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Abstract

The minimum-cost flow (MCF) problem is a fundamental optimiza-
tion problem with many applications and seems to be well understood.
Over the last half century many algorithms have been developed to solve
the MCF problem, and these algorithms have varying worst-case bounds
on their running time. However, these worst-case bounds are not al-
ways a good indication of the algorithms’ performance in practice. The
Network Simplex (NS) algorithm needs an exponential number of itera-
tions for some instances, but it is among the best algorithms in practice
and performs very well in experimental studies. On the other hand, the
Minimum-Mean Cycle Canceling (MMCC) algorithm is strongly polyno-
mial, but performs badly in experimental studies.

To explain these differences in performance in practice we apply the
framework of smoothed analysis to NS and MMCC. We show an upper
bound of O(mn2 log(n) log(φ)) for the number of iterations of the MMCC
algorithm. Here, n is the number of nodes, m is the number of edges,
and φ is a parameter limiting the degree to which the edge costs are
perturbed. We also show a lower bound of Ω(m log(φ)) for the number of
iterations of the MMCC algorithm, which can be strengthened to Ω(mn)
when φ = Θ(n2). For the number of iterations of the NS algorithm we
show a smoothed lower bound of Ω(m ·min{n, φ} · φ).
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1 Introduction

The minimum-cost flow (MCF) problem is a well-studied problem with many
applications, for example, modeling transportation and communication net-
works [1, 7]. Over the last half century many algorithms have been developed to
solve it. The first algorithms proposed in the 1960s were all pseudo-polynomial.
These include the Out-of-Kilter algorithm by Minty [18] and by Fulkerson [8],
the Cycle Canceling algorithm by Klein [14], the Network Simplex (NS) al-
gorithm by Dantzig [5], and the Successive Shortest Path (SSP) algorithm by
Jewell [12], Iri [11], and Busacker and Gowen [4]. In 1972, Edmonds and Karp [6]
proposed the Capacity Scaling algorithm, which was the first polynomial MCF
algorithm. In the 1980s, the first strongly polynomial algorithms were developed
by Tardos [25] and by Orlin [19]. Later, several more strongly polynomial al-
gorithms were proposed such as the Minimum-Mean Cycle Canceling (MMCC)
algorithm by Goldberg and Tarjan [10] and the Enhanced Capacity Scaling al-
gorithm by Orlin [20], which currently has the best worst-case running time.
For a more complete overview of the history of MCF algorithms we refer to
Ahuja et al. [1].

When we compare the performance of several MCF algorithms in theory
and in practice, we see that the algorithms that have good worst-case bounds
on their running time are not always the ones that perform best in practice.
Zadeh [26] showed that there exist instances for which the Network Simplex
(NS) algorithm has exponential running time, while the Minimum-Mean Cycle
Canceling (MMCC) algorithm runs in strongly polynomial time, as shown by
Goldberg and Tarjan [10]. In practice however, the relative performance of
these algorithms is completely different. Kovács [16] showed in an experimental
study that the NS algorithm is usually much faster than the MMCC algorithm
on practical instances. In fact, the NS algorithm is very often the fastest MCF
algorithm of all. An explanation for the fact that the NS algorithm performs
much better in practice than indicated by its worst-case running time is that
the instances for which it needs exponential time are very contrived and unlikely
to occur in practice. To better understand the differences between worst-case
and practical performance for the NS algorithm and the MMCC algorithm, we
analyze these algorithms in the framework of smoothed analysis.

Smoothed analysis was introduced by Spielman and Teng [23] to explain
why the simplex algorithm usually needs only a polynomial number of iter-
ations, while in the worst case it needs an exponential number of iterations.
In the framework of smoothed analysis, an adversary can specify any instance
and this instance is then slightly perturbed before it is used as input for the
algorithm. This perturbation can model, for example, measurement errors or
numerical imprecision. In addition, it can model noise on the input that cannot
be quantified exactly, but for which there is no reason to assume that it is ad-
versarial. Algorithms that have a good smoothed running time often perform
well in practice. We refer to two surveys [17, 24] for a summary of results that
have been obtained using smoothed analysis.

We consider a slightly more general model of smoothed analysis, introduced
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by Beier and Vöcking [2]. In this model the adversary can not only specify the
mean of the noisy parameter, but also the type of noise. We use the following
smoothed input model for the MCF problem. An adversary specifies the struc-
ture of the flow network including all nodes and edges, and also the exact edge
capacities and budgets of the nodes. However, the adversary cannot specify the
edge costs exactly. For each edge e the adversary specifies a probability density
function ge : [0, 1]→ [0, φ] according to which the cost of e is drawn at random.
The parameter φ determines the maximum density of the density function and
can therefore be interpreted as the power of the adversary. If φ is large, the
adversary can specify each edge cost very accurately, and we approach worst-
case analysis. If φ = 1, the adversary has no choice but to specify the uniform
density on the interval [0, 1] and we obtain average-case analysis.

Brunsch et al. [3] were the first to show smoothed bounds on the running
time of an MCF algorithm. They showed that the SSP algorithm needs O(mnφ)
iterations in expectation and has smoothed running time O(mnφ(m+n log(φ))),
since each iteration consists of finding a shortest path. They also provide a lower
bound of Ω(m·min{n, φ}·φ) for the number of iterations that the SSP algorithm
needs, which is tight for φ = Ω(n). These bounds show that the SSP algorithm
needs only a polynomial number of iterations in the smoothed setting, in con-
trast to the exponential number it needs in the worst case, and it explains why
the SSP algorithm performs quite well in practice. In order to fairly compare
the SSP algorithm with other MCF algorithms in the smoothed setting, we need
smoothed bounds on the running times of these other algorithms. Brunsch et
al. [3] asked particularly for smoothed running time bounds for the MMCC al-
gorithm, since the MMCC algorithm has a much better worst-case running time
than the SSP algorithm, but performs worse in practice. It is also interesting
to have smoothed bounds for the NS algorithm, since the NS algorithm is the
fastest MCF algorithm in practice. However, until now no smoothed bounds
were known for other MCF algorithms. In this paper we provide smoothed lower
and upper bounds for the MMCC algorithm, and a smoothed lower bound for
the NS algorithm.

For the MMCC algorithm we prove an upper bound of O(mn2 log(n) log(φ))
for the expected number of iterations that the MMCC algorithm needs (Sec-
tion 2). For dense graphs, this is an improvement over the Θ(m2n) iterations
that the MMCC algorithm needs in the worst case, if we consider φ as a con-
stant (which is reasonable if it models, for example, numerical imprecision or
measurement errors).

We also provide a lower bound (Section 3.1) on the number of iterations
that the MMCC algorithm needs. For every n, every m ∈ {n, n + 1, . . . , n2},
and every φ ≤ 2n, we provide an instance with Θ(n) nodes and Θ(m) edges
for which the MMCC algorithm requires Ω(m log(φ)) iterations. For φ = Ω(n2)
we can improve our lower bound (Section 3.2). We show that for every n ≥ 4
and every m ∈ {n, n+ 1, . . . , n2}, there exists an instance with Θ(n) nodes and
Θ(m) edges, and φ = Θ(n2), for which the MMCC algorithm requires Ω(mn)
iterations. This is indeed a stronger lower bound than the bound for general φ,
since we have m log(φ) = Θ(m log(n)) for φ = Θ(n2).
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For the NS algorithm (using the “most negative edge” pivot rule) we provide
a lower bound (Section 4) on the number of non-degenerate iterations that it
requires. In particular, we show that for every n, every m ∈ {n, . . . , n2}, and
every φ ≤ 2n there exists a flow network with Θ(n) nodes and Θ(m) edges,
and an initial spanning tree structure for which the NS algorithm needs Ω(m ·
min{n, φ} · φ) non-degenerate iterations with probability 1. The existence of
an upper bound is our main open problem. Note that our bound is the same
as the lower bound that Brunsch et al. [3] found for the smoothed number of
iterations of the SSP algorithm. This is no coincidence, since we use essentially
the same instance (with some minor changes) to show our lower bound. We
show that with the proper choice of the initial spanning tree structure for the
NS algorithm, we can ensure that the NS algorithm performs the same flow
augmentations as the SSP algorithm plus some degenerate iterations.

In the rest of our introduction we introduce the MCF problem, the MMCC
algorithm and the NS algorithm in more detail. In the rest of our paper, all
logarithms are base 2.

1.1 Minimum-Cost Flow Problem

A flow network is a simple directed graph G = (V,E) together with a nonneg-
ative edge capacity function u : E → R+. For convenience, we assume that
G is connected and that E does not contain a pair (u, v) and (v, u) of reverse
edges. For the MCF problem, we also have a cost function c : E → [0, 1] on
the edges and a budget function b : V → R on the nodes. Nodes with negative
budget require a resource, while nodes with positive budget offer it. A flow
f : E → R+ is a nonnegative function on the edges that satisfies the capacity
constraints, 0 ≤ f(e) ≤ u(e) (for all e ∈ E), and flow conservation constraints
b(v) +

∑
e=(u,v)∈E f(e) =

∑
e′=(v,w)∈E f(e′) (for all v ∈ V ). The cost c(f) of a

flow f is defined as the sum of the flow on each edge times the cost of that edge,
i.e., c(f) =

∑
e∈E c(e) · f(e). The objective of the minimum-cost flow problem

is to find a flow of minimum cost or to conclude that no feasible flow exists.
In our analysis we often use the concept of a residual network. For an edge

e = (u, v), we denote the reverse edge (v, u) by e−1. For flow network G and
flow f , the residual network Gf is defined as the graph Gf = (V,Ef ∪Eb). Here
Ef =

{
e | e ∈ E and f(e) < u(e)

}
is the set of forward edges with capacity

u′(e) = u(e)−f(e) and cost c′(e) = c(e). Eb =
{
e | e−1 ∈ E and f(e−1) > 0

}
is

the set of backward edges with capacity u′(e) = f(e−1) and cost c′(e) = −c(e−1).
The value u′(e) is also called the residual capacity of edge e for flow f .

1.2 Minimum-Mean Cycle Canceling Algorithm

The MMCC algorithm works as follows:

• First we find a feasible flow using any maximum-flow algorithm.

• Next, as long as the residual network contains cycles of negative total cost,
we find a cycle of minimum-mean cost and maximally augment flow along
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this cycle.

• We stop when the residual network does not contain any cycles of negative
total cost.

For a more elaborate description of the MMCC algorithm, we refer to Korte
and Vygen [15]. In the following, we denote the mean cost of a cycle C by
µ(C) =

(∑
e∈C c(e)

)
/|C|. Also, for any flow f , we denote the mean cost of the

cycle of minimum-mean cost in the residual network Gf by µ(f).
Goldberg and Tarjan [10] proved in 1989 that the Minimum-Mean-Cycle

Canceling algorithm runs in strongly polynomial time. Five years later Radzik
and Goldberg [22] slightly improved this bound on the running time and showed
that it is tight. In the following we focus on the number of iterations that the
MMCC algorithm needs, i.e., the number of cycles that have to be canceled. A
bound on the number of iterations can easily be extended to a bound on the
running time, by noting that a minimum-mean cycle can be found in O(nm)
time, as shown by Karp [13]. The tight bound on the number of iterations that
the MMCC algorithm needs is as follows.

Theorem 1 (Radzik and Goldberg) The number of iterations needed by the
MMCC algorithm is bounded by O(nm2) and this bound is tight.

To prove our smoothed bounds in the next sections, we use another result
by Korte and Vygen [15, Corollary 9.9] that states that the absolute value of
the mean cost of the cycle that is canceled by the MMCC algorithm, |µ(f)|,
decreases by at least a factor 1/2 every mn iterations.

Theorem 2 (Korte and Vygen) Every mn iterations of the MMCC algo-
rithm, |µ(f)| decreases by at least a factor 1/2.

1.3 Network Simplex Algorithm

The Network Simplex (NS) algorithm starts with an initial spanning tree struc-
ture (T, L, U) and associated flow f , where each edge in E is assigned to exactly
one of T , L, and U , and it holds that

• f(e) = 0 for all edges e ∈ L,

• f(e) = u(e) for all edges e ∈ U ,

• 0 ≤ f(e) ≤ u(e) for all edges e ∈ T ,

• the edges of T form a spanning tree of G (if we consider the undirected
version of both the edges of T and the graph G).

If the MCF problem has a feasible solution, such a structure can always be
found by first finding any feasible flow and then augmenting flow along cycles
consisting of only edges that have a positive amount of flow less than their
capacity, until no such cycles remain. Note that the structure (T, L, U) uniquely
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determines the flow f , since the edges in T form a tree. In addition to the
spanning tree structure, the NS algorithm also keeps track of a set of node
potentials π(v) for all nodes v ∈ V . The node potentials are defined such that
the potential of a specified root node is 0 and that the potential for other nodes
is such that the reduced cost cπ(u, v) = c(u, v) − π(u) + π(v) of an edge (u, v)
equals 0 for all edges (u, v) ∈ T .

In each iteration, the NS algorithm tries to improve the current flow by
adding an edge to T that violates its optimality condition. An edge in L violates
its optimality condition if it has strictly negative reduced cost, while an edge in
U violates its optimality condition if it has strictly positive reduced cost. One
of the edges e that violates its optimality condition is added to T , which creates
a unique cycle C in T . Flow is maximally augmented along C, until the flow on
one of the edges e′ ∈ C becomes 0 or reaches its capacity. The edge e′ leaves T ,
after which T is again a spanning tree of G. Next we update the sets T , L, and
U , the flow and the node potentials. This completes the iteration. If any edges
violating their optimality condition remain, another iteration is performed. One
iteration of the NS algorithm is also called a pivot. The edge e that is added to
T is called the entering edge and the edge e′ that leaves T is called the leaving
edge. Note that in some cases the entering edge can be the same edge as the
leaving edge. Also, if one of the edges in the cycle C already contains flow equal
to its capacity, the flow is not changed in that iteration, but the spanning tree
T still changes. We call such an iteration degenerate.

Note that, in each iteration, there can be multiple edges violating their
optimality condition. There are multiple possible pivot rules that determine
which edge enters T in this case. In our analysis we use the (widely used in
practice) pivot rule that selects as the entering edge the edge for which the
absolute value of its reduced cost |cπ(e)| is maximum from all edges violating
their optimality condition. In the case that multiple edges in C are candidates to
be the leaving edge, we choose the one that is most convenient for our analysis.

If a strongly feasible spanning tree structure [1] is used, it can be shown
that the number of iterations that the NS algorithm needs is finite. However,
Zadeh [26] showed that there exist instances for which the NS algorithm (with
the pivot rule stated above) needs an exponential number of iterations. Or-
lin [21] developed a strongly polynomial version of the NS algorithm, which
uses cost-scaling. However, this algorithm is rarely used in practice and we will
not consider it in the rest of our paper. For a more elaborate discussion of the
NS algorithm we refer to Ahuja et al. [1].

2 Upper Bound for the MMCC Algorithm

In this section we show an upper bound of O(mn2 log(n) log(φ)) for the expected
number of iterations that the MMCC algorithm needs starting from the initial
residual network Gf̃ for the feasible starting flow f̃ for flow network G = (V,E).
Note that we assumed in Section 1.1 thatG is simple and that E does not contain
a pair (u, v) and (v, u) of reverse edges. This implies that for each pair of nodes



JGAA, 24(3) 397–421 (2020) 403

u, v ∈ V , there is always at most one edge from u to v and at most one edge
from v to u in any residual network Gf . We first show that the number of cycles
that appears in at least one residual network Gf for a feasible flow f on G, is
bounded by (n+ 1)!, where n = |V |.

Lemma 1 The total number of cycles that appears in any residual network Gf
for a feasible flow f on G, is bounded by (n+ 1)!.

Proof: First we show that the number of directed cycles of length k (2 ≤ k ≤ n)
is bounded by n!. We identify each cycle C of length k with a path P of length k
starting and ending at the same arbitrarily chosen node of C and then following
the edges of C in the direction of their orientation. Every such path P can be
identified with a unique cycle. The number X of possible paths of length k is
bounded by

X ≤ n · (n− 1) · . . . · (n− k + 1) ≤ n! (1)

The first inequality of Equation (1) follows since there are at most n possible
choices for the first node of the path, at most n− 1 choices for the second node,
etc.

The lemma follows by observing that the number of possible lengths of cycles
in residual networks Gf is bounded by n+ 1. �

We next show that the probability that any particular cycle has negative
mean cost close to 0 can be bounded. In the rest of this section, ε > 0.

Lemma 2 The probability that an arbitrary cycle C has mean cost µ(C) ∈
[−ε, 0[ is at most nεφ.

Proof: We can only have µ(C) ∈ [−ε, 0[ if c(C) ∈ [−nε, 0[, since C consists
of at most n edges. We now draw the costs for all edges in C except for the
cost of one edge e. The cost of cycle C depends linearly on the cost of edge e,
with coefficient 1 if e is a forward edge in C and coefficient −1 if e is a reverse
edge in C. Therefore, the width of the interval from which the cost of e must
be drawn such that c(C) ∈ [−nε, 0[ is nε. Since the density function according
to which the cost of e is drawn has maximum density φ, the probability that the
cost of e is drawn from this interval is at most nεφ. �

Corollary 1 The probability that there exists any residual network Gf that con-
tains a cycle C with µ(C) ∈ [−ε, 0[ is at most (n+ 1)!nεφ.

Proof: The corollary follows directly from Lemma 1 and Lemma 2. �

Lemma 3 If none of the residual networks Gf for feasible flows f on G con-
tain a cycle C with µ(C) ∈ [−ε, 0[, then the MMCC algorithm needs at most
mndlog2(1/ε)e iterations.

Proof: Assume to the contrary that none of the residual networks Gf for fea-
sible flows f on G contain a cycle C with µ(C) ∈ [−ε, 0[, but the MMCC al-
gorithm needs more than mndlog2(1/ε)e iterations. Let f̃ denote the starting
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flow found using any maximum-flow algorithm. Since all edge costs are drawn
from the interval [0, 1], we have that |µ(f̃)| ≤ 1. According to Theorem 2,
after mndlog2(1/ε)e iterations we have that for the current flow f̄ holds that
|µ(f̄)| ≤ ε. Now either µ(f̄) ≥ 0 contradicting the assumption that the MMCC
algorithm needs more than mndlog2(1/ε)e iterations, or µ(f̄) ∈ [−ε, 0[ contra-
dicting the assumption that none of the residual networks Gf for feasible flows
f on G contain a cycle C with µ(C) ∈ [−ε, 0[. �

Theorem 3 The expected number of iterations that the MMCC algorithm needs
is at most O(mn2 log(n) log(φ)).

Proof: Let T be the expected number of iterations that the MMCC algorithm
needs. We have

E(T ) =

∞∑
t=1

P(T ≥ t)

≤
∞∑
t=1

P
(
any Gf contains a cycle C with µ(C) ∈ [−2−b(t−1)/mnc, 0[

)
(2)

≤ mn2dlog(n)edlog(φ)e+

∞∑
t=mn2dlog(n)edlog(φ)e+1

(n+ 1)!nφ2−b(t−1)/mnc

(3)

≤ mn2dlog(n)edlog(φ)e+

∞∑
t=0

2−bt/mnc (4)

= mn2dlog(n)edlog(φ)e+mn

∞∑
t=0

2−t

= O(mn2 log(n) log(φ))

Here Equation (2) follows from Lemma 3. Equation (3) follows by bounding the
probability for the first mn2dlog(n)edlog(φ)e terms of the summation by 1 and
the probability for the other terms using Corollary (1). Finally, Equation (4)
follows from the inequality n log(n) > log((n+ 2)!), which holds for n ≥ 6. �

3 Lower Bound for the MMCC Algorithm

3.1 General Lower Bound

In this section we describe a construction that, for every n, every m ∈ {n, n +
1, . . . , n2}, and every φ ≤ 2n, provides an instance with Θ(n) nodes and Θ(m)
edges for which the MMCC algorithm requires Ω(m log(φ)) iterations.

Our lower bound is inspired by the lower bound construction of Radzik and
Goldberg [22]. However, we had to make certain adjustments in order to make
the construction stable against perturbations. In particular, the “lengthener”
that Radzik and Goldberg use does not seem to work for smaller values of
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φ. While the construction by Radzik and Goldberg is stable for exponentially
large φ, i.e., very small perturbations, we believe that our modifications to their
instance are needed in order to get a lower bound also for smaller values of φ.
In particular, the case of a polynomially bounded φ is usually the interesting
case in smoothed analysis.

For simplicity, we describe in the following the initial residual network G,
which occurs after a flow satisfying all the budgets has been found, but before
the first minimum-mean cycle has been canceled. For completeness, we will
explain at the end of the description of G how to choose the initial network,
budgets, and starting flow such that G is the first residual network.

We now describe how to construct G given n, m, and φ. In the following,
we assume φ ≥ 512. If φ is smaller than 512, the lower bound on the number
of iterations reduces to Ω(m) and a trivial instance with Θ(n) nodes and Θ(m)
edges will require Ω(m) iterations. Furthermore, we assume that n is sufficiently
large.

We define kw = b 12 (log(φ) − 4)c and kx = b 12 (log(φ) − 5)c. Note that this
implies that kx = kw or kx = kw−1. For the edge costs we define intervals from
which the edge costs are drawn uniformly at random. We define G = (V, E) as
follows (see Figure 1).

• V = {a, b, c, d}∪U∪V ∪W∪X, where U = {u1, . . . , un}, V = {v1, . . . , vn},
W = {w1, . . . , wkw}, and X = {x1, . . . , xkx}.

• E = Euv ∪ Ea ∪ Eb ∪ Ec ∪ Ed ∪ Ew ∪ Ex.

• Euv is an arbitrary subset of U × V of cardinality m. Each edge (ui, vj)
has capacity 1 and cost interval [0, 1/φ].

• Ea contains the edges (a, ui), Eb contains the edges (ui, b), Ec contains
the edges (c, vi), and Ed contains the edges (vi, d) (i = 1, . . . , n). All these
edges have infinite capacity and cost interval [0, 1/φ].

• Ew contains the edges (d,wi) and (wi, a) (i = 1, . . . , kw). An edge (d,wi)
has capacity m and cost interval [0, 1/φ]. An edge (wi, a) has capacity m
and cost interval [−22−2i,−22−2i + 1/φ].

• Ex contains the edges (b, xi) and (xi, c) (i = 1, . . . , kx). An edge (b, xi)
has capacity m and cost interval [0, 1/φ]. An edge (xi, c) has capacity m
and cost interval [−21−2i,−21−2i + 1/φ].

In total, the graph G = (V, E) consists of 4 + 2n+ kw + kx nodes and m+ 4n+
2kw + 2kx edges.

Note that all cost intervals have width 1/φ and therefore correspond to valid
probability densities for the edge costs, since the costs are drawn uniformly at
random from these intervals. The edges of the types (wi, a) and (xi, c) have
a cost interval that corresponds to negative edge costs. The residual network
with these negative edge costs can be obtained by having the following origi-
nal instance (before computing a flow satisfying the budget requirements): All



406 K. Cornelissen, B. Manthey Smoothed Analysis

u1 u2 u3 u4

v1 v2 v3 v4

a b

cd

w2w1 x1 x2

0

0

0

0 0

0 0−1 −1
4

−1
2 −1

8

Figure 1: The instance G for which the MMCC algorithm needs O(m log(φ))
iterations for n = 4, m = 9, and φ = 512. Next to the edges are the approximate
edge costs. Note that the actual values in this instance are not possible because
n is not sufficiently large to satisfy all constraints. However, for readibility, we
chose n to be this small.

nodes, edges, costs and capacities are the same as in G, except that instead of
the edges of type (wi, a) we have edges (a,wi) with capacity m and cost interval
[22−2i− 1/φ, 22−2i] and instead of the edges of type (xi, c) we have edges (c, xi)
with capacity m and cost interval [21−2i − 1/φ, 21−2i]. In addition, node a has
budget kwm, node c has budget kxm, the nodes of the types wi and xi have
budget −m and all other nodes have budget 0. If we now choose as the initial
feasible flow the flow that sends m units from a to each node of type wi and
from c to each node of type xi then we obtain the initial residual network G.

We now show that the MMCC algorithm needs Ω(m log(φ)) iterations for
the initial residual network G. First we make some basic observations. The
minimum-mean cycle C never contains the path Pj = (d,wj , a) if the path
Pi = (d,wi, a) has positive residual capacity for some i < j, since the mean
cost of C can be improved by substituting Pj by Pi in C. Analogously, C
never contains the path Pj = (b, xj , c) if the path Pi = (b, xi, c) has positive
residual capacity for some i < j. Also, since all cycles considered have mean
cost strictly less than 1/φ, cycles will never include more edges with cost at least
−1/φ than necessary. In addition, since the edges of type (wi, a) and (xi, c) are
saturated in the order cheapest to most expensive, none of these edges will ever
be included in reverse direction in the minimum-mean cycle. This is because of
the following: if you use an edge (w, ai) in reverse direction in a cycle, then –
in order to get the costs of the cycle negative – one has to use an edge (c, xj)
that has sufficiently small costs to compensate for the positive costs of (ai, w).
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Since the edges of type (wi, a) and (xi, c) are saturated in order cheapest to
most expensive, this is impossible.

The above observations lead to three candidate types for the minimum-mean
cycle:

• cycles of type 1: C1
i = (d,wi, a, u, v, d),

• cycles of type 2: C2
i = (b, xi, c, v, u, b), and

• cycles of type 3: C3
i,j = (d,wi, a, u, b, xj , c, v, d).

Here u and v are arbitrary nodes in U and V , respectively. In the following
series of lemmas we compare the mean costs of these cycle types. Here u and
v are again arbitrary nodes in U and V , possibly different for the cycles that
are compared. In our computations we always assume worst-case realization of
the edge costs, i.e., if we want to show that a cycle C has lower mean cost than
a cycle C ′, we assume that all edges in C take the highest cost in their cost
interval, while all edges in C ′ take the lowest cost in their cost interval (an edge
that appears in both C and C ′ can even take its highest cost in C and its lowest
cost in C ′ in the analysis).

Lemma 4 The cycle C1
i = (d,wi, a, u, v, d) has lower mean cost than the cycle

C2
i = (b, xi, c, v, u, b).

Proof: Since the cycles have equal length, we can compare their total costs
instead of their mean costs. We have

w(C1
i )− w(C2

i ) ≤
(
−22−2i + 5/φ

)
−
(
−21−2i − 1/φ

)
≤ −64/φ+ 6/φ < 0.

Here the second inequality holds since i ≤ kx ≤ 1
2 (log(φ)− 5). �

Lemma 5 The cycle C2
i = (b, xi, c, v, u, b) has lower mean cost than the cycle

C1
i+1 = (d,wi+1, a, u, v, d).

Proof: Since the cycles have equal length, we can compare their total costs
instead of their mean costs. We have

w(C2
i )− w(C1

i+1) ≤
(
−21−2i + 4/φ

)
−
(
−22−2(i+1)

)
≤ −64/φ+ 4/φ < 0.

Here the second inequality holds since i+ 1 ≤ kw ≤ 1
2 (log(φ)− 4). �

Lemma 6 The cycle C1
i = (d,wi, a, u, v, d) has lower mean cost than the cycle

C3
i,i = (d,wi, a, u, b, xi, c, v, d).

Proof: We have

w(C1
i )/|C1

i | − w(C3
i,i)/|C3

i,i| ≤
(
−22−2i +

5

φ

)
/5−

(
−22−2i − 21−2i

)
/8

≤ −8

5φ
+

1

φ
< 0.

Here the second inequality holds since i ≤ kx ≤ 1
2 (log(φ)− 5). �
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Lemma 7 The cycle C2
i = (b, xi, c, v, u, b) has lower mean cost than the cycle

C3
i+1,i = (b, xi, c, v, d, wi+1, a, u, b).

Proof: We have

w(C2
i )

|C2
i |
−
w(C3

i,i+1)

|C3
i,i+1|

≤
(
−21−2i +

4

φ

)
/5−

(
−21−2i − 22−2(i+1)

)
/8

≤ −8

5φ
+

4

5φ
< 0.

Here the second inequality holds since i+ 1 ≤ kw ≤ 1
2 (log(φ)− 4). �

The above observations and lemmas allow us to determine the number of
iterations that the MMCC algorithm needs for residual network G.

Theorem 4 The MMCC algorithm needs m(kw + kx) iterations for residual
network G, independent of the realization of the edge costs.

Proof: For the first iteration only cycles of the types C3
i = (d,wi, a, u, v, d) and

C3
i,i = (d,wi, a, u, b, xi, c, v, d) are available. According to Lemma 6, all cycles

of type C3
i have lower mean costs than all cycles of type C3

i,i and therefore the

first iteration will augment along a cycle of type C3
i . After the first iteration,

an edge from V to U will become available, and therefore a cycle of the type
C2
i = (b, xi, c, v, u, b). According to Lemma 4 this cycle has higher mean cost

than cycles of the type C1
i however, and therefore the first m iterations will be

of the type C1
i .

After the first m iterations, the edge (d,w1), the edge (w1, a), and all edges
in Euv will be saturated. The available cycle types are now C2

i and C3
i+1,i =

(b, xi, c, v, d, wi+1, a, u, b). According to Lemma 7, all cycles of type C2
i have

lower mean cost than all cycles of type C3
i+1,i. The next iteration will therefore

augment along a cycle of type C2
i . After this iteration, an edge from U to V

becomes available and therefore a cycle of type C1
i+1, but according to Lemma 5

all cycles of type C2
i have lower mean cost than cycles of type C1

i+1 and therefore
in iterations m+ 1, . . . , 2m the MMCC algorithm augments along cycles of type
C2
i .

After 2m iterations, we obtain G, except that now edges (d,w1), (w1, a),
(b, x1), and (x1, c) are saturated and that there is some flow on the infinite
capacity edges of the types (a, ui), (ui, b), (c, vi), and (vi, d). The MMCC algo-
rithm will keep augmenting among m cycles of type C1

i followed by m cycles of
type C2

i until all edges of types (wi, a) and (xi, c) are saturated and no negative
cost cycles remain. The total number of iterations the MMCC algorithm needs
is therefore m(kw + kx). �

The instance G and Theorem 4 allow us to state a lower bound on the
number of iterations that the MMCC algorithm needs in the smoothed setting.

Theorem 5 For every n, every m ∈ {n, n + 1, . . . , n2}, and every φ ≤ 2n,
there exists an instance with Θ(n) nodes and Θ(m) edges for which the MMCC
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algorithm requires Ω(m log(φ)) iterations, independent of the realization of the
edge costs.

Proof: This follows directly from the instance G described above, Theorem 4,
and the definition of kw and kx. �

3.2 Lower Bound for φ = Ω(n2)

In Section 3.1 we considered the setting where φ is not lower-bounded by a
function depending on n. In this setting, we showed that the MMCC algorithm
needs Ω(m log(φ)) iterations. We can improve the lower bound if φ is much
larger than n and, therefore, the adversary has more power. In this section, we
consider the case where φ = Ω(n2). In particular, we show that for every n ≥ 4
and every m ∈ {n, . . . , n2} there exists an instance with Θ(n) nodes, Θ(m)
edges, and φ = Θ(n2) for which the MMCC algorithm needs Ω(mn) iterations.

The initial residual network H that we use to show our bound is very similar
to the initial residual network G that was used to show the bound in Section 3.1.
Below we describe the differences (see Figure 2 for an illustration). We set
φ = 400000n2. The constant of 400000 is large, but for the sake of readability
and ease of calculations we did not try to optimize it.

• The node set W now consists of n nodes {w1, . . . , wn} and the node set
X now consists of n nodes {x1, . . . , xn}.

• Node a is split into two nodes a1 and a2. From node a1 to a2 there is
a directed path consisting of n edges, all with infinite capacity and cost
interval [0, 1/φ]. Edges (a, ui) are replaced by edges (a2, ui) with infinite
capacity and cost interval [0, 1/φ]. Edges (wi, a) are replaced by edges

(wi, a1) with capacity m and cost interval [−(n−3n )
2i−2

,−(n−3n )
2i−2

+ 1
φ ].

• Node c is split into two nodes c1 and c2. From node c1 to c2 there is
a directed path consisting of n edges, all with infinite capacity and cost
interval [0, 1/φ]. Edges (c, vi) are replaced by edges (c2, vi) with infinite
capacity and cost interval [0, 1/φ]. Edges (xi, c) are replaced by edges

(xi, c1) with capacity m and cost interval [−(n−3n )
2i−1

,−(n−3n )
2i−1

+ 1
φ ].

Note that this is a valid choice of cost intervals for the edges (wi, a1) and
(xi, c1) and that they all have negative costs, since (xn, c1) is the most expensive
of them and we have

−
(
n− 3

n

)2n−1

+
1

φ
≤ −

(
1− 3

n

)2n

+
1

400000n2

≤ −(e−6)2 +
1

6400000
< 0.

There are the same three candidate type of cycles for the minimum-mean
cost cycle as in Section 3.1: cycles of type 1, denoted by C1

i , cycles of type 2,
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denoted by C2
i , and cycles of type 3, denoted by C3

i,j . Again we assume worst-
case realizations of the edge costs and compare the mean costs of cycles of the
different types in a series of lemmas.

Lemma 8 The cycle C1
i = (d,wi, a, u, v, d) has lower mean cost than the cycle

C2
i = (b, xi, c, v, u, b).

Proof: Since the cycles have equal length, we can compare their total costs
instead of their mean costs. We have

w(C1
i )− w(C2

i ) ≤
(
−
(
n− 3

n

)2i−2

+
n+ 5

φ

)
−
(
−
(
n− 3

n

)2i−1

− 1

φ

)

≤ −3e−12

n
+
n+ 6

φ
< 0.

Here the second inequality holds because i ≤ n and −
(
n−3
n

)2n ≤ −e−12 for
n ≥ 4. �

Lemma 9 The cycle C2
i = (b, xi, c, v, u, b) has lower mean cost than the cycle

C1
i+1 = (d,wi+1, a, u, v, d).

Proof: Since the cycles have equal length, we can compare their total costs
instead of their mean costs. We have

w(C2
i )− w(C1

i+1) ≤
(
−
(
n− 3

n

)2i−1

+
n+ 4

φ

)
−
(
−
(
n− 3

n

)2(i+1)−2
)

≤ −3e−12

n
+
n+ 4

φ
< 0.

Here the second inequality holds since i + 1 ≤ n and −
(
n−3
n

)2n ≤ −e−12 for
n ≥ 4. �

Lemma 10 The cycle C1
i = (d,wi, a, u, v, d) has lower mean cost than the cycle

C3
i,i = (d,wi, a, u, b, xi, c, v, d).

Proof: We have

w(C1
i )

|C1
i |
−
w(C3

i,i)

|C3
i,i|

≤

(
−
(
n−3
n

)2i−2
+ n+5

φ

)
n+ 5

−

(
−
(
n−3
n

)2i−2 − (n−3n )2i−1)
2n+ 8

≤ −e−12
(

n+ 15

(n+ 5)(2n+ 8)n

)
+

1

φ
< 0.

Here the second inequality holds because i ≤ n and −
(
n−3
n

)2n ≤ −e−12 for
n ≥ 4. �
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u1 u2 u3 u4

v1 v2 v3 v4
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c1d

w4w1 x1 x4

0

0

0
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0 0−1 −(n−3
n )6

−(n−3
n ) −(n−3

n )7

a2
0 0 0 0

0

c2

0

. . . . . .

0 0 0 0

Figure 2: The instance G for which the MMCC algorithm needs Ω(mn) it-
erations for n = 4, m = 9, and φ = 400000n2. Next to the edges are the
approximate edge costs.

Lemma 11 The cycle C2
i = (b, xi, c, v, u, b) has lower mean cost than the cycle

C3
i,i+1 = (b, xi, c, v, d, wi+1, a, u, b).

Proof: We have

w(C2
i )

|C2
i |
−
w(C3

i,i+1)

|C3
i,i+1|

≤

(
−
(
n−3
n

)2i−1
+ n+4

φ

)
n+ 5

−

(
−
(
n−3
n

)2i−1 − (n−3n )2(i+1)−2
)

2n+ 8

≤ −e−12
(

n+ 15

(n+ 5)(2n+ 8)n

)
+

n+ 4

(n+ 5)φ
< 0

Here the second inequality holds since i + 1 ≤ n and −
(
n−3
n

)2n ≤ −e−12 for
n ≥ 4. �

The above lemmas allow us to determine the number of iterations that the
MMCC algorithm needs for initial residual network H.

Theorem 6 The MMCC algorithm needs 2mn iterations for initial residual
network H, independent of the realization of the edge costs.

Proof: The proof is similar to the proof of Theorem 4. Since cycles of the type
(d,wi, a, u, v, d) have lower mean cost than both cycles of the type (b, xi, c, v, u, b)
and (d,wi, a, u, b, xi, c, v, d) according to Lemma 8 and Lemma 10, the first m
iterations will augment flow along cycles of type (d,wi, a, u, v, d). After these m
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iterations, edges (d,w1) and (w1, a1) are saturated and the edges in Euv have
positive residual capacity only in the direction from V to U .

Cycles of type C2
i have lower mean cost than both cycles of type C1

i+1 and
cycles of type C3

i+1,i according to Lemma 9 and Lemma 11. Thus, the next

m iterations will augment flow along cycles of type C2
i . After the first 2m

iterations, the residual network is the same as H, except that edges (d,w1),
(w1, a1), (b, x1), and (x1, c1) are saturated and there is some flow on several
edges of infinite capacity. The MMCC algorithm will keep augmenting along m
cycles of type C1

i followed by m cycles of type C2
i , until all edges of type (wi, a1)

and type (xi, c1) are saturated. At this point no negative cycles remain in the
residual network and the MMCC algorithm terminates after 2mn iterations. �

Initial residual network H and Theorem 6 allow us to state a lower bound
for the number of iterations that the MMCC Algorithm needs in the smoothed
setting for large φ.

Theorem 7 For every n ≥ 4 and every m ∈ {n, n + 1, . . . , n2}, there exists
an instance with Θ(n) nodes and Θ(m) edges, and φ = Θ(n2), for which the
MMCC algorithm requires Ω(mn) iterations, independent of the realization of
the edge costs.

Proof: Follows directly from the instance H and Theorem 6. �

4 Lower bound for the Network Simplex Algo-
rithm

In this section we provide a lower bound of Ω(m ·min{n, φ} · φ) for the number
of iterations that the Network Simplex (NS) algorithm requires in the setting
of smoothed analysis. Note that our lower bound is for the number of non-
degenerate pivots that the algorithm executes. This is no restriction, as the
total number of pivots is clearly not smaller than this quantity.

The instance of the minimum-cost flow problem that we use to show this
lower bound is very similar to the instance used by Brunsch et al. [3] to show a
lower bound on the number of iterations that the Successive Shortest Path algo-
rithm needs in the smoothed setting. The differences are that they scaled their
edge costs by a factor of φ, which we do not, that we add an extra path from
node s to node t, and that the budgets of the nodes are defined slightly differ-
ently. For completeness, we describe the construction of the (slightly adapted)
instance by Brunsch et al. below. For a more elaborate description of the in-
stance, we refer to their paper.

Given the similarity with the construction by Brunsch et al. [3], the question
arises if there is a more general way to prove a lower bound for the network
simplex algorithm: Can we show that any lower bound instance for SSP can be
transferred to a lower bound instance for the network simplex algorithm, e.g.,
just by adding a simple path from the sink to the source? While we cannot
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EUW

[0, 1
φ ] [ 7φ ,

9
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φ ]

G1
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2
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2
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3

Figure 3: Example for G1 with n = 3 and m = 7 with capacities different from
1 shown next to the edges and the cost intervals shown below each edge set.
Dashed edges are in the initial spanning tree for the network simplex algorithm,
while solid edges are not.

rule out such a general reduction, we believe that it is technically difficult. In
particular, in our construction below, the main technical issue is to deal with
the non-degenerate pivots that the network simplex algorithm performs.

In the following we assume that all paths from s to t have pairwise differ-
ent costs, which holds with probability 1, since the edge costs are drawn from
continuous probability distributions.

For given positive integers n, m ∈ {n, . . . , n2}, and φ ≤ 2n let k = blog φc −
5 = O(n) and M = min{n, 2blog2 φc/4− 2} = Θ(min{n, φ}). Like Brunsch et al.
we assume that φ ≥ 64, which implies k,M ≥ 1. We construct a flow network
with Θ(n) nodes, Θ(m) edges, and smoothing parameter φ for which the NS
algorithm needs Θ(m · min{n, φ} · φ) iterations. The construction of the flow
network G that we use to show our lower bound consists of three steps. First
we define a flow network G1. Next we describe how to obtain flow network Gi+1

from flow network Gi. Finally, we construct G using Gk. As before, we give
an interval of width at least 1/φ for each edge from which its costs are drawn
uniformly at random.

Construction of G1. For the first step, consider two sets U = {u1, . . . , un}
andW = {w1, . . . , wn} of n nodes and an arbitrary set EUW ⊆ U×W containing
exactly |EUW | = m edges. The initial flow network G1 is defined as G1 =
(V1, E1) for V1 = U ∪W ∪ {s1, t1} and

E1 = ({s1} × U) ∪ EUW ∪ (W × {t1}).
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Gi+1

si

ti

si+1 ti+1Gi

[0, 1
φ ]

≈ 2i+3

φ

≈ 2i+3

φ

[0, 1
φ ]

Figure 4: Gi+1 with Gi as sub-graph with edge costs next to the edges. Dashed
edges are in the initial spanning tree for the network simplex algorithm, while
solid edges are not.

The edges e from EUW have capacity 1 and costs from the interval Ie = [ 7φ ,
9
φ ].

The edges (s1, ui), ui ∈ U have capacity equal to the out-degree of ui, the edges
(wj , t1), wj ∈W have capacity equal to the in-degree of wj and both have costs
from the interval Ie = [0, 1

φ ] (see Figure 3).

Construction of Gi+1 from Gi. Now we describe the second step of our con-
struction. Given a flow network Gi = (Vi, Ei), we define Gi+1 = (Vi+1, Ei+1),
where Vi+1 = Vi ∪ {si+1, ti+1} and

Ei+1 = Ei ∪ ({si+1} × {si, ti}) ∪ ({si, ti} × {ti+1}).
Let Ni be the value of the maximum si-ti flow in the graph Gi. The new
edges e ∈ {(si+1, si), (ti, ti+1)} have capacity u(e) = Ni and costs from the
interval Ie = [0, 1

φ ]. The new edges e ∈ {(si+1, ti), (si, ti+1)} also have capacity

u(e) = Ni, but costs from the interval Ie = [ 2
i+3−1
φ , 2

i+3+1
φ ] (see Figure 4).

Construction of G from Gk. Let F be the value of a maximum sk-tk flow
in Gk. We will now use Gk to define G = (V,E) as follows (see also Figure 5).

• V := Vk ∪ A ∪ B ∪ C ∪D ∪ Q ∪ {s, t}, with A := {a1, a2, . . . , aM}, B :=
{b1, b2, . . . , bM}, C := {c1, c2, . . . , cM}, D := {d1, d2, . . . , dM}, and Q :=
{q1, q2, . . . , q2M}.

• E := Ek ∪ Ea ∪ Eb ∪ Ec ∪ Ed ∪ Eq.
• Ea contains the edges (ai, ai−1), for i ∈ {2, . . . ,M}, with cost interval

[ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity;

(s, ai), i ∈ {1, . . . ,M}, with cost interval [0, 1
φ ] and capacity F ; and

(a1, sk) with cost interval [ 2
k+4−1
φ , 2

k+4

φ ] and infinite capacity.
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Figure 5: G with Gk as sub-graph with approximate edge costs next to the
edges. Dashed edges are in the initial spanning tree for the network simplex
algorithm, while solid edges are not.

• Eb contains the edges (bi, bi−1), for i ∈ {2, . . . ,M}, with cost interval

[ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity;

(s, bi), i ∈ {1, . . . ,M}, with cost interval [0, 1
φ ] and capacity F ; and (b1, tk)

with cost interval [ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity.

• Ec contains the edges (ci−1, ci), for i ∈ {2, . . . ,M}, with cost interval

[ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity;

(ci, t), i ∈ {1, . . . ,M}, with cost interval [0, 1
φ ] and capacity F ;

and (sk, c1) with cost interval [ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity.

• Ed contains the edges (di−1, di), for i ∈ {2, . . . ,M}, with cost interval

[ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity;

(di, t), i ∈ {1, . . . ,M}, with cost interval [0, 1
φ ] and capacity F ; and (tk, d1)

with cost interval [ 2
k+4−1
φ , 2

k+4

φ ] and infinite capacity.

• Eq contains the edges (qi−1, qi), for i ∈ {2, . . . , 2M}, with cost interval

[ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity;

(s, q1), with cost interval [ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity; and (q2M , t)

with cost interval [ 2
k+5−1
φ , 2

k+5

φ ] and infinite capacity.

The budgets of all nodes are 0, except for node s and t, which have budgets
b(s) = 2MF and b(t) = −2MF . We choose as the initial spanning tree T for
the NS algorithm the edges
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• (s1, ui) (i = 1, . . . , n) and (wi, t1) (i = 1, . . . , n),

• (si+1, si) (i = 1, . . . , k − 1) and (ti, ti+1) (i = 1, . . . , k − 1),

• (s, a1), (ai, ai−1) (i = 2, . . . ,M), and (a1, sk),

• (sk, c1) and (ci−1, ci) (i = 2, . . . ,M),

• (bi, bi−1) (i = 2, . . . ,M) and (b1, tk),

• (d1, t), (tk, d1), and (di−1, di) (i = 2, . . . ,M),

• (s, q1), (qi, qi+1) (i = 1, . . . , 2M − 1), and (q2M , t).

(see Figure 3, Figure 4, and Figure 5). In addition, L̃ = E\T and Ũ = ∅.
Spanning tree structure (T, L̃, Ũ) corresponds to the flow that sends 2MF units
of flow on the path (s, q1, . . . , q2M , t) and does not send any flow on other edges.

To prove our lower bound on the number of iterations that the NS algorithm
needs for flow network G, we link the iterations of the NS algorithm to the
iterations of the Successive Shortest Path (SSP) algorithm for flow network
H, where H is obtained from G by removing all nodes qi (i = 1, . . . , 2M)
and all their incident edges. As shown by Brunsch et al. [3, Theorem 23],
the SSP algorithm needs Ω(m · min{n, φ} · φ) iterations for H. We show that
each non-degenerate iteration of the NS algorithm on G corresponds with an
iteration of the SSP algorithm on H and that therefore the NS algorithm needs
Ω(m · min{n, φ} · φ) iterations for flow network G as well. In our analysis we
use many results on the costs of paths in H by Brunsch et al. [3]. We will not
prove these results again, but refer to the original paper.

We now first observe that path (s, q1, . . . , q2M , t) is the most expensive path
from s to t in G. Since paths from sk to tk have cost less than 2k+3 [3,
Lemma 21], the most expensive s − t paths that do not use the nodes qi are
(s, aM , . . . , cM , t) and (s, bM , . . . , dM , t). Both those paths have the same dis-
tribution for their costs. If we arbitrarily choose path (s, aM , . . . , cM , t) and
compare its cost with the cost of path (s, q1, . . . , q2M , t), assuming worst case
edge cost realizations, we have

c(s, q1, . . . , q2M , t)− c(s, aM , . . . , cM , t)

≥ (2M + 1)

(
2k+5 − 1

φ

)
−
(

(2M − 1)2k+5 + 2k+4 + 2

φ

)
=

3 · 2k+4 − 2M − 3

φ
> 0,

by the definition of k and M and φ ≥ 64. This shows that (s, q1, . . . , q2M , t) is
the most expensive path from s to t in G.

Since (s, q1, . . . , q2M , t) is the most expensive s − t path, we can obtain a
negative cycle C by combining the reverse edges of (s, q1, . . . , q2M , t) with the
edges of another s − t path P . Clearly, the cheaper P is, the cheaper is C. In
addition, if all edges of C except for one edge (i, j) are in the current spanning
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tree T̃ , then edge (i, j) has reduced cost equal to the cost of C, since all edges
in T̃ have reduced cost 0. Using these two observations, we can conclude that
as long as all negative cycles that can be formed using edges in the current
spanning tree T̃ plus one edge outside of T̃ that has positive residual capacity
in the current residual network consist of path (t, q2M , . . . , q1, s) plus an s − t
path P , then the NS algorithm with the most negative edge pivot rule will pivot
on the edge that together with the edges in T̃ forms the cheapest s− t path.

Brunsch et al. [3] showed that the SSP algorithm encounters 2MF paths on
H. Let P1, . . . , P2MF be the paths encountered on H by the SSP algorithm,
ordered from cheapest to most expensive. We refer the reader to the paper of
Brunsch et al. for a description of these paths. In the following we show that
in the ith non-degenerate iteration of the NS algorithm on G, flow is sent along
cycle (t, q2M , . . . , q1, s) ∪ Pi. We will not provide all the calculations needed to
compare the reduced cost of the candidate edges for addition to the spanning
tree in each iteration, but it can be checked by tedious computation that the
claimed edge is indeed the one with lowest reduced cost. If flow is sent over one
of the edges in EUW , that edge is always a candidate leaving edge, since edges
in EUW have capacity 1 and all other capacities are integral. For simplicity
we assume that in cases where multiple edges in the cycle become saturated
simultaneously by the flow augmentation, it is always the edge from EUW that
leaves the spanning tree.

In the first iteration of the NS algorithm on G, all edges in EUW have
negative reduced cost and positive residual capacity, and the edge (ui, wj) that
together with the starting spanning tree T contains path P1 is added to T , flow
is augmented along cycle (t, q2M , . . . , q1, s)∪P1, and (ui, wj) becomes saturated
and leaves T again. For the second iteration, edge (ui, wj) is saturated and
therefore the edge that together with T contains P2 will be added to T . This
will continue for the first m iterations.

At this point, the cheapest s − t path using edges in T plus one edge with
positive residual capacity is the path that is obtained by using either edge (s2, t1)
or edge (s1, t2) (depending on the realization of the edge costs). The next two
iterations will therefore be degenerate. In one of these iterations (s2, t1) is added
to the spanning tree, but edge (t1, t2) is saturated, prevents any flow being sent
along the cycle, and is therefore removed from the spanning tree. In the other
iteration (s1, t2) is added to the spanning tree and (s2, s1) is removed. After
these two iterations the edges in EUW become eligible for augmenting flow in
the reverse direction and the next m iterations augment flow along the cycles
(t, q2M , . . . , q1, s) ∪ Pm+1, . . . , (t, q2M , . . . , q1, s) ∪ P2m.

Analogously to the above, every time an edge (si+1, si) gets saturated, two
degenerate iterations take place in which edges (si, ti+1) and (si+1, ti) are added
to the spanning tree. This allows flow to be sent through Gi in reverse direction,
i.e., from ti to si. Similarly, every time an edge (ti+1, si) (i.e., the reverse
edge of an original edge (si, ti+1)) in the residual network gets saturated, two
degenerate iterations take place in which edges (ti, ti+1) and (si+1, si) are added
to the spanning tree.

After F iterations, there are no paths with positive residual capacity from



418 K. Cornelissen, B. Manthey Smoothed Analysis

sk to tk. At this point another two degenerate iterations take place. In one of
them edge (c1, t) is added to the spanning tree, but no flow is sent since (s, a1)
has zero residual capacity and therefore (s, a1) leaves the spanning tree. In the
other iteration (s, b1) is added to the spanning tree and (di, t) leaves. Now the
edges in EUW can be added to the spanning tree again and flow is augmented
along them in reverse direction during the next m iterations. In particular, in
the next iteration flow is augmented along cycle (t, q2M , . . . , q1, s) ∪ PF+1.

Analogously to the above, every time an edge (s, ai) gets saturated, two
degenerate iterations take place. In one of them (ci, t) enters the spanning tree
and (s, ai) leaves. In the other (s, bi) enters the spanning tree and (d1, t) leaves.
Also, every time an edge (s, bi) gets saturated, two degenerate iterations take
place. In one of them (di+1, t) enters the spanning tree and (s, bi) leaves. In the
other (s, ai+1) enters the spanning tree and (ci, t) leaves.

Finally, after 2MF iterations none of the edges not in the spanning tree has
both negative reduced cost and positive residual capacity and therefore the NS
algorithm terminates. From the above discussion we can conclude that the NS
algorithm on G needs 2MF non-degenerate iterations plus several degenerate
ones.

Theorem 8 For flow network G and initial spanning tree structure (T, L̃, Ũ),
the NS algorithm needs 2MF non-degenerate iterations with probability 1.

Proof: Follows immediately from the discussion above. �

Theorem 8 provides a lower bound for the number of iterations that the NS
algorithm needs in the smoothed setting.

Theorem 9 For every n, every m ∈ {n, . . . , n2}, and every φ ≤ 2n there exists
a flow network with Θ(n) nodes and Θ(m) edges, and an initial spanning tree
structure for which the Network Simplex algorithm needs Ω(m · min{n, φ} · φ)
non-degenerate iterations with probability 1.

Proof: Follows directly from Theorem 8 and the definition of M and F . �

5 Discussion

In Section 4 we showed a smoothed lower bound of Ω(m ·min{n, φ} · φ) for the
number of iterations that the NS algorithm needs. This bound is the same as
the smoothed lower bound that Brunsch et al. [3] showed for the SSP algorithm.
For the SSP algorithm this lower bound is even tight in case φ = Ω(n). Still,
the NS algorithm is usually much faster in practice than the SSP algorithm. We
believe that the reason for this difference is that the time needed per iteration
is much less for the NS algorithm than for the SSP algorithm. In practical
implementations, the entering edge is usually picked from a small subset (for
example of size Θ(

√
m)) of the edges, which removes the necessity of scanning all

edges for the edge that maximally violates its optimality conditions. Also, the
spanning tree structure allows for fast updating of the flow and node potentials,
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in particular when the flow changes on only a small fraction of the edges. For
the SSP algorithm an iteration consists of finding a shortest path, which takes
O(m+n log(n)) time. The experimental results of Kovács [16] seem to support
this claim, since on all test instances the SSP algorithm is slower than the NS
algorithm, but never more than a factor m. To allow a better comparison of
the SSP algorithm and the NS algorithm in the smoothed setting, it would be
useful to have a smoothed upper bound on the running time of the NS algorithm.
Finding such an upper bound is our main open problem.

There is a gap between our smoothed lower bound of Ω(m log(φ)) (Sec-
tion 3.1) for the number of iterations that the MMCC algorithm requires and
our smoothed upper bound of O(mn2 log(n) log(φ)). Since our lower bound
for the MMCC algorithm is weaker than the lower bound for the SSP algo-
rithm, while the MMCC algorithm performs worse on practical instances than
the SSP algorithm, we believe that our lower bound for the MMCC algorithm
can be strengthened. Our stronger lower bound of Ω(mn) in case φ = Ω(n2)
(Section 3.2) is another indication that this is likely possible.

Finally, there exists a recent variant of the cycle canceling strategy for com-
puting min-cost flows, called “cancel-and-tighten” [9], that achieves a much
better running-time than the pure MMCC algorithm that we have considered
in this paper. Both from an experimental and analytical perspective, it would
be interesting to see where this algorithm fits in the complexity landscape of
MCF algorithms.
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