . , vkl, v

4
(k−1)l, v

3
(k−1)l, v

2
(k−1)l, v

1
(k−1)l, v(k−1)l, . . .

}
. We define a single

delay between the vertices vkl and v(k−1)l in the path P xi , as follows{
. . . , vkl, v

4
(k−1)l, v

40
(k−1)(l−1), v

30
(k−1)(l−1), v

3
(k−1)l, v

2
(k−1)l, v

1
(k−1)l, v(k−1)l, . . .

}
.

Instead of reaching to vertex v(k−1)l directly from vkl, it takes a detour of length
6
5δ such that the length of the path is increased by δ. We refer the reader to
Figure 4.

Similarly, we define two delays (two single delays) between the vertices vkl and
v(k−1)l in the path P xi as {. . . , vkl, v4(k−1)l, v40(k−1)(l−1), v30(k−1)(l−1), v3(k−1)l, v2(k−1)l,
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vkl

v4(k−1)l

v3(k−1)l

v2(k−1)l

v1(k−1)l

v(k−1)l

vkl

v4(k−1)l

v3(k−1)l

v2(k−1)l

v1(k−1)l

v(k−1)l

v40(k−1)(l−1)

v30(k−1)(l−1)

vkl

v4(k−1)l

v3(k−1)l

v2(k−1)l

v1(k−1)l

v(k−1)l

v40(k−1)(l−1)

v30(k−1)(l−1)

v20(k−1)(l−1)

v10(k−1)(l−1)

(a) (b) (c)

Figure 4: Path P xi from vkl to v(k−1)l with (a) No delay (b) Single delay (c)
Double delay

v20(k−1)(l−1), v
10
(k−1)(l−1), v

1
(k−1)l, v(k−1)l, . . . }. Here, the length of the path is in-

creased by 2δ.
We keep modifying the path Pi ∈ TCm of a vehicle ci, that corresponds to

vertex ui in G, to make sure that a collision between vehicles ci and cj in TCm
occurs if and only if there is an edge between ui and uj in G, j < i. While
updating the path Pi ∈ TCm, we shall make further necessary modifications by
inserting some delays in the path Pi ∈ TCm such that it satisfies the following
four properties:

Property 1 If there is an edge between vertex ui,uj j < i in G, then the vehicles
ci and cj reach vertex v(n−j+1)(i) at the same time (having collision)

Property 2 If there is no edge between vertex ui,uj j < i, then the vehicles ci
and cj should reach vertex v(n−j+1)(i) at different times (no collision)

Property 3 The number of delays introduced in the path Pi of the vehicle ci
before reaching vertex v(n−i+1)(i) is i− 1

Property 4 For any two vehicles ci, cj , (j < i), the number of delays introduced
in path Pi before vertex v(n−j+1)(i) is j − 2 if there is no edge between vertices
ui, uj in G. Else, the delay is j − 1.

It is easy to see if the TCm satisfies properties 1 and 2 then, G has an
independent set of size k if and only if there are k vehicles that are collision-free
in TCm.

Furthermore, since all the horizontal roads are equidistant ( 12δ) according to
our construction, and if a delay is introduced only in vertical part of the path,
then the distance of the path is increased by δ, since after reaching vertex v4(k−1)l
[or v2(k−1)l], in the modified path, the vehicle ci must take a horizontal road till

it reaches the vertex v40(k−1)(l−1) [or v20(k−1)(l−1)], then again take a vertical road
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till it reaches vertex v30(k−1)(l−1) [or v10(k−1)(l−1)], and then take a horizontal road

back to v3(k−1)l [or v1(k−1)l]. From our construction, the distance from v4(k−1)l
[or v2(k−1)l] to v40(k−1)(l−1) [or v20(k−1)(l−1)] is 1

2δ, the distance from v40(k−1)(l−1) [or

v20(k−1)(l−1)] to v30(k−1)(l−1) [or v10(k−1)(l−1)] is same as the distance from v4(k−1)l [or

v2(k−1)l] to v3(k−1)l [or v1(k−1)l], and the distance from v30(k−1)(l−1) [or v10(k−1)(l−1)]

to v3(k−1)l [or v1(k−1)l] is 1
2δ.

If after performing certain modifications in the new TCm, there exist two
vehicles ci and cj (j < i), such that they reach the vertex v(n−j+1)(i) at same
time, then the collision can be avoided by introducing a delay of δ in the path
of ci before vertex v(n−j+1)(i). Also, if a pair of vehicles ci and cj(j < i) do not
collide in TCm, i.e, they reach the vertex v(n−j+1)(i) at different times, then by
introducing delays such that both the paths before v(n−j+1)(i) have an equal
number of delays, a collision can be created.

To enforce the Properties 3 and 4, we introduce no delays for c1, and for
c2, if (u1, u2) are connected by an edge in graph G, then introducing a single
delay in its path P2 after the vertex vn2 shall cause a collision between c1 and c2.
Otherwise, introducing a delay before the vertex vn2 does not cause a collision
between c1 and c2. In both the cases, c2 will have 1 delay introduced in the
vertical component of its path. This serves as our base case. Now, we prove this
by double induction.

We assume that for all j < i, in the modified TCm so far all the four properties
are satisfied. Consider the vehicles ci, cj and cj−1 in the path of ci. All the
four properties (Property 1 to Property 4) are valid till vertex v(n−j+2)(i), the
common vertex in path of Pi and Pj−1. For our incremental construction it is
sufficient to show that all these four properties (Property 1 to Property 4) can
be maintained for vertex v(n−j+1)(i), which is common vertex for paths Pi and
Pj .

We have the following four cases, and for all cases we show how to satisfy all
the properties (Property 1 to Property 4) at vertex v(n−j+1)(i) as follows:

• Case 1: ui and uj are connected by an edge in G, ui and uj−1 are
connected by an edge in G, then introduce a single delay in between
vertices v(n−j+2)(i) and v(n−j+1)(i) in path Pi, since Pi already has j − 2
delays before vertex v(n−j+2)(i).

• Case 2: ui, uj are connected by an edge inG and ui, uj−1 are not connected
by an edge in G, then introduce two delays in between vertices v(n−j+2)(i)

and v(n−j+1)(i), since Pi has j−3 delays in its path before vertex v(n−j+1)(i).

• Case 3: ui, uj are not connected by an edge inG and ui, uj−1 are connected
by an edge in G, then no delays is introduced between vertices v(n−j+2)(i)

and v(n−j+1)(i) in path Pi.

• Case 4: ui, uj are not connected by an edge in G and ui, uj−1 are not
connected by an edge in G, then introduce a single delay in between vertices
v(n−j+2)(i) and v(n−j+1)(i) in the path Pi, since Pi has j − 3 delays before
vertex v(n−j+1)(i).
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In all the aforementioned four cases, we made sure the four properties are satisfied,
and successfully modified Tm till ci and cj . In this way we can increment j till
i− 1 and modify the path of ci while maintaining all the four properties. Note
that, if ui, ui−1 are connected by an edge in G then we add a delay in between
vertices v(n−i+2)(i) and v(n−i+1)(i). Else, we introduce two delays in between
the vertices v(n−i+2)(i) and v(n−i+1)(i) in the path Pi, to maintain Property 3.
Hence, in the incremental method, we can construct a TCm satisfying all the
four properties (Property 1 to Property 4) for any given graph G.

Now according to our construction, it is easy to see that no two vehicles
have more than one common vertex in their paths, and each delay increases the
length of the path by the same distance. Let GGm be the graph of OWRNm.

Lemma 5 Let Csub be any subset of C in TCm, such that TCnew = (GGm, Csub)
is collision-free. Then Csub corresponds to Independent Set of G and vice-versa.

Proof: Since TCnew is collision-free, therefore no two nodes in the graph G,
which correspond to the respective vehicles in Csub, are connected by an edge.
Thus, we can claim that Csub corresponds to an independent set in G. On the
other hand, we know from Property 2 that if there is no edge between the vertices
ui and uj (j < i) in G then in the corresponding TCm there is no collision
between vehicles. We know from Property 1 that if there is an edge between
vertices ui and uj (j < i) in G then there is a collision between the vehicles in
the corresponding TCm. Hence, an independent set in G corresponds to a Csub
in TCm. �

From Lemma 5, we can say that maximum Csub, i.e Cmax, corresponds to
Maximum Independent Set in G and vice-versa. Now, from our construction and
Lemma 5 we can prove that the traffic configuration problem is NP-Hard. Thus,
we have Theorem 2 and we have the following corollary of Theorem 2.

Corollary 1 The collision-free traffic configuration problem cannot have a better
approximation than maximum independent set.

4 Properties of Shortest Path

The length of the shortest path between a pair of vertices in an OWRN may
not be the Manhattan distance. There may be a pair of neighbouring vertices
which are the farthest pair of vertices in the OWRN metric because of one-way
direction.

Definition 11 A turn in a path P is defined as two consecutive edges belonging
to two orthogonal roads.

We redefine a directed path as traversal which will help us in proving the
following lemmas, theorems and the resulting shortest path algorithm. The
traversal is essentially the roads taken to reach from the source to the destination,
i.e instead of writing all the edges we combine all the consecutive edges belonging
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to the same road and replace it with this road. Since a path is directed, therefore
a traversal is also directed. Note that, since in a path we cannot visit a vertex
twice, no vertex will be visited twice in the corresponding traversal.

Let r(i)(j) represent the common vertex to two orthogonal roads Ri and Rj
(i < j) in an OWRN . Now, formally we define a traversal as follows.

Definition 12 A traversal T (s, d) = (R1, R2, . . . , Rk) of k − 1 turns from a
source s to a destination d consists of k road segments, where

(i) Ri−1, Ri are orthogonal to each other for all 1 < i ≤ k.

(ii) There is a directed path from s to r(1)(2), such that all the edges in this
path belong to road R1.

(iii) There is a directed path from r(i−1)(i) to r(i)(i+1), such that all the edges
in this path belong to road Ri, for all 1 < i < k.

(iv) There is a directed path from r(k−1)(k) to d, such that all the edges in this
path belong to road Rk.

(v) The length L(T ) of T (s, d) is sum of the lengths of all the directed segments
in T (s, d).

Definition 13 Let T (s, d) = (R1, R2, . . . , Rk) be a traversal of length D in an
OWRN . T (s, d) is called a valid traversal, if we can modify the direction of
roads passing through the source s and the destination d without modifying the
directions of roads Ri ∈ T (s, d),∀1 ≤ i ≤ k in the OWRN , such that no traversal
of less than k − 1 turns has length at most D.

Definition 14 A traversal is said to be invalid when no such modification of
direction, as mentioned in Definition 13, is possible, i.e, there is another traversal
which uses less turns (or roads) to reach from the source to the destination without
increasing the total length.

Definition 15 We define Tsub(p, q) = (Ri, Ri+1, . . . Rj) as a sub-traversal of
T (s, d) = (R1, R2, . . . , Rk), for all 1 ≤ i < j ≤ k, where

p =

{
r(i−1)(i) 1 < i ≤ k
s i = 1

, and q =

{
r(j)(j+1) i ≤ j < k

d j = k

and hence, T (s, d) is also a sub-traversal of itself.

Lemma 6 A traversal T (s, d) = (R1, R2, . . . , Rk) is valid if and only if every
sub-traversal of T (s, d) is valid.

Proof: First we will prove the if part by contradiction, suppose the traversal
T (s, d) is valid, and there is a sub-traversal Tsub(p, q) = (Ri, Ri+1, . . . Rj) which
is invalid, since Tsub(p, q) is invalid for any modification of OWRN there exists
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a traversal T ′sub(p, q) = (Rα, . . . , Rβ) with fewer turns (or roads) than Tsub(p, q)
and with length at most that of Tsub(p, q).

Consider T (s, d), we can divide it into three sub-traversals as follows T (s, d) =
Tsub(s, p) + Tsub(p, q) + Tsub(q, d), now we can write a new traversal T ′(s, d) =
Tsub(s, p) + T ′sub(p, q) + Tsub(q, d), hence, T ′(s, d) has fewer turns than T (s, d)
and also the length is at most that of T (s, d).

Hence, we can write T ′(s, d) = (R1, . . . , Ri−1, Rα, . . . , Rβ , Rj+1, . . . , Rk).
Note that, if there are two consecutive roads which are same then remove
one from the list of roads, the final list of remaining roads will be the roads used
by traversal, which is a contradiction.

Proving the only if part is easy since every sub-traversal is valid and T (s, d)
is a sub-traversal to itself, hence, the only if part is true. �

Definition 16 We define ∆(OWRN) = (δ1, δ2, . . . , δr) to be a sequence of
operations, i.e, each δl is applied on the OWRN sequentially, where δl is either
rotation of plane of OWRN by 90◦ or taking the mirror image of the OWRN
along the y-axis.

Definition 17 Two traversals T (s, d) = (R1, R2, . . . , Rk) in an OWRN , and
T ′(s′, d′) = (R′1, R

′
2, . . . , R

′
k) in an OWRN ′, are said to be struct-alike if there

exists a ∆(OWRN ′) such that R′i ∈ T ′(s′, d′) is parallel to Ri ∈ T (s, d) for all
1 ≤ i ≤ k and d′ is in the same quadrant with respect to s′ as d with respect to s.

The Quadrant of d with respect to s is one of the four quadrants in Euclidean
co-ordinate geometry in which d exists when the origin of Euclidean plane is
translated to s.

Lemma 7 If a traversal T (s, d) = (R1, R2, . . . , Rk) is valid in an OWRN then
any traversal T ′(s′, d′) = (R′1, R

′
2, . . . , R

′
k) in an OWRN ′ which is struct-alike

to T is also valid.

Proof: Given T (s, d) and T ′(s′, d′) are struct-alike. Let the operations to make
roads R′i parallel to Ri for all 1 ≤ i ≤ k be ∆, then we know that applying ∆−1

(inverse of ∆) on T we can make Ri parallel to R′i. Since T is valid there exists
an OWRN1 in which the number of turns in the traversal cannot be reduced
without increasing the length. For every road passing through vertex r(i)(i+1)′

there exists a road passing through r(i)(i+1) in OWRN1. ∆−1 can be applied on
this road, and then directions can be given accordingly in OWRN ′. Hence, the
traversal T ′(s′, d′) is valid. �

By incremental construction, we shall show that any five-turn traversal from
any source vertex to a destination vertex in an OWRN can always be reduced
to a four or fewer turn traversal without increasing the traversal length, and
hence, inductively any traversal of more than five turns can be reduced to four
or fewer turn traversals.

From Lemma 6 and Lemma 7, we can see that a valid k turn traversal can
only be formed by adding a perpendicular road at the end (or beginning) of a
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valid (k − 1)-turn traversal. Note that, if we add a perpendicular road at the
end (or the beginning) of two struct-alike traversals of k− 1 turns then they will
result in the same set of struct-alike k-turn traversals. Hence, we will consider
only one valid traversal among all struct-alike valid traversal set, and extend
only on it.

While adding a perpendicular road to a traversal we have to take care of
source and destinations relative position as well since our struct-alike definition
also depends on their relative position. Hence, we add a shorter and a longer
road at the end (or beginning) to make sure the relative position (quadrant with
respect to the source) of destination changes (if that can be changed).

Definition 18 A shortcut is a modification in a traversal, such that either the
modified traversal has a length strictly less than the original traversal or, if the
length of the modified traversal is equal to the length of the original traversal
then the modified traversal has fewer turns than the original traversal.

Instead of generating all possible five-turn traversals, we use Lemma 6 to
generate them incrementally. We start with zero-turn traversal and then generate
a valid one-turn traversal and then proceed to the valid two-turn traversals and
so on till we reach five-turn traversal.

From here on, we show the newly added road as a dotted line, the source is
represented as a disk and the destination as a squared box.

• Case 1: The traversal with zero turns is a straight line, i.e the source
and the destination are on the same road. All the zero-turn traversals
are struct-alike which is trivial, hence, we take a vertical line to construct
further.

• Case 2: The traversal with one turn can be formed by adding a perpen-
dicular road at the end (or beginning) of the zero-turn traversal. Four
different traversals of one turn can be formed, as shown in Figure 5, since
increasing the length of an additional road doesn’t change the quadrant
of destination, and all the four are struct- alike to an L-shaped path, i.e
Figure 5 (i).

(i) (ii) (iii) (iv)

s s s s

d
d d d

Figure 5: Struct-alike to an L-shaped path

• Case 3: The traversal with two turns can be formed by adding a perpen-
dicular road at the end (or beginning) of an L-shaped path, which is a
single-turn traversal. Six paths with two turns can be formed as shown
in Figure 6. Note that, increasing the length of the newly added road
doesn’t change the relative position of destination with respect to source
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(i) (ii) (iii) (iv) (v) (vi)

s

d

s

s
s

s

s

d d

d
d

d

Figure 6: Two turn paths

in Figure 6 (i) and Figure 6 (iv). In Figure 6 we can see (i) and (iv) are
struct-alike, (ii) and (vi) are struct-alike, and (iii) and (v) are struct-alike.
Hence, we have three different possible two-turn traversals, clearly the
three traversals are valid (direct the road passing through source but not in
traversal away from destination, and the road passing through destination
but not in traversal toward the source).

(i) (ii) (iii) (iv)

(xi) (xii)(vii) (viii)

(v) (vi)

(ix) (x)

s

d

s s s s s

s

s

s

s s
s

d
d d

d
d

d d d

d

d

d

Figure 7: Possible Three turn paths

• Case 4: The traversal T (s, d) = (R1, R2, R3, R4) with three turns can
be formed by adding a perpendicular road at the end (or beginning) of
the three valid traversals shown in Figure 6. Twelve different traversal of
three turns are possible as shown in Figure 7. The traversals shown in
Figure 7 (ii),(viii), (ix), (x) and (xii) are invalid since there is a traversal
T ′(s, d) = (R1, R4) with one turn and also the traversal length is at most
the length of traversal shown in each case (observe Figure 8, where shortcuts
are shown in blue), (v) is not a valid traversal since a vertex is being visited
twice, from here on we will only extend a newly added road till it doesn’t
intersect with the current road. Note that, (i) and (vi) are struct-alike,
(iii) and (xi) are struct-alike. Hence, we have four different valid possible
traversals, Figure 7 (i), (iii), (iv) and (vii).

• Case 5: The traversal T (s, d) = (R1, R2, . . . , R5) of four turns can be
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(i) (ii) (iii) (iv)

(xi) (xii)(vii) (viii)

(v) (vi)

(ix) (x)

s

d

s s s s s

s

s

s

s s
s

d
d d

d
d

d d d

d

d

d

Figure 8: Three turn path modifications

formed by adding perpendicular roads at the end (or beginning) of the
four valid traversals in Figure 7 (i), (iii), (iv) and (vii). The resulting
possible four-turn traversals are shown in Figure 9. Observe that Figure
9 (ii) and Figure 9 (xv) are both struct-alike and valid, Figure 9 (iii)
and Figure 9 (xvi) are both struct-alike and valid, while Figure 9 (x)
and Figure 9 (xiii) are not struct-alike to each other, but both are valid
traversals. The rest of the traversals are invalid. Note that, the roads
in T (s, d) = (R1, R2, . . . , R5) are ordered from s to d and only shown in
Figure 9 (i). We have not shown them in the rest of the figure because the
figures will be congested. Let R⊥s be the road passing through source and
not R1, R⊥d be the road passing through destination and not R5. In each
of the remaining cases we show another traversal with fewer turns without
increasing the total length.

1. For (i), (ix), (xix) the traversal T ′(s, d) = (R1, R4, R5) has fewer
turn traversals and has a shorter length than T (s, d). For example,
in (i) T ′(s, d) = (R1, R4, R5) is the shortcut (shown in blue in Figure
10 (i)). A similar strategy has been applied for (ix), (xix).

2. For (iv), (viii), (xiv) either one of the two traversal T ′(s, d) =
(R1, R

⊥
d ) or T ′(s, d) = (R1, R2, R3, R

⊥
d ) is possible depending on the

direction of R⊥d and has fewer turns and has a shorter length than
T (s, d). For example, in (iv) if R⊥d is directed downwards (Observe
Figure 10 (iv), shown in red in this case) then T ′(s, d) = (R1, R

⊥
d )

and shortcuts are shown in red. Otherwise T ′(s, d) = (R1, R2, R3, R
⊥
d )

(here in Figure 10 (iv) R⊥d is shown in blue, directed upward) and
shortcuts are shown in blue. A similar strategy has been applied for
(viii), (xiv).

3. For (v), (vi), (vii), (xii), (xvii) the traversal T ′(s, d) = (R1, R2, R5)
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(vii) (viii) (ix)
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Figure 9: Possible Four turn paths

(vii) (viii) (ix)

(xiv)

(x) (xi) (xii)

(xiii) (xv) (xvi) (xvii) (xviii) (xix)
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Figure 10: Four turn modifications
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has fewer turns and has a shorter length than T (s, d). For example,
in (v) T ′(s, d) = (R1, R2, R5) and has a shortcut (In Figure 10 (v),
this is shown in blue). A similar strategy has been applied for (vi),
(vii), (xii), (xvii).

4. For (xi), (xviii) one of the two traversal T ′(s, d) = (R⊥s , R5) or
T ′(s, d) = (R⊥s , R3, R4, R5) is possible depending on the direction of
R⊥s and has fewer turns and has a shorter length than T (s, d). For
example, if in (xi) R⊥s is directed leftwards (in Figure 10 (xi) this
is shown in red) then T ′(s, d) = (R⊥s , R5) and shortcuts are shown
in red in Figure 10 (xi). Otherwise T ′(s, d) = (R⊥s , R3, R4, R5) (in
Figure 10 (xi) R⊥s is shown in blue, directed rightward) and shortcuts
are shown in blue in Figure 10. In (xviii) if R⊥s is directed upwards
(in Figure 10 (xviii) this is shown in red) then T ′(s, d) = (R⊥s , R5)
and shortcuts are shown in red in Figure 10 (xviii). Otherwise
T ′(s, d) = (R⊥s , R3, R4, R5) (in Figure 10 (xviii) R⊥s is shown in blue,
directed rightward) and shortcuts are shown in blue in Figure 10
(xviii).

• Case 6: The traversal T (s, d) = (R1, R2, . . . , R6) of five turns can be
formed by adding a perpendicular roads at the end (or beginning) of the
four valid traversals Figure 9 (ii), (iii), (x) and (xiii). The resulting
possible four turn travels are shown in Figure 11. To prove the rest are
invalid traversals let R⊥s be the road passing through source and not R1,
R⊥d be the road passing through destination and not R6. Each of these
five-turn traversals can be modified without increasing the total length, as
follows.

(vi)(v)

(ix) (x) (xi)

(xv)

(i) (ii) (iii) (iv)

(vii) (viii)

(xiii) (xiv)

(xii)

(xvi) (xvii) (xviii) (xix) (xx)

s

d
s

s s

s
s

s s

s
s s s

s s

s s s
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s

s
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d

d d d

d
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d d d
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d d

d

d

d
d d d

Figure 11: Possible Five turn paths

1. For (i),(vi),(ix),(xix) either T ′(s, d) = (R⊥s , R3, R4, R5, R6) or T ′(s, d) =
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Figure 12: Five turn modifications

(R⊥s , R5, R6) is possible depending on the direction of R⊥s and has
fewer turns and has a shorter length than T (s, d). For example, in (i)
if R⊥s is directed downwards (in Figure 12 (i) this is shown in red)
then T ′(s, d) = (R⊥s , R5, R6) and shortcuts are shown in red in Figure
12. Otherwise T ′(s, d) = (R⊥s , R3, R4, R5, R6) (in Figure 12 (i) R⊥s is
shown in blue color, directed upward) and shortcuts are shown in blue
in Figure 12 (i). A similar strategy has been applied for (vi), (ix).
In figure (xix) if R⊥s is directed leftwards (in Figure 12 (xix) this is
shown in red) then T ′(s, d) = (R⊥s , R5, R6) and shortcuts are shown
in red in Figure 12 (xix). Otherwise T ′(s, d) = (R⊥s , R3, R4, R5, R6)
(in Figure 12 (xix) R⊥s is shown in blue color, directed rightward)
and shortcuts are shown in blue in Figure 12 (xix).

2. For (ii), (x), (xi), (xx) the traversal T ′(s, d) = (R1, R4, R5, R6) has
fewer turns and has a shorter length than T (s, d). For example, in
(ii) T ′(s, d) = (R1, R4, R5, R6) and the shortcut is shown in blue in
Figure 12 (ii). A similar strategy has been applied for (x), (xi), (xx).

3. For (iii), (xii), (xv), (xvi) the traversal T ′(s, d) = (R1, R2, R3, R6)
has fewer turns and has a shorter length than T (s, d). For example,
in (iii) T ′(s, d) = (R1, R2, R3, R6) and the shortcut is shown in blue
in Figure 12 (iii). A similar strategy has been applied for (xii), (xv),
(xvi).

4. For (iv), (vii), (xiv), (xvii) either T ′(s, d) = (R1, R2, R
⊥
d ) or T ′(s, d) =

(R1, R2, , R3, R4, R
⊥
d ) is possible depending on the direction of R⊥d and

has fewer turns and has a shorter length than T (s, d). For example, in
figure (iv) if R⊥d is directed downwards (in Figure 12 (iv) this is shown
in red) then T ′(s, d) = (R1, R2, R

⊥
d ) and shortcuts are shown in red in
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Figure 12 (iv). Otherwise T ′(s, d) = (R1, R2, , R3, R4, R
⊥
d ) (in Figure

12 (iv) R⊥d is shown in blue color, directed upward) and shortcuts are
shown in blue in Figure 12 (iv). A similar strategy has been applied
for (vii), (xiv). In (xvii) if R⊥d is directed rightwards (Figure 12
(xvii) this is shown in red color) then T ′(s, d) = (R1, R2, , R3, R4, R

⊥
d )

and shortcuts are shown in red in Figure 12 (xvii). Otherwise
T ′(s, d) = (R1, R2, R

⊥
d ) (Figure 12 (xvii) R⊥d is shown in blue, di-

rected leftward) and shortcuts are shown in blue in Figure 12 (xvii).

5. For (v), (viii) the traversal T ′(s, d) = (R1, R6) has fewer turns and has
a shorter length than T (s, d). For example, in (v) T ′(s, d) = (R1, R6)
is the shortcut, which is shown in blue in Figure 12 (v). A similar
strategy has been applied for (viii).

6. For (xiii), (xviii) either one of the four traversals T ′(s, d) = (R⊥s , R
⊥
d ),

T ′(s, d) = (R⊥s , R3, R4, R
⊥
d ), T ′(s, d) = (R⊥s , R3, R4, R5, R6), T ′(s, d) =

(R1, R2, R3, R4, R
⊥
d ) is possible depending on the direction of R⊥d ,R⊥s

and has fewer turns and has a shorter length than T (s, d). For exam-
ple, in (xiii) if R⊥d is directed downwards and R⊥s directed leftwards
(Figure 12 (xiii) this is shown in green) then T ′(s, d) = (R⊥s , R

⊥
d ). If

R⊥d is directed upwards and R⊥s is directed rightwards (in Figure 12
(xiii) they are shown in red and blue respectively) then T ′(s, d) =
(R⊥s , R3, R4, R

⊥
d ) and shortcuts are shown with red and blue in Figure

12 (xiii). If R⊥d is directed downwards and R⊥s is directed rightwards
(Figure 12 (xiii) they are shown with green and blue respectively)
then T ′(s, d) = (R⊥s , R3, R4, R5, R6) and shortcuts are shown in blue
in Figure 12 (xiii). Otherwise T ′(s, d) = (R1, R2, R3, R4, R

⊥
d ) (in

Figure 12 (xiii) R⊥d is shown in red, directed upward) and shortcuts
are shown in red in Figure 12 (xiii). A similar strategy has been
applied for (xviii).

Hence, we can see that no five-turn traversal is valid and hence, from Lemma
6, we claim the following theorem.

Theorem 3 Any traversal of more than five turns can always be reduced to a
four (or less) turn traversal, without increasing the length of the traversal.

And thus, we arrive at the following corollary.

Corollary 2 There exists a shortest path between any pair of vertices in a
strongly-connected OWRN which requires at most 4 turns or uses at most 5
roads to reach from source to destination.

Proof: Any path can be modified as a traversal by our definition, suppose we
have a shortest path between a pair of vertices then we can write it as a traversal,
and from Theorem 3, we can modify this traversal to use at most 5 roads without
increasing the length, now from the modified traversal we can get a new path,
whose length is at most the shortest path (exactly equal since it is the shortest
path). �
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Figure 13: Valid shortest path configurations

Let vij(source) and vkl(destination) be a pair of vertices for which we have
to find the shortest path. Without loss of generality, let us assume vij is on the
left side of vkl (since, if vij is on the right we can rotate the graph by 180o). In
the following property, we talk about vertically oriented roads. However, the
same can be argued in the case of horizontal roads.

Observe the valid configurations listed in Figure 13 and let Yj and Yl be
the vertical roads passing through vij (source represented as disk) and vkl
(destination represented with squared box), respectively. We have already proved
that any valid configuration will be struct-alike to one of the above mentioned
configurations. We will now characterize all the valid configurations shown in
Figure 13 as follows.

Property 5 For any vij,vkl, in an OWRN there exists a shortest path that
has at most three types of vertical roads, apart from Yj , Yl, which are defined as
follows:

(i) One road in between Yj , Yl, say Yα.

(ii) One road on the right of both Yj , Yl, say Yγ .

(iii) One road on the left of both Yj , Yl, say Yβ.

For example, the road Yα is used in Figure 13 (iii), (vii), (ix), (xi) and (x).
The road Yβ is used in Figure 13 (v), (vi) and (xiii). The road Yγ is used in
Figure 13 (viii), (xii) and (xiii).

Lemma 8 If any of Yα, Yβ or Yγ is in the shortest path, it has the following
properties:

(i) Yβ is the closest left neighbour of Yj of opposite direction.

(ii) Yγ is the closest right neighbour of Yl of opposite direction.

(iii) Yα has the direction opposite to that of the directions of both Yj and Yl.

Proof: We prove the above statements one by one.
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(i) Let us assume the shortest path requires us to travel through a left vertical
road of Yj i.e Yβ . Since vkl is on the right of vij , the path has to cross
Yj again at some other vertex u to reach vkl. Suppose Yj and Yβ have
the same direction, then we can directly reach u from vij and then from
u to vkl which instead would be the shortest path, contradictory to our
assumption. Hence, Yβ and Yj have opposite directions. Suppose there
exists Y ′β which lies between Yj and Yβ , and has the same direction as Yβ ,
then instead of going to Yβ and turning, we can directly take the turn at
Y ′β which would be shortest path. However, this is a contradiction. Hence,
Yβ is the closest left neighbour to Yj .

(ii) Can be proved using similar arguments.

(iii) Suppose Yα is in the same direction as that of Yj then the shortest path
should travel till Yα, then take a turn and travel on road Yα, again take
a turn at some other vertex u on the road Yα, we can travel in Yj till we
reach the vertex which lies in the same horizontal road as u, then take turn
and travel to reach u, then from u to vkl. Similarly, for the other case,
where Yl and Yα have the same directions.

�

Similarly, we can prove that the above lemma is also true for horizontal
direction as well. Now, we have all the pieces together to design an algorithm
with a suitable data structure to find the shortest path in an OWRN .

Definition 19 For a given road, the nearest road to it with the opposite direction
is called the nearest reverse road.

We suggest a simple data structure which stores the information of the nearest
reverse road on both sides for each road. The following algorithm suggests an
approach to construct the data structure in linear time and space in terms of
the number of roads.

We use two variables up and dn to store the previous road with up direction
and down direction respectively. We initialize up and dn with −1, we start
scanning each road Yi in Wx, in increasing order (i.e, i = 1 to i = m). If the
direction of Yi is up then set pred(i) = dn and up = i, otherwise set pred(i) = up
and dn = i. Note that, if pred(i) = −1 implies there is no road which is of
opposite direction to Yi, otherwise if pred(i) = j implies Yj precedes Yi and are
of opposite directions. Similarly, we can do a reverse scan from i = m to i = 1
and store the successor information in succ(i). A similar approach can be used
for the roads in Wy.

Theorem 4 The Shortest path in an OWRN can be computed in O(p) time and
the length can be computed in O(1) time, where p is the number of vertices in the
shortest path, with the help of a pre-computed data structure of O(|Wx|+ |Wy|)
time, and O(|Wx|+ |Wy|) space.
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Proof: Given any two vertices vij and vkl, we need to find the shortest path
between these two vertices. From Lemma 5 and Lemma 8, we know that there
exists a shortest path that uses roads W ′y = {Yγ , Yj , Yα, Yl, Yβ} among the
vertical set of roads. Similarly, there exists a shortest path that uses roads
W ′x = {Xω, Xi, Xη, Xk, Xθ} among the set of horizontal roads.

If we have already computed the nearest neighbours using the algorithm
Nearest Reverse Road, then looking at X(i), X(k), Y (j) and Y (l) we can
compute the sets W ′x and W ′y in constant time. Now generate an OWRN ′ =
(W ′x,W

′
y) and compute the shortest path from the respective vertex of vij to the

respective vertex of vkl in OWRN ′ using any shortest path algorithm.

To compute the shortest path in OWRN , start from vij and travel along the
same set of roads used in the shortest path found in OWRN ′. Since the size
of the OWRN ′ is of O(1), computing shortest path length takes O(1) time. It
takes O(1) time to determine the vertices in the shortest path, since we are only
travelling along the vertices which are in the shortest path. Hence, it takes O(p)
time to report the shortest path with p vertices.

The space required to store the information of nearest reverse roads is
O(|Wx|+ |Wy|), since for each road we store at most two other roads. The time
complexity is also O(|Wx|+ |Wy|) because each road is visited twice. �

5 Conclusions and open problems

We studied the problem of collision-free traffic configuration TC in a directed grid
graph GG. We proved that finding a maximum cardinality subset Cmax ⊆ C,
where C is a set of vehicles, such that TC = (GG,Cmax) is collision-free, is
NP-Hard. We have shown all the possible configurations of the path, that
connect two vertices in an OWRN and designed an efficient data structure for
dynamic maintenance of shortest path. We show that GG can be preprocessed
into a data-structure in O(n+m) time and space, such that the length of the
shortest path between any pair of vertices in GG can be computed in O(1) time
and shortest path can be computed in O(p) time, where p is the number of
vertices in the path. In the future, we will extend this work to compute various
kinds of facility location problems on an OWRN . It will be interesting to
investigate the time complexity of one-centre or k-centre problems in an OWRN .
A k-Centre in an OWRN is the problem of finding k nodes (centres) in the
graph such that the maximum distance from any node to the closest such centre
is minimized. Another interesting problem is, designing an efficient algorithm to
find the shortest path in an OWRN without any data structure.
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