
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 24, no. 3, pp. 483–522 (2020)
DOI: 10.7155/jgaa.00543

An Adaptive Version of Brandes’ Algorithm
for Betweenness Centrality

Matthias Bentert Alexander Dittmann Leon Kellerhals

André Nichterlein Rolf Niedermeier

Technische Universität Berlin, Faculty IV,
Algorithmics and Computational Complexity

Abstract

Betweenness centrality—measuring how many shortest paths pass
through a vertex—is one of the most important network analysis concepts
for assessing the relative importance of a vertex. The well-known algorithm
of Brandes [J. Math. Sociol. ’01] computes, on an n-vertex and m-edge
graph, the betweenness centrality of all vertices in O(nm) worst-case
time. In later work, significant empirical speedups were achieved by
preprocessing degree-one vertices and by graph partitioning based on cut
vertices. We contribute an algorithmic treatment of degree-two vertices,
which turns out to be much richer in mathematical structure than the case
of degree-one vertices. Based on these three algorithmic ingredients, we
provide a strengthened worst-case running time analysis for betweenness
centrality algorithms. More specifically, we prove an adaptive running
time bound O(kn), where k < m is the size of a minimum feedback edge
set of the input graph.

Submitted:
May 2020

Reviewed:
August 2020

Revised:
October 2020

Accepted:
October 2020

Final:
October 2020

Published:
October 2020

Article type:
Regular Paper

Communicated by:
Y. Okamoto

LK was partially supported by DFG Project FPTinP NI 369/16. An extended abstract of this

work appeared in the proceedings of the 29th International Symposium on Algorithms and

Computation (ISAAC ’18), held in Jiaoxi, Taiwan, December 16–19, 2018.

E-mail addresses: matthias.bentert@tu-berlin.de (Matthias Bentert) alexander.dittmann@campus.tu-

berlin.de (Alexander Dittmann) leon.kellerhals@tu-berlin.de (Leon Kellerhals) andre.nichterlein@tu-

berlin.de (André Nichterlein) rolf.niedermeier@tu-berlin.de (Rolf Niedermeier)

http://dx.doi.org/10.7155/jgaa.00543
mailto:matthias.bentert@tu-berlin.de
mailto:alexander.dittmann@campus.tu-berlin.de
mailto:alexander.dittmann@campus.tu-berlin.de
mailto:leon.kellerhals@tu-berlin.de
mailto:andre.nichterlein@tu-berlin.de
mailto:andre.nichterlein@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de

484 Bentert et al. An Adaptive Version of Brandes’ Algorithm

1 Introduction

One of the most important building blocks in network analysis is to determine a
vertex’s relative importance in the network. A key concept herein is betweenness
centrality as introduced in 1977 by Freeman [11]; it measures centrality based on
shortest paths. Intuitively, for each vertex, betweenness centrality counts the (rel-
ative) number of shortest paths that pass through the vertex. A straightforward
algorithm for computing the betweenness centrality on undirected (unweighted)
n-vertex graphs runs in O(n3) time. For the weighted case, an improvement of
this to O(n3−ε) time for any ε > 0 would break the so-called APSP-conjecture [1].
Further, for unweighted graphs with constant maximum degree, computing the
betweenness centrality of a single vertex in O(n2−ε) time would break the strong
exponential time hypothesis (SETH) [7]. In 2001, Brandes [5] presented the
to date theoretically fastest algorithm, improving the running time to O(nm)
for graphs with m edges. As many real-world networks are sparse, this is a
far-reaching improvement, having a huge impact also in practice. We remark that
Newman [23, 24] presented a high-level description of an algorithm computing a
variant of betweenness centrality which also runs in O(nm) time.

Since betweenness centrality is a measure of outstanding importance in net-
work science, it finds numerous applications in diverse areas, e.g. in social network
analysis [24, 33] or neuroscience [16, 20]. Provably speeding up betweenness
centrality computations is the ultimate goal of our research. To this end, we
extend previous work and provide a rigorous mathematical analysis that yields a
new (parameterized) running time upper bound of the corresponding algorithm.

Our work is in line with numerous research efforts concerning the development
of algorithms for computing betweenness centrality, including approximation
algorithms [2, 12, 28], parallel and distributed algorithms [30, 32], streaming
and incremental algorithms [14, 22], algorithms for updates [19], and exact [9]
and fixed-parameter algorithms [6]. Formally, we study the following problem.

Betweenness Centrality

Input: An undirected graph G.
Task: Compute the betweenness centrality CB(v) :=

∑
s,t∈V (G)

σst(v)/σst

for each vertex v ∈ V (G).

Herein, σst is the number of shortest paths in G from vertex s to vertex t,
and σst(v) is the number of shortest paths from s to t that additionally pass
through v.1

Extending previous, more empirically oriented work of Baglioni et al. [3], Puzis
et al. [27], and Sariyüce et al. [29] (see Section 2 for a description of their
approaches), our main result is an algorithm for Betweenness Centrality
that runs in O(kn) time, where k denotes the feedback edge number of the
input graph G. The feedback edge number of G, also known as the cyclomatic
number, is the minimum number of edges one needs to delete from G in order

1To simplify matters, we set σst(v) = 0 if v = s or v = t. This is equivalent to the definition
used by Brandes [5] but differs from the definition used by Newman [23], where σst(s) = 1.

JGAA, 24(3) 483–522 (2020) 485

to make it a forest.2 Clearly, k = 0 holds on trees, and k = m − n + c holds
in general, where c is the number of connected components of G. Thus our
algorithm is adaptive, i.e., it interpolates between linear time for constant k and
the running time of the best unparameterized algorithm.3 But as k ≈ m − n,
we do not provide asymptotic improvement over Brandes’ algorithm for most
graphs. When the input graph is very tree-like (m = n+o(n)), however, our new
algorithm theoretically improves on Brandes’ algorithm. Real-world networks
showing the relation between PhD candidates and their supervisors [8, 15] or
the ownership relation between companies [26] typically have a feedback edge
number that is smaller than the number of vertices or edges [25] by orders
of magnitude.4 Moreover, Baglioni et al. [3], building on Brandes’ algorithm
and basically shrinking the input graph by deleting degree-one vertices in a
preprocessing step, report on significant speedups in comparison with Brandes’
basic algorithm in empirical tests with real-world social networks. For roughly
half of their networks, m−n is smaller than n by at least one order of magnitude.

Our algorithmic contribution is to complement the works of Baglioni et al.
[3], Puzis et al. [27], and Sariyüce et al. [29] by, roughly speaking, additionally
dealing with degree-two vertices. These vertices are much harder to cope with
and to analyze since, other than degree-one vertices, they may lie on shortest
paths between two vertices. From a practical point of view, one may expect
a significant speedup if one can take care of degree-two vertices more quickly.
This is due to the nature of many real-world social networks having a power-
law degree distribution [4]; thus a large fraction of the vertices are of degree
one or two. On the flip side, our more complicated algorithm incurs higher
constants in the running time, thus, definitive statements on the practicality
require experimental evaluations. The work of Vella et al. [31] can be seen as a
first step in this direction: they used a heuristic approach to process degree-two
vertices for improving the performance of their Betweenness Centrality
algorithms on several real-world networks.

Our work is purely theoretical in spirit, the most profound contribution being
the analysis of the worst-case running time of the proposed betweenness centrality
algorithm based on degree-one-vertex processing [3], usage of cut vertices [27, 29],
and our degree-two-vertex processing. To the best of our knowledge, this provides
the first proven worst-case improvement over Brandes’ upper bound in a relevant
special case.

Notation. We use mostly standard graph notation. Given a graph G, V (G)
and E(G) denote the vertex respectively edge set of G with n = |V (G)| and m =

2Notably, Betweenness Centrality computations have also been studied when the input
graph is a tree [32], hinting at the practical relevance of this special case.

3We mention in passing that in recent work [21] we employed the same parameter “feedback
edge number” in terms of theoretically analyzing known data reduction rules for computing
maximum-cardinality matchings. Recent empirical work with this algorithm demonstrated
significant accelerations of the state-of-the-art matching algorithm [18, 17].

4The networks are available in the Pajek Dataset of Vladimir Batagelj and Andrej Mrvar
(2006) (http://vlado.fmf.uni-lj.si/pub/networks/data/).

http://vlado.fmf.uni-lj.si/pub/networks/data/

486 Bentert et al. An Adaptive Version of Brandes’ Algorithm

|E(G)|. We denote the vertices of degree one, two, and at least three by V =1(G),
V =2(G), and V ≥3(G), respectively. A cut vertex or articulation vertex is a
vertex whose removal disconnects the graph. A connected component of a
graph is biconnected if it does not contain any cut vertices, and hence, no
vertices of degree one. A path P = v0 . . . vq is a graph with V (P) = {v0, . . . , vq}
and E(P) = {{vi, vi+1} | 0 ≤ i < q}. The length of the path P is |E(P)|. We
call v0 and vq the endpoints and v1, . . . , vq−1 the inner vertices of the path.
Adding the edge {vq, v0} to P gives a cycle C = v0 . . . vqv0. The distance dG(s, t)
between vertices s, t ∈ V (G) is the length of the shortest path between s and t
in G. The number of shortest s-t–paths is denoted by σst. The number of shortest
s-t–paths containing some vertex v is denoted by σst(v). We set σst(v) = 0
if s = v or t = v (or both).

We set [j, k] := {j, j + 1, . . . , k} and denote for a set X by
(
X
i

)
the size-i

subsets of X.
Lastly, when we talk about the time complexity of algorithms, we refer to

the number of arithmetic operations.

Paper outline. The presentation of our algorithm is split into two parts: In
Section 2 we present the strategy of our algorithm. Section 3 deals with the
main technical challenge of our algorithm, namely how to deal with consecutive
degree-two vertices. Some proofs in the latter part are deferred to the appendix.

Finally, we conclude in Section 4.

2 Algorithm Overview

In this section, we review our algorithmic strategy to compute the betweenness
centrality of each vertex. Before doing so, since we build on the works of
Brandes [5], Baglioni et al. [3], Puzis et al. [27], and Sariyüce et al. [29], we first
give the high-level ideas behind their algorithmic approaches. Then, we describe
the ideas behind our extension. We assume throughout our paper that the input
graph is connected. Otherwise, we can process the connected components one
after another.

Existing algorithmic approaches. Brandes [5] developed an O(nm)-time
algorithm which essentially runs modified breadth-first searches (BFS) from each
vertex of the graph. In each of these modified BFS starting in a vertex s, Brandes’
algorithm computes the “effect” that s has on the betweenness centrality values
of all other vertices. More formally, the modified BFS starting at vertex s
computes for every v ∈ V (G) the value∑

t∈V (G)

σst(v)

σst
.

Reducing the number of performed modified BFS in Brandes’ algorithm is
one way to speed up Brandes’ algorithm. To this end, a popular approach is to

JGAA, 24(3) 483–522 (2020) 487

(1.)

1

1

1

1

1

1

1

1

(2.)

1 1

2

1

1

1

1

(3.)

4

1

1

1

1

(4.)

4

1

3 6

1

1

Figure 1: An initial graph where the Pen[·]-value of each vertex is 1 (top left) and
the same graph after deleting one (top right) or both (bottom left) pending trees
using Reduction Rule 1. The labels are the respective Pen[·]-values. Subfigure
(4.) shows the graph of (3.) after applying Lemma 1 to the only cut vertex of
the graph.

remove in a preprocessing step all degree-one vertices from the graph [3, 27, 29].
By repeatedly removing degree-one vertices, whole “pending trees” (subgraphs
that are trees and are connected to the rest of the graph by a single edge) can
be deleted. Considering a degree-one vertex v, observe that in each shortest
path P starting at v, the second vertex in P is the single neighbor u of v. Hence,
after deleting v, one needs to store the information that u had a degree-one
neighbor. To this end, one uses for each vertex w a counter called Pen[w] (for
pending) that stores the number of vertices in the subtree pending on w that
were deleted before. In contrast to e. g. Baglioni et al. [3], we initialize for each
vertex w ∈ V the value Pen[w] with one instead of zero (so we count w as well).
This simplifies most of our formulas. See Figure 1 (Parts (1.) to (3.)) for an
example of the Pen[·]-values of the vertices at different points in time. We obtain
the following (weighted) problem variant.

Weighted Betweenness Centrality

Input: An undirected graph G and vertex weights Pen: V (G)→ N.
Task: Compute for each vertex v ∈ V (G) the weighted betweenness cen-

trality

CB(v) :=
∑

s,t∈V (G)

γ(s, t, v), (1)

where γ(s, t, v) := Pen[s] · Pen[t] · σst(v)/σst.

The effect of a degree-one vertex to the betweenness centrality value of its
neighbor is captured in the next data reduction rule.

488 Bentert et al. An Adaptive Version of Brandes’ Algorithm

Reduction Rule 1 ([3, 27, 29]) Let G be a graph, let s ∈ V (G) be a degree-
one vertex, and let v ∈ V (G) be the neighbor of s. Then increase Pen[v] by Pen[s],
increase the betweenness centrality of v by Pen[s] ·

∑
t∈V (G)\{s,v} Pen[t], and

remove s from the graph.

By Reduction Rule 1 the influence of a degree-one vertex to the betweenness
centrality of its neighbor can be computed in constant time. This is since∑

t∈V (G)\{s,v}

Pen[t] =
(∑
t∈V (G)

Pen[t]
)
− Pen[s]− Pen[v],

and
∑
t∈V (G) Pen[t] can be precomputed in linear time.

A second approach to speed up Brandes’ algorithm is to split the input
graph G into smaller connected components and process them separately [27, 29].
This approach is a generalization of the ideas behind removing degree-one vertices
and works with cut vertices. The basic observation for this approach is as follows.
Consider a cut vertex v such that removing v breaks the graph into two connected
components C1 and C2 (the idea generalizes to more components). Obviously,
every shortest path P in G that starts in C1 and ends in C2 has to pass through v.
For the betweenness centrality values of the vertices inside C1 (inside C2) it is not
important where exactly P ends (starts). Hence, for computing the betweenness
centrality values of the vertices in C1, it is sufficient to know which vertices
in C1 are adjacent to v and how many vertices are contained in C2. Thus,
in a preprocessing step one can just add to C1 the cut vertex v with Pen[v]
being increased by the sum of Pen[·]-values of the vertices in C2 (see Figure 1
(bottom)). Formally, this is done as follows.

Lemma 1 ([27, 29]) Let G be a connected graph, let v be a cut vertex such that
removing v yields ` ≥ 2 connected components C1, . . . , C`, and let ξ := Pen[v].
Then remove v, add a vertex vi to every component Ci, make it adjacent to all
vertices in the respective component that were adjacent to v, and set

Pen[vi] = ξ +
∑

j∈[1,`]\{i}

∑
w∈V (Cj)\{vj}

Pen[w].

For a vertex v in component Ci denote by CCi

B (v) the betweenness centrality
of v within the component Ci. Computing the betweenness centrality of each
connected component independently, increasing the betweenness centrality of v by

∑̀
i=1

(
CCi

B (vi) + (Pen[vi]− ξ) ·
∑

s∈V (Ci)\{vi}

Pen[s]
)
,

and ignoring all new vertices vi is the same as computing the betweenness
centrality in G, that is,

CGB (u) =

{
CCi

B (u), if u ∈ V (Ci) \ {vi};∑`
i=1

(
CCi

B (vi) + (Pen[vi]− ξ) ·
∑
s∈V (Ci)\{vi} Pen[s]

)
, if u = v.

JGAA, 24(3) 483–522 (2020) 489

Applying the above procedure as a preprocessing on all cut vertices and
degree-one vertices leaves us with biconnected components that we can solve each
independently. Here, we split off one special case, namely when a biconnected
component consists solely of degree-two vertices, that is, it is a cycle. The reason
for this is that our general algorithm requires vertices of degree at least three
as a basis. Our algorithm then efficiently processes paths of degree-two vertices
that connect these vertices of degree at least three.

We first look at the special case that the biconnected component is a cycle.
Then we deal with biconnected components that contain at least two vertices of
degree at least three (note that a component with only one vertex of degree at
least three cannot be biconnected).

2.1 Dealing with Cycles

We now show how to solve Weighted Betweenness Centrality on cycles
with a linear-time dynamic programming algorithm. Note that the vertices
in the cycle can have different betweenness centrality values as they can have
different Pen[·]-values.

Proposition 1 Let C = x0 . . . xqx0 be a cycle. Then, one can compute the
weighted betweenness centrality of the vertices in C in O(q) time and space.

Proof: We first introduce some notation needed for the proof. We then show
how to compute BC[v] for v ∈ V (C) efficiently. Finally, we prove the running
time.

By [xi, xj], 0 ≤ i, j ≤ q we denote the set of vertices {xi, xi+1 mod (q+1),
xi+2 mod (q+1), . . . , xj}. For a maximal induced path Pmax = x0 . . . xq, we define

W left[xi] :=

i∑
k=0

Pen[xi], and

W [xi, xj] :=


Pen[xi], if i = j;

W left[xj]−W left[xi] + Pen[xi], if i < j;

W left[xq]−W left[xi] +W left[xj] + Pen[xi], if i > j.

The value W [xi, xj] is the sum of the values Pen[xk] with xk ∈ [xi, xj]. Further,
we denote by ϕ(i) = (q+1

2 + i) mod (q + 1) the index that is “opposite” to i
on the cycle. Note that if ϕ(i) ∈ N, then xϕ(i) is the unique vertex in C to
which there are two shortest paths from xi, one visiting xi+1 mod (q+1) and one
visiting xi−1 mod (q+1). Otherwise, if ϕ(i) 6∈ N, then there is only one shortest
path from xk to any t ∈ V (C). For the sake of readability, let Pen[xϕ(xi)] = 0

if ϕ(i) 6∈ N. We denote by ϕleft(i) = dϕ(i)e − 1 mod (q + 1) the index of the
vertex to the left of index ϕ(i) and by ϕright(i) = bϕ(i)c+ 1 mod (q + 1) the
index of the vertex to the right of index ϕ(i).

490 Bentert et al. An Adaptive Version of Brandes’ Algorithm

We now describe how to compute BC[xk], 0 ≤ k ≤ q, which is the sum
of γ(xi, t, xk) over i ∈ [0, q] and t ∈ V (C), with a dynamic programming
approach.

Our base case is BC[x0]. Note that the betweenness centrality of a single
vertex can in general not be computed in O(n2−ε) time for any ε > 0 unless the
SETH fails [7]. We show how to compute the betweenness centrality of x0 in O(n)
time if the input graph is a cycle. Observe that γ(xi, t, x0) = 0 if xi = x0 or t = x0.
Also, for every shortest path starting in xϕ(0) and ending in some xj , 1 ≤ j ≤ q, it
holds that dC(xϕ(0), xj) < dC(xϕ(0), x0). Thus there is no shortest path starting
in xϕ(0) that visits x0. So we may ignore the cases i = 0 and i = ϕ(0) and

BC[x0] =
∑

i∈[0,q]\{ϕ(0)}
t∈V (C)

γ(xi, t, x0) =
∑

i∈[1,ϕleft
0]

t∈V (C)

γ(xi, t, x0) +
∑

i∈[ϕright
0 ,q]

t∈V (C)

γ(xi, t, x0)

=
∑

i∈[1,ϕleft
0]

t∈V (C)

Pen[xi] · Pen[t] · σxit
(x0)

σxit
+

∑
i∈[ϕright

0 ,q]
t∈V (C)

Pen[xi] · Pen[t] · σxit
(x0)

σxit
.

By definition of ϕ(i), we have that dC(xi, xϕleft(i)) = dC(xi, xϕright(i)) <
q+1
2 .

Hence, there is a unique shortest path from xi to xϕleft(i) visiting xi+1 mod (q+1),
and there is a unique shortest path from xi to xϕright(i) visiting xi−1 mod (q+1).
This gives us that in the equation above, in the first sum, all shortest paths
from xi to t ∈ [xϕright(i), xq] visit x0, and in the second sum, all shortest paths
from xi to t ∈ [x1, xϕleft(i)] visit x0. If ϕ(xi) ∈ N, then there are two shortest
paths from xi to xϕ(i), and one of them visits x0. With this at hand, we can
rewrite the sum as follows:

BC[x0] =

ϕleft(0)∑
i=1

(
Pen[xi] · Pen[xϕ(i)] ·

1

2
+

∑
t∈[x

ϕright(i)
,xq]

Pen[xi] · Pen[t]
)

+

q∑
i=ϕright(0)

(
Pen[xi] · Pen[xϕ(i)] ·

1

2
+

∑
t∈[x1,xϕleft(i)

]

Pen[xi] · Pen[t]
)

=

ϕleft(0)∑
i=1

Pen[xi]
(1

2
Pen[xϕ(i)] +W [xϕright(i), xq]

)
+

q∑
i=ϕright(0)

Pen[xi]
(1

2
Pen[xϕ(i)] +W [x1, xϕleft(i)]

)
.

We can precompute the values W left[·] in O(q) time. The values W [·, ·] and also
the values ϕ(i) and its variants can then be computed in constant time. Thus
computing BC[x0] takes O(q) time.

JGAA, 24(3) 483–522 (2020) 491

Assume now that we have computed BC[xk] for some 0 ≤ k < q. We claim
that BC[xk+1] can then be computed as follows:

BC[xk+1] = BC[xk]− Pen[xk+1]
(

Pen[xϕ(k+1)]

+ 2W [xϕright(k+1), xk−1 mod (q+1)]
)

+ Pen[xk]
(

Pen[xϕ(k)] + 2W [xk+2 mod (q+1), xϕleft(k)]).

(2)

To this end, observe that all shortest paths in C that contain xk as an inner
vertex also contain xk+1 as an inner vertex, except for those paths that start
or end in xk+1. Likewise, all shortest paths in C that contain xk+1 as an inner
vertex also contain xk as an inner vertex, except for those paths that start or
end in xk. Hence, to compute BC[xk+1] from BC[xk], we need to subtract
the γ-values for shortest paths starting in xk+1 and visiting xk, and we need
to add the γ-values for shortest paths starting in xk and visiting xk+1. Since
by Observation 1 each path contributes the same value to the betweenness
centrality as its reverse, it holds

BC[xk+1] = BC[xk] + 2 ·
∑

t∈V (C)

γ(xk, t, xk+1)− γ(xk+1, t, xk). (3)

With a similar argumentation as above for the computation of BC[x0], one
can show that shortest paths starting in xk and visiting xk+1 must end in a
vertex t ∈ [xk+2, xϕleft(k)] or in xϕ(k+1). Shortest paths starting in xk+1 and
visiting xk must end in t ∈ [xϕright(k+1), xk−1], or in xϕ(k). Just as above, for
both i = k and i = k+1, some fixed vertex xj is visited by only half of the shortest
paths from xi to xϕ(i). With the arguments above, we can rewrite Equation (3)
to obtain the claimed Equation (2).

After precomputing the values W left[·] and BC[x0] in O(q) time and space,
we can compute each of the values BC[xk+1] for 0 ≤ k < q in constant time.
Hence, the procedure requires O(q) time. �

2.2 Dealing with Other Biconnected Graphs

Recall that, after our preprocessing on all cut vertices and degree-one vertices,
we obtain a graph consisting of biconnected components, each of which can be
solved independently. Also, in the previous subsection, we showed how to solve
Weighted Betweenness Centrality on cycles. It remains to show how to
solve the problem on biconnected graphs that are not cycles (but contain at
least one).

Remark. Henceforth, in this paper, we assume that we are given a vertex-
weighted biconnected graph that is not a cycle.

492 Bentert et al. An Adaptive Version of Brandes’ Algorithm

x014.5

x113.0

x2

18.0

x3

23.0

x4 28.0

x5 44.5

a1

a2

d1

. .
.
d7

x014.5

x113.0

x2

18.0

x3

23.0

x4 28.0

x5 44.5

a1

a2

d1

. .
.
d7

Figure 2: An example graph containing a maximal induced path x0 . . . x5 (see
Definition 1). The labels give the betweenness centrality values of the vertices.
Marked are shortest paths from ai to x3 (left-hand side) and from di to x2
(right-hand side). The former affect the betweenness centrality value of x2, but
not of x3; the latter affect the betweenness centrality value of x3, but not of x2.
Hence, most, but not all, of the paths traversing through x2 also affect the
betweenness centrality value of x3. Note that this difference cannot be decided
locally within the maximal induced path, but can have an arbitrary effect on the
difference arbitrarily far away in the graph. In this example graph, one could
add more and more “d-vertices” (the figure shows d1–d7) to further increase the
difference in the betweenness centrality values of x2 and x3.

Outline of the algorithmic approach. Starting with a vertex-weighted
biconnected graph, our algorithm focuses on degree-two vertices. In contrast
to degree-one vertices, degree-two vertices can lie on shortest paths between
two other vertices. Moreover, different degree-two vertices on the same shortest
path can have different betweenness centrality values (see Figure 2 for an
example). This makes degree-two vertices harder to handle: Removing a degree-
two vertex v in a similar way as done with degree-one vertices (see Reduction
Rule 1) potentially affects many other shortest paths that neither start nor end
in v. Thus, we treat degree-two vertices differently: Instead of removing vertices
one-by-one, we process multiple degree-two vertices at once and exploit that
consecutive degree-two vertices share many shortest paths they lie on, storing
information about the shortest paths in a table. To this end we introduce the
notion of maximal induced paths.

Definition 1 Let G be a graph. A path P = v0 . . . v` is a maximal induced
path in G if ` ≥ 2 and the inner vertices v1, . . . , v`−1 all have degree two in G,
but the endpoints v0 and v` do not, that is, degG(v1) = . . . = degG(v`−1) = 2,
degG(v0) 6= 2, and degG(v`) 6= 2. Moreover, Pmax is the set of all maximal
induced paths in G.

In a nutshell, our algorithm treats each biconnected component of the input
graph in the following three stages (compare with Algorithm 1):

JGAA, 24(3) 483–522 (2020) 493

Algorithm 1: Algorithm for computing betweenness centrality of a
biconnected graph that is not a cycle.

Input: An undirected biconnected graph G with vertex
weights Pen: V (G)→ N.

Output: The betweenness centrality values of all vertices.

1 foreach v ∈ V (G) do BC[v]← 0
// BC will contain the betweenness centrality values

2 Pmax ← all maximal induced paths of G
// computable in O(n+m) time, see Lemma 3

3 foreach s ∈ V ≥3(G) do
// some precomputations taking O(kn) time, see Lemma 5

4 compute dG(s, t) and σst for each t ∈ V (G) \ {s}
5 Inc[s, t]← 2 · Pen[s] · Pen[t]/σst for each t ∈ V =2(G)

6 Inc[s, t]← Pen[s] · Pen[t]/σst for each t ∈ V ≥3(G) \ {s}
7 foreach x0x1 . . . xq = Pmax ∈ Pmax do

// initialize W left and W right in O(n) time

8 W left[x0]← Pen[x0]; W right[xq]← Pen[xq]

9 for i = 1 to q do W left[xi]←W left[xi−1] + Pen[xi]

10 for i = q − 1 to 0 do W right[xi]←W right[xi+1] + Pen[xi]
11 foreach x0x1 . . . xq = Pmax

1 ∈ Pmax do
// case s ∈ V =2(Pmax

1), see Section 3
/* deal with the case t ∈ V =2(Pmax

2), see Section 3.1 */
12 foreach y0y1 . . . yr = Pmax

2 ∈ Pmax \ {Pmax
1 } do

/* update BC for the case v ∈ V (Pmax
1) ∪ V (Pmax

2) */
13 foreach v ∈ V (Pmax

1) ∪ V (Pmax
2) do

BC[v]← BC[v] + γ(s, t, v)
/* now deal with the case v /∈ V (Pmax

1) ∪ V (Pmax
2) */

14 update Inc[x0, y0], Inc[xq, y0], Inc[x0, yr], and Inc[xq, yr]

/* deal with the case that t ∈ V =2(Pmax
1), see Section 3.2 */

15 foreach v ∈ V (Pmax
1) do BC[v]← BC[v] + γ(s, t, v)

16 update Inc[x0, xq] // this deals with the case v /∈ V (Pmax
1)

17 foreach s ∈ V ≥3(G) do
// perform modified BFS from s, see Section 3.3

18 foreach t, v ∈ V (G) do BC[v]← BC[v] + Inc[s, t] · σst(v)

19 return BC.

494 Bentert et al. An Adaptive Version of Brandes’ Algorithm

1. For all pairs s, t of vertices where s is of degree at least three, precom-
pute dG(s, t) and σst, and initialize a table Inc[s, t] (see Lines 3 to 6).

2. Compute betweenness centrality values for paths starting and ending in
maximal induced paths and store them in Inc[·, ·], considering two cases
(see Lines 11 to 16):

– both endpoints of the path are in the same maximal induced path;
– the endpoints are in two different maximal induced paths.

3. In a postprocessing step, compute the betweenness centrality for all remain-
ing paths (at least one endpoint is of degree at least three) and incorporate
the values stored in Inc[·, ·] (see Lines 17 to 18).

Note that in a biconnected graph that is not a cycle, every degree-two vertex
is an inner vertex of a maximal induced path. If some degree-two vertex v was
not contained in a maximal induced path, then v would be contained in a cycle
that contains exactly one vertex u that is of degree at least three. But then u
is a cut vertex and the graph would not be biconnected; a contradiction. The
remaining part of the algorithm deals with maximal induced paths. Note that if
the (biconnected) graph is not a cycle, then all degree-two vertices are contained
in maximal induced paths:

Using standard arguments, we can show that the number of maximal induced
paths is upper-bounded by the minimum of the feedback edge number k of the
input graph and the number n of vertices. Moreover, one can easily compute all
maximal induced paths in linear-time (see Line 2 of Algorithm 1).

Lemma 2 Let G be a graph with feedback edge number k that does not contain
degree-one vertices. Then G contains at most min{n, 2k} vertices of degree at
least three and at most min{n, 3k} maximal induced paths.

Proof: Recall that our graph is biconnected. Thus
∑
v∈V (G) deg(v) = 2m =

2(n− 1 + k), and

2(n− 1 + k) = 2(|V =2(G)|+ |V ≥3(G)| − 1 + k)

=
∑

v∈V (G)

deg(v) =
∑

v∈V =2(G)

deg(v) +
∑

v∈V ≥3(G)

deg(v)

≥ 2 · |V =2(G)|+ 3 · |V ≥3(G)|.

Solving for |V ≥3(G)| gives us that there are at most 2k − 2 vertices of degree at
least three. Then

∑
v∈V ≥3(G) deg(v) = 3|V ≥3(G)| ≤ 6k− 6. It follows that there

are at most 3k paths whose endpoints are in V ≥3(G), hence |Pmax| ≤ 3k − 3.
Clearly, for both the number of vertices of degree at least three and number of
maximal induced paths, n is also a valid upper bound. �

Lemma 3 The set Pmax of all maximal induced paths of a graph with n vertices
and m edges can be computed in O(n) time.

JGAA, 24(3) 483–522 (2020) 495

Proof: Iterate through all vertices v ∈ V (G). If v ∈ V =2(G), then iteratively
traverse the two edges incident to v to discover adjacent degree-two vertices until
finding endpoints v`, vr ∈ V ≥3(G). If v` = vr, then we found a cycle which can
be ignored. Otherwise, we have a maximal induced path Pmax = v` . . . vr, which
we add to Pmax.

Note that every degree-two vertex is contained either in exactly one maximal
induced path or in exactly one cycle. Hence, we do not need to reconsider any
degree-two vertex found in the traversal above and we can find all maximal
induced paths in O(n) time. �

Our algorithm processes the maximal induced paths one by one (see Lines 3
to 18). This part of the algorithm requires pre- and postprocessing (see Lines 3
to 10 and Lines 17 to 18 respectively). In the preprocessing, we initialize tables
that are frequently used in the main part (of Section 3). The postprocessing
computes the final betweenness centrality values of each vertex as this compu-
tation is too time-consuming to be executed for each maximal induced path.
When explaining our basic ideas, we will first present the postprocessing as this
explains why certain values will be computed during the algorithm.

Recall that we want to compute
∑
s,t∈V (G) γ(s, t, v) for each v ∈ V (G) (see

Equation (1)). Using the following observations, we split Equation (1) into
different parts.

Observation 1 For s, t, v ∈ V (G) it holds that γ(s, t, v) = γ(t, s, v).

Observation 2 Let G be a biconnected graph with at least one vertex of degree
at least three. Let v ∈ V (G). Then,∑
s,t∈V (G)

γ(s, t, v) =
∑

s∈V ≥3(G), t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(t, s, v)

+
∑

s∈V =2(Pmax
1), t∈V =2(Pmax

2)
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v) +
∑

s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

Proof: The first two sums cover all pairs of vertices in which at least one of the
two vertices is of degree at least three. The other two sums cover all pairs of
vertices which both have degree two. As all vertices of degree two must be part
of some maximal induced path, we have V =2(G) = V =2(

⋃
Pmax). Two vertices

of degree two can thus either be in two different maximal induced paths (third
sum) or in the same maximal induced path (fourth sum). �

In the remaining graph, by Lemma 2, there are at most O(min{k, n}) vertices
of degree at least three and at most O(k) maximal induced paths. This implies
that we can afford to run the modified BFS (similar to Brandes’ algorithm)
from each vertex s ∈ V ≥3(G) in O(min{k, n} · (n + k)) = O(kn) time. This
computes the first summand and, by Observation 1, also the second summand in
Observation 2. However, we cannot afford to run such a BFS from every vertex.
Thus, we need to compute the third and fourth summands differently.

496 Bentert et al. An Adaptive Version of Brandes’ Algorithm

To this end, note that σst(v) is the only term in γ(s, t, v) that depends on v.
Our goal is to precompute γ(s, t, v)/σst(v) = Pen[s] · Pen[t]/σst for as many
vertices as possible. Hence, we store precomputed values in a table Inc[·, ·] (see
Lines 6, 14 and 16). Then, we plug this factor into the next lemma which
provides our postprocessing.

Lemma 4 Let s be a vertex and let f : V (G)2 → N be a function such that for
each u, v ∈ V (G) the value f(u, v) can be computed in O(τ) time. Then, for
all v ∈ V (G) one can compute the value

∑
t∈V (G) f(s, t) · σst(v) in O(n · τ +m)

time.

Proof: This proof generally follows the structure of the proof by Brandes [5,
Theorem 6, Corollary 7], the main difference being the generalization of the
distance function to an arbitrary function f .

Analogously to Brandes we define σst(v, w) as the number of shortest paths
from s to t that contain the edge {v, w}, and Ss(v) as the set of successors of
a vertex v on shortest paths from s, that is, Ss(v) = {w ∈ V (G) | {v, w} ∈
E ∧ dG(s, w) = dG(s, v) + 1}. For the sake of readability we also define χsv =∑
t∈V (G) f(s, t) · σst(v). We will first derive a series of equations that show how

to compute χsv. Afterwards we justify Equations (4) and (5).

χsv =
∑

t∈V (G)

f(s, t) · σst(v)

=
∑

t∈V (G)

f(s, t)
∑

w∈Ss(v)

σst(v, w) =
∑

w∈Ss(v)

∑
t∈V (G)

f(s, t) · σst(v, w) (4)

=
∑

w∈Ss(v)

((∑
t∈V (G)\{w}

f(s, t) · σst(v, w)
)

+ f(s, w) · σsw(v, w)
)

=
∑

w∈Ss(v)

((∑
t∈V (G)\{w}

f(s, t) · σst(w) · σsv
σsw

)
+ f(s, w) · σsv

)
(5)

=
∑

w∈Ss(v)

(
χsw ·

σsv
σsw

+ f(s, w) · σsv
)

We will now show that Equations (4) and (5) are correct. All other equalities are
based on simple arithmetics. To see that Equation (4) is correct, observe that
each shortest path from s to any other vertex t that contains v either ends in v,
that is, t = v, or contains exactly one edge {v, w}, where w ∈ Ss(v). If t = v,
then σst(v) = 0 and therefore

∑
t∈V σst(v) =

∑
t∈V

∑
w∈Ss(v)

σst(v, w). To see

that Equation (5) is correct, observe the following. First, note that the number
of shortest paths from s to t that contain a vertex v is

σst(v) =

{
0, if dG(s, v) + dG(v, t) > dG(s, t);

σsv · σvt, otherwise;

JGAA, 24(3) 483–522 (2020) 497

second, note that the number of shortest st-paths that contain an edge {v, w}, w ∈
Ss(v), is

σst(v, w) =

{
0, if dG(s, v) + dG(w, t) + 1 > dG(s, t);

σsv · σwt, otherwise;

and third, note that the number of shortest sw-paths that contain v is equal to
the number of shortest sv-paths. The combination of these three observations
yields σst(v, w) = σsv · σwt = σsv · σst(w)/σsw.

We next show how to compute χsv for all v ∈ V in O(m+ n · τ) time. First,
order the vertices in non-increasing distance to s and compute the set of all
successors of each vertex in O(m) time using breadth-first search. Note that
the number of successors of all vertices is at most m since each edge defines at
most one successor-predecessor relation. Then compute χsv for each vertex by a
dynamic program that iterates over the ordered list of vertices and computes∑

w∈Ss(v)

(
χsw ·

σsv
σsw

+ f(s, w) · σsv
)

in overall O(m+n ·τ) time. This can be done by first computing σst for all t ∈ V
in overall O(m) time due to Brandes [5, Corollary 4] and f(s, t) for all t ∈ V (G)
in O(n · τ) time, and then using the already computed values Ss(v) and χsw to
compute

χsv =
∑

w∈Ss(v)

(
χsw ·

σsv
σsw

+ f(s, w) · σsv
)

in O(|Ss(v)|) time. Note that
∑
v∈V |Ss(v)| ≤ O(m). This concludes the proof.

�

The proof of Lemma 4 provides us with an algorithm. Our goal is then to only
start this algorithm from few vertices, specifically the vertices of degree at least
three (see Line 18 of Algorithm 1). Since the term τ in the above lemma will be
constant, we obtain a running time of O(kn) for running this postprocessing on
all vertices of degree at least three. The most intricate part will be to precompute
the factors in Inc[·, ·] (see Lines 14 and 16 of Algorithm 1). We defer the details to
Sections 3.1 and 3.2. In these parts, we need the tables W left and W right. These
tables store values depending on the maximal induced path a vertex is in. More
precisely, for a vertex xi in a maximal induced path Pmax = x0 . . . xq, we store
in W left[xk] the sum of the Pen[·]-values of vertices “left of” xk in Pmax; formally,

W left[xk] =
∑k
i=1 Pen[xi]. Similarly, we have W right[xk] =

∑q−1
i=k Pen[xi]. The

reason for having these tables is easy to see: Assume for the vertex xk ∈ Pmax

that the shortest paths to t /∈ V (Pmax) leave Pmax through x0. Then, it is
equivalent to just consider the shortest path(s) starting in x0 and simulate
the vertices between xk and x0 in Pmax by “temporarily increasing” Pen[x0]
by W left[xk]. This is also the idea behind the argument that we only need to
increase the values Inc[·, ·] for the endpoints of the maximal induced paths in
Line 14 of Algorithm 1.

498 Bentert et al. An Adaptive Version of Brandes’ Algorithm

Theorem 1

both endpoints in
different paths
(Proposition 2)

v outside
of the paths
(Lemma 6)

v inside
one path

(Lemma 8∗)

symmetry (Lemma 7∗)

both endpoints in
the same path
(Proposition 3)

v inside
the path

(Lemma 9∗)

v outside
of the path

(Lemma 10∗)

postprocessing (Lemma 4)

at least one end-
point of degree
at least three

Figure 3: Structure of how the proof of Theorem 1 is split into different cases. By
“paths” we mean maximal induced paths. The first layer below the main theorem
specifies the positions of the endpoints s and t, whereas the second layer specifies
the position of the vertex v, for which the betweenness centrality is computed.
The third layer displays further lemmata used to prove the corresponding lemma
above. Proofs of lemmata marked with an asterisk are deferred to the appendix.

This leaves us with the remaining part of the preprocessing: the computation
of the distances dG(s, t), the number of shortest paths σst, and Inc[s, t] for s ∈
V ≥3(G), t ∈ V (G) (see Lines 3 to 6). This can be done in O(kn) time as well.

Lemma 5 The initialization in the for-loop in Lines 3 to 6 of Algorithm 1 can
be done in O(kn) time.

Proof: Following Brandes [5, Corollary 4], computing the distances and the
number of shortest paths from a fixed vertex s to every t ∈ V (G) takes O(m) =
O(n+ k) time. Once these values are computed for a fixed s, computing Inc[s, t]
for t ∈ V (G) takes O(n) time since the values Pen[s], Pen[t], and σst are known.
Since, by Lemma 2, there are O(min{k, n}) vertices of degree at least three, it
takes O(min{k, n} · (n+ k + n)) = O(kn) time to compute Lines 3 to 6. �

3 Dealing with maximal induced paths

In this section, we focus on degree-two vertices contained in maximal induced
paths. Recall that the goal is to compute the betweenness centrality CB(v) (see
Equation (1)) for all v ∈ V (G) in O(kn) time. In the end of this section, we
finally prove our main theorem (Theorem 1).

Figure 3 shows the general proof structure of the main theorem. Based on
Observation 2, which we use to split the sum in Equation (1) in the definition of
Weighted Betweenness Centrality, we compute CB(v) in three steps. By

JGAA, 24(3) 483–522 (2020) 499

starting a modified BFS from vertices in V ≥3(G) similarly to Baglioni et al. [3]
and Brandes [5], we can compute

∑
s∈V ≥3(G),t∈V (G)

γ(t, s, v) +
∑

s∈V =2(G),t∈V ≥3(G)

γ(s, t, v)

for all v ∈ V (G) in overall O(kn) time. In the next two subsections, we show
how to compute the remaining two summands given in Observation 2 (i.e., we
prove Propositions 2 and 3). In the last subsection, we prove Theorem 1.

3.1 Paths with endpoints in different maximal induced
paths

In this subsection, we look at shortest paths between pairs of maximal induced
paths Pmax

1 = x0 . . . xq and Pmax
2 = y0 . . . yr, and how to efficiently determine

how these paths affect the betweenness centrality of each vertex.

Proposition 2 In O(kn) time one can compute the following values for all v ∈
V (G): ∑

s∈V =2(Pmax
1), t∈V =2(Pmax

2)
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v).

In the proof of Proposition 2, we consider two cases for every pair Pmax
1 6=

Pmax
2 ∈ Pmax of maximal induced paths: First, we look at how the shortest

paths between vertices in Pmax
1 and Pmax

2 affect the betweenness centrality of
those vertices that are not contained in the two maximal induced paths, and
second, how they affect the betweenness centrality of those vertices that are
contained in the two maximal induced paths. Finally, we prove Proposition 2.

Throughout the following proofs, we will need the following definitions (see

Figure 4 for an illustration). Let t ∈ Pmax
2 . Then we choose vertices xleftt , xrightt ∈

V =2(Pmax
1) such that shortest paths from t to s ∈ {x1, x2, . . . , xleftt } =: X left

t en-

ter Pmax
1 only via x0, and shortest paths from t to s ∈ {xrightt , . . . , xq−2, xq−1} =:

Xright
t enter Pmax

1 only via xq. There may exist a vertex xmid
t to which there are

shortest paths both via x0 and via xq. For computing the indices of these vertices,
we determine an index i such that dG(x0, t) + i = dG(xq, t) + q− i which is equiv-
alent to i = 1

2 (q − dG(x0, t) + dG(xq, t)). If i is integral, then xmid
t = xi, x

left
t =

xi−1 and xrightt = xi+1. Otherwise, xmid
t does not exist, and xleftt = xi−1/2

and xrightt = xi+1/2. For easier argumentation, if xmid
t does not exist, then we

say that Pen[xmid
t] = σtxmid

t
(v)/σtxmid

t
= 0, and hence, γ(xmid

t , t, v) = 0.

3.1.1 Vertices outside of the maximal induced paths

We now show how shortest paths between two fixed maximal induced paths Pmax
1

and Pmax
2 affect the betweenness centrality of vertices v that are not contained

in Pmax
1 or in Pmax

2 , that is v ∈ V (G)\ (V (Pmax
1)∪V (Pmax

2)). Recall that in the

500 Bentert et al. An Adaptive Version of Brandes’ Algorithm

x0

xq

xmid
t

xrightt

xleftt

t ∈ Pmax
2Pmax

1

Figure 4: An exemplary graph containing two maximal induced paths Pmax
1 =

x0 . . . xq and Pmax
2 . The curled lines depict shortest paths from t to x0 and to xq

respectively. We then choose xleftt , xmid
t , xrightt ∈ V (Pmax

1) in such a way that the

distance from t to xleftt and to xrightt is equal, that is, the red (solid) line and
the blue (dashed) line represent shortest paths of same length. Since xmid

t is

adjacent to xleftt and xrightt , there are shortest paths from xmid
t to t via both x0

and xq, that is, along the blue and the red line.

course of the algorithm we first gather values in Inc[s, t] for every s ∈ V ≥3(G)
and t ∈ V (G). Hereby, Inc[s, t] = γ(s, t, v)/σst(v) measures how much the
shortest paths from s to t affect the betweenness centrality of all vertices in the
graph. Then, in the final step we compute Inc[s, t] · σst(v) in O(kn) time.

Lemma 6 Let Pmax
1 6= Pmax

2 ∈ Pmax and assume that the values dG(s, t),
W left[v] and W right[v] are known for s, t ∈ V ≥3(G) and v ∈ V =2(G), respectively.
Then, excluding the running time of the postprocessing (see Lines 17 to 18 in
Algorithm 1), one can compute in O(|V =2(Pmax

2)|) time the following.∑
s∈V =2(Pmax

1),t∈V =2(Pmax
2)

γ(s, t, v). (6)

Proof: We fix Pmax
1 6= Pmax

2 ∈ Pmax with Pmax
1 = x0 . . . xq and Pmax

2 = y0 . . . yr.
We show how to compute

∑
s∈V =2(Pmax

1) γ(s, t, v) for a fixed t ∈ V =2(Pmax
2)

and v ∈ V (G) \ (V (Pmax
1)∪V (Pmax

2)). Afterwards, we analyze the running time.

By definition of xleftt , xmid
t and xrightt we have∑

s∈V =2(Pmax
1)

γ(s, t, v) = γ(xmid
t , t, v) +

∑
s∈Xleft

t

γ(s, t, v) +
∑

s∈Xright
t

γ(s, t, v). (7)

By definition of maximal induced paths, every shortest path from s ∈
V =2(Pmax

1) to t visits either y0 or yr. For ψ ∈ {x0, xq} let S(t, ψ) be a max-
imal subset of {y0, yr} such that for each ϕ ∈ S(t, ψ) there is a shortest st-
path via ψ and ϕ. An example for this notation is given in Figure 5. Then,
for s ∈ X left

t , all st-paths visit x0 and ϕ ∈ S(t, x0). Hence, we have that σst =

JGAA, 24(3) 483–522 (2020) 501

Pmax
1

Pmax
2

ϕ ϕ̄

y0 yrs

t

v

Figure 5: An example for the proof
of Lemma 6. The endpoints of Pmax

1

are ϕ and ϕ̄. In this example we
have s ∈ X left

t , and the set S(t, x0) =
{ϕ}. Hence, every shortest path from s
to t visits y0 and ϕ.

∑
ϕ∈S(t,x0)

σx0ϕ and σst(v) =
∑
ϕ∈S(t,x0)

σx0ϕ(v). Analogously, for s ∈ Xright
t we

have that σst =
∑
ϕ∈S(t,xq)

σxqϕ and σst(v) =
∑
ϕ∈S(t,xq)

σxqϕ(v). Paths from t

to xmid
t may visit x0 and ϕ ∈ S(t, x0) or xq and ϕ ∈ S(t, xq). Hence, σtxmid

t
=∑

ϕ∈S(tx0)
σx0ϕ +

∑
ϕ∈S(t,xq)

σxqϕ. The equality holds analogously for σtxmid
t

(v).
With this at hand, we can simplify the computation of the first sum of Equa-
tion (7):

∑
s∈Xleft

t

γ(s, t, v) =
∑

s∈Xleft
t

Pen[s] · Pen[t] · σst(v)

σst

=
(∑
s∈Xleft

t

Pen[s]
)
· Pen[t] ·

∑
ϕ∈S(t,x0)

σx0ϕ(v)∑
ϕ∈S(t,x0)

σx0ϕ

= W left[xleftt] · Pen[t] ·
∑
ϕ∈S(t,x0)

σx0ϕ(v)∑
ϕ∈S(t,x0)

σx0ϕ
. (8)

Analogously,

∑
s∈Xright

t

γ(s, t, v) = W right[xrightt] · Pen[t] ·
∑
ϕ∈S(t,xq)

σxqϕ(v)∑
ϕ∈S(t,xq)

σxqϕ
, (9)

and

γ(xmid
t , t, v) = Pen[xmid

t] · Pen[t] ·
∑
ϕ∈S(t,x0)

σx0ϕ(v) +
∑
ϕ∈S(t,xq)

σxqϕ(v)∑
ϕ∈S(t,x0)

σx0ϕ +
∑
ϕ∈S(t,xq)

σxqϕ
.

(10)

With this we can rewrite Equation (7) to

502 Bentert et al. An Adaptive Version of Brandes’ Algorithm

∑
s∈V =2(Pmax

1)

γ(s, t, v)

(8),(9),(10)
=

W left[xleftt] · Pen[t]∑
ϕ∈S(t,x0)

σx0ϕ
·
∑

ϕ∈S(t,x0)

σx0ϕ(v)

+
W right[xrightt] · Pen[t]∑

ϕ∈S(t,xq)
σxqϕ

·
∑

ϕ∈S(t,xq)

σxqϕ(v)

+ Pen[xmid
t] · Pen[t] ·

∑
ϕ∈S(t,x0)

σx0ϕ(v) +
∑
ϕ∈S(t,xq)

σxqϕ(v)∑
ϕ∈S(t,x0)

σx0ϕ +
∑
ϕ∈S(t,xq)

σxqϕ
.

By joining values σx0ϕ(v) and σxqϕ(v) we obtain

∑
s∈V =2(Pmax

1)

γ(s, t, v)

=
(
W left[xleft

t]·Pen[t]∑
ϕ∈S(t,x0) σx0ϕ

+
Pen[xmid

t]·Pen[t]∑
ϕ∈S(t,x0) σx0ϕ+

∑
ϕ∈S(t,xq) σxqϕ

)
·
∑

ϕ∈S(t,x0)

σx0ϕ(v) (11)

+
(
W right[xright

t]·Pen[t]∑
ϕ∈S(t,xq) σxqϕ

+
Pen[xmid

t]·Pen[t]∑
ϕ∈S(t,x0) σx0ϕ+

∑
ϕ∈S(t,xq) σxqϕ

)
·
∑

ϕ∈S(t,xq)

σxqϕ(v) (12)

=: X1 ·
∑

ϕ∈S(t,x0)

σx0ϕ(v) +X2 ·
∑

ϕ∈S(t,xq)

σxqϕ(v).

Note that we define X1 and X2 to be the terms in the parentheses before the
two sums.

We need to increase the betweenness centrality of all vertices on shortest paths
from s to t via x0 by the value of Term (11), and those shortest paths via xq by
the value of Term (12). By Lemma 4, increasing Inc[s, t] by some value A ensures
the increment of the betweenness centrality of v by A · σst(v) for all vertices v
that are on a shortest path between s and t. Hence, increasing Inc[x0, ϕ] for
every ϕ ∈ S(t, x0) byX1 is equivalent to increasing the betweenness centrality of v
by the value of Term (11). Analogously, increasing Inc[xq, ϕ] for every ϕ ∈ S(t, xq)
by X2 is equivalent to increasing the betweenness centrality of v by the value of
Term (12).

We now have incremented Inc[ψ,ϕ] for ψ ∈ {x0, xq} and ϕ ∈ {y0, yr} by
certain values, and we have shown that this increment is correct if the shortest ψϕ-
paths do not visit inner vertices of Pmax

1 or Pmax
2 . We still need to show that

(1) increasing Inc[ψ,ϕ] does not affect the betweenness centrality of ψ or ϕ, and
that (2) we increase Inc[ψ,ϕ] only if no shortest ψϕ-path visits inner vertices
of Pmax

1 or Pmax
2 .

For (1), recall that for each s, t ∈ V ≥3(G) the betweenness centrality of v ∈
V (G) is increased by Inc[s, t]·σst(v). But since σψϕ(ψ) = σψϕ(ϕ) = 0, increments
of Inc[ψ,ϕ] do not affect the betweenness centrality of ψ or ϕ.

JGAA, 24(3) 483–522 (2020) 503

For (2), suppose that there is a shortest ψϕ-path that visits inner vertices
of Pmax

2 . Let ϕ̄ 6= ϕ be the second endpoint of Pmax
2 . Then dG(ψ,ϕ) =

dG(ψ, ϕ̄) + dG(ϕ̄, ϕ), and for all inner vertices yi of Pmax
2 , that is, for all yi

with 1 ≤ i < r, it holds that

dG(ψ,ϕ)+dG(ϕ, yi) = dG(ψ, ϕ̄)+dG(ϕ̄, ϕ)+dG(ϕ, yi) > dG(ψ, ϕ̄)+dG(ϕ̄, yi).

Hence, there are no shortest yiψ-paths that visit ϕ, and consequently Inc[ψ,ϕ]
will not be incremented. The same argument holds if there is a shortest ψϕ-path
that visits inner vertices of Pmax

1 .
Finally, we analyze the running time. The values W left[·], W right[·] and Pen[·]

as well as the distances and number of shortest paths between all pairs of
vertices of degree at least three are assumed to be known. With this, S(t, x0)
and S(t, xq) can be computed in constant time. Hence, the values X1 and X2

can be computed in constant time for a fixed t ∈ V =2(Pmax
2). Thus, the running

time to compute the increments of Inc[·, ·] is upper-bounded by O(|V (Pmax
2)|).

�

3.1.2 Vertices inside the maximal induced paths

We now consider how shortest paths between pairs of two maximal induced
paths Pmax

1 6= Pmax
2 affect the betweenness centrality of their vertices.

When iterating through all pairs Pmax
1 6= Pmax

2 ∈ Pmax, one will encounter the
pair (Pmax

1 , Pmax
2) and its reverse (Pmax

2 , Pmax
1). Since our graph is undirected,

instead of looking at the betweenness centrality of the vertices in both maximal
induced paths, it suffices to consider only the vertices inside the second maximal
induced path of the pair. This is shown in the following lemma.

Lemma 7 Computing for every Pmax
1 6= Pmax

2 ∈ Pmax and for each ver-
tex v ∈ V (Pmax

1) ∪ V (Pmax
2) ∑
s∈V =2(Pmax

1), t∈V =2(Pmax
2)

γ(s, t, v) (13)

is equivalent to computing for every Pmax
1 6= Pmax

2 ∈ Pmax and for each v ∈
V (Pmax

2)

Xv =


∑

s∈V =2(Pmax
1),t∈V =2(Pmax

2)

γ(s, t, v), if v ∈ V (Pmax
1) ∩ V (Pmax

2);

2 ·
∑

s∈V =2(Pmax
1),t∈V =2(Pmax

2)

γ(s, t, v), otherwise.

(14)

Proof: We will first assume that V (Pmax
1) ∩ V (Pmax

2) = ∅ for every Pmax
1 6=

Pmax
2 ∈ Pmax, and will discuss the special case V (Pmax

1) ∩ V (Pmax
2) 6= ∅ after-

wards.
For every fixed {Pmax

1 , Pmax
2 } ∈

(Pmax

2

)
and for every v ∈ V (Pmax

2), the
betweenness centrality of v is increased by

504 Bentert et al. An Adaptive Version of Brandes’ Algorithm

∑
s∈V =2(Pmax

1),t∈V =2(Pmax
2)

γ(s, t, v) +
∑

s∈V =2(Pmax
2),t∈V =2(Pmax

1)

γ(s, t, v),

and by Observation 1 this is equal to

2 ·
∑

s∈V =2(Pmax
1),t∈V =2(Pmax

2)

γ(s, t, v) (15)

Analogously, for every w ∈ V (Pmax
1), the betweenness centrality of v is increased

by

2 ·
∑

s∈V =2(Pmax
1),t∈V =2(Pmax

2)

γ(s, t, w).

Thus, computing Sum (15) for v ∈ V (Pmax
2) for every pair Pmax

1 6= Pmax
2 ∈ Pmax

is equivalent to computing Sum (13) for v ∈ V (Pmax
1) ∪ V (Pmax

2) for every
pair Pmax

1 6= Pmax
2 ∈ Pmax, since when iterating over pairs of maximal induced

paths we will encounter both the pairs (Pmax
1 , Pmax

2) and (Pmax
2 , Pmax

1).
Consider now the special case that there exists a vertex v ∈ V (Pmax

1) ∩
V (Pmax

2). Note that this vertex can only be endpoints of Pmax
1 and Pmax

2 , and
it is covered once when performing the computations for (Pmax

1 , Pmax
2), and

once when performing the computations for (Pmax
2 , Pmax

1). Hence, we are doing
computations twice. We compensate for this by increasing the betweenness
centrality of v only by

∑
s∈V =2(Pmax

1),t∈V =2(Pmax
2)

γ(s, t, v)

for all Pmax
1 6= Pmax

2 , for vertices v ∈ V (Pmax
1) ∩ V (Pmax

2). �

With this at hand we can show how to compute Xv for each v ∈ V (Pmax
2),

for a pair Pmax
1 6= Pmax

2 ∈ Pmax of maximal induced paths. To this end, we
show the following lemma.

Lemma 8 Let Pmax
1 6= Pmax

2 ∈ Pmax. Then, given that the values dG(s, t), σst,
W left[v] and W right[v] are known for s ∈ V ≥3(G) and t ∈ V (G), and v ∈ V =2(G),
respectively, one can compute for all v ∈ V (Pmax

2) in O(|V (Pmax
2)|) time:∑

s∈V =2(Pmax
1), t∈V =2(Pmax

2)

γ(s, t, v). (16)

Since the proof of Lemma 8 is rather tedious and technical, we defer it to
Appendix B. The proof consists of two steps. First, we show how to compute
the value

∑
s∈V =2(Pmax

1) γ(s, t, v) for a fixed t ∈ V =2(Pmax
2) and v ∈ V (Pmax

2)

JGAA, 24(3) 483–522 (2020) 505

in constant time; here we use that the values listed in the lemma are known.
Second, we use a dynamic program to compute for all v ∈ V (Pmax

2) the value of
Sum (16) in O(|V (Pmax

2)|) time, using the fact that the difference between the
sums of two adjacent v, v′ ∈ V (Pmax

2) can be computed in constant time.
We are now ready to combine Lemmata 6 to 8 to prove Proposition 2.

As mentioned above, to keep the proposition simple, we assume that the val-
ues Inc[s, t] · σst(v) can be computed in constant time for every s, t ∈ V ≥3(G)
and v ∈ V (G). In fact, these values are computed in the last step of the algorithm
(see Lines 17 and 18 in Algorithm 1 and Lemma 4).

Proposition 2 (Restated) In O(kn) time one can compute the following val-
ues for all v ∈ V (G): ∑

s∈V =2(Pmax
1), t∈V =2(Pmax

2)
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v).

Proof: Let Pmax
1 6= Pmax

2 ∈ Pmax. Then, for each v ∈ V (G) = (V (G) \
(V (Pmax

1) ∪ V (Pmax
2))) ∪ (V (Pmax

1) ∪ V (Pmax
2)), we need to compute∑

s∈V =2(Pmax
1),t∈V =2(Pmax

2)

γ(s, t, v). (17)

We first compute in O(kn) time the values dG(s, t) and σst for every s, t ∈
V ≥3(G), as well as the values W left[v] and W right[v] for every v ∈ V =2(G), see
Lines 3 to 10 in Algorithm 1. Combining Lemmata 4 and 6 we can compute
Sum (17) in O(|V (Pmax

2)|) time for v ∈ V (G)\(V (Pmax
1)∪V (Pmax

2)), plus O(kn)
time for a final postprocessing step. Given the values ρi of Lemma 8 we can
compute the values Xv defined in Equation (14) for v = yi ∈ V (Pmax

2) as follows:

Xv = Xyi =

{
ρi, if v ∈ V (Pmax

1) ∩ V (Pmax
2);

2ρi, otherwise.

This can be done in constant time for a single v ∈ V (Pmax
2); thus it can be done

in O(|V (Pmax
2)|) time overall. Hence, by Lemma 7, we can compute Sum (17)

for V (Pmax
1) ∪ V (Pmax

2) in O(|V (Pmax
2)|) time.

Sum (17) must be computed for every pair Pmax
1 6= Pmax

2 ∈ Pmax. Thus,
without the pre- and postprocessing steps, we require

O
(∑
Pmax

1 6=Pmax
2 ∈Pmax

|V (Pmax
2)|

)
= O

(∑
Pmax

1 ∈Pmax

∑
Pmax

2 ∈Pmax

Pmax
1 6=Pmax

2

(
|V =2(Pmax

2)|+ |V ≥3(Pmax
2)|

))

= O
(∑
Pmax

1 ∈Pmax

n
)

= O(kn) (18)

506 Bentert et al. An Adaptive Version of Brandes’ Algorithm

time, since there are at most O(k) maximal induced paths and at most n vertices
in all maximal induced paths combined. �

3.2 Paths with endpoints in the same maximal induced
path

We now look at shortest paths starting and ending in a maximal induced
path Pmax = x0 . . . xq and show how to efficiently compute how these paths
affect the betweenness centrality of all vertices in the graph. The goal is to prove
the following.

Proposition 3 In O(kn) time one can compute the following for all v ∈ V (G):∑
s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

We start off by noting the following.

Observation 3 Let v ∈ V (G) and let Pmax = x0 . . . xq be a maximal induced
path. Then

∑
s,t∈V =2(Pmax)

γ(s, t, v) =
∑

i,j∈[1,q−1]

γ(xi, xj , v) = 2 ·
q−1∑
i=1

q−1∑
j=i+1

γ(xi, xj , v).

For the sake of readability we set [xp, xr] := {xp, xp+1, . . . , xr}, p < r.
We will distinguish between two different cases that we then treat separately:
Either v ∈ [xi, xj] or v ∈ V (G) \ [xi, xj]. We will show that both cases can
be solved in overall O(|V (Pmax)|) time for Pmax. Doing this for all maximal
induced paths results in a time of O(

∑
Pmax∈Pmax |V =2(Pmax)|) = O(n). In the

calculations we will distinguish between the two main cases—all shortest xixj-
paths are fully contained in Pmax, or all shortest xixj-paths leave Pmax—and
the corner case that there are some shortest paths inside Pmax and some that
partially leave it.

We will now compute the value for all paths that only consist of vertices
in Pmax, that is, we will compute for each xk with i < k < j the term

2 ·
q−1∑
i=1

q−1∑
j=i+1

γ(xi, xj , xk)

with a dynamic program in O(|V (Pmax)|) time. Since i < k < j, by Observa-
tion 1, this can be simplified to

2 ·
∑

i∈[1,q−1]
i<k

∑
j∈[i+1,q−1]

k<j

γ(xi, xj , xk) = 2 ·
∑

i∈[1,k−1]

∑
j∈[k+1,q−1]

γ(xi, xj , xk).

JGAA, 24(3) 483–522 (2020) 507

Pmaxx0 xqs t

v

Figure 6: A maximal induced path that affects the betweenness centralities of
vertces outside of Pmax, such as v. Clearly, if there is a shortest st-path visiting v
(thick edge), then there exists a shortest x0xq-path visiting v (dashed edge). On
an intuitive level, we store the information of the vertices inside of Pmax in the
table entry Inc[x0, xq].

Lemma 9 Let Pmax = x0 . . . xq be a maximal induced path and assume that the
values dG(s, t), σst, W

left[v] and W right[v] were precomputed for s, t ∈ V ≥3(G)
and v ∈ V =2(G), respectively. Then, in O(|V (Pmax)|) time, one can compute
the following for all xk with 0 ≤ k ≤ q:

αxk
:= 2 ·

∑
i∈[1,k−1]

∑
j∈[k+1,q−1]

γ(xi, xj , xk).

The main idea of the dynamic program is the following. Given the value of αxk
,

one can compute its difference to αxk+1
in constant time, once W left,W right are

precomputed (see Lines 7 to 10 in Algorithm 1). These tables can be computed
in O(|V (Pmax)|) time as well. The proof of Lemma 9 is deferred to Appendix C.1.

Now we need to show how to compute the value for all paths that (partially)
leave Pmax. See Figure 6 for an example of such a path.

Lemma 10 Let Pmax = x0 . . . xq be a maximal induced path. Then, excluding
the running time of the postprocessing (see Lines 17 and 18 in Algorithm 1), one
can compute in O(|V (Pmax)|) time the following for all v ∈ V (G) \ [xi, xj]:

βv :=
∑

i∈[1,q−1]

∑
j∈[i+1,q−1]

γ(xi, xj , v)βv.

The proof of Lemma 10 is split into two cases: Either v ∈ V (G) \ V (Pmax),
or v ∈ V (Pmax) \ [xi, xj] (the case that v ∈ [xi, xj] is covered by Lemma 9). The
first case makes use of the postprocessing step (see Lines 17 to 18 in Algorithm 1)
which was used in an analogous way in the proof of Lemma 6, while the second
case uses a dynamic programming approach similar to the one used in the proof
of Lemma 9. The proof details can be found in Appendix C.2.

3.3 Postprocessing and algorithm summary

We are now ready to combine all parts and prove our main theorem.

Theorem 1 Betweenness Centrality can be solved in O(kn) time and
space, where k is the feedback edge number of the input graph.

508 Bentert et al. An Adaptive Version of Brandes’ Algorithm

Proof: As shown in Proposition 1, if the input graph G is a cycle, then we are
done.

We show that Algorithm 1 computes the value

CB(v) =
∑

s,t∈V (G)

Pen[s] · Pen[t] · σst(v)

σst
=

∑
s,t∈V (G)

γ(s, t, v)

for all v ∈ V (G) in O(kn) time and space. We use Observation 2 to split the
sum as follows.

∑
s,t∈V (G)

γ(s, t, v) =
∑

s∈V ≥3(G), t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(t, s, v)

+
∑

s∈V =2(Pmax
1), t∈V =2(Pmax

2)
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v) +
∑

s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

By Propositions 2 and 3, we can compute the third and fourth summand
in O(kn) time provided that Inc[s, t] · σst(v) is computed for every s, t ∈ V ≥3(G)
and every v ∈ V (G) in a postprocessing step (see Lines 11 to 16). We incorporate
this postprocessing into the computation of the first two summands in the
equation, that is, we next show that for all v ∈ V (G) the following value can be
computed in O(kn) time:∑

s∈V ≥3(G)
t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G)

t∈V ≥3(G)

γ(s, t, v) +
∑

s∈V ≥3(G)

t∈V ≥3(G)

Inc[s, t] · σst(v).

To this end, observe that the above is equal to

∑
s∈V ≥3(G)
t∈V (G)

Pen[s] Pen[t]σst(v)
σst

+
∑

s∈V ≥3(G)

t∈V =2(G)

Pen[s] Pen[t]σst(v)
σst

+
∑

s∈V ≥3(G)

t∈V ≥3(G)

Inc[s, t]σst(v)

=
∑

s∈V ≥3(G)

(
(2 ·

∑
t∈V =2(G)

Pen[s] Pen[t]σst(v)
σst

) +
∑
t∈V ≥3

σst(v)(Pen[s] Pen[t]
σst

+ Inc[s, t])
)
.

Note that we initialize Inc[s, t] in Lines 5 and 6 in Algorithm 1 with 2 ·
Pen[s] Pen[t]/σst and Pen[s] Pen[t]/σst respectively. Thus we can use the algo-
rithm described in Lemma 4 for each vertex s ∈ V ≥3(G) with f(s, t) = Inc[s, t].

Since Pen[s], Pen[t], σst and Inc[s, t] can all be looked up in constant time,
the algorithm only takes O(n+m) time for each vertex s (see Lines 17 and 18).
By Lemma 2 there are O(min{k, n}) vertices of degree at least three. Thus,
altogether, the algorithm needs O(min{n, k}·m) = O(min{n, k}·(n+k)) = O(kn)
time. The precomputations in Lines 3 to 6 require Θ(kn) space. As the running
time is an upper bound on the space complexity, Algorithm 1 requires Θ(kn)
space overall. �

JGAA, 24(3) 483–522 (2020) 509

4 Conclusion

Lifting the processing of degree-one vertices due to Baglioni et al. [3] to a
technically much more involved processing of degree-two vertices, we derived a
new algorithm for Betweenness Centrality running in O(kn) worst-case
time (k is the feedback edge number of the input graph). Our work focuses on
algorithm theory and contributes to the field of adaptive algorithm design [10]
as well as to the recent “FPT in P” field [13]. It would be of high interest
to identify structural parameterizations “beyond” the feedback edge number
that might help to get more results in the spirit of our work. In particular,
extending our algorithmic approach and mathematical analysis with respect
to the treatment of twin vertices [27, 29] might help to get a running time
bound involving the modular width or vertex cover number of the input graph.
Indeed, Coudert et al. [6] provided first results in this direction; their algorithms
however are not adaptive. We believe that improving the dependency on the
parameter in the running time is a challenge for future work. As for practical
relevance, we firmly believe that a running time of O(kn) as we proved can yield
improved performance for some real-world networks. What remains unclear,
however, is whether the constants hidden in the O-notation or the non-linear
space requirements of our approach can be avoided.

Acknowledgement. We thank the reviewers for their detailed and thorough
evaluation of our work which helped to significantly improve the presentation.

References

[1] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
Subcubic equivalences between graph centrality problems, APSP and
diameter. In Proceedings of the 26th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA ’15), pages 1681–1697. SIAM, 2015. doi:
10.1137/1.9781611973730.112. 484

[2] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. Ap-
proximating betweenness centrality. In Proceedings of the 5th International
Workshop on Algorithms and Models for the Web-Graph (WAW ’07), pages
124–137. Springer, 2007. doi: 10.1007/978-3-540-77004-6 10. 484

[3] Miriam Baglioni, Filippo Geraci, Marco Pellegrini, and Ernesto Lastres.
Fast exact computation of betweenness centrality in social networks. In
Proceedings of the 4th International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM ’12), pages 450–456. IEEE Computer
Society, 2012. doi: 10.1109/ASONAM.2012.79. 484, 485, 486, 487, 488, 499,
509

[4] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-
works. Science, 286(5439):509–512, 1999. doi: 10.1126/science.286.5439.509.
485

https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1007/978-3-540-77004-6_10
https://doi.org/10.1109/ASONAM.2012.79
https://doi.org/10.1126/science.286.5439.509

510 Bentert et al. An Adaptive Version of Brandes’ Algorithm

[5] Ulrik Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2):163–177, 2001. doi:
10.1080/0022250X.2001.9990249. 484, 486, 496, 497, 498, 499

[6] David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial
FPT algorithms for some classes of bounded clique-width graphs. ACM
Transactions on Algorithms, 15(3):33:1–33:57, 2019. doi: 10.1145/3310228.
484, 509

[7] Søren Dahlgaard and Jacob Evald. Tight hardness results for distance and
centrality problems in constant degree graphs. CoRR, abs/1609.08403, 2016.
484, 490

[8] Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory Social
Network Analysis with Pajek. Cambridge University Press, 3rd edition, 2018.
doi: 10.1017/9781108565691. 485

[9] Dóra Erdős, Vatche Ishakian, Azer Bestavros, and Evimaria Terzi. A divide-
and-conquer algorithm for betweenness centrality. In Proceedings of the
2015 SIAM International Conference on Data Mining (SDM ’15), pages
433–441. SIAM, 2015. doi: 10.1137/1.9781611974010.49. 484

[10] Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sort-
ing algorithms. ACM Computing Surveys, 24(4):441–476, 1992. doi:
10.1145/146370.146381. 509

[11] Linton Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40:35–41, 1977. 484

[12] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better approx-
imation of betweenness centrality. In Proceedings of the 10th Meeting on
Algorithm Engineering & Expermiments (ALENEX ’08), pages 90–100.
SIAM, 2008. 484

[13] Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier.
Polynomial fixed-parameter algorithms: A case study for longest path
on interval graphs. Theoretical Computer Science, 689:67–95, 2017. doi:
10.1137/1.9781611972887.9. 509

[14] Oded Green, Robert McColl, and David A. Bader. A fast algorithm for
streaming betweenness centrality. In Proceedings of the International Con-
ference on Privacy, Security, Risk and Trust (PASSAT ’12), pages 11–20.
IEEE, 2012. doi: 10.1109/SocialCom-PASSAT.2012.37. 484

[15] David S. Johnson. The genealogy of theoretical computer science: A
preliminary report. ACM SIGACT News, 16(2):36–49, 1984. doi:
10.1145/1008959.1008960. 485

https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1145/3310228
https://doi.org/10.1017/9781108565691
https://doi.org/10.1137/1.9781611974010.49
https://doi.org/10.1145/146370.146381
https://doi.org/10.1137/1.9781611972887.9
https://doi.org/10.1109/SocialCom-PASSAT.2012.37
https://doi.org/10.1145/1008959.1008960

JGAA, 24(3) 483–522 (2020) 511

[16] Ali Khazaee, Ata Ebrahimzadeh, and Abbas Babajani-Feremi. Iden-
tifying patients with Alzheimer’s disease using resting-state fMRI and
graph theory. Clinical Neurophysiology, 126(11):2132–2141, 2015. doi:
10.1016/j.clinph.2015.02.060. 484

[17] Tomohiro Koana, Viatcheslav Korenwein, André Nichterlein, Rolf Nieder-
meier, and Philipp Zschoche. Data reduction for maximum matching on
real-world graphs: Theory and experiments. coRR, abs/1806.09683, 2019.
485

[18] Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp
Zschoche. Data reduction for maximum matching on real-world graphs:
Theory and experiments. In Proceedings of the 26th European Sym-
posium on Algorithms (ESA ’18), volume 112 of LIPIcs, pages 53:1–
53:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.ESA.2018.53. 485

[19] Min-Joong Lee, Jungmin Lee, Jaimie Yejean Park, Ryan Hyun Choi, and
Chin-Wan Chung. Qube: A quick algorithm for updating betweenness
centrality. In Proceedings of the 21st International Conference on World
Wide Web (WWW ’12), page 351–360, 2012. doi: 10.1145/2187836.2187884.
484

[20] John D. Medaglia. Graph theoretic analysis of resting state func-
tional MR imaging. Neuroimaging Clinics, 27(4):593–607, 2017. doi:
10.1016/j.nic.2017.06.008. 484

[21] George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power
of linear-time data reduction for maximum matching. Algorithmica, 2020.
doi: 10.1007/s00453-020-00736-0. 485

[22] Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran. Between-
ness centrality – incremental and faster. In Proceedings of the 39th Inter-
national Conference on Mathematical Foundations of Computer Science
(MFCS ’14), volume 8634 of LNCS, pages 577–588. Springer, 2014. doi:
https://doi.org/10.1007/978-3-662-44465-8 49. 484

[23] Mark E. J. Newman. Who is the best connected scientist? A study of
scientific coauthorship networks. In Proceedings on the 23rd Conference of
the Center of Nonlinear Studies (CNLS ’04), pages 337–370. Springer, 2004.
doi: 10.1007/978-3-540-44485-5 16. 484

[24] Mark E. J. Newman. Networks: An Introduction. Oxford University Press,
2010. doi: 10.1093/acprof:oso/9780199206650.001.0001. 484

[25] André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, and Mathias
Weller. On tractable cases of target set selection. Social Network Analysis
and Mining, 3(2):233–256, 2013. doi: 10.1007/s13278-012-0067-7. 485

https://doi.org/10.1016/j.clinph.2015.02.060
https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://doi.org/10.1145/2187836.2187884
https://doi.org/10.1016/j.nic.2017.06.008
https://doi.org/10.1007/s00453-020-00736-0
https://doi.org/https://doi.org/10.1007/978-3-662-44465-8_49
https://doi.org/10.1007/978-3-540-44485-5_16
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1007/s13278-012-0067-7

512 Bentert et al. An Adaptive Version of Brandes’ Algorithm

[26] Kim Norlen, Gabriel Lucas, Michael Gebbie, and John Chuang. Eva: Extrac-
tion, visualization and analysis of the telecommunications and media owner-
ship network. In Proceedings of the 14th International Telecommunications
Society Conference (ITS ’02), 2002. doi: 10.1109/WISEW.2002.1177855.
485

[27] Rami Puzis, Yuval Elovici, Polina Zilberman, Shlomi Dolev, and Ulrik Bran-
des. Topology manipulations for speeding betweenness centrality computa-
tion. Journal of Complex Networks, 3(1):84–112, 2015. doi: 10.1093/com-
net/cnu015. 484, 485, 486, 487, 488, 509

[28] Matteo Riondato and Evgenios M Kornaropoulos. Fast approximation of
betweenness centrality through sampling. Data Mining and Knowledge
Discovery, 30(2):438–475, 2016. doi: 10.1007/s10618-015-0423-0. 484

[29] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek.
Graph manipulations for fast centrality computation. ACM Transac-
tions on Knowledge Discovery from Data, 11(3):26:1–26:25, 2017. doi:
10.1145/3022668. 484, 485, 486, 487, 488, 509

[30] Guangming Tan, Dengbiao Tu, and Ninghui Sun. A parallel algorithm
for computing betweenness centrality. In Proceedings of the 38th Interna-
tional Conference on Parallel Processing (ICPP ’09), pages 340–347. IEEE
Computer Society, 2009. doi: 10.1109/ICPP.2009.53. 484

[31] Flavio Vella, Massimo Bernaschi, and Giancarlo Carbone. Dynamic merg-
ing of frontiers for accelerating the evaluation of betweenness centrality.
ACM Journal of Experimental Algorithms, 23(1):1.4:1–1.4:19, 2018. doi:
10.1145/3182656. 485

[32] Wei Wang and Choon Yik Tang. Distributed computation of node and
edge betweenness on tree graphs. In Proceedings of the 52nd IEEE Confer-
ence on Decision and Control (CDC ’13), pages 43–48. IEEE, 2013. doi:
10.1109/CDC.2013.6759856. 484, 485

[33] Stanley Wasserman and Katherine Faust. Social Network Analysis:
Methods and Applications. Cambridge University Press, 1994. doi:
10.1017/CBO9780511815478. 484

https://doi.org/10.1109/WISEW.2002.1177855
https://doi.org/10.1093/comnet/cnu015
https://doi.org/10.1093/comnet/cnu015
https://doi.org/10.1007/s10618-015-0423-0
https://doi.org/10.1145/3022668
https://doi.org/10.1109/ICPP.2009.53
https://doi.org/10.1145/3182656
https://doi.org/10.1109/CDC.2013.6759856
https://doi.org/10.1017/CBO9780511815478

JGAA, 24(3) 483–522 (2020) 513

A Notation for proofs in appendix

For the following proofs we will introduce a lot of auxiliary notation. We provide
Table 1 as a reference to the definitions of the notations.

Table 1: A reference to the notation used in the Appendix.
We assume Pmax = Pmax

1 = x0 . . . xq and Pmax
2 = y0 . . . yr.

Symbol Definition

γst(v) = Pen[s] · Pen[t] · σst(v)/σst;
V =2(G) the set of vertices of degree two in G;
V ≥3(G) the set of vertices of degree at least three in G;
Inc[·, ·] a table of size |V ≥3(G)| × |V (G)| in which intermediary

betweenness centrality values are stored;
Pmax the set of all maximal induced paths;
xleftt the rightmost vertex in Pmax

1 such that all shortest paths
from t ∈ V (G− Pmax

1) to xleftt visit x0;

xrightt the leftmost vertex in Pmax
1 such that all shortest paths

from t ∈ V (G− Pmax
1) to xrightt visit xq;

xmid
t the vertex in Pmax

1 such that there are shortest paths
from t ∈ V (G− Pmax

1) to xleftt via x0 and xq respectively;
X left
t = {x1, x2, . . . , xleftt };

Xright
t = {xrightt , . . . , xq−2, xq−1};

W left[xk] =
∑k
i=0 Pen[xi], where xi ∈ Pmax

1 ;

W right[xk] =
∑q−1
i=k Pen[xi], where xi ∈ Pmax

1 ;
S(t, ψ) for ψ ∈ {x0, xq} = V ≥3(|Pmax

1 |), the maximal subset
of {y0, yr} = V ≥3(|Pmax

2 |) such that for each ϕ ∈ S(t, ψ)
there is a shortest st-path via ψ and ϕ;

Xv see Equation (14);
λ(yk, yi) =

∑
s∈V =2(Pmax

1) γ(s, yk, yi),

for 0 ≤ i ≤ r, 1 ≤ k < r, and s ∈ V =2(Pmax
1);

η(yk, ϕ, ψ) is 1 if there is a shortest path from yk to ψ ∈ {x0, xq}
to ϕ ∈ {y0, yr}, 0 otherwise;

ωi for 0 < k, i < r, yr if k < i, y0 if k > i;
κ(yk, ωi) see Equation (25);

ρi =

i−1∑
k=1

κ(yk, yr) +

r−1∑
k=i+1

κ(yk, y0), for 0 < i < r;

[xi, xj] = {xi, xi+1, . . . , xj} for 0 ≤ i < j ≤ q;
i+mid = i+ (dG(x0, xq) + q)/2, where 0 < i < q;
j−mid = j − (dG(x0, xq) + q)/2; where 0 < j < q;
αk = 2 ·

∑
i∈[1,k−1]

∑
j∈[k+1,q−1] γ(xi, xj , xk), where 0 ≤ k ≤ q;

βv =
∑
i∈[1,q−1]

∑
j∈[i+1,q−1] γ(xi, xj , v),

where v ∈ V (G) \ [xi, xj].

514 Bentert et al. An Adaptive Version of Brandes’ Algorithm

B Proof of Lemma 8

Lemma 8 (Restated) Let Pmax
1 6= Pmax

2 ∈ Pmax. Then, given that the val-
ues dG(s, t), σst, W

left[v] and W right[v] are known for s ∈ V ≥3(G) and t ∈
V (G), and v ∈ V =2(G), respectively, one can compute for all v ∈ V (Pmax

2)
in O(|V (Pmax

2)|) time: ∑
s∈V =2(Pmax

1), t∈V =2(Pmax
2)

γ(s, t, v). (19)

Proof: We first show how to compute
∑
s∈V =2(Pmax

1) γ(s, t, v) for fixed t ∈
V =2(Pmax

2) and v ∈ V (Pmax
2) in constant time when the values listed above are

known. Then we present a dynamic program that computes for all v ∈ V (Pmax
2)

the value of Sum (19) in O(|V (Pmax
2)|) time.

Let Pmax
1 = x0 . . . xq and let Pmax

2 = y0 . . . yr. For v = yi, 0 ≤ i ≤ r, we
compute

∑
s∈V =2(Pmax

1), t∈V =2(Pmax
2)

γ(s, t, yi) =
∑

s∈V =2(Pmax
1)

r−1∑
k=1

γ(s, yk, yi)

=

r−1∑
k=1

∑
s∈V =2(Pmax

1)

γ(s, yk, yi). (20)

For easier reading, we define for 0 ≤ i ≤ r and for 1 ≤ k < r

λ(yk, yi) =
∑

s∈V =2(Pmax
1)

γ(s, yk, yi).

Recall that all shortest paths from yk to s ∈ X left
yk

visit x0 and all shortest paths

from yk to s ∈ Xright
yk

visit xq. Recall also that for each yk there may exist a

unique vertex xmid
yk

to which there are shortest paths via x0 and via xq.
With this at hand, we have

λ(yk, yi) = γ(xmid
yk

, yk, yi) +
∑

s∈Xleft
yk

γ(s, yk, yi) +
∑

s∈Xright
yk

γ(s, yk, yi)

= Pen[xmid
yk

] · Pen[yk] ·
σykxmid

yk
(yi)

σykxmid
yk

+
∑

s∈Xleft
yk

Pen[s] · Pen[yk] · σsyk(yi)

σsyk

+
∑

s∈Xright
yk

Pen[s] · Pen[yk] · σsyk(yi)

σsyk
. (21)

JGAA, 24(3) 483–522 (2020) 515

Next, we rewrite λ in such a way that we can compute it in constant time. To
this end, we need to make the values σ independent of s and yi. To this end, note
that if k < i, then yi is visited only by shortest paths from yk to s ∈ V =2(Pmax

1)
that also visit yr. If k > i, then yi is only visited by paths that also visit y0. Hence,
we need to know whether there are shortest paths from yk to some endpoint
of Pmax

1 via either y0 or yr. For this we define η(yk, ϕ, ψ), which, informally
speaking, tells us whether there is a shortest path from yk to ψ ∈ {x0, xq}
via ϕ ∈ {y0, yr}. Formally,

η(yk, ϕ, ψ) =

{
1, if dPmax

2
(yk, ϕ) + dG(ϕ,ψ) = dG(yk, ψ);

0, otherwise.

Since dG(s, t) is given for all s ∈ V ≥3(G) and all t ∈ V (G), the values η can be
computed in constant time.

We now show how to compute σsyk(yi)/σsyk . Let ωi = yr if k < i, and ωi = y0
if k > i. As stated above, for yi to be on a shortest path from yk to s ∈
V =2(Pmax

1), the path must visit ωi. If s is in X left
yk

, then the shortest paths
enter Pmax

1 via x0, and σsyk(yi)/σsyk = σx0yk(yi)/σx0yk . Note that there may
be shortest syk-paths that pass via y0 and syk-paths that pass via yr. Thus we
have

σx0yk(yi)

σx0yk

=
η(yk, ωi, x0)σx0ωi

η(yk, y0, x0)σx0y0 + η(yk, yr, x0)σx0yr

. (22)

With σx0yk(yi) we count the number of shortest x0yk-paths visiting yi. Note
that any such path must visit ωi. If there is such a shortest path visiting ωi,
then all shortest x0yk-paths visit yi, and since there is only one shortest ωiyk-
path, the number of shortest x0yk-paths visiting ωi is equal to the number of
shortest x0ωi-paths, which is σx0ωi

.
If s ∈ Xright

yk
, then

σsyk(yi)

σsyk
=

η(yk, ωi, xq)σxqωi

η(yk, y0, xq)σxqy0 + η(yk, yr, xq)σxqyr

. (23)

Shortest paths from yk to xmid
yk

may visit any ϕ ∈ {y0, yr} and ψ ∈ {x0, xq}, and
thus

σykxmid
yk

(yi)

σykxmid
yk

=

∑
ψ∈{x0,xq} η(yk, ωi, ψ)σψωi∑

ϕ∈{y0,yr}
∑
ψ∈{x0,xq} η(yk, yr, ψ)σψyr

. (24)

Observe that
(1) the values of Equations (22) to (24) can be computed in constant time,

since the values σst are known for s, t ∈ V ≥3(G), and

516 Bentert et al. An Adaptive Version of Brandes’ Algorithm

(2) the values σsyk(yi) and σsyk are independent of s for s ∈ X left
yk

and

for s ∈ Xright
yk

respectively.

Recalling that W left[xj] =
∑j
i=1 Pen[xi] and W right[xj] =

∑q−1
i=j Pen[xi] for 1 ≤

j < r we define

κ(yk, ωi) = Pen[yk] ·
(

Pen[xmid
yk

] ·
∑
ψ∈{x0,xq} η(yk, ωi, ψ)σψωi∑

ϕ∈{y0,yr}
∑
ψ∈{x0,xq} η(yk, ϕ, ψ)σψϕ

+
∑

s∈Xleft
yk

Pen[s] · η(yk, ωi, x0)σx0ωi

η(yk, y0, x0)σx0y0 + η(yk, yr, x0)σx0yr

+
∑

s∈Xright
yk

Pen[s] ·
η(yk, ωi, xq)σxqωi

η(yk, y0, xq)σxqy0 + η(yk, yr, xq)σxqyr

)
(25)

= Pen[yk] ·
(

Pen[xmid
yk

] ·
∑
ψ∈{x0,xq} η(yk, ωi, ψ)σψωi∑

ϕ∈{y0,yr}
∑
ψ∈{x0,xq} η(yk, ϕ, ψ)σψϕ

+W left[xleftyk
] · η(yk, ωi, x0)σx0ωi

η(yk, y0, x0)σx0y0 + η(yk, yr, x0)σx0yr

+W right[xrightyk
] ·

η(yk, ωi, xq)σxqωi

η(yk, y0, xq)σxqy0 + η(yk, yr, xq)σxqyr

)
.

Note that since the values of Pen[·], W left[·] and of W right[·] are known, κ(yk, ωi)
can be computed in constant time.

If k < i, then

λ(yk, yi) = Pen[yk] ·
(

Pen[xmid
yk

] ·
σykxmid

yk
(yi)

σykxmid
yk

+
∑

s∈Xleft
yk

Pen[s] · σsyk(yi)

σsyk
+

∑
s∈Xright

yk

Pen[s] · σsyk(yi)

σsyk

)
.

Equations (22) to (24) then give us

λ(yk, yi) = Pen[yk] ·
(

Pen[xmid
yk

] ·
∑
ψ∈{x0,xq} η(yk, yr, ψ)σψyr∑

ϕ∈{y0,yr}
∑
ψ∈{x0,xq} η(yk, ϕ, ψ)σψϕ

+
∑

s∈Xleft
yk

Pen[s] · η(yk, yr, x0)σx0yr

η(yk, y0, x0)σxqy0 + η(yk, yr, x0)σxqyr

+
∑

s∈Xright
yk

Pen[s] ·
η(yk, yr, xq)σxqyr

η(yk, y0, xq)σxqy0 + η(yk, yr, xq)σxqyr

)
= κ(yk, yr).

If k > i, then analogously λ(yk, yi) = κ(yk, y0). Lastly, if k = i, then σsyk(yi) = 0;
thus γ(s, yk, yi) = λ(yk, yi) = 0. Hence, we can rewrite Sum (20) as

JGAA, 24(3) 483–522 (2020) 517

r−1∑
k=1

∑
s∈V =2(Pmax

1)

γ(s, yk, yi) =

r−1∑
k=1
k 6=i

λ(yk, yi) =
(i−1∑
k=1

λ(yk, yi) +

r−1∑
k=i+1

λ(yk, yi)
)

=
(i−1∑
k=1

κ(yk, yr) +

r−1∑
k=i+1

κ(yk, y0)
)

=: ρi.

Towards showing that Sum (19) can be computed in O(r) time, note that ρ0 =∑r−1
k=1 κ(yk, y0) can be computed in O(|V (Pmax

2)|) time. Observe that ρi+1 =
ρi − κ(yi+1, yr) + κ(yi, y0). Thus, every ρi, 1 ≤ i ≤ r, can be computed in
constant time. Hence, computing all ρi, 0 ≤ i ≤ r, and thus computing sum (19)
for all v ∈ V (Pmax

2) takes O(|V (Pmax
2)|) time. �

C Proofs of Lemmata 9 and 10

For the proofs of Lemmata 9 and 10 we first make two auxiliary observations
and introduce some additional notation.

Observation 4 Let Pmax = x0 . . . xq be a maximal induced path and let 0 ≤
i < j ≤ q. Then

(i) dG(xi, xj) = min{dPmax(xi, xj), i+ dG(x0, xq) + q − j)}, and

(ii) if dPmax(xi, xj) = i+ dG(x0, xq) + q − j, then j = i+
dG(x0,xq)+q

2 .

Proof: The correctness of (i) is clear. For (ii), note that the claimed equation
is equivalent to j − i = dPmax(xi, xj) = i+ dG(x0, xq) + q − j. �

Observation 5 Let Pmax = x0 . . . xq be a maximal induced path, let 0 ≤ i <
j ≤ q, and let v ∈ V (G). Then

σxixj
(v)

σxixj

=



0, if dout < din ∧ v ∈ [xi, xj] or din < dout ∧ v /∈ [xi, xj];

1, if din < dout ∧ v ∈ [xi, xj];

1, if dout < din ∧ v /∈ [xi, xj] ∧ v ∈ V (Pmax);
σx0xq (v)

σx0xq
, if dout < din ∧ v /∈ V (Pmax);

1
σx0xq+1 , if din = dout ∧ v ∈ [xi, xj];
σx0xq

σx0xq+1 , if din = dout ∧ v /∈ [xi, xj] ∧ v ∈ V (Pmax);
σx0xq (v)

σx0xq+1 , if din = dout ∧ v /∈ V (Pmax),

(26)

where din = dPmax(xi, xj) and dout = i+ dG(x0, xq) + q − j.

518 Bentert et al. An Adaptive Version of Brandes’ Algorithm

Proof: Most cases are self-explanatory. The denominator σx0xq + 1 is correct
since there are σx0xq shortest paths from x0 to xq (and therefore σx0xq shortest
paths from xi to xj that leave Pmax) and one shortest path from xi to xj
within Pmax. Note that if there are shortest paths that are not contained
in Pmax, then dG(x0, xq) < q and therefore Pmax is not a shortest x0xq-path.

�

Definition 2 Let Pmax = x0 . . . xq be a maximal induced path and let 0 ≤ i ≤ q.
Then we define

i+mid = i+ (dG(x0, xq) + q)/2 and j−mid = j − (dG(x0, xq) + q)/2.

C.1 Proof of Lemma 9

Lemma 9 (Restated) Let Pmax = x0 . . . xq be a maximal induced path and
assume that the values dG(s, t), σst, W

left[v] and W right[v] were precomputed
for s, t ∈ V ≥3(G) and v ∈ V =2(G), respectively. Then, in O(|V (Pmax)|) time,
one can compute the following for all xk with 0 ≤ k ≤ q:

αxk
:= 2 ·

∑
i∈[1,k−1]

∑
j∈[k+1,q−1]

γ(xi, xj , xk).

Proof: We construct a dynamic program, then we show that it is solvable
in O(|V (Pmax)|) time.

Note that 1 ≤ i < k. Thus for k = 0 we have

αx0
= 2

∑
i∈∅

∑
j∈[1,q−1]

γ(xi, xj , x0) = 0.

This will be the base case of the dynamic program.
For every vertex xk with 1 ≤ k < q it holds that

αxk
= 2 ·

∑
i∈[1,k−1]

j∈[k+1,q−1]

γ(xi, xj , xk)

= 2 ·
∑

i∈[1,k−2]
j∈[k+1,q−1]

γ(xi, xj , xk) + 2 ·
∑

j∈[k+1,q−1]

γ(xk−1, xj , xk).

Similarly, for xk−1 with 1 < k ≤ q it holds that

αxk−1
= 2 ·

∑
i∈[1,k−2]
j∈[k,q−1]

γ(xi, xj , xk−1)

= 2 ·
∑

i∈[1,k−2]
j∈[k+1,q−1]

γ(xi, xj , xk−1) + 2 ·
∑

i∈[1,k−2]

γ(xi, xk, xk−1).

JGAA, 24(3) 483–522 (2020) 519

Next, observe that any path from xi to xj with i ≤ k−2 and j ≥ k+1 visiting xk
also visits xk−1 and vice versa. Substituting this into the equations above yields

αxk
= αxk−1

+ 2 ·
∑

j∈[k+1,q−1]

γ(xk−1, xj , xk)− 2 ·
∑

i∈[1,k−2]

γ(xi, xk, xk−1).

Now we prove that
∑
j∈[k+1,q−1] γ(xk−1, xj , xk) and

∑
i∈[1,k−2] γ(xi, xk, xk−1)

can be computed in constant time once W left and W right are precomputed (see
Lines 7 to 10 in Algorithm 1). These tables can be computed in O(|V (Pmax)|)
time as well. For the sake of convenience we say that γ(xi, xj , xk) = 0 if i or j

are not integral or are not in [1, q − 1] and define W [xi, xj] =
∑j
`=i Pen[x`] =

W left[xj]−W left[xi−1]. Then we can use Observations 4 and 5 to show that

∑
j∈[k+1,q−1]

γ(xk−1, xj , xk) =
∑

j∈[k+1,q−1]

Pen[xk−1] · Pen[xj] ·
σxk−1xj

(xk)

σxk−1xj

= γ(xk−1, x(k−1)+mid
, xk) +

∑
j∈[k+1,min{d(k−1)+mide−1,q−1}]

Pen[xk−1] · Pen[xj]

=


Pen[xk−1] ·W [xk+1, xq−1], if (k − 1)+mid ≥ q;
Pen[xk−1] ·W [xk+1, xd(k−1)+mide−1

], if (k − 1)+mid < q ∧ (k − 1)+mid /∈ Z;

Pen[xk−1] · (Pen[x(k−1)+mid
] · 1

σx0xq+1 +W [xk+1, x(k−1)+mid−1
]), otherwise.

Herein we use the notation introduced in Definition 2. By (k − 1)+mid /∈ Z we
mean to say that (k − 1)+mid is not integral. Analogously,

∑
i∈[1,k−2]

γ(xi, xk, xk−1) =
∑

i∈[1,k−2]

Pen[xi] · Pen[xk] · σxixk
(xk−1)

σxixk

= γ(xk−1, xk−mid
, xk−1) +

∑
i∈[max{1,b(k−1)−midc+1},k−2]

Pen[xi] · Pen[xk]

=


Pen[xk] ·W [x1, xk−2], if k−mid < 1;

Pen[xk] ·W [xbk−midc+1, xk−2], if k−mid ≥ 1 ∧ k−mid /∈ Z;

Pen[xk] · (Pen[xk−mid
] · 1

σx0xq+1 +W [xk−mid+1, xk−2]), otherwise.

This completes the proof since (k−1)+mid, k−mid, every entry in W [·], and all other
variables in the equation above can be computed in constant time once W left[·]
is computed. Thus, computing αxi

for each vertex xi in Pmax takes constant
time. Hence, the computations for the whole maximal induced path Pmax

take O(|V (Pmax)|) time. �

C.2 Proof of Lemma 10

Lemma 10 (Restated) Let Pmax = x0 . . . xq be a maximal induced path.
Then, excluding the running time of the postprocessing (see Lines 17 and 18

520 Bentert et al. An Adaptive Version of Brandes’ Algorithm

in Algorithm 1), one can compute in O(|V (Pmax)|) time the following for
al v ∈ V (G) \ [xi, xj]:

βv :=
∑

i∈[1,q−1]

∑
j∈[i+1,q−1]

γ(xi, xj , v)βv.

Proof: We first show how to compute βv for all v /∈ V (Pmax) and then how to
compute βv for all v ∈ V (Pmax) \ [xi, xj] in the given time.

As stated above, the distance from xi to xi+mid
(if existing) is the boundary

such that all shortest paths to vertices xj with j > i+mid leave Pmax and the
unique shortest path to any xj with i < j < i+mid is xixi+1 . . . xj . Thus we can use
Observations 4 and 5 to show that for each v /∈ Pmax and each fixed i ∈ [1, q− 1]
it holds that

∑
j∈[i+1,q−1]

γ(xi, xj , v) =
∑

j∈[i+1,q−1]

Pen[xi] · Pen[xj] ·
σxixj

(v)

σxixj

=



0, if i+mid > q − 1;∑
j∈[x

di+
mid
e
,q−1] Pen[xi] · Pen[xj] ·

σx0xq (v)

σx0xq
, if i+mid ≤ q − 1 ∧ i+mid /∈ Z;

Pen[xi] ·
(

Pen[xi+mid
] · σx0xq (v)

σx0xq+1 +
∑
j∈[x

i
+
mid

+1
,q−1] ·Pen[xj] ·

σx0xq (v)

σx0xq

)
,

otherwise;

=


0, if i+mid > q − 1;

Pen[xi] ·W right[xdi+mide
] · σx0xq (v)

σx0xq
, if i+mid ≤ q − 1 ∧ i+mid /∈ Z;

Pen[xi] ·
(

Pen[xi+mid
] · σx0xq (v)

σx0xq+1 +W right[xi+mid+1] · σx0xq (v)

σx0xq

)
, otherwise.

Herein we use the notation introduced in Definition 2. By i+mid /∈ Z we mean to
say that i+mid is not integral. All variables except for σx0xq

(v) can be computed
in constant time once W right and σx0xq are computed. Thus we can compute
overall in O(|V (Pmax)|) time the value

X =
2 ·
∑
i∈[1,q−1]

∑
j∈[i+1,q−1] γ(xi, xj , v)

σx0xq
(v)

= 2 ·
∑

i∈[1,q−1]

∑
j∈[i+1,q−1]

Pen[xi] Pen[xj]σxi,xj .
(27)

Due to the postprocessing (see Lines 17 and 18 in Algorithm 1) it is sufficient to
add X to Inc[x0, xq]. This ensures that X · σx0xq

(v) is added to the betweenness
centrality of each vertex v /∈ V (Pmax). Note that if X > 0, then dG(x0, xq) < q
and thus the betweenness centrality of any vertex v ∈ V (Pmax) is not affected
by Inc[x0, xq].

Next, we will compute βv for all vertices v ∈ V (Pmax) (recall that v /∈ [xi, xj]).
We start with the simple observation that all paths that leave Pmax at some

JGAA, 24(3) 483–522 (2020) 521

point have to contain x0. Thus βx0 is equal to X by Equation (27). We will
use this as the base case for a dynamic program that iterates through Pmax and
computes βxk

for each vertex xk, k ∈ [0, q], in constant time.

Similarly to the proof of Lemma 9 we observe that

βxk
= 2

(∑
i∈[k+1,q−1]

∑
j∈[i+1,q−1]

γ(xi, xj , xk) +
∑

i∈[1,k−1]

∑
j∈[i+1,k−1]

γ(xi, xj , xk)
)

= 2
(∑
i∈[k+2,q−1]

∑
j∈[i+1,q−1]

γ(xi, xj , xk) +
∑

i∈[1,k−1]

∑
j∈[i+1,k−1]

γ(xi, xj , xk)

+
∑

j∈[k+2,q−1]

γ(xk+1, xj , xk)
)

and

βxk+1
= 2
(∑
i∈[k+2,q−1]

∑
j∈[i+1,q−1]

γ(xi, xj , xk+1) +
∑
i∈[1,k]

∑
j∈[i+1,k]

γ(xi, xj , xk+1)
)

= 2
(∑
i∈[k+2,q−1]

∑
j∈[i+1,q−1]

γ(xi, xj , xk+1)

+
∑

i∈[1,k−1]

∑
j∈[i+1,k−1]

γ(xi, xj , xk+1) +
∑

i∈[1,k−1]

γ(xi, xk, xk+1)
)
.

Furthermore, observe that every st-path with s, t 6= xk, xk+1 that contains xk
also contains xk+1, and vice versa. Thus we can conclude that

βxk+1
= βxk

+ 2
(∑
i∈[1,k−1]

γ(xi, xk, xk+1)

︸ ︷︷ ︸
(∗)

−
∑

j∈[k+2,q−1]

γ(xk+1, xj , xk)

︸ ︷︷ ︸
(∗∗)

)
.

It remains to show that the sums (∗) and (∗∗) can be computed in constant
time once W left and W right are computed. Using Observations 4 and 5 we get
that

∑
i∈[1,k−1]

γ(xi, xk, xk+1) =


0, if k−mid < 1;

Pen[xk] ·W left[xbk−midc
], if k−mid ≥ 1 ∧ k−mid /∈ Z;

Pen[xk] ·
(
W left[xk−mid−1

] + Pen[k−mid] · σx0xq

σx0xq+1

)
,

otherwise;

522 Bentert et al. An Adaptive Version of Brandes’ Algorithm

and ∑
j∈[k+2,q−1]

γ(xk+1, xj , xk)

=



0, if k+mid < 1;

Pen[xk+1] ·W right[xd(k+1)+mide
],

if (k + 1)+mid ≤ q − 1 ∧ (k + 1)+mid /∈ Z;

Pen[xk+1] ·
(
W right[x(k+1)+mid+1] + Pen[(k + 1)+mid] · σx0xq

σx0xq+1

)
,

otherwise.

Since all variables in these two equalities can be evaluated in constant time, this
concludes the proof. �

	Introduction
	Algorithm Overview
	Dealing with Cycles
	Dealing with Other Biconnected Graphs

	Dealing with maximal induced paths
	Paths with endpoints in different maximal induced paths
	Vertices outside of the maximal induced paths
	Vertices inside the maximal induced paths

	Paths with endpoints in the same maximal induced path
	Postprocessing and algorithm summary

	Conclusion
	Notation for proofs in appendix
	Proof of Lemma 8
	Proofs of Lemmata 9 and 10
	Proof of Lemma 9
	Proof of Lemma 10

