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Abstract

A track layout of a graph consists of a vertex coloring and a total order
of each color class, such that no two edges cross between any two color
classes. The track number of a graph is the minimum number of colors
required by a track layout of the graph.

This paper improves lower and upper bounds on the track number of
several families of planar graphs. We prove that every planar graph has
track number at most 225 and every planar 3-tree has track number at
most 25. Then we show that there exist outerplanar graphs whose track
number is 5, which leads to the best known lower bound of 8 for planar
graphs. Finally, we investigate leveled planar graphs and tighten bounds
on the track number of weakly leveled graphs, Halin graphs, and X-trees.
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1 Introduction

A track layout of a graph is a partition of its vertices into sequences, called
tracks, such that the vertices in each sequence form an independent set and
no two edges between a pair of tracks cross each other. The track number of
a graph is the minimum number of tracks in a track layout. Track layouts
are formally introduced by Dujmović, Morin, and Wood [8], although similar
concepts are implicitly studied in several earlier works [4, 11, 12]. An original
motivation for studying track layouts is their connection with the existence of
low-volume three-dimensional graph drawings: A graph with n vertices has a
three-dimensional straight-line drawing in a grid of size O(1)×O(1)×O(n) if
and only if it has track number O(1) [8, 9].

Track layouts are closely related to other models of linear graph layouts,
specifically, stack and queue layouts. A stack layout of a graph consists of a
linear order on the vertices and a partition of its edges so that no edges in a
single part cross; that is, there are no edges (u, v) and (x, y) in the same part
with u < x < v < y. A queue layout is defined similarly except no two edges
in the same part nest; that is, there are no edges (u, v) and (x, y) in a part
with u < x < y < v. The minimum number of parts needed in a stack (queue)
layout of a graph is called its stack number (queue number) [12, 13]. A major
result in the field is that track number is tied to queue number in a sense that
one is bounded by a function of the other [9]. In particular, every t-track graph
has a (t− 1)-queue layout, and every q-queue graph has track number at most
4q · 4q(2q−1)(4q−1). The relationship between stack and track layouts is not that
prominent but it is known that stack number is bounded by track number for
bipartite graphs [9]; whether the reverse is true is an open question. Therefore,
a study on track layouts may shed light on the relationship between the linear
graph layouts.

In this paper we investigate lower and upper bounds on the track number
of various families of planar graphs. Table 1 summarizes new and existing
bounds described in the literature. A recent breakthrough result by Dujmović,
Joret, Micek, Morin, Ueckerdt, and Wood [7] implies that all planar graphs have
bounded track number (in fact, the result extends to every proper minor-closed
class of graphs). Their analysis leads to a very large constant, as it is based
on a fairly generic technique. We provide an alternative proof resulting in the
upper bound of 225 for the track number of planar graphs (Section 4.1). An
important ingredient of our construction is an improved upper bound of 25 for
the track number of planar 3-trees (Section 3). For the lower bounds, we find
an outerplanar graph that requires 5 tracks, which is worst-case optimal. This
resolves an open question posed in [9] and provides the best lower bound of 8
on the track number of general planar graphs (Section 4.2).

Finally in Section 5, we study track layouts of (weakly) leveled planar graphs,
which are the graphs with planar leveled drawings having no dummy vertices.
This is a well studied family of planar graphs, as it is related to layered graph
drawing and 1-queue layouts [12]; refer to Section 5 for a definition. We prove
that the existing upper bound of 6 is worst-case optimal for the class of graphs,
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Table 1: Track numbers of various families of planar graphs

Upper bound Lower bound

Graph class Old Ref. New Ref. Old Ref. New Ref.

tree 3 [11] 3 [11]
outerplanar 5 [9] 4 [9] 5 [Thm. 3]
series-parallel 15 [4] 6 [8]
planar 3-tree 4,000 [1] 25 [Thm. 1] 6 [8] 8 [Cor. 1]
planar 461,184,080 [7] 225 [Thm. 2] 7 [9] 8 [Cor. 1]
X-tree 6 [2] 5 [Thm. 4] 3 [4] 5 [Thm. 5]
Halin 6 [2] 3 [9] 5 [Thm. 5]
weakly leveled 6 [2] 3 [2] 6 [Thm. 5]

while certain subfamilies (for example, X-trees) admit a layout on 5 tracks. The
results close the gaps between upper and lower bounds on the track numbers
for the subclasses of planar graphs. Our lower bounds in the section rely on
computational experiments using a SAT formulation of the track layout problem
(Section 5.2). We conclude the paper in Section 6 with possible future research
directions and open problems.

2 Preliminaries

In this section we introduce necessary definitions and recall some known results
about track layouts. Throughout the paper, G =

(
V (G), E(G)

)
is a simple

undirected graph with n = |V (G)| vertices and m = |E(G)| edges.

Track Layouts Let {Vi : 1 ≤ i ≤ t} be a partition of V such that for
every edge (u, v) ∈ E, if u ∈ Vi and v ∈ Vj , then i 6= j. Suppose that <i is a
total order of the vertices in Vi. Then the ordered set (Vi, <i) is called a track
and the partition is called a t-track assignment of G. An X-crossing in a track
assignment consists of two edges, (u, v) and (x, y), such that u and x are on
the same track Vi with u <i x, and v and y are on a different track Vj with
y <j v. A t-track layout of graph G, denoted T (G), is a t-track assignment with
no X-crossings, and track number, tn(G), is the minimum t such that G has a
t-track layout. In particular, 1-track graphs have no edges, and 2-track graphs
are the forests of caterpillars.

Some authors consider a relaxed definition of the concept, called improper
track layouts, in which edges between consecutive vertices in a track are al-
lowed [6, 11]. It can be easily seen that the tracks of such a layout can be
doubled to obtain a proper track layout [8]. Thus, every graph with improper
track number t has (proper) track number at most 2t. In Section 5, we show
that the upper bound can be smaller than 2t for some subclasses of graphs. In
this paper we study only proper track layouts.

A basic result on track layouts is a “wrapping” lemma, which is due to
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Dujmović et al. [9] (which in turn is based on the ideas of Felsner et al. [11]).
Consider a track assignment whose index set is D-dimensional. That is, let
{Vi1,...,iD : 1 ≤ i1 and 1 ≤ id ≤ bd for 2 ≤ d ≤ D} be a track layout of a
graph G. Define the partial span of an edge (u, v) ∈ E with u ∈ Vi1,...,iD and
v ∈ Vj1,...,jD to be |i1 − j1|. The following lemma describes how to modify the
track layout of G with possibly many tracks into a layout whose track number
is bounded by a function of b2, . . . , bD and the maximum partial span.

Lemma 1 (Dujmović et al. [9]) Let {Vi1,...,iD : 1 ≤ i1 and 1 ≤ id ≤ bd for
2 ≤ d ≤ D} be a track layout of a graph G with maximum partial span s ≥ 1.
Then

tn(G) ≤ (2s+ 1) ·
∏

2≤d≤D

bd

We stress that Lemma 1 can be applied for track layouts whose index set is
one-dimensional. In that case, tn(G) ≤ 2s+ 1, where s is the maximum span of
an edge for the single dimension.

Treewidth and Tree-Partitions A tree-decomposition of a graph G repre-
sents the vertices of G as subtrees of a tree, in such a way that the vertices
are adjacent if and only if the corresponding subtrees intersect. The width of
a tree-decomposition is one less than the maximum size of a set of mutually
intersecting subtrees, and the treewidth of G is the minimum width of a tree-
decomposition of G. For a fixed integer k ≥ 1, a k-tree is a maximal graph
of treewidth k, such that no more edges can be added without increasing its
treewidth. Alternatively, a k-tree is defined recursively as follows: A k-clique is
a k-tree, and the graph obtained from a k-tree by adding a new vertex adjacent
to every vertex of a k-clique is also a k-tree. A subgraph of a k-tree is called
a partial k-tree. In our proofs we do not directly use a tree-decomposition of a
graph but utilize a related concept, a tree-partition, which is defined next.

Given a graph G, a tree-partition of G is a pair
(
T, {Tx : x ∈ V (T )}

)
consisting of a tree T and a partition of V into sets {Tx : x ∈ V (T )}, such
that for every edge (u, v) ∈ E one of the following holds: (i) u, v ∈ Tx for some
x ∈ V (T ), or (ii) there is an edge (x, y) of T with u ∈ Tx and v ∈ Ty. The
vertices of T are called the nodes and the sets Tx, x ∈ V (T ) are called the bags
of the tree-partition.

The following well-known result provides a tree-partition of a k-tree.

Lemma 2 (Dujmović et al. [8]) There exists a rooted tree-partition
(
T, {Tx :

x ∈ V (T )}
)

of a k-tree G such that

• for every node x of T , the subgraph of G induced by the vertices of Tx is
a connected partial (k − 1)-tree;

• for every non-root node x of T , if y is a parent node of x in T , then the
set of vertices in Ty having a neighbor in Tx forms a clique of size k in G.
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Let us describe how one can obtain a tree-partition of a k-tree G as in
Lemma 2. Fix an arbitrary vertex r ∈ V and perform a breadth-first search in
G starting from r. For every d ≥ 0 and every connected component induced
by the vertices of G at distance d from the root, create a node of T associated
with a bag containing the vertices of the component. Two nodes are adjacent
if the vertices of the corresponding bags are joined by at least one edge of G.
Dujmović et al. [8] show that the constructed graph T is indeed a tree, and that
the vertices of each bag form a connected subgraph of a (k − 1)-tree.

Layerings and H-Partitions A generalization of a tree-partition is the no-
tion of an H-partition. An H-partition of a graph G is a partition of V (G) into
disjoint bags, {Ax : x ∈ V (H)} indexed by the vertices of H, such that for every
edge (u, v) ∈ E(G) one of the following holds: (i) u, v ∈ Ax for some x ∈ V (H),
or (ii) there is an edge (x, y) ∈ E(H) with u ∈ Ax and v ∈ Ay. In the former
case, (u, v) is an intra-bag edge and in the latter case, it is an inter-bag edge.

A layering of a graph G = (V,E) is an ordered partition (V0, V1, . . . ) of V
such that for every edge (v, w) ∈ E, if v ∈ Vi and w ∈ Vj , then |i − j| ≤ 1. If
r is a vertex in a connected graph G and Vi = {v ∈ V | distG(r, v) = i} for all
i > 0, then (V0, V1, . . . ) is called a BFS-layering of G. The layered width of an
H-partition of a graph G is the minimum integer ` such that for some layering
(V0, V1, . . . ) of G, we have |Ax ∩ Vi| ≤ ` for every bag Ax of the partition and
every integer i ≥ 0.

The following lemma is a key ingredient for our proof of the upper bound
on the track number of planar graphs.

Lemma 3 (Dujmović et al. [7]) Every planar graph G has an H-partition
of layered width 3 such that H is planar and has treewidth at most 3. Moreover,
there is such a partition for every BFS-layering of G.

3 Planar Graphs of Bounded Treewidth

In this section, we study track numbers of planar graphs of bounded treewidth.
Our primary goal is improving the existing upper bound for planar 3-trees.

The following notion is introduced by Dujmović et al. [8]; it is also implicit
in the work of Di Giacomo et al. [4]. Let {Vi : 1 ≤ i ≤ t} be a t-track layout
of a k-tree, Gk. We say that a clique C1 of Gk precedes a clique C2 of Gk with

a
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f g
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b

Figure 1: A 1-clique-colorable 4-track layout of a set of 3-cliques. A nice order
≺ is defined as follows: 〈b, c, f〉 ≺ 〈a, b, d〉 ≺ 〈a, d, g〉 ≺ 〈a, b, e〉.
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respect to the track layout if for every 1 ≤ i ≤ t and for all u ∈ Vi ∩ C1 and
w ∈ Vi ∩ C2, it holds that u ≤i w; we denote the relation by C1 ≺ C2. Let
S = {C1, . . . , C|S|} be a set of maximal cliques of Gk. We say that S is nicely
ordered if ≺ is a total order on S, that is, Ci ≺ Cj for all 1 ≤ i < j ≤ |S|.
Finally, for a track layout of Gk, we say that a given set of maximal cliques is
c-colorable if the set can be partitioned into c nicely ordered subsets. Such a
track layout is called c-clique-colorable; see Figure 1 for an illustration.

Lemma 4 The following holds:

(a) Every path admits a 1-clique-colorable 2-track layout.

(b) Every tree admits a 2-clique-colorable 3-track layout.

(c) Every outerplanar graph admits a 2-clique-colorable 5-track layout.

Proof: Claim (a) of the lemma is straightforward, as every 2-track layout of
a path is 1-clique-colorable. Now we prove (b). Consider a plane drawing of a
tree, T , such that the vertices having the same distance from the root are drawn
on the same horizontal line; see Figure 2a. Let x(v) and y(v) denote x and y
coordinates of a vertex v ∈ V (T ). The drawing corresponds to a track layout
with maximum span 1, which by Lemma 1 can be converted into a 3-track layout
by assigning track(v) = y(v) (mod 3) for every vertex v. The maximal cliques
in the graph are edges of T . We partition the edges into S1 = {(u, v) ∈ E(T ) :
track(u) = 1 or track(v) = 1} and S2 = E(T ) \ S1. It is easy to verify that the
two sets of edges are nicely ordered with respect to the 3-track layout.

In order to prove (c), we utilize a 5-track layout of an outerplanar graph
suggested by Dujmović et al. [9]; see also [1]. They prove that every max-
imal outerplanar graph, G, has a straight-line outerplanar drawing in which
vertex coordinates are integers, and the absolute value of the difference of the
y-coordinates of the endvertices of each edge of G is either one or two; see Fig-
ure 2b. That is, 1 ≤ |y(v)−y(u)| ≤ 2 for all (u, v) ∈ E. Such a drawing defines a
track layout in which vertices with the same y-coordinates form a track and the
ordering of the vertices within each track is implied by the drawing. The layout
may have many tracks but maximum edge span is 2. By Lemma 1, the layout
is wrapped onto 5 tracks by assigning track(v) = y(v) (mod 5) and ordering
vertices within a track lexicographically by

(
by/5c, x

)
.

The maximal cliques in G are triangular faces. Denote a face containing
vertices u, v, w by 〈u, v, w〉 and the set of all faces in G by F . We partition F into
two sets S1 = {〈u, v, w〉 ∈ F : track(u) = 2 or track(v) = 2 or track(w) = 2}
and S2 = F \ S1; see Figure 2b in which members of S2 are shaded. All the
faces of S1 contain a vertex in track 2; choose the leftmost (having smallest
x-coordinate) such vertex v∗ with track(v∗) = 2. The faces containing v∗ can
be nicely ordered with respect to the track layout, as the drawing is planar.
Removing v∗ from the layout and applying the same argument for the remaining
faces, yields a nice order of S1. An analogous procedure can be utilized to
construct a nice order of S2, since all those faces contain a vertex in track 0 and
a vertex in track 4. �
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(a) A track layout of a tree wrapped onto a 2-clique-colorable 3-track layout. Edges
(2-cliques) are partitioned into two nice orders, blue and shaded red.
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(b) A track layout of an outerplanar graph wrapped onto a 2-clique-colorable 5-track
layout. Faces (3-cliques) are partitioned into 2 nice orders; faces of one part are shaded.

Figure 2: An illustration for Lemma 4

Notice that the claims of Lemma 4 are tight in terms of clique-colorability:
There is no constant t such that every tree admits a 1-clique-colorable t-track
layout. The next lemma shows how to use clique-colorable track layouts for
graphs of bounded treewidth.

Lemma 5 Assume that every k-tree admits a c-clique-colorable t-track layout.
Then every (k + 1)-tree admits a layout on t · (2c+ 1) tracks.

Proof: Let
(
T, {Tx : x ∈ V (T )}

)
be a tree-partition of a (k + 1)-tree, Gk+1,

given by Lemma 2. In order to construct a desired track layout of Gk+1, consider
a vertex v ∈ V (Gk+1) that belongs to a bag x ∈ V (T ) in the tree-partition. The
track of v is defined by two indices, (iv, jv), where iv is derived from a track
layout of Tx and jv is derived from a certain track layout of the tree T . Next
we define iv and jv.

• By Lemma 2, vertices of every bag of the tree-partition form a connected
partial k-tree, which is a subgraph of a k-tree [3]. Thus, Tx admits a c-
clique-colorable t-track layout, which we denote by T (Tx). The first index,
iv, is the track of v in T (Tx). Clearly the index ranges from 1 to t.
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• Consider a parent node, y ∈ V (T ), of node x in the tree-partition. By
Lemma 2, vertices of Ty adjacent to a vertex of Tx form a maximal clique,
which we call the parent clique of x. The vertices of Ty form a partial
k-tree, which by the assumption of the lemma admits a c-clique-colorable
t-track layout, T (Ty). Thus, the parent clique of x has an assigned color,
c(x), ranging from 1 to c, and cliques with the same color are nicely ordered
in T (Ty).

We layout T on (possibly many) tracks such that, for every parent node
y, its child nodes are on c consecutive tracks. Formally, if x is a child
of y and the corresponding parent clique of x has color 1 ≤ c(x) ≤ c,
then track(x) = track(y) + c(x). The order of child nodes having the
same color follows the nice order of the corresponding parent cliques. The
constructed track layout of T is denoted T (T ).

We assign jv to be the track of node x in T (T ). The index can be as large
as Ω(|V (T )|) but the maximum span of an edge of E(T ) is c.

Now we define the order of the vertices of Gk+1 within the same track. If
two vertices, u and v, belong to the same bag x ∈ V (T ) in the tree-partition,
their relative order is inherited from track layout T (Tx). If the vertices are in
different bags, that is, u ∈ Tx, v ∈ Ty for some x ∈ V (T ), y ∈ V (T ), then the
order is dictated by the order of nodes x and y in track layout T (T ).

Next we show that the constructed track assignment has no X-crossings.
Intra-bag edges do not form X-crossings by the assumption of the lemma. Con-
sider two inter-bag edges, (u1, v1) ∈ E(Gk+1) and (u2, v2) ∈ E(Gk+1). Since
there are no crossings in T (T ), the inter-bag edges mapped to edges of T with-
out a common parent are not in an X-crossing. Thus we may assume that
u1 ∈ Tp, u2 ∈ Tp, v1 ∈ Tx, v2 ∈ Ty for some nodes p, x, y ∈ V (T ) such that p is
a parent of x and y. If parent cliques of x and y are of different colors, then by
construction of T (T ), vertices v1 and v2 are in different tracks. If parent cliques
of x and y are of the same color, then the order between v1 and v2 is consistent
with the order between u1 and u2, since the cliques are nicely ordered in T (Tp).
Therefore, an X-crossing between (u1, v1) and (u2, v2) is impossible.

Finally, we apply Lemma 1 for the constructed two-dimensional track layout
with maximum partial span c to get the desired claim. �

By combining Lemma 5 with Lemma 4, we can get an improved upper bound
for the track number of planar 3-trees.

Theorem 1 The track number of a planar 3-tree is at most 25.

Proof: First we build a tree-partition of a planar 3-tree G as in Lemma 2. To
this end, as mentioned in Section 2, pick a root r ∈ V and perform a breadth-first
search in G starting from r. Bags of the tree-partition are formed by connected
components induced by the vertices of G at the same distance from the root.

Since G is planar, vertices at the same distance from the root induce an
outerplanar graph [1]. Hence, the vertices of each bag of the tree-partition form



JGAA, 24(3) 323–341 (2020) 331

a connected outerplanar graph, which by Lemma 4 admits a 2-clique-colorable
5-track layout. Applying the arguments of Lemma 5 to a planar 3-tree G yields
the claim of the theorem. �

Note that a similar construction provides an upper bound of 15 for planar
2-trees (series-parallel graphs), as every bag of a corresponding tree-partition
induce a tree, which admits a 2-clique-colorable 3-track layout. The same upper
bound is already known [4].

4 General Planar Graphs

In this section we investigate upper and lower bounds on the track number of
general planar graphs.

4.1 An Upper Bound

Recently Dujmović et al. [7] used H-partitions of bounded layered width to
prove that the queue number of a planar graph is a constant. By analogy with
their result, we show that the track number of a graph is bounded by a function
of the track number of H and the layered width.

Lemma 6 If a graph G has a layered H-partition of layered width `, then G
has track number at most 3` · tn(H).

Proof: Assume G has a layered H-partition of width `, and suppose T (H) is a
layout of H on tn(H) tracks. To define a track assignment of G, T (G), consider
a vertex v ∈ V (G) that belongs to a bag x ∈ V (H). The track of v is defined
by three indices, (iv, jv, dv).

• The first index, iv, is the track of x in track layout T (H); it ranges from
1 to tn(H).

• The bag x ∈ V (H) contains at most ` vertices in every layer. Label these
vertices arbitrarily from 1 to `, and assign the second index, jv, to the
label. Thus, 1 ≤ jv ≤ `.

• The last index, dv, represents the layer of v in the given layeredH-partition
of G. Clearly, dv ≥ 1 and dv is at most the number of layers in G, which
can be as large as Ω(|V (G)|).

In order to complete the track assignment, we define the order of vertices
in the same track. Notice that vertices of every bag, Ax for some x ∈ V (H),
are on different tracks defined by the second and the third indices of the track
assignment. Therefore, only the vertices of G corresponding to different bags
can belong to the same track. For those vertices, the order is inherited from the
given track layout T (H). That is, v < u in T (G) with v ∈ Ax, u ∈ Ay if and
only if x < y in T (H); see Figure 3.
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Figure 3: (a) A planar graph with a layered H-partition rooted at v = 0
with layered width ` = 1; intra-bag edges are red. (b) A 4-track layout of H.
(c) A 12-track layout of the graph constructed using Lemma 6.

Now we verify that T (G) is a valid track layout, that is, it contains no X-
crossings. For a contradiction suppose that (u1, v1) ∈ E(G) and (u2, v2) ∈ E(G)
form an X-crossing, that is, track(u1) = track(u2), track(v1) = track(v2) and
u1 < u2, v2 < v1. Since all vertices of a bag are on different tracks, it follows
that u1 and u2 belong to different bags and that v1 and v2 belong to different
bags. Therefore, the two edges correspond either to an X-crossing in T (H) (if
the two edges are intra-bag edges), or to an edge of H with both endpoints on
the same track of T (H) (if one of the edges is an inter-bag edge). Both of the
options violate the definition of T (H); hence, T (G) contains no X-crossings.

Finally, observe that the partial span in T (G) corresponding to the third
dimension of the track assignment, dv, is at most one, as it is based on a layering
of G. By Lemma 1, the track layout can be wrapped onto 3` · tn(H) tracks;
Figure 3 illustrates the process. �

Combining Lemma 6, Lemma 3, and Theorem 1, we get the following result.

Theorem 2 The track number of a planar graph is at most 225.

4.2 Lower Bounds

Dujmović et al. [9] show an outerplanar graph that requires 4 tracks and prove
that every outerplanar graph has a 5-track layout. Our next result closes the gap
between the lower and the upper bounds answering the question posed in [9].

Theorem 3 The outerplanar graph in Figure 4a has track number 5.

Before proving the theorem, we introduce two configurations that we use in
the proof. The first configuration, illustrated in Figure 4b, is defined on four
vertices forming a cycle. If track(a) = 1, track(b) = track(c) = 2, track(d) = 3,
and b < c, then for every vertex v that is “inside” the quadrangle (that is,
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Figure 4: An illustration for Theorem 3

track(v) = 2 and b < v < c), its neighbor u is not on tracks 1 and 3. We call this
a Q(a, b<c, d)-configuration for vertex v. The second configuration, illustrated
in Figure 4c, is defined on four vertices, a, b, c, d, with track(a) = track(b) = 1,
track(c) = track(d) = 2 and a < b, c < d. If there exist two vertices u and v
together with edges (u, a), (u, d), (v, b), (v, c), then track(u) 6= track(v). We
call this a W (a<b, c<d)-configuration for vertices u and v. We emphasize that
for both configurations, the actual tracks of the vertices are irrelevant; it is only
important which vertices share tracks.

Proof of Theorem 3: Assume that the graph in Figure 4a has a 4-track layout.
Without loss of generality, we may assume that vertex a is on track 1, vertex b
is on track 2, and vertex c is on track 3. Next we consider tracks of vertices z1,
z2, and z3, and distinguish four cases depending on how many of the vertices
are on track 4.

• None of z1, z2, z3 are on track 4.

It is easy to see that track(z1) = 3, track(z2) = 1, and track(z3) = 2;
see Figure 5a. Assume without loss of generality that b < z3, that is,
vertex b precedes vertex z3 on track 2. Then in order for edge (c, z3) to
avoid a crossing with edge (b, z1), vertex z1 should precede c on track 3,
that is, z1 < c. Then a and z2 form a W (z1 < c, b < z3)-configuration, a
contradiction.

• All of z1, z2, z3 are on track 4.

Assume without loss of generality that z1 < z2 < z3. We show that the
graph in Figure 5b is not embeddable in four tracks.

Observe that z2’s neighbors cannot be on track 1; otherwise, the edge from
z2 to the neighbor crosses one of the edges (a, z1) or (a, z3). Therefore,
track(y2) = 3 and track(x2) = 2. Notice that y2 < c, as otherwise
edges (y2, z2) and (c, z3) cross. Then x2 and b form a W (z1<z2, y2<c)-
configuration, a contradiction.

• One of z1, z2, z3 is on track 4; suppose track(z1) = 4.
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It is easy to see that track(z2) = 1 and track(z3) = 2. Assume without
loss of generality that z3 < b; it follows that a < z2, as otherwise (b, z2) and
(a, z3) cross. Next we prove that the graph in Figure 5c is not embeddable
in four tracks. We distinguish two cases depending on the track of y1.

First assume track(y1) = 3. It holds that y1 < c, as otherwise (c, z2) and
(y1, a) cross. Now it is impossible to assign a track for y3: If track(y3) = 1,
then y3 and a form a W (y1<c, z3<b)-configuration; If track(y3) = 4, then
y3 and z1 form a W (y1<c, z3<b)-configuration.

Second assume track(y1) = 2. It holds that y1 < b, as otherwise (b, z2) and
(a, y1) cross. If z3 < y1 < b, then y1 forms aQ(c, z3<b, a)-configuration. If
y1 < z3 < b, then z3 forms a Q(z1, y1<b, a)-configuration, a contradiction.

• Two of z1, z2, z3 are on track 4. Suppose track(z1) = track(z2) = 4; thus,
track(z3) = 2.

Assume without loss of generality that z1 < z2. Next we prove that the
graph in Figure 5d is not embeddable in four tracks. We distinguish two
cases depending on the relative order of b and z3.

First assume b < z3. Consider the track of y2. If track(y2) = 1, then a
and y2 form a W (z1 < z2, b < z3)-configuration; thus, track(y2) = 3. To
avoid a crossing between edges (c, z3) and (b, y2), we have y2 < c. Now
it is not possible to layout x2. If track(x2) = 1, then a and x2 form a
W (z1 <z2, y2 < c)-configuration. Otherwise if track(x2) = 2, then b and
x2 form a W (z1<z2, y2<c)-configuration.

Second assume z3 < b. Consider the track of y1. If track(y1) = 3, then
y1 < c, as otherwise (y1, z1) and (c, z2) cross. Now it is impossible to
layout y3, which forms and a W (y1<c, z3<b)-configuration with vertex a
if track(y3) = 1, and it forms a W (y1<c, z3<b)-configuration with vertex
z1 if track(y3) = 4.

Thus, track(y1) = 2. It follows that y1 < b, as otherwise (y1, z1) and
(b, z2) cross. If z3 < y1 < b, then y1 is in a Q(a, z3 < b, c)-configuration
and its neighbor, x1, cannot be placed. Otherwise if y1 < z3 < b, then z3
is in a Q(a, y1<b, z1)-configuration, and y3 cannot be placed.

Therefore, the graph in Figure 4a is not embeddable in a 4-tracks, which
concludes the proof of the theorem. �

Dujmović et al. (Lemma 22 of [9]) show that, for every outerplanar graph
H with track number tn(H), there exists a planar graph whose track number
is tn(H) + 3. We stress that the graph in their construction is a planar 3-tree.
Therefore, we have the following improved lower bound for the track number of
planar 3-trees.

Corollary 1 There exists a planar 3-tree G with track number tn(G) = 8.



JGAA, 24(3) 323–341 (2020) 335

a b

c

z1

z3 z2

1 2

3

3

2 1

track 1

track 2

track 3

track 4

a

b

c

z3

z1

z2

(a) None of z1, z2, z3 are on track 4

a b

c

z1

z3 z2

y2

x2

1 2

3

4

4 4

track 1

track 2

track 3

track 4

a

b

c

z3z1 z2

3

2
y2

x2

(b) All of z1, z2, z3 are on track 4

a b

c

z1
y1

x1

z3 z2

y3

1 2

3

4

2 1

track 1

track 2

track 3

track 4

a

b

c

z3

z1

z2

(c) One of z1, z2, z3 is on track 4

a b

c

z1
y1

x1

z3 z2

y2

x2

y3

1 2

3

4

42

track 1

track 2

track 3

track 4

a

b

c

z3

z1 z2

(d) Two of z1, z2, z3 are on track 4

Figure 5: Different cases in the proof of Theorem 3. Track of a vertex is blue.

5 Other Subclasses of Planar Graphs

Track layouts of planar graphs are related to leveled planar graph drawings that
were introduced by Heath and Rosenberg [12] in the context of queue layouts. A
leveled planar drawing of a graph is a straight-line crossing-free drawing in the
plane, such that the vertices are placed on a sequence of parallel lines (levels)
and every edge joins vertices in two consecutive levels. A graph is leveled planar
if it admits a leveled planar drawing. Bannister et al. [2] characterize the class
of graphs by showing that a graph is leveled planar if and only if it is bipartite
and admits a 3-track layout. In a relaxed definition of leveled drawings, edges
between consecutive vertices on the same level are allowed; this leads to weakly
leveled planar graphs. For graphs that have a weakly leveled planar drawing,
Bannister et al. [2] show the upper bound of 6 for the track number, while leaving
the question of the lower bound open. We answer the question by providing an
example of a weakly leveled planar graph whose track number is 6.

Certain families of planar graphs are known to admit weakly leveled planar
graphs; for example, Halin graphs (an embedded tree with no vertices of degree
2 whose leaves are connected by a cycle) and X-trees (a complete binary tree
with extra edges connecting vertices of the same level). Although track numbers
of the graphs have been investigated in several earlier works [2, 4, 6], the gaps
between lower and upper bounds remain open. In the following, we present a
Halin graph and an X-tree that require 5 tracks. In addition we provide an
algorithm that constructs a 5-track layout for every X-tree, thus, closing the
gap between lower and upper bounds of the track number of such graphs.
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(a) An X-tree with 4 levels

y = 1

y = 2

y = 3

y = 4

y = 5
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(b) A track layout with maximum span 2
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(c) Adding vertices v2i−1 and v2i (squares) while maintaining an invariant
y(wi) ≤ y(v2i−2) ≤ y(wi) + 3

Figure 6: An illustration for Theorem 4: constructing a 5-track layout for X-
trees

Our lower bound examples in the section rely on computational experiments.
To this end, we propose a SAT formulation of the track layout problem, and
share the source code of our implementation [14]. The formulation is simple-to-
implement but efficient enough to find optimal track layouts of graphs with up
to a few hundred of vertices in a reasonable amount of time.

5.1 An Upper Bound for X-trees

An X-tree is a complete binary tree with extra edges connecting vertices of the
same level. Formally, if v1, v2, . . . , v2d are the vertices of level d ≥ 0 in the tree
in the left-to-right order, then the extra edges are (vi, vi+1) for 1 ≤ i < 2d;
see Figure 6a. Since X-trees admit a weakly leveled planar drawing, their track
number is at most 6 [2, 4, 6]. Next we improve the upper bound to 5.

Theorem 4 Every X-tree has a 5-track layout.

Proof: We call the edges between the vertices of the same level in the X-tree
level edges, while the remaining edges are tree edges. In order to construct a
5-track layout, we build a planar straight-line drawing of the graph such that
every vertex v is laid out on an integer grid with coordinates x(v) ∈ N and
y(v) ∈ N. In the drawing we maintain a property that |y(u) − y(v)| ≤ 2 for
every edge (u, v); see Figure 6b. It is easy to see that such a drawing corresponds
to a track layout with span 2 in which the vertices having equal y-coordinates
are on the same track. By Lemma 1, the layout can be wrapped onto 5 tracks.
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The drawing is built inductively on the level, d ≥ 0, of a given X-tree using
a hypothesis that every X-tree admits a planar straight-line drawing such that:

• |y(u)− y(v)| = 1 for every level edge (u, v) and |y(u)− y(v)| ≤ 2 for every
tree edge;

• for the level-d vertices in the tree, v1, v2, . . . , v2d , it holds that x(v1) <
x(v2) < · · · < x(v2d); equivalently, the corresponding level edges form a
strictly x-monotone polyline;

• every edge of the highest level, (u, v), is on the boundary of the drawing;
that is, it is visible from points (x(u),+∞) and (x(v),+∞).

The basis of the induction for d ≤ 1 is trivial; see Figure 6b. In order to
construct the drawing for an X-tree, G, for d > 1, we start with an inductively
constructed X-tree, G′, of level d− 1. Denote the vertices of G of level d− 1 by
w1, . . . , w2d−1 and the vertices of level d by v1, . . . , v2d . Observe that G can be
constructed from G′ by iteratively adding a pair of vertices, v2i−1 and v2i, along
with three edges (v2i−1, v2i), (v2i−1, wi), and (v2i, wi), where 1 ≤ i ≤ 2d−1.
Starting from a drawing of G′, we add the pairs of vertices while maintaining
an invariant that y(wi) ≤ y(v2i−2) ≤ y(wi) + 3 for all 2 ≤ i < 2d−1.

Clearly, the invariant is initialized for i = 2 by setting x(v1) = 1, y(v1) =
y(w1) + 1 and x(v2) = 2, y(v2) = y(w1) + 2. For i > 2, we distinguish the cases
based on the y-coordinates of the previously placed vertices. As illustrated in
Figure 6c, there are four cases:

case (a) y(v2i−2) = y(wi) : assign y(v2i−1) = y(wi) + 1, y(v2i) = y(wi) + 2;

case (b) y(v2i−2) = y(wi) + 1: assign y(v2i−1) = y(wi) + 2, y(v2i) = y(wi) + 1;

case (c) y(v2i−2) = y(wi) + 2: assign y(v2i−1) = y(wi) + 1, y(v2i) = y(wi) + 2;

case (d) y(v2i−2) = y(wi) + 3: assign y(v2i−1) = y(wi) + 2, y(v2i) = y(wi) + 1.

In all of the cases, assign x(vi) = i for 1 ≤ i ≤ 2d. One can easily verify that
the desired invariants are maintained and the resulting drawing is planar. �

5.2 Lower Bounds

To test whether a given graph G = (V,E) admits a t-track layout, we formulate
a Boolean Satisfiability Problem that has a solution if and only if G has a layout
on t tracks. We introduce two sets of variables:

• a variable φq(v) for every vertex v ∈ V and every track 1 ≤ q ≤ t indicating
whether the vertex belongs to the track;

• a variable σ(v, u) for every pair of vertices v ∈ V, u ∈ V indicating whether
v precedes u in the order, that is, v < u for some track of the layout.

Every vertex is assigned to one track, which is ensured by the track assignment
rules:

φ1(v)∨φ2(v)∨· · ·∨φt(v) ∀v ∈ V and ¬φi(v)∨¬φj(v) ∀ v ∈ V, 1 ≤ i < j ≤ t
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(a) (b) (c)

Figure 7: (a) An X-tree and (b) a Halin graph that require 5 tracks. (c) A weakly
leveled planar graph that requires 6 tracks; level edges are red.

To guarantee a valid track assignment, we forbid adjacent vertices on the same
track:

¬φi(v) ∨ ¬φi(u) ∀ (u, v) ∈ E, 1 ≤ i ≤ t
For the relative encoding of vertices, we ensure asymmetry and transitivity:

σ(v, u)↔ ¬σ(u, v) ∀ distinct u, v ∈ V

σ(v, u) ∧ σ(u,w)→ σ(v, w) ∀ distinct u, v, w ∈ V
To forbid X-crossings among edges, recall that an X-crossing between edges
(u1, v1) ∈ E, (u2, v2) ∈ E occurs when track(u1) = track(u2), track(v1) =
track(v2) and u1 < u2, v1 > v2. This can be expressed by the following rules:

φi(u1)∧φi(u2)∧φj(v1)∧φj(v2)→
(
σ(u1, u2)∧σ(v1, v2)

)
∨
(
σ(u2, u1)∧σ(v2, v1)

)
∀ (u1, v1) ∈ E, (u2, v2) ∈ E such that u1 6= u2, v1 6= v2 and ∀ 1 ≤ i, j ≤ t
The resulting CNF formula contains Θ(n2) variables and Θ(n3 + m2t2)

clauses. Using a modern SAT solver, one can evaluate small and medium size
instances (with up to a few hundred of vertices) within a reasonable time. For
example, we computed optimal track layouts for all 977,526,957 maximal planar
graphs having n = 18 vertices. In total the computation took 5000 machine-
hours, and all the graphs turned out to have a t-track layout for some 4 ≤ t ≤ 7.
Larger graphs, such as one in Corollary 1, are solved within a few hours on a
regular machine. Our implementation is available at [14].

Using the formulation, we identified examples of an X-tree and a Halin graph
that require 5 tracks; see Figure 7a and 7b. In particular, X-trees of depth d ≤ 5
admit a 4-track layout but X-trees with d ≥ 6 have track number 5. Similarly,
we found a weakly leveled planar graph with 14 vertices that has track number
6; see Figure 7c. Thus, the algorithm of Bannister et al. [2] for constructing 6-
track layouts of weakly leveled planar graphs is worst-case optimal. The results
are summarized as follows.

Theorem 5 There exists an X-tree and a Halin graph with track number 5.
There exists a weakly leveled planar graph with track number 6.



JGAA, 24(3) 323–341 (2020) 339

6 Conclusions and Open Problems

In this paper we improved upper and lower bounds on the track number of
several families of planar graphs. A natural future direction is to close the
remaining gaps for graphs listed in Table 1. Next we discuss several open
questions related to track layouts.

Our approach for building track layouts of planar graphs relies on a con-
struction for graphs of bounded treewidth. To the best of our knowledge, the
upper bound on the track number of k-trees is (k+ 1)(2k+1−2)k [15], while the
lower bound is only quadratic in k [8]. It seems unlikely that the existing upper
bound is the right answer, and finding a polynomial or even an exponential
2O(k) bound would already be an exciting improvement.

Open Problem 1 Improve the upper bound on the track number of k-trees.

One way of attacking the above problem is tightening a gap between track
and queue numbers of a graph, as the queue number of a k-tree is at most
2k−1 [15]. As mentioned earlier, every t-track graph has a (t−1)-queue layout.
It is easy to see that this bound is worst-case optimal, that is, there exist t-
track graphs that require t − 1 queues in every layout. In the other direction,
every q-queue graph has track number at most 4q · 4q(2q−1)(4q−1) [9]. Similarly,
every q-queue graph with acyclic chromatic number c has track-number at most
c(2q)c−1 [8]. Recall that a vertex coloring is acyclic if there is no bichromatic
cycle. These bounds can likely be improved. For example, 1-queue graphs
always admit a 4-track layout but no better bound is known for the case q ≥ 2.

Open Problem 2 What is the largest track number of a q-queue graph?

Finally, we would like to see some progress on upward track layouts [5, 10].
An upward track layout of a dag G is a track layout of the underlying undirected
graph of G, such that the directed graph obtained from G by adding arcs be-
tween consecutive vertices in a track is acyclic. To the best of our knowledge,
very little is known about this variant of layouts. For example, the upward
track number of (directed) paths and caterpillars is known to be 3 [5], while the
upward track number of (directed) trees is at most 5 [10]. Improving the bounds
and investigating other classes of graphs is an interesting research direction.

Open Problem 3 Investigate the upward track number of various families of
graphs.
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[9] V. Dujmović, A. Pór, and D. R. Wood. Track layouts of graphs. Discrete
Mathematics & Theoretical Computer Science, 6(2):497–522, 2004.
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