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Abstract

Many combinatorial problems can be solved in time O∗(ctw) on graphs
of treewidth tw, for a problem-specific constant c. In several cases, match-
ing upper and lower bounds on c are known based on the Strong Exponen-
tial Time Hypothesis (SETH). In this paper we investigate the complexity
of solving problems on graphs of bounded cutwidth, a graph parameter
that takes larger values than treewidth. We strengthen earlier treewidth-
based lower bounds to show that, assuming SETH, Independent Set
cannot be solved in O∗((2− ε)ctw) time, and Dominating Set cannot be
solved in O∗((3 − ε)ctw) time. By designing a new crossover gadget, we
extend these lower bounds even to planar graphs of bounded cutwidth or
treewidth. Hence planarity does not help when solving Independent Set
or Dominating Set on graphs of bounded width. This sharply contrasts
the fact that in many settings, planarity allows problems to be solved
much more efficiently.
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1 Introduction

Dynamic programming on graphs of bounded treewidth is a powerful tool in
the algorithm designer’s toolbox, which has many applications (cf. [5]) and is
captured by several meta-theorems [7, 27]. Through clever use of techniques
such as Möbius transformation, fast subset convolution [2, 30], cut & count [9],
and representative sets [4, 8, 14], algorithms were developed that can solve nu-
merous combinatorial problems on graphs of treewidth tw in O∗(ctw) time, for
a problem-specific constant c. In recent work [23], it was shown that under
the Strong Exponential Time Hypothesis (SETH, see [17, 18]), the base of the
exponent c achieved by the best-known algorithm is actually optimal for Dom-
inating Set (c = 3) and Independent Set (c = 2), amongst others. This
prompts the following questions:

1. Do faster algorithms exist for bounded-treewidth graphs that are planar?

2. Do faster algorithms exist for a more restrictive graph parameter, such as
cutwidth?

It turns out that these questions are related, because the nature of cutwidth
allows crossover gadgets to be inserted to planarize a graph without increasing
its width significantly.

Before going into our results, we briefly motivate these questions. There
is a rich bidimensionality theory (cf. [10]) of how the planarity of a graph can
be exploited to obtain better algorithms than in the nonplanar case, leading
to what has been called the square-root phenomenon [26]: in several settings,
parameterized algorithms on planar graphs can be faster by a square-root factor
in the exponent, compared to their nonplanar counterparts. Hence it may be
tempting to believe that problems on bounded-width graphs can be solved more
efficiently when they are planar. Lokshtanov et al. [23, §9] explicitly ask whether
their SETH-based lower bounds continue to apply for planar graphs. The same
problem is posed by Baste and Sau [1, p. 3] in their investigation on the influence
of planarity when solving connectivity problems parameterized by treewidth.
This motivates question 1.

When faced with lower bounds for the parameterization by treewidth, it is
natural to investigate whether these continue to hold for more restrictive graph
parameters. We work with the parameter cutwidth since it is one of the classic
graph layout parameters (cf. [11]) which takes larger values than treewidth [22],
and has been the subject of frequent study [16, 28, 29]. In their original work,
Lokshtanov et al. [23] showed that their lower bounds also hold for pathwidth
instead of treewidth. However, the parameterization by cutwidth has so far not
been considered, which leads us to question 2. (See Section 2 for the definition
of cutwidth.)

Our results We answer questions 1 and 2 for the problems Indepen-
dent Set and Dominating Set, which are formally defined in Section 2. Our



JGAA, 24(3) 461–482 (2020) 463

conceptual contribution towards answering question 1 comes from the follow-
ing insight: any graph G can be drawn in the plane (generally with crossings)
such that the graph G′ obtained by replacing each crossing by a vertex of de-
gree four does not have larger cutwidth than G. Hence the property of having
bounded cutwidth can be preserved while planarizing the graph, which was in-
dependently1 discovered by Eppstein [13]. When we planarize by replacing each
crossing by a planar crossover gadget H instead of a single vertex, then we
obtain ctw(G′) ≤ ctw(G) + ctw(H) + 4 if the endpoints of the crossing edges
each obtain at most one neighbor in the crossover gadget. This gives a means
to reduce a problem instance on a general graph of bounded cutwidth to a pla-
nar graph of bounded cutwidth, if a suitable crossover gadget is available. The
parameter cutwidth is special in this regard: one cannot planarize a drawing
of K3,n while keeping the pathwidth or treewidth constant [12, 13].

For the Independent Set problem, the crossover gadget developed by
Garey, Johnson, and Stockmeyer [15] can be used in the process described above.
Together with the observation that the SETH-based lower bound construction
by Lokshtanov et al. [23] for the treewidth parameterization also works for the
cutwidth parameterization, this yields our first result.2

Theorem 1 Assuming SETH, there is no ε > 0 such that Independent Set
on a planar graph G given along with a linear layout of cutwidth k can be solved
in time O∗((2− ε)k).

For the Dominating Set problem, more work is needed to obtain a lower
bound for planar graphs of bounded cutwidth. While the lower bound con-
struction of Lokshtanov et al. [23] also works for the parameter cutwidth after a
minor tweak, no crossover gadget for the Dominating Set problem was known.
Our main technical contribution therefore consists of the design of a crossover
gadget for Dominating Set, which we believe to be of independent interest.
Together with the framework above, this gives our second result.

Theorem 2 Assuming SETH, there is no ε > 0 such that Dominating Set
on a planar graph G given along with a linear layout of cutwidth k can be solved
in time O∗((3− ε)k).

Since any linear ordering of cutwidth k can be transformed into a tree decom-
position of width at most k in polynomial time (cf. [3, Theorem 47]), the lower
bounds of Theorems 1 and 2 also apply to the parameterization by treewidth.
Hence our work resolves the question raised by Lokshtanov et al. [23] and by
Baste and Sau [1] whether the SETH-lower bounds for Independent Set and
Dominating Set parameterized by treewidth also apply for planar graphs.

1We learned of Eppstein’s result while a previous version of this work was under submission
at a different venue; see Footnote 3 in [13]. Our previous manuscript, cited by Eppstein, was
later split into two separate parts due to its excessive length. The present paper is one part,
and [19, 20] is the other.

2The analogous lower bound of Ω((2− ε)k) for solving Independent Set on planar graphs
of pathwidth k was already observed by Jansen and Wulms [21], based on an elaborate ad-hoc
argument.
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Organization In Section 2 we provide preliminaries. In Section 3 we
present a general theorem for planarizing graphs of bounded cutwidth, using
a crossover gadget. It leads to a proof of Theorem 1. In Section 4 we prove
Theorem 2. Finally, we provide some conclusions in Section 5. The proofs of two
statements marked (F) have been deferred to the appendix. These proofs show
how existing lower bounds for treewidth parameterizations can be re-analyzed
to give lower bounds for cutwidth parameterizations, and have been placed in
the appendix to improve the flow of our contributed argumentation.

2 Preliminaries

We use N to denote the natural numbers, including 0. For a positive integer n
and a set X we use

(
X
n

)
to denote the collection of all subsets of X of size n. The

power set of X is denoted 2X . The set {1, . . . , n} is abbreviated as [n]. The O∗
notation suppresses polynomial factors in the input size n, such that O∗(f(k))
is shorthand for O(f(k)nO(1)). All our logarithms have base two.

We consider finite, simple, and undirected graphs G, consisting of a vertex
set V (G) and edge set E(G) ⊆

(
V (G)

2

)
. The neighbors of a vertex v in G are

denoted NG(v). The closed neighborhood of v is NG[v] := NG(v) ∪ {v}. For a
vertex set S ⊆ V (G) the open neighborhood is NG(S) :=

⋃
v∈S NG(v) \ S and

the closed neighborhood is NG[S] := NG(S) ∪ S. The subgraph of G induced
by a vertex subset U ⊆ V (G) is denoted G[U ]. The operation of identifying
vertices u and v in a graph G results in the graph G′ that is obtained from G by
replacing the two vertices u and v by a new vertex w with NG′(w) = NG({u, v}).

An independent set is a set of pairwise nonadjacent vertices. A vertex cover
in a graph G is a set S ⊆ V (G) such that S contains at least one endpoint from
every edge. A set S ⊆ V (G) dominates the vertices NG[S]. A dominating set is
a vertex set S such that NG[S] = V (G). The associated decision problems ask,
given a graph G and integer t, whether an independent set (dominating set)
of size t exists in G. The size of a maximum independent set (resp. minimum
dominating set) in G is denoted optis(G) (resp. optds(G)). The q-SAT problem
asks whether a given Boolean formula, in conjunctive normal form with clauses
of size at most q, has a satisfying assignment.

The complexity hypothesis under which our lower bounds hold is formally
stated below. Although the truth of this hypothesis is not universally accepted
in the community, it is often used [24, 31] to relate the complexity of different
problems to each other and to show that further improvements on a problem
would imply a breakthrough for CNF-SAT.

Hypothesis 1 (Strong Exponential Time Hypothesis (SETH) [17, 18])
For every ε > 0, there is a constant q such that q-SAT on n variables cannot
be solved in time O∗((2− ε)n).

Drawings A drawing of a graph G is a function ψ that assigns a unique
point ψ(v) ∈ R2 to each vertex v ∈ V (G), and a simple curve ψ(e) ⊆ R2 to
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each edge e ∈ E(G), such that the following four conditions hold. (1) For e =
{u, v} ∈ E(G), the endpoints of ψ(e) are exactly ψ(u) and ψ(v). (2) The
interior of a curve ψ(e) does not contain the image of any vertex. (3) No three
curves representing edges intersect in a common point, except possibly at their
endpoints. (4) The interiors of the curves ψ(e), ψ(e′) for distinct edges intersect
in at most one point. If the interiors of all the curves representing edges are
pairwise-disjoint, then we have a planar drawing. In this paper we combine
(nonplanar) drawings with crossover gadgets to build planar drawings. A graph
is planar if it admits a planar drawing.

Cutwidth For an n-vertex graphG, a linear layout ofG is a linear ordering
of its vertex set, as given by a bijection π : V (G)→ [n]. The cutwidth of G with
respect to the layout π is:

ctwπ(G) = max
1≤i<n

∣∣{{u, v} ∈ E(G)
∣∣π(u) ≤ i ∧ π(v) > i

}∣∣.
The cutwidth ctw(G) of a graph G is the minimum cutwidth attained by any
linear layout. It is well-known that ctw(G) ≥ pw(G) ≥ tw(G), where the latter
denote the pathwidth and treewidth of G, respectively (cf. [3]).

3 Planarizing graphs while preserving cutwidth

In this section we show how to planarize a graph without blowing up its cutwidth.
An intuitive way to think about cutwidth is to consider the vertices as being
placed on a horizontal line in the order dictated by the layout π, with edges
drawn as x-monotone curves. For any position i we consider the gap between
vertex π−1(i) and π−1(i + 1), and count the edges that cross the gap by hav-
ing one endpoint at position at most i and the other at position after i. The
cutwidth of a layout is the maximum number of edges crossing any single gap;
see Figure 1. The simple but useful fact on which our approach hinges is the
following. If we obtain G′ by replacing a crossing in the drawing by a new
vertex of degree four, and we let π′ be the left-to-right order of the vertices
in the resulting drawing, then ctwπ(G) = ctwπ′(G′). Hence by repeating this
procedure we can eliminate all crossings to obtain a planarized version of G
without increasing the cutwidth. To utilize this idea in reductions, we formalize
a version of this approach where we planarize the graph by inserting gadgets,
rather than simply replacing crossings by degree-four vertices.

Definition 1 A crossover gadget is a graph H with terminal vertices u, u′, v, v′

such that:

1. there is a planar drawing ψ of H in which all terminals lie on the outer
face, and

2. there is a closed curve intersecting the drawing ψ only in the terminals,
which visits the terminals in the order u, v, u′, v′.
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Figure 1: Top-left: a linear layout π of a graph G with ctwπ(G) = 4. The largest
cutsize is attained after vertices 4 and 5. Bottom-left: after inserting vertices at
the crossings to obtain G′ and extending π to π′ based on the x-coordinates of
the inserted vertices, we have ctwπ(G) = ctwπ′(G′). Top-right: enlarged view.
Bottom-right: replacing a crossing by gadget H.

Definition 2 Let {a, b} and {c, d} be disjoint edges of a graph G, and let H
be a crossover gadget. The operation of replacing {{a, b}, {c, d}} by H removes
edges {a, b} and {c, d}, inserts a new copy of the graph H, and inserts the
edges {a, u}, {u′, b}, {c, v}, {v′, d}.

For a crossover gadget to be useful to planarize instances of a decision problem,
a replacement should have a predictable effect on the answer. To formalize this,
we say that a decision problem Π on graphs is a decision problem whose input
consists of a graph G and integer t.

Definition 3 A crossover gadget H is useful for a decision problem Π on graphs
if there exists an integer cΠ such that the following holds. If (G, t) is an instance
of Π containing disjoint edges {a, b}, {c, d}, and G′ is the result of replacing these
edges by H, then (G, t) is a yes-instance of Π if and only if (G′, t + cΠ) is a
yes-instance of Π.

The following theorem proves that a useful crossover gadget can be used to
efficiently planarize instances without blowing up their cutwidth.

Theorem 3 If H is a crossover gadget that is useful for decision problem Π on
graphs, then there is a polynomial-time algorithm that, given an instance (G, t)
of Π and a linear layout π of G, outputs an instance (G′, t′) and a linear layout π′

of G′ such that:

1. G′ is planar,
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2. ctwπ′(G′) ≤ ctwπ(G) + ctw(H) + 4, and

3. (G, t) is a yes-instance of Π if and only if (G′, t′) is a yes-instance of Π.

Proof: Consider the crossover gadget H for Π with terminals u, u, v, v′. Let πH
be a linear layout of H of minimum cutwidth, which is hardcoded into the
algorithm along with the integer cΠ described in Definition 3.

Let (G, t) be an instance of Π with a linear layout π. We start by constructing
a (nonplanar) drawing ψ of G with the following properties.

1. The vertices of G are placed on the x-axis, in the order dictated by π.

2. The image of each edge of G is a strictly x-monotone curve.

3. If the drawings of two edges intersect in their interior, then their endpoints
are all distinct and the corresponding curves properly cross; they do not
only touch.

4. For each pair of edges, their drawings intersect in at most one point.

5. The x-coordinates of all crossings are distinct from each other, and from
the x-coordinates of the vertices.

It is easy to see that such a drawing always exists and can be found in polyno-
mial time; we omit the details as they are not interesting. Properties 1 and 2
together ensure that for any i ∈ [|V (G)| − 1], the set of edges that cross the gap
after vertex π−1(i) in the linear layout is exactly the set of edges intersected
by a vertical line between π−1(i) and π−1(i + 1), which therefore has size at
most ctwπ(G). We will use this property later.

The algorithm replaces the crossings one by one. If two edges {a, b} and {c, d}
intersect in their interior, then their endpoints are all distinct by (3) and they
properly cross. Hence we can replace these two edges by a copy of H as in
Definition 2. Since there is a planar drawing of H with the terminals alter-
nating along the outer face, after possibly swapping the labels of a and b, and
of c and d, the drawing can be updated so that the crossing between {a, b}
and {c, d} is eliminated. Since each of a, b, c, d is made adjacent to exactly one
vertex of H, the replacement can be done such that the remaining crossings are
in exactly the same locations as before; see the right side of Figure 1. When
inserting the crossover gadget, we scale it down sufficiently far that the fol-
lowing holds: all vertices and crossings that were originally on the left of the
crossing between {a, b} and {c, d} lie to the left of all vertices that are inserted
to replace this crossing; and all vertices and crossings that were on the right
of the {{a, b}, {c, d}} crossing, lie to the right of all vertices inserted for its
replacement.

Since each pair of edges intersects at most once by (4), the number of cross-
ings is O(|E(G)|2). Hence in polynomial time we can replace all crossings by
copies of H to arrive at a graph G′. If ` is the number of replaced crossings, then
we set t′ := t+ ` · cΠ. By Definition 3 and transitivity it follows that (G, t) is a



468 Geffen, Jansen, Kroon, Morel Lower Bounds for Dynamic Programming

yes-instance of Π if and only if (G′, t′) is a yes-instance. By construction, G′

is planar. It remains to define a linear layout of G′ and bound its cutwidth.

The layout π′ of G′ is defined as follows. Let the elements of the original
drawing ψ of G consist of its vertices and its crossings. The elements of ψ
are linearly ordered by their x-coordinates, by (5). The linear layout π′ of G′

has one block per element of ψ, and these blocks are ordered according to the
x-coordinates of the corresponding element. For elements that consist of a ver-
tex v, the block simply consists of v. For elements that consist of a crossing X,
the block consists of the vertices of the copy of H that was inserted to replace X,
in the order dictated by πH . It is easy to see that π′ can be constructed in poly-
nomial time.

We classify the edges of G′ into two types. We have internal edges, which are
edges within an inserted copy of H, and we have external edges which connect
two different copies of H, or which connect a vertex of V (G)∩ V (G′) to a copy
of H. Using this classification we argue that for an arbitrary vertex v∗ of G′, the
cut crossing the gap after vertex v∗ in π′ contains at most ctwπ(G)+ctw(H)+4
edges. To do so, we distinguish two cases depending on whether v∗ is an original
vertex from G, or was inserted as part of a copy of H.

Claim 4 If v∗ ∈ V (G) ∩ V (G′), then the size of the cut after v∗ in π′ is at
most ctwπ(G).

Proof: The layout π′ consists of blocks, and v∗ ∈ V (G)∩V (G′) is a block. So
for each copy C of a crossover gadget, the vertices of C all appear on the same
side of v∗ in the ordering. Hence no internal edge of C crosses the cut after v∗,
implying that no internal edge is in the cut. Each external edge crossing the
cut is (a segment of) an edge of G that is intersected by a vertical line after v∗

in the drawing ψ; see Figure 1. As such a line intersects at most ctwπ(G) edges
as observed above, the cut after v∗ has size at most ctwπ(G). y

Claim 5 If v∗ ∈ V (G′) is a vertex of a copy C of a crossover gadget that was
inserted to replace a crossing X, then the size of the cut after v∗ in π′ is at
most ctwπ(G) + ctw(H) + 4.

Proof: The number of internal edges in the cut after v∗ is at most ctw(H),
since the only internal edges in the cut all belong to the same copy C that
contains v∗ and we ordered them according to an optimal layout πH . There are
at most four external edges incident on a vertex of C, which contribute at most
four to the cut. Finally, for each of the remaining external edges in the cut
there is a unique edge of G intersected by a vertical line through crossing X in
the drawing ψ. As at most ctwπ(G) edges are intersected by any vertical line,
as observed above, the size of the cut is at most ctwπ(G) + ctw(H) + 4. y

The two claims together show that any gap in the ordering π′ is crossed
by at most ctwπ(G) + ctw(H) + 4 edges, which bounds the cutwidth of G′ as
required. �
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Theorem 3 will be the main ingredient in the proof of Theorem 1. The other
ingredients consist of a known crossover gadget along with a lower bound for
Independent Set for nonplanar graphs that follows by re-analyzing an earlier
construction by Lokshtanov, Marx, and Saurabh [25].

Theorem 6 (F) Assuming SETH, there is no ε > 0 such that Independent
Set on a (nonplanar) graph G given along with a linear layout of cutwidth k
can be solved in time O∗((2− ε)k).

Theorem 1 Assuming SETH, there is no ε > 0 such that Independent Set
on a planar graph G given along with a linear layout of cutwidth k can be solved
in time O∗((2− ε)k).

Proof: First, we observe that the crossover gadget for Vertex Cover due
to Garey, Johnson, and Stockmeyer [15, Thm. 2.7] satisfies our conditions of
a useful crossover gadget. Since an n-vertex graph has a vertex cover of size k
if and only if it has an independent set of size n − k, it also acts as a useful
crossover gadget for Independent Set with cπ = 9 (cf. [21, Proposition 20]).
By Theorem 6, it follows that (assuming SETH) there is no ε > 0 such that
Independent Set on a graph G with a linear layout of cutwidth k can be
solved in time O∗((2− ε)k). By Theorem 3, if such a runtime could be achieved
on planar graphs of a given cutwidth, it could be achieved for a general graph
as well, since the insertion of crossover gadgets increases the cutwidth by only
a constant. Hence Theorem 1 follows. �

4 Lower bound for dominating set on planar
graphs of bounded cutwidth

In this section we prove a runtime lower bound for solving Dominating Set
on planar graphs of bounded cutwidth. Our starting point is the insight that
through a minor modification, the lower bound by Lokshtanov et al. [23] for the
parameterization by pathwidth can be extended to apply to the parameteriza-
tion by cutwidth as well.

Theorem 7 (F) Assuming SETH, there is no ε > 0 such that Dominating
Set on a (nonplanar) graph G given along with a linear layout of cutwidth k
can be solved in time O∗((3− ε)k).

Our contribution is to extend the lower bound of Theorem 7 to apply to
planar graphs. Following the strategy outlined in Section 3, to achieve this it
suffices to develop a useful crossover gadget for Dominating Set as per Defi-
nition 3. Since our crossover gadget is fairly complicated (it has more than 100
vertices), we describe its design in steps. The main idea is as follows. We first
show that an edge in a Dominating Set instance can be replaced by a longer
double-path structure, which contains several triangles. Then we show that
when two triangles cross, we can replace their crossing by a suitable adaptation
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Figure 2: Overview of the method to eliminate an edge crossing in an instance
of Dominating Set. Each edge is transformed into a double-path structure,
to turn a single crossing edge into four crossing triangles (middle figure). Then
each crossing triangle is replaced by a planar gadget (right figure). Some vertices
have been omitted for readability. For each red edge {u, v}, there is a hidden
degree-two vertex in the graph that forms a triangle with u and v.

of the Vertex Cover crossover gadget due to Garey, Johnson, and Stock-
meyer [15, Thm. 2.7]. This two-step approach is illustrated in Figure 2. We
follow the same two steps in proving its correctness, starting with the insertion
of the double-path structure.

Lemma 1 Let {x, y} be an edge in a graph G. If G′ is obtained from G by re-
placing {x, y} by a double-path structure as shown in Figure 3, then optds(G

′) =
optds(G) + 6.

Proof: We prove equality by establishing matching upper and lower bounds.
(≤) To show optds(G

′) ≤ optds(G) + 6, consider a minimum dominating
set S ⊆ V (G) of G. If S∩{x, y} = ∅, or S∩{x, y} = {x, y}, then the edge {x, y}
is not used to dominate vertex x or y, and therefore S ∪ {bx, by, ex, ey, gx, gy} is
a dominating set of size |S| + 6 = optds(G) + 6 in graph G′; see Figure 3.
If S ∩ {x, y} = {x}, then S ∪ {cx, fx, hx, ey, gy, ay} is a dominating set of
size optds(G) + 6 in G′: the vertex ay takes over the role of dominating y
after the direct edge {x, y} is removed, while ax is dominated from x. Symmet-
rically, if S ∩ {x, y} = {y}, then S ∪ {cy, fy, hy, ex, gx, ax} is a dominating set
in G′ of size optds(G) + 6.

(≥) To show optds(G
′) ≥ optds(G) + 6, we instead prove optds(G) ≤

optds(G
′)−6. Consider a minimum dominating set S′ ⊆ V (G′) of G′. Let B be

the vertices in the interior of the double-path structure that was inserted into G′
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Figure 3: The double-path structure for Dominating Set is the subgraph on
the top right minus the vertices x and y. Top: an edge {x, y} is replaced by
a double-path structure. Bottom-left: the interior of the double-path structure
can be dominated by six vertices (in red). Bottom-right: there is a set of six
vertices that dominates y and all vertices of the double-path structure except ax.

to replace edge {x, y}. If |S′ ∩B| ≥ 7, then (S \B)∪ {x} is a dominating set of
size at most |S′|−6 ≤ optds(G

′)−6 in G, since x dominates itself and y using the
edge {x, y}. We assume |S′∩B| ≤ 6 in the remainder. Then we have |S′∩B| = 6:
the closed neighborhoods of the six vertices {bx, by, tx, ty, t′′x, t′′y} are contained
entirely within B, and are pairwise disjoint. Hence these six vertices must
be dominated by six distinct vertices from B. If S′ ∩ {ax, ay} = ∅ then the
vertices x and y are not dominated from within the double-path structure,
implying that S′ \ B is a dominating set in G of size |S′| − 6 ≤ optds(G

′)− 6.
It remains to consider the case that S′ contains ax, or ay, or both.

Claim 8 Let B′ ⊆ B be a set of size six that dominates the vertices B\{ax, ay}.
If B′ contains ax, then B′ does not dominate ay. Analogously, if B′ contains ay
then it does not dominate ax.

Proof: We prove that if ay ∈ B′, then B′ does not dominate ax. The other
statement follows by symmetry. So assume for a contradiction that B′ con-
tains ay and dominates ax, which implies it contains ax or bx. Since B′ dom-
inates the interior of the double-path structure, it contains at least one vertex
from the closed neighborhoods of tx, ty, t

′′
x, t
′′
y . Since these are pairwise disjoint,

and do not contain ay, ax, or bx, the set B′ contains a vertex from the closed
neighborhood of each of {tx, ty, t′′x, t′′y}. Since B′ has size six, besides the four
vertices from these closed neighborhoods, the vertex ay, and the one vertex
in {ax, bx} there can be no further vertices in B′. Hence B′ does not contain cx
or dx, as these do not occur in the stated closed neighborhoods. This implies
that to dominate dx, the set B′ contains ex. Then vertex t′x is not dominated
by the vertex from NG′ [tx], and must therefore be dominated by the vertex
in B′ from NG′ [t′′x], implying that gx ∈ B′. But the vertices mentioned so far
do not dominate cy, and regardless of how a vertex is chosen from the closed
neighborhoods of ty and t′′y , the resulting choice does not dominate cy since no
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vertex from the closed neighborhoods of ty, t
′′
y is adjacent to cy. So cy is not

dominated by B′; a contradiction. y

Using the claim we finish the proof. The set B′ := S ∩ B has size six and
dominates all of B \ {ax, ay}, since those vertices cannot be dominated from
elsewhere. If B′ contains ax, then B′ does not dominate ay. Since S′ is a
dominating set, and y is the only neighbor of ay outside of B, it follows that y ∈
S′. But then S′ \ B is a dominating set in G of size |S′| − 6 = optds(G

′) − 6
in G: the edge {x, y} in G ensures that y dominates x. If B′ contains ay instead,
then the symmetric argument applies. Hence optds(G) ≤ optds(G

′)− 6. �

Using Lemma 1, we can replace a direct edge by a double-path structure
while controlling the domination number. This allows two crossing edges to be
reduced to four crossing triangles as in Figure 2. Even though more crossings
are created in this way, these crossing triangles actually help to planarize the
graph. The key point is that crossing triangles enforce a dominating set to
locally act like a vertex cover, which allows us to exploit a known gadget for
Vertex Cover. The following two statements are useful to formalize these
ideas. Recall that a vertex v is simplicial in a graph G if NG(v) forms a clique.

Observation 9 If I is an independent set of simplicial degree-two vertices in
a graph G, then G has a minimum dominating set that contains no vertex of I.

Proposition 10 Let U be a set of vertices in a graph G, such that for each
edge {x, y} ∈ E(G[U ]) there is a vertex v ∈ V (G) \ U with NG(v) = {x, y}.
Then there is a minimum dominating set S of G such that S forms a vertex
cover of G[U ].

Proof: Construct a set I as follows. For each {x, y} ∈ E(G[U ]), add a vertex v ∈
V (G) \ U with NG(v) = {x, y} to I. Then I is an independent set of simplicial
degree-two vertices. By Observation 9 there is a minimum dominating set S
of G that contains no vertex of I. Then S ∩ U is a vertex cover of G[U ]:
for an arbitrary edge {x, y} ∈ E(G[U ]) there is a vertex v in I whose open
neighborhood is {x, y}. Since I ∩ S = ∅ at least one of x and y belongs to S to
dominate v. Hence the edge {x, y} is covered by S. �

Proposition 10 relates minimum dominating sets to vertex covers. We there-
fore use a simplified version of a Vertex Cover crossover gadget in our design.
We exploit the graph Hvc with four terminals {x, y, p, q} that is shown in Fig-
ure 4. It was obtained by applying the “folding” reduction rule for Vertex
Cover [6, Lemma 2.3] on the gadget by Garey et al. [15] and omitting two su-
perfluous edges. We use the following property of the graph Hvc. It states that
in Hvc, for every axis from which a vertex cover contains no terminal vertex,
the number of non-terminal vertices used in a vertex cover increases.

Proposition 11 Let S be a vertex cover of Hvc and let ` ∈ {0, 1, 2} be the
number of pairs among {p, q} and {x, y} from which S contains no vertices.
Then |S \ {p, q, x, y}| ≥ 9 + `.
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Figure 4: Three copies of the 18-vertex gadget graph Hvc, which has four ter-
minals {x, y, p, q}. Left: A vertex cover for Hvc that contains p and q and has
size eleven is shown in red. Middle: Any vertex cover for Hvc that does not
contain p or q contains the neighbors of p and q and at least one endpoint of
the three thick edges, and contains at least eleven non-terminals. Right: Any
vertex cover for Hvc that does not contain x or y contains the four neighbors
of x and y and at least three vertices from each of the two highlighted five-cycles,
and contains at least ten non-terminals.

Proof: We first show |S \{p, q, x, y}| ≥ 9 for any vertex cover S of Hvc, proving
the claim for ` = 0. The non-terminal vertices ofHvc can be partitioned into four
vertex-disjoint triangles and an edge that is vertex-disjoint from the triangles.
From any triangle, a vertex cover contains at least two vertices. From the
remaining edge, it contains at least one vertex.

If S contains no vertex of {p, q}, then as illustrated in the middle of Fig-
ure 4, S contains at least eleven non-terminals. Hence |S \ {p, q, x, y}| ≥ 11 ≥
9 + `.

If the previous case does not apply, then ` ≤ 1 since S contains a vertex
of {p, q}. If S contains no vertex of {x, y}, then as illustrated on the right of
Figure 4, S contains at least ten non-terminals. Hence |S \ {p, q, x, y}| ≥ 10 ≥
9 + `. �

Using Proposition 11 we prove that replacing two crossing triangles in a
Dominating Set instance by the gadget, increases the optimum by exactly
nine.

Lemma 2 Let G be a graph, and let {x, y, z} and {p, q, r} be two vertex-disjoint
triangles in G such that z and r have degree two in G. Then the graph G′

obtained from G by replacing z and r by Hvc as in Figure 5 satisfies optds(G
′) =

optds(G) + 9.

Proof: We prove equality by establishing matching upper and lower bounds.
(≤) Consider a minimum dominating set S in G that does not contain r

or z, which exists by Observation 9. Then S contains at least one of {p, q} to
dominate z, and at least one of {x, y} to dominate r. We assume without loss of
generality, by symmetry, that p ∈ S and x ∈ S. As shown in Figure 4, there is a
vertex cover for Hvc of size 11 that contains p and x, and therefore contains nine
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Figure 5: Illustration of how a crossing between two triangles is eliminated in an
instance of Dominating Set. A copy of Hvc is inserted, whose four terminals
are identified with the four endpoints of the crossing edge. For each edge {u, v}
of the inserted copy of Hvc, an additional degree-two vertex is inserted that
forms a triangle with u and v.

vertices from the interior of Hvc. Let T be this set of nine vertices, and note
that T includes a neighbor of q and a neighbor of y. We claim that S′ := S ∪ T
is a dominating set for G′ of size |S| + 9 ≤ optds(G) + 9. Since T ∪ {p, x} is
a vertex cover of Hvc and Hvc has no isolated vertices, each vertex of Hvc has
a neighbor in S′ and is dominated. The degree-two vertices that are inserted
into G′ in the last step are dominated by the vertex that covers the edge with
which they form a triangle. Vertices q and y are dominated from their neighbors
in T . Finally, the remaining vertices of G′ are dominated in the same way as
in G.

(≥) To prove optds(G
′) ≥ optds(G) + 9, we instead show optds(G) ≤

optds(G
′) − 9. Let U ⊆ V (G′) denote the vertices from the copy of Hvc that

was inserted; U contains p, q, x, y, but U does not contain the degree-two vertices
that were inserted as the last step of the transformation. By Proposition 10,
there is a minimum dominating set S′ of G′ such that S′ ∩ U is a vertex cover
of G′[U ]. Let ` ∈ {0, 1, 2} be the number of pairs among {p, q} and {x, y} from
which S′ contains no vertices. Since S′ ∩ U is a vertex cover of G′[U ], which is
isomorphic to Hvc, by Proposition 11 we know that |(S′∩U)\{p, q, x, y}| ≥ 9+`.
Now let S be obtained from S′ by removing all vertices of (S′ ∩U) \ {p, q, x, y},
adding vertex x if S′ ∩ {x, y} = ∅, and adding vertex y if S′ ∩ {p, q} = ∅.
Then |S| ≤ |S′| − 9 since we remove 9 + ` vertices and add ` new ones. Since S
contains at least one vertex from {p, q} and at least one vertex from {x, y}, it
dominates the two triangles in G. Since it contains a superset of the terminal
vertices that S′ contains, the remaining vertices of the graph are dominated as
before. Hence S is a dominating set in G and optds(G) ≤ optds(G

′)− 9. �

Using the material so far, we can prove that the transformation operation
in Figure 2 increases the size of an optimal dominating set by exactly 48.

Lemma 3 Let {a, b} and {c, d} be two disjoint edges of a graph G. Let G′ be the
graph obtained by replacing these two edges as in Figure 2. Then optds(G

′) =
optds(G) + 48.
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Proof: The transformation depicted in Figure 2 can be broken down into six
steps: transform {a, b} into a double-path structure, transform {c, d} into a
double-path structure, and perform four operations in which crossing triangles
are replaced by gadgets. By Lemma 1, the two double-path insertions increase
the size of a minimum dominating set by exactly 2 · 6. By Lemma 2, the four
steps in which crossing triangles are eliminated increase the size of a minimum
domination set by exactly 4 · 9. Hence optds(G

′) = optds(G) + 12 + 36. �

Using Lemma 3 we easily obtain the following.

Lemma 4 There is a useful crossover gadget for Dominating Set.

Proof: The gadget that is inserted to replace two edges {a, b} and {c, d} in the
procedure of Figure 2 is planar and has its terminals u, u′, v, v′ on the outer face
in the appropriate cyclic ordering. Since Lemma 3 shows that the replacement
increases the size of a minimum dominating set by exactly 48, it follows that
the structure serves as a useful crossover gadget for Dominating Set as per
Definition 3. �

Theorem 2 now follows by combining Lemma 4 with the planarization ar-
gument of Theorem 3 and the lower bound for the nonplanar case given by
Theorem 7.

Theorem 2 Assuming SETH, there is no ε > 0 such that Dominating Set
on a planar graph G given along with a linear layout of cutwidth k can be solved
in time O∗((3− ε)k).

Proof: Suppose Dominating Set on a planar graph with a given linear layout
of cutwidth k can be solved in O∗((3−ε)k) time for some ε > 0, by an algorithm
called A. Then Dominating Set on a nonplanar graph with a given layout of
cutwidth k can be solved in time O∗((3− ε)k) by reducing it to a planar graph
with a linear layout of cutwidth k+O(1) (using Theorem 3 and the existence of
a useful crossover gadget; this blows up the graph size by at most a polynomial
factor) and then running A. By Theorem 7, this contradicts SETH. �

5 Conclusion

In this work we have investigated whether SETH-based lower bounds for solving
problems on graphs of bounded treewidth also apply for (1) planar graphs and
(2) graphs of bounded cutwidth. To answer these questions, we showed that the
graph parameter cutwidth can be preserved when reducing to a planar instance
using suitably restricted crossover gadgets.

For both problems considered in this work, the runtime lower bound for
solving the problem on graphs of bounded cutwidth continues to hold for planar
graphs of bounded cutwidth. Hence planarity seems to offer no algorithmic
advantage when working with graphs of bounded cutwidth. Moreover, for both
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Independent Set and Dominating Set the runtime lower bound for the
treewidth parameterization also applies for cutwidth.

Future work may explore other combinatorial problems on graphs of bounded
cutwidth. For example, what is the optimal running time for Feedback Ver-
tex Set, Odd Cycle Transversal, or Hamiltonian Cycle on graphs of
bounded cutwidth? What is the complexity of the cutwidth parameterization of
these problems on planar graphs? For the Graph q-Coloring problem, these
questions are answered in recent work by an overlapping set of authors [20]:
planarity offers no advantage, but the parameterization by cutwidth k can be
solved in time O∗(2k) for all q, sharply contrasting that the treewidth parame-
terization cannot be solved in time O∗((q − ε)k) under SETH.
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Möbius: Fast subset convolution. In Proc. 39th STOC, pages 67–74. ACM,
2007. doi:10.1145/1250790.1250801.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)
00228-4.

[4] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized
by treewidth. Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.

12.008.

[5] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization
on graphs of bounded treewidth. Comput. J., 51(3):255–269, 2008. doi:

10.1093/comjnl/bxm037.

[6] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations and
further improvements. J. Algorithms, 41(2):280–301, 2001. doi:10.1006/

jagm.2001.1186.

[7] B. Courcelle. The monadic second-order logic of graphs I: Recognizable
sets of finite graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/

0890-5401(90)90043-H.

[8] M. Cygan, S. Kratsch, and J. Nederlof. Fast Hamiltonicity checking via
bases of perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/
3148227.

https://doi.org/10.1016/j.tcs.2014.12.010
https://doi.org/10.1016/j.tcs.2014.12.010
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1145/3148227
https://doi.org/10.1145/3148227


JGAA, 24(3) 461–482 (2020) 477

[9] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij,
and J. O. Wojtaszczyk. Solving connectivity problems parameterized by
treewidth in single exponential time. In Proc. 52nd FOCS, pages 150–159,
2011. doi:10.1109/FOCS.2011.23.

[10] E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/
comjnl/bxm033.

[11] J. Dı́az, J. Petit, and M. J. Serna. A survey of graph layout problems.
ACM Comput. Surv., 34(3):313–356, 2002. doi:10.1145/568522.568523.

[12] D. Eppstein. Pathwidth of planarized drawing of K3,n. TheoryCS Stack-
Exchange question, 2016. URL: http://cstheory.stackexchange.com/
questions/35974/.

[13] D. Eppstein. The effect of planarization on width. J. Graph Algorithms
Appl., 22(3):461–481, 2018. doi:10.7155/jgaa.00468.

[14] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Efficient com-
putation of representative families with applications in parameterized and
exact algorithms. J. ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

[15] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/

0304-3975(76)90059-1.

[16] A. C. Giannopoulou, M. Pilipczuk, J. Raymond, D. M. Thilikos, and
M. Wrochna. Cutwidth: Obstructions and algorithmic aspects. Algorith-
mica, 81(2):557–588, 2019. doi:10.1007/s00453-018-0424-7.

[17] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

[18] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:
10.1006/jcss.2001.1774.

[19] B. M. P. Jansen and J. Nederlof. Computing the chromatic number using
graph decompositions via matrix rank. In Proc. 26th ESA, pages 47:1–
47:15, 2018. arXiv:1806.10501, doi:10.4230/LIPIcs.ESA.2018.47.

[20] B. M. P. Jansen and J. Nederlof. Computing the chromatic number using
graph decompositions via matrix rank. Theor. Comput. Sci., 795:520–539,
2019. doi:10.1016/j.tcs.2019.08.006.

[21] B. M. P. Jansen and J. J. H. M. Wulms. Lower bounds for protrusion
replacement by counting equivalence classes. Discret. Appl. Math., 278:12–
27, 2020. doi:10.1016/j.dam.2019.02.024.

https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1145/568522.568523
http://cstheory.stackexchange.com/questions/35974/
http://cstheory.stackexchange.com/questions/35974/
https://doi.org/10.7155/jgaa.00468
https://doi.org/10.1145/2886094
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1007/s00453-018-0424-7
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
http://arxiv.org/abs/1806.10501
https://doi.org/10.4230/LIPIcs.ESA.2018.47
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.dam.2019.02.024


478 Geffen, Jansen, Kroon, Morel Lower Bounds for Dynamic Programming

[22] E. Korach and N. Solel. Tree-width, path-width, and cutwidth. Discrete
Appl. Math., 43(1):97–101, 1993. doi:10.1016/0166-218X(93)90171-J.

[23] D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs
of bounded treewidth are probably optimal. In Proc. 22nd SODA, pages
777–789, 2011. doi:10.1137/1.9781611973082.61.

[24] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the
exponential time hypothesis. Bull. EATCS, 105:41–72, 2011. URL: http:
//eatcs.org/beatcs/index.php/beatcs/article/view/92.

[25] D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs
of bounded treewidth are probably optimal. ACM Trans. Algorithms,
14(2):13:1–13:30, 2018. doi:10.1145/3170442.

[26] D. Marx. The square root phenomenon in planar graphs. In Proc. 3rd
FAW-AAIM, page 1, 2013. doi:10.1007/978-3-642-38756-2_1.

[27] M. Pilipczuk. Problems parameterized by treewidth tractable in single
exponential time: A logical approach. In Proc. 36th MFCS, pages 520–531,
2011. doi:10.1007/978-3-642-22993-0_47.

[28] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cutwidth I: A linear
time fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005. doi:

10.1016/j.jalgor.2004.12.001.

[29] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cutwidth II: Algorithms
for partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005.
doi:10.1016/j.jalgor.2004.12.003.

[30] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic
programming on tree decompositions using generalised fast subset con-
volution. In Proc. 17th ESA, pages 566–577, 2009. doi:10.1007/

978-3-642-04128-0_51.

[31] V. V. Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In
Proc. 10th IPEC, pages 17–29, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

https://doi.org/10.1016/0166-218X(93)90171-J
https://doi.org/10.1137/1.9781611973082.61
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1145/3170442
https://doi.org/10.1007/978-3-642-38756-2_1
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.003
https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.4230/LIPIcs.IPEC.2015.17


JGAA, 24(3) 461–482 (2020) 479

A Lower bound for Independent Set on graphs
of bounded cutwidth

Theorem 6 Assuming SETH, there is no ε > 0 such that Independent Set
on a (nonplanar) graph G given along with a linear layout of cutwidth k can be
solved in time O∗((2− ε)k).

Proof: This follows from the lower bound of Lokshtanov et al. [23, Thm. 3.1] in
terms of pathwidth. It suffices to extend the analysis and provide an analogue
of their Lemma 3.3 to bound the cutwidth of the graph G that is constructed
from an n-variable CNF formula by n+O(1). Graph G consists of n+ 1 copies
of a graph G1; the copies are connected in a path-like fashion. We first recall
the structure of G1 and bound its cutwidth.

GraphG1 consists of n paths P1, . . . , Pn of 2m vertices each, called p1
i , . . . , p

2m
i

for i ∈ [n], together with m clause gadgets Ĉj for j ∈ [m]. Each clause gadget is

easily seen to be a graph of cutwidth O(1). Between a clause gadget Ĉj and a

path Pi there is at most one edge, which connects to either p2j−1
i or p2j

i . Each
vertex of a clause gadget is adjacent to at most one vertex of one path.

Using this knowledge we describe a linear layout π ofG1 of cutwidth n+O(1).
It consists of m consecutive blocks B1, . . . , Bm of vertices. A block Bj contains

the vertices of Ĉj ∪ {p2j−1
i , p2j

i | i ∈ [n]}, and is ordered according to the

following process. Start from an optimal ordering for Ĉj , of cutwidth O(1).

For every vertex v of Ĉj that is adjacent to a vertex on a path, say to Pi,

insert vertices p2j−1
i , p2j

i just after v in the ordering. For the paths that are not

adjacent to Ĉj , put their two vertices p2j−1
i , p2j

i next to each other at the end of
the block; the order among these pairs is not important. To see that the resulting
ordering π has cutwidth n+O(1), note that from each path Pi, the vertices on Pi
appear along π in their natural order. Hence for any vertex v ∈ V (G1), at most
one edge from each path Pi crosses the gap after vertex v. Additionally, this gap
is crossed by at most one clause gadget, whose internal edges contribute O(1)
to the size of the cut. Finally, there is at most one edge from a clause gadget to
a path that crosses the cut after v: a vertex from Ĉj that has a neighbor on a
path Pi is immediately followed by two vertices from Pi that include its neighbor,
removing that edge from later cuts. This proves that ctwπ(G1) ≤ n+O(1).

To see that ctwπ(G) ≤ n + O(1), we note that G is obtained from n + 1
copies G1, G2, . . . , Gn+1 of G1 by connecting the last vertex on the j-th path
in Gi, to the first vertex of the j-th path in Gi+1, for all i ∈ [n] and j ∈ [n].
Hence the number of edges connecting any Gi to vertices in later copies is at
most n. From this it follows that by simply constructing the order π for each
graph individually, and concatenating these, we obtain a linear ordering of G of
cutwidth n+O(1). �
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B Lower bound for Dominating Set on graphs
of bounded cutwidth

Theorem 7 Assuming SETH, there is no ε > 0 such that Dominating Set
on a (nonplanar) graph G given along with a linear layout of cutwidth k can be
solved in time O∗((3− ε)k).

Proof: The proof follows the argumentation of Lokshtanov et al. [23, Thm 4.1]
with small modifications along the way. To avoid having to repeat the entire
proof, at several steps we only describe how to modify the existing construction.

Suppose that there is an ε > 0 such that Dominating Set on graphs given
with a linear layout of cutwidth k can be solved in time O∗((3− ε)k). We will
show that this assumption contradicts SETH, by showing that it implies the
existence of δ > 0 such that n-variable q-SAT can be solved in time O∗((2−δ)n)
for each fixed q.3 We choose an integer p depending on ε in a manner that is
described at the end of the proof. Consider now an n-variable input formula φ
of q-SAT for some constant q. Let C1, . . . , Cm be the clauses of φ. We split
the variables of φ into groups F1, . . . , Ft, each of size at most β := blog 3pc =
bp log 3c so that t = dn/βe. (Recall that all logarithms in this paper have base
two.)

We now follow the construction of Lokshtanov et al. to produce a graph G
that has a dominating set of size ` := (p + 1)tm(2pt + 1) + 1 if and only if φ
is satisfiable ([23, Lemmas 4.1, 4.2]). We then modify the graph G slightly
to obtain G′ which has a dominating set of size ` + 1 if and only if G has
a dominating set of size `. To describe the modification, we summarize the
essential features of the graph G built in the original construction.

The graph G consists of group gadgets B̂ji for i ∈ [t] and j ∈ [m(2pt+ 1)], of
clause vertices ĉ`i for j ∈ [m] and 0 ≤ i < 2pt+ 1, and of two special vertices h
and h′ (see [23, Figure 3]). Each group gadget contains O(3p) vertices. It
has p entry vertices and p exit vertices; these 2p vertices are all distinct. For
each i ∈ [t] and j ∈ [m(2pt+1)−1] there is a matching between the exit vertices

of B̂ji and the entry vertices of B̂j+1
i . There are no other edges between group

gadgets. Each clause vertex ĉ`j is adjacent to at most q different group gadgets,
corresponding to the groups that contain the literals in clause Cj . The group

gadgets to which ĉ`j is adjacent belong to {B̂m`+ji | i ∈ [t]}. Finally, vertex h′

has degree one and is adjacent to h. The other neighbors of h are the entry
vertices of {B̂1

i | i ∈ [t]}, and the exit vertices of {B̂2pt+1
i | i ∈ [t]}.

With this summary of G, our modification to obtain G′ can be easily de-
scribed. We remove vertices h and h′ and replace them by h1, h2, h

′
1, h
′
2. Ver-

tices h′1 and h′2 have degree one and are adjacent to h1 and h2, respectively.

Vertex h1 is further adjacent to the entry vertices of the group gadgets {B̂1
i |

3This is a somewhat weaker consequence than used by Lokshtanov et al., who obtain the
consequence that CNF-SAT for clauses of arbitrary size can be solved by a uniform algorithm
in time O∗((2 − δ)n) for some δ > 0. By making more significant modifications to the
construction we could arrive at the same consequence, but for ease of presentation we will
simply show that SETH fails.
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i ∈ [t]}, and vertex h2 is further adjacent to the exit vertices of the group gad-

gets {B̂2pt+1
i | i ∈ [t]}. Essentially, we have split the vertex h into two vertices

to reduce the cutwidth of the graph. Note that optds(G
′) = optds(G) + 1.

The presence of the degree-one vertices ensures that there is always a minimum
dominating set of G that contains h, and of G′ that contains both h1 and h2.
Such dominating sets may be transformed into one another by exchanging h
with h1 and h2, since h dominates the same as h1 and h2 combined. Hence we
find that G′ has a dominating set of size `+ 1 if and only if φ is satisfiable.

We proceed to bound the cutwidth of G′. For j ∈ [2pt+1], let the j-th column

of G′ consist of the group gadgets {B̂ji | i ∈ [t]}, together with the unique clause
vertex that is adjacent to those group gadgets. The linear layout π′ of G′ starts
with vertices h′1 and h1. Then, for each j ∈ [2pt + 1], it first has the clause
vertex of the j-th column, followed by the contents of the group gadgets in that
column, one gadget at a time. It ends with h2 and finally h′2.

Claim 12 ctwπ′(G′) ≤ tp+O(q · 3p + (3p)2).

Proof: Consider an arbitrary vertex v∗ ∈ V (G′) and the cut consisting of the
edges crossing the gap after v∗ in layout π′. The cut after h′1 or h2 has size
one. The cut after h1 consists of the tp edges to the entry vertices of the group
gadgets in the first column, and the cut after h′2 is empty. It remains to consider
the case that v∗ belongs to some column j.

If v∗ is the clause gadget of column j, then the cut after v∗ consists of the
edges from v∗ to its neighbors in the group gadgets in that column, together
with the tp edges on the t matchings of size p that connect the group gadgets
in column j − 1 to the group gadgets in column j. Since each group gadget
has O(3p) vertices and a clause vertex is adjacent to at most q different group
gadgets, it follows that the size of the cut after v∗ is tp+O(q · 3p).

If v∗ is not the clause gadget of column j, then it belongs to some group
gadget B̂ji of column j. For all other group gadgets, its vertices occur on the
same side of v∗ in the ordering. Hence the cut after v∗ contains edges that
are internal to at most one group gadget. Since a group gadget has O(3p)
vertices, it has O((3p)2) edges that can be contributed to the cut. For all group

gadgets in column j that appeared before B̂ji in the ordering, the p matching
edges from their exit vertices to the entry vertices of the next column (or to h2)
belong to the cut. Similarly, for the group gadgets in column j that appear
after B̂ji , the p matching edges from their entry vertices to the exits of the

previous column belong to the cut. For B̂ji itself, there are at most 2p edges
connecting to other columns in the cut. The only other edges that can be in the
cut are from the group gadgets of column j to its clause gadget, and as argued
above there are O(q · 3p) of those. It follows that the size of the cut after v∗ is
at most tp+O(q · 3p + (3p)2). y

Using this construction of G′ and linear layout π′ we complete the proof.
Suppose that Dominating Set on graphs with a given linear layout of cutwidth k
can be solved in O∗((3 − ε)k) = O∗(3λk) time, for λ < 1. We choose p large
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enough that λ · p
bp log 3c ≤

δ
log 3 for some δ < 1. Choose a function f(p, q) such

that the cutwidth in Claim 12 is bounded by tp + f(p, q). Then an instance φ
of q-SAT for fixed q can be solved by transforming it into an instance of Dom-
inating Set in time polynomial in φ+ 3p and applying the assumed algorithm
in time

O∗(3λ(tp+f(p,q))) ≤ O∗(3λpdn/βe) λ · f(p, q) ∈ O(1), t = dn/βe

= O∗(3λpd
n

bp log 3c e) β = bp log 3c

≤ O∗(3λp(
n

bp log 3c +1)) Ceiling adds at most one

≤ O∗(3λp
n

bp log 3c ) λp ∈ O(1)

≤ O∗(3
δn

log 3 )) ≤ O∗(2δn). choice of δ

We used the fact that since p and q are constants, their contributions can be
absorbed into the O∗ notation. Since this shows that q-SAT for any constant q
can be solved in time O∗(2δn)) = O∗((2− δ′)n) for some δ′ < 1, this contradicts
SETH and concludes the proof of Theorem 7. �
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