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Abstract

An effective way to reduce clutter in a graph drawing that has (many)
crossings is to group edges that travel in parallel into bundles. Each edge
can participate in many such bundles. Any crossing in this bundled graph
occurs between two bundles, i.e., as a bundled crossing. We consider the
problem of bundled crossing minimization: A graph is given and the goal
is to find a bundled drawing with at most k bundled crossings. We show
that the problem is NP-hard when we require a simple drawing. Our
main result is an FPT algorithm (in k) for simple circular layouts where
vertices must be placed on a circle and edges must be drawn inside the
circle. These results make use of the connection between bundled crossings
and graph genus. We also consider bundling crossings in a given drawing,
in particular for storyline visualizations.
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1 Introduction

In traditional node–link diagrams, vertices are mapped to points in the plane
and edges are usually drawn as straight-line segments connecting the vertices.
For large and dense graphs, however, such layouts tend to be so cluttered that it
is hard to see any structure in the data. For this reason, Holten [19] introduced
bundled drawings, where edges that are close together and roughly go into the
same direction are drawn using Bézier curves such that the grouping becomes
visible. Due to the practical effectiveness of this approach, it has quickly been
adopted by the InfoVis community [12,18,20,21,30]. However, bundled drawings
have only recently attracted study from a theoretical point of view [2,16,17,35].

Crossing minimization is a fundamental problem in graph drawing [32]. Its
natural generalization in bundled drawings is bundled crossing minimization,
see Definition 1 for the formalization of a bundled crossing. In his survey on
crossing minimization, Schaefer lists the bundled crossing number as a variant
of the crossing number and suggests to study it [32, page 35].

Related Work. Fink et al. [17] considered bundled crossings (which they
called block crossings) in the context of drawing metro maps. A metro network
is a planar graph where vertices are stations and metro lines are simple paths in
this graph. These paths representing metro lines can share edges. They enter
an edge at one endpoint in some linear order, follow the edge as x-monotone
curves (considering the edge as horizontal), and then leave the edge at the other
endpoint in some linear order. In order to improve the readability of metro
maps, the authors suggested to bundle crossings. The authors then studied the
problem of minimizing bundled crossings in such metro maps. Fink et al. also
introduced monotone bundled crossing minimization where each pair of lines can
intersect at most once. Later, Fink et al. [35] applied the concept of bundled
crossings to drawing storyline visualizations. A storyline visualization is a set
of x-monotone curves where the x-axis represents time in a story. Given a set
of meetings (subsets of the curves that must be consecutive at given points in
time), the task is to find a drawing that realizes the meetings and minimizes the
number of bundled crossings. Fink et al. showed that, in this setting, minimizing
bundled crossings is fixed-parameter tractable (FPT) in the number of curves
and can be approximated in a restricted case. Van Dijk et al. [36] gave ILP and
SAT formulations of the problem and evaluated these experimentally.

Our research builds on recent works of Fink et al. [16] and Alam et al. [2],
who extended the notion of bundled crossings from sets of x-monotone curves
to general drawings of graphs. We discuss their results in more detail soon.

The degenerate crossing number is defined by allowing more than two edges
to intersect at the same point; several variants (one of which is also called the
genus crossing number) have been studied [1,28,29,33]. The degenerate crossing
number and the bundled crossing number might look completely different, but
it turns out that the degenerate crossing number is closely related to the non-
orientable genus [28] while the bundled crossing number is closely related to the
orientable genus as we will see.
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Figure 1: (a) A non-degenerate bundled crossingB and (b) a degenerate bundled
crossing B′; crossings belonging to a bundled crossing are marked with crosses

Notation and Definitions. In graph drawing, it is common to define a draw-
ing of a graph as a function that maps vertices to distinct points in the plane
and edges to Jordan arcs that connect the corresponding points. In this paper,
we are less restrictive; we sometimes allow edges to self-intersect. However, we
forbid any three edges to share the same point. We will often identify vertices
with their points and edges with their curves. Moreover, we assume that each
pair of edges shares at most a finite number of points, that edges can touch
(that is, be tangent to) each other only at endpoints, and that any point of the
plane that is not a vertex is contained in at most two edges. A drawing is simple
if any two edges intersect at most once and no edge self-intersects. We consider
both simple and non-simple drawings; look ahead at Fig. 2 for a simple and a
non-simple drawing of K3,3.

Definition 1 (Bundled Crossing) Let D be a drawing, not necessarily sim-
ple, and let I(D) be the set of intersection points among the edges (not including
the vertices) in D. We say that a bundling of D is a partition of I(D) into
bundled crossings, where a set B ⊆ I(D) is a bundled crossing if the following
holds (see Fig. 1).

• B is contained in a closed region R(B) of the plane whose boundary con-
sists of four Jordan arcs ẽ1, ẽ2, ẽ3, and ẽ4 that are pieces of edges e1, e2,
e3, and e4 in D (with ẽi = ei ∩R(B) for i ∈ {1, 2, 3, 4}).

• The pieces of the edges cut out by the region R(B) can be partitioned into
two sets Ẽ1 and Ẽ2 such that ẽ1, ẽ3 ∈ Ẽ1, ẽ2, ẽ4 ∈ Ẽ2, and each pair of
edge pieces in Ẽ1×Ẽ2 has exactly one intersection point in R(B), whereas
no two edge pieces in Ẽ1 intersect and no two edge pieces in Ẽ2 intersect.

Our definition is similar to that of Alam et al. [2] but defines the Jordan
region R(B) more precisely. We call the sets Ẽ1 and Ẽ2 of edge pieces bundles
and the Jordan arcs ẽ1, ẽ3 ∈ Ẽ1 and ẽ2, ẽ4 ∈ Ẽ2 frame arcs of the bundles
Ẽ1 and Ẽ2, respectively. For simple drawings, we accordingly call the edges
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that bound the two bundles of a bundled crossing frame edges. We say that
a bundled crossing is degenerate if at least one of the bundles consists of only
one edge piece; see Fig. 1b. In this case, the region of the plane associated with
the crossing coincides with that edge piece. In particular, any point in I(D) by
itself is a degenerate bundled crossing. Hence, every drawing admits a trivial
bundling.

We use bc(G) to denote the bundled crossing number of a graph G, i.e., the
smallest number of bundled crossings over all bundlings of all simple drawings
of G. When we do not insist on simple drawings, we denote the corresponding
number by bc′(G). In the circular setting, where vertices are required to lie on
the boundary of a disk and edges inside this disk, we consider the analogous
circular bundled crossing numbers bc◦(G) and bc◦

′
(G) of a graph G. If, in

addition, the vertices are required to be in a prescribed circular order π, we
consider the circular bundled crossing number with a fixed vertex order π and
denote this number as bc◦(G, π). (In the literature on book embeddings, circular
layouts are commonly called 1-page (book) layouts, but since we do not consider
more than one page here, we follow previous literature [2, 16] on the bundled
crossing number and stick to the term circular.)

By bc(G,D) we denote the bundled crossing number of a specific simple
drawing D of G. We say fixed drawing for this case. Similarly, by bc′(G,D)
we denote the bundled crossing number of a specific, not necessarily simple
drawing D of a graph G. By bc◦(G,D) we denote the bundled crossing number
of a simple circular drawing D of a graph G. As Fink et al. [16] observed1 in
this variant of the problem, we can assume the graph to be a matching.

Fink et al. [16] showed that it is NP-hard to compute the minimum number
bc(G,D) of bundled crossings that a given drawing D of a graph G can be
partitioned into. They also showed that this problem generalizes the problem
of partitioning a rectilinear polygon with holes into the minimum number of
rectangles, and they exploited this connection to construct a 10-approximation
for computing the number bc◦(G,D) of bundled crossings in the case of a circular
drawing. They left open the computational complexity of the general and the
circular bundled crossing number for the case that the drawing is not fixed.

Alam et al. [2] showed that bc′(G) equals the orientable genus of G, which in
general is NP-hard to compute [34]. They also showed that there is a graph G
with bc′(G) 6= bc(G) by proving that bc′(K6) = 1 < bc(K6). As it turns
out, the two problem variants differ in the circular setting, too (see Fig. 2 and
Observation 2). For computing bc(G) and bc◦(G), Alam et al. [2] gave an
algorithm whose approximation factor depends on the density of the graph.
They posed the existence of an FPT algorithm for bc◦(G) as an open question.

Our Contribution. As some graphs G have bc′(G) 6= bc(G) (see Fig. 2),
Fink et al. [16] posed the complexity of computing the bundled crossing number
bc(G) of a given graph G as an open problem. We settle this in Section 2 as

1Fink et al. [16] used “embedding” and bc(E) where we use “drawing” and bc(G,D),
respectively.
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follows:

Theorem 1 Given a graph G, it is NP-hard to compute bc(G).

Our main result, which we prove in Section 3, resolves an open question of
Alam et al. [2] concerning the fixed-parameter tractability of bundled crossing
minimization in circular layouts as follows:

Theorem 2 There is a computable function f such that, for any n-vertex
graph G and integer k, we can check, in O(f(k)n) time, whether bc◦(G) ≤ k,
i.e., whether G admits a circular layout with k bundled crossings. Within the
same time bound, such a layout can be computed.

To prove this, we use an approach similar to that of Bannister and Epp-
stein [5] for 1-page crossing minimization (that is, edge crossing minimization
in a circular layout). Bannister and Eppstein observe that the set of crossing
edges of a circular layout with k edge crossings of a graph G forms an arrange-
ment of curves that partition the drawing into O(k) subgraphs, each of which
occurs in a distinct face of this arrangement. The subgraphs are obviously out-
erplanar. This means that G has bounded treewidth. So, by enumerating all
ways to draw the crossing edges of a circular layout with k edge crossings, and,
for each such way, expressing the edge partition problem (into crossing edges
and outerplanar components) in extended monadic second order logic (MSO2),
Courcelle’s Theorem [10] (stated as Theorem 5 in Section 3) can be applied
(leading to fixed-parameter tractability).

The difficulty in using this approach for bundled crossing minimization is
in showing how to partition the graph into a set of O(k) “crossing edges” (our
analogy will be the frame edges) and a collection of O(k) outerplanar graphs.
This is where we exploit the connection to genus. Moreover, constructing an
MSO2 formula is somewhat more difficult in our case due to the more complex
way our regions interact with our special set of edges.

Again using the above-mentioned connection, here between genus and the
circular bundled crossing number bc◦

′
, we can decide whether bc◦

′
(G) = k in

2O(k)n time. In other words, if non-simple drawings are allowed, the problem is
also FPT in k; see Section 3 (Theorem 4).

We also consider the setting where we are given a drawing and the task is
to bundle the existing edge crossings into as few bundled crossings as possible,
that is, computing bc(G,D) for a given drawing D of a graph G. We show in
Section 4 that we can use an algorithm of Marx and Philipczuk [25, Theorem

1.3] (see page 642) to test whether bc(G,D) ≤ k in mO(
√
k) time for any simple

drawing D with m edges. This yields an FPT-algorithm for testing whether

bc◦(G,D) ≤ k in 2O(
√
k log k) +O(m) time and for testing whether bc◦(G, π) ≤ k

in 2O(k2) +O(m) time, improving on an
(
2O(k2 log k) +O(m)

)
-time algorithm of

Alam et al. [2]
In Section 5 we consider storyline visualizations. In contrast to the above

results, the storyline literature considers the number of characters m to be small
and the number of crossings to be large. (Recall that storyline visualizations
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Table 1: Algorithmic and complexity results concerning bundled crossing mini-
mization for an m-edge graph G with restrictions such as vertex order π, draw-
ing D, edge density δ, and k bundled crossings. We omit polynomial terms, and
ϕ is the golden ratio. Our results are in boldface.

General layout Circular layout

bc(G) 6δ
δ−3 -approx. for δ>3 [2] bc◦(G) 6δ

δ−2 -approx. for δ>2 [2]

NP-hard (Thm. 1) FPT (Thm. 2)

bc′(G) NP-hard [16] bc◦
′
(G) FPT: 2O(k) (Thm. 4)

bc(G,D) NP-hard [16] bc◦(G,D) 10-approximation [16]

XP: mO(
√
k) (Thm. 6(b)) FPT: kO(

√
k) (Thm. 6(c))

bc′(G,D) XP: cO(
√
k) (Thm. 6(a))

Storyline layout bc◦(G, π) 16-approx., FPT: kO(k2) [2]

bcs(D) FPT: ϕ2m (Thm. 8) FPT: 2O(k2) (Thm. 6(d))

are non-simple.) We show that computing the bundled crossing number bcs(D)
of a given storyline visualization D can be done in O(ϕ2mpoly(m + c)) time,
where c is the number of crossings in D and ϕ is the golden ratio. Note that
this is fixed parameter tractable in m.

For an overview of existing and new results see Table 1.

2 Computing bc(G) Is NP-Hard

For a given graph G, finding a drawing with the fewest bundled crossings resem-
bles computing the orientable genus2 g(G) of G. In fact, Alam et al. [2] showed
that bc′(G) = g(G). Thus, deciding whether bc′(G) = k for some k is NP-hard
and FPT in k since the same holds for deciding whether g(G) = k [22, 27,34].

Theorem 3 ([2]) For every graph G with genus k, it holds that bc′(G) = k.

To show this, Alam et al. [2] first showed that a drawing with k bundled crossings
can be lifted onto a surface of genus k, and thus bc′(G) ≥ g(G):

Observation 1 ([2]) A drawing D with k bundled crossings can be lifted onto
a surface of genus k via a one-to-one correspondence between bundled crossings
and handles, i.e., at each bundled crossing, we attach a handle for one of the
two edge bundles, thus providing a crossing-free lifted drawing; see Fig. 8.

Then, to see that bc′(G) ≤ g(G), Alam et al. [2] used the fundamental poly-
gon representation (or polygonal schema) [13] of a drawing on a genus-g sur-
face. More precisely, the sides of the polygon are numbered in circular order

2I.e., computing the fewest handles to attach to the sphere so that G can be drawn on the
resulting surface without any crossings.
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a1, b1, a
′
1, b
′
1, . . . , ag, bg, a

′
g, b
′
g; for 1 ≤ k ≤ g, the pairs (ak, a

′
k) and (bk, b

′
k) of

sides are identified in opposite direction, meaning that an edge leaving side ak
appears on the corresponding position of side a′k; see Fig. 3 and Fig. 4a for an
example showing K6 drawn in a fundamental square, which models a drawing
on the torus. In such a representation, all vertices lie in the interior of the funda-
mental polygon and all edges leave the polygon avoiding vertices of the polygon.
Alam et al. [2] showed that such a representation can be transformed into a non-
simple bundled drawing with g many bundled crossings. It is not clear, however,
when such a representation can be transformed into a simple bundled drawing
with g bundled crossings, as this transformation can produce drawings with
self-intersecting edges and pairs of edges crossing multiple times, e.g., Alam et
al. [2, Lemma 1] showed that bc(K6) = 2 while bc′(K6) = g(K6) = 1.

We now show that computing the bundled crossing number remains NP-hard
for simple drawings.

Proof of Theorem 1: Let G′ be the graph obtained from G by subdividing
each edge O(|E(G)|2) times. We reduce from the NP-hardness of computing the
genus g(G) of G by showing that bc(G′) = g(G), with Observation 1 in mind.

Consider the embedding of G onto the genus-g(G) surface. By a result
of Lazarus et al. [24, Theorem 1], we can construct a fundamental polygon
representation of the embedding so that its boundary intersects with edges of
the graph O(g(G)|E(G)|) times. Note that each edge piece outside the polygon
between the sides of the polygon (ak, a

′
k) intersects each other edge piece outside

the polygon between the sides of the polygon (bk, b
′
k) at most once and does not

have any other intersection points; see Fig. 3. We then subdivide the edges
by adding a vertex to each intersection of an edge with the boundary of the
fundamental polygon. This process of subdividing edges ensures that no edge
intersects itself or intersects another edge more than once in the corresponding
drawing of the graph on the plane; hence, the drawing is simple. Since g(G) ≤
|E(G)|, by subdividing edges further whenever necessary, we obtain a drawing
of G′. Our subdivisions keep the integrity of all bundled crossings, so bc(G′) ≤
g(G). On the other hand, since subdividing edges does not affect the genus,
g(G) = g(G′) = bc′(G′) ≤ bc(G′). �

3 Computing bc◦′(G) and bc◦(G) Is FPT

We now consider circular layouts, where vertices are placed on a circle and edges
are routed inside the circle. We note that bc◦(G) and bc◦

′
(G) can be different.

Observation 2 bc◦
′
(K3,3) = 1 but bc◦(K3,3) > 1.

Proof: Let V (K3,3) = {a, b, c} ∪ {a′, b′, c′}. A drawing with bc◦
′
(K3,3) = 1

is obtained by placing the vertices a, a′, b, b′, c, c′ in clockwise order around a
circle; see Fig. 2b. If a graph G has bc◦(G) = 1 then G is planar because we
can embed edges for one bundle outside the circle. Hence, bc◦(K3,3) > 1. �
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Figure 2: bc◦(K3,3) 6= bc◦
′
(K3,3);

see Observation 2

ak a′k
bk

b′k

Figure 3: A single bundled crossing out-
side the fundamental polygon [2, Fig. 3]

v?

(a) K6 drawn in a fundamental square;
the self-intersecting edge is bold [2, Fig. 2]

v?

(b) modifying the representation

Figure 4: Obtaining a circular drawing with k bundled crossings of G from the
embedding of G? on a surface of genus k.

Similarly to computing bc′(G), we compute bc◦
′
(G) via computing genus.

To show this we first prove the following.

Lemma 1 Given a graph G = (V,E), let G? be the graph obtained from G by
adding a new vertex v? adjacent to every vertex of G. Then bc◦

′
(G) = g(G?).

Proof: Similarly as in [2, Theorem 1], it is easy to see that bc◦
′
(G) is an upper

bound for the genus of G?, because, according to Observation 1, we can lift any
circular drawing of G onto a surface S of genus bc◦

′
(G) and then we can add

v? using the outside of the circle. Clearly, this produces a crossing-free drawing
of G? on the surface S.

It remains to show that given a crossing-free drawing of G? on a surface
of genus k, we can construct a circular drawing of G with at most k bundled
crossings. Consider a drawing of G? on a surface S of genus k.

We use the fundamental polygon representation [2, Theorem 1] to the draw-
ing of G? on the surface S of genus k; see Fig. 4a. Then we modify this rep-
resentation so that all the neighbors N(v?) of v? in G? are placed in an ε-
neighborhood of v?. We now explain the modification in more detail. Consider
all the edges incident to v? in the representation and drag each neighbor u of v?

along the edge uv? (as illustrated in Fig. 4b) until it reaches the ε-neighborhood
N(v?) of v?. Since for each u ∈ N(v?) the edges uw ∈ E with w 6= v? are
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bundled together at the position where u was in the representation and dragged
together with u along the edge uv?, this does not change the number of bun-
dled crossings. Since all the vertices are located on the boundary of the
ε-neighborhood of v? in the modified representation, all the edges between v?

and V \ v? are drawn inside the polygon. After removing the vertex v? from
the representation, we obtain a circular drawing of G with at most k bundled
crossings. �

Theorem 4 Testing whether bc◦
′
(G) = k can be done in 2k

O(1)

n time.

Proof: By Lemma 1, bc◦
′
(G) = g(G?), where G? is a graph with a vertex v?

adjacent to every vertex of G. Applying the
(
2g
O(1)

n
)
-time algorithm for com-

puting genus [22] completes the proof. �

To prove our main result (Theorem 2) we develop an algorithm that tests
whether bc◦(G) = k in FPT time with respect to k. Our algorithm is inspired
by recent works on circular layouts with at most k crossings [5] and circular
layouts where each edge is crossed at most k times [8]. In both of these prior
works, it is first observed that the graphs admitting such circular layouts have
treewidth O(k), and then algorithms are developed using Courcelle’s theorem,
which establishes that expressions in MSO2 logic can be evaluated efficiently.
(The basic definition of treewidth is included below; we defer formalizing MSO2

logic to Section 3.4 where we additionally construct our needed formulas.)

Theorem 5 (Courcelle [10, 11]) For any integer t ≥ 0 and any MSO2 for-
mula ψ of length `, an algorithm can be constructed which takes a graph G with
n vertices, m edges, and treewidth at most t and decides in O(f(t, `) · (n+m))
time whether G |= ψ where the function f from this time bound is a computable
function of t and `.

We proceed along the lines of Bannister and Eppstein [5], who used a similar
approach to show that edge crossing minimization in a circular layout is in FPT
(as mentioned in the introduction). We start by very carefully describing a
surface (in the spirit of Observation 1) onto which we will lift our drawing. We
will then examine the structure of this surface (and our algorithm) for the case
of one bundled crossing and finally for k bundled crossings.

Treewidth The concept of treewidth was introduced by Bertelé and Brioschi [6]
and then later rediscovered (and popularized) by Robertson and Seymour [31].
A tree decomposition of a graph G is a pair (X,T ), where T is a tree and
X = {Xi | i ∈ V (T )} is a family of subsets of V (G), called bags, such that
(1) for all v ∈ V (G), the set of nodes Tv = {i ∈ V (T ) | v ∈ Xi} induces a non-
empty connected subtree of T , and (2) for each edge uv ∈ E(G) there exists
i ∈ V (T ) such that both u and v are in Xi. The maximum of |Xi|−1, i ∈ V (T ),
is called the width of the tree decomposition. The treewidth, tw(G), of a graph
G is the minimum width over all tree decompositions of G. For our purposes,
an important fact is that every outerplanar graph G has tw(G) ≤ 2 [26]. An
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easy observation is that, for any graph G, adding one vertex to G increases its
treewidth by at most one, e.g., we simply add this new vertex to every bag of
an optimal tree decomposition of G. A direct consequence is that that adding
t vertices increases the treewidth by at most t.

3.1 Constructing the Surface Determined by a Bundled
Drawing

Consider a bundled circular drawing D. Note that adding parallel edges to
the drawing (i.e., making our graph a multi-graph) allows us to assume that
every bundled crossing has four distinct frame edges and can be done without
modifying the number of bundled crossings; see Fig. 8. Each bundled crossing B
defines a Jordan curve made up of the four Jordan arcs ẽ1, ẽ2, ẽ3, ẽ4 in clockwise
order taken from its four frame edges e1, . . . , e4, respectively, where (e1, e3) and
(e2, e4) frame the two bundles and ei = v2i−1v2i. Similarly to Observation 1,
we can construct a surface S by creating a flat handle (note that this differs
from the usual definition of a handle since our flat handles have a boundary)
on top of D which connects ẽ2 to ẽ4 and doing so for each bundled crossing.
We then lift the drawing D onto S by rerouting the edges of one of the bundles
over its corresponding handle for each bundled crossing B obtaining the lifted
drawing DS . To avoid the crossings in DS of the frame edges that can occur
at the foot of the handle of B, we can make the handle a bit wider and add
corner-cuts (as illustrated in Fig. 5b) to preserve the topology of the surface.
Thus, DS is crossing-free.

We now cut S into components (maximal connected subsets) along the frame
edges and corner-cuts of each bundled crossing, resulting in a subdivision Ω of S.

We use DΩ to denote the sub-drawing of DS on Ω, i.e., DΩ is missing the
frame edges since these have been cut out. We now consider the components
of Ω. Notice that every edge of DΩ is contained in one component of Ω. In order
for a component s of Ω to contain an edge e of DΩ, s must have both endpoints
of e on its boundary. With this in mind we focus on certain components of
Ω. Namely, we call a component a region if it contains a vertex of G on its
boundary. Observe that a crossing in D which does not involve a frame edge
corresponds, in DΩ, to a pair of edges where one goes over a handle and the
other goes underneath.

3.2 Recognizing a Graph with One Bundled Crossing

We now discuss how to recognize if an n-vertex graph G = (V,E) can be drawn
in a circular layout with one bundled crossing. Consider a bundled circular
drawing D of G consisting of one bundled crossing. The bundled crossing con-
sists of two bundles, which are bounded by the set F = {e1, e2, e3, e4} of frame
edges. By V (F ) we denote the set of vertices incident to frame edges. Via the
construction above, we obtain the subdivided surface Ω; see Fig. 5. Let r1 and r2

be the regions that are each bounded by a pair of frame edges corresponding to
one of the bundles, and let r3, . . . , r6 be the regions each bounded by one edge
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Figure 5: (a) Bundled crossing; (b) regions, corner-cuts in blue; (c),(d) the
augmented graphs G∗r1 and G∗r3 consist of the edges of Gr1 and Gr3 (in the blue
regions) as well as augmentation vertices and edges (drawn in black)

from one pair and one from the other pair; see Fig. 5b. These are all the regions
of Ω. Since, as mentioned before, each of the non-frame edges of G (i.e., each
e ∈ E(G) \ F ) along with its two endpoints is contained in exactly one of these
regions, each component of G \ V (F ) and each edge connecting it to vertices of
V (F ) is drawn in DΩ in some region of Ω. In this sense, for each region r of Ω,
we use Gr to denote the subgraph of G induced by the components of G \V (F )
contained in r and the edges connecting them to vertices in V (F ). Additionally,
each vertex of G is either incident to an edge in F (in which case it is on the
boundary of at least two regions) or it is on the boundary of exactly one region.

Note that there are two types of regions: those in {r1, r2} and those in
{r3, r4, r5, r6}. Consider a region of the first type, say r1; see Fig. 5b. Observe
that Gr1 is outerplanar. Moreover, Gr1 has a special outerplanar drawing where,
on the boundary of r1, we see (in clockwise order) the frame edge e1, the vertices
mapped to the (v1, v5)-arc, the frame edge e3, and then the vertices mapped to
the (v6, v2)-arc. We now describe how to augment Gr1 to a planar graph G∗r1
where in every planar embedding of G∗r1 the sub-embedding of Gr1 has this
special outerplanar form3. The vertex set of G∗r1 is V (Gr1) ∪ {h, b1, b2} where
we call h hub vertex and b1 and b2 boundary vertices (one for each arc of the
boundary of r1 to which vertices can be mapped); see Fig. 5c. The graph G∗r1
has four types of edges; the edges in E(Gr1), edges that make h the hub of a
wheel whose cycle is C = (v6, b2, v2, v1, b1, v5, v6), edges from b1 to the vertices
on the (v1, v5)-arc, and edges from b2 to the vertices on the (v6, v2)-arc (both
including the endpoints). Clearly, we can obtain a planar embedding of G∗r1
by drawing the elements of G∗r1 \ Gr1 “outside” of the outerplanar drawing
of Gr1 described before. Moreover, every planar embedding of G∗r1 contains an
outerplanar embedding of Gr1 that can be drawn in the special form needed to
“fit” into r1, in the sense that all of Gr1 lies (or can be put) inside the simple
cycle C. (For example, if, say, b1 is a cut vertex, the component hanging off b1
can be embedded in the face (h, b1, v1, h). But then it can easily be moved
into C. Similarly, a component that is incident only to v5 and v6 can end up in

3This augmentation may sound overly complicated, but is written as to easily generalize
to more bundled crossings.
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the face (h, v5, v6, h), but again, the component can be moved inside C.)
Similarly, for a region of the second type, say r3, the graph Gr3 is outerplanar

with a special drawing where all the vertices must be on the (v3, v5)-arc of the
disk subtended by the two frame edges e3 and e2 bounding the region r3. We
augment r3 similarly as r1; see Fig. 5d. For the augmented graph G∗r3 , we
add to Gr3 a boundary vertex b neighboring all vertices on the (v3, v5)-arc and
a hub vertex h adjacent to v3, b, and v5. Again, G∗r3 is planar since Gr3 is
outerplanar. Moreover, as b is adjacent to all vertices of Gr3 , in every planar
embedding of G∗r3 , Gr3 is embedded outerplanarly and, since b occurs on one side
of the triangle v3v5h, the edge v3v5 occurs on the boundary of this outerplanar
embedding of Gr3 . Thus, each planar embedding of G∗r3 provides an outerplanar
embedding of Gr3 that fits into r3.

Note that each Gri fits into ri because its augmented graph G∗ri is planar (?).
Moreover, as outerplanar graphs have treewidth at most two [26], each graph Gr
is outerplanar, and adding the (up to) eight frame vertices raises the treewidth
by at most 8, we see that the treewidth of G is at most 10. Namely, in order
for G to have bc◦(G) = 1, it must have treewidth at most 10 (and this can be
checked in linear time using an algorithm of Bodlaender [7]).

To sum up, G has a circular drawing D with at most one bundled crossing
because it has treewidth at most 10 and there exist (i) β ≤ 4 frame edges
e1, e2, . . . , eβ (this set is denoted F ) and v1, . . . , vξ frame vertices (this set is
denoted VF ), (ii) a particular circular drawing DF of frame edges, (iii) the
drawing of the one bundled crossing B, and (iv) γ ≤ 6 corresponding regions
r1, . . . , rγ of the subdivided surface Ω so that the following properties hold.
(Note that the frame vertices partition the boundary of the disk underlying Ω
into η ≤ 8 (possibly degenerate) arcs p1, . . . , pη where each such pj is contained
in a unique region rij of Ω. Let V0(ri) be the frame vertices incident to region ri.)

1. E(G) is partitioned into E0, E1, . . . , Eγ , where E0={f1, . . . , fβ}.

2. V (G) is partitioned into V0, V1, . . . , Vη, where V0={w1, . . . , wξ}.

3. The mapping wi ↔ vi and fi ↔ ei defines an isomorphism between the
subgraph of G formed by (V0, E0) and the graph (VF , F ).

4. For each v ∈ V0 and each edge e incident to v, exactly one of the following
conditions holds: (i) e ∈ E0, or (ii) e ∈ Ei and v is on the boundary of ri.

5. For each v ∈ Vj , j 6= 0, all edges incident to v belong to Eij .

6. For each region ri, let Gri be the graph (V0(ri)∪
⋃
j : ij=i

Vj , Ei) (i.e., the

subgraph that is to be drawn in ri), and let G∗ri be the corresponding
augmented graph (i.e., as in ? above). Each G∗ri is planar.

We now describe the algorithm that tests whether a given graph G admits
a simple circular drawing with one bundled crossing. First we check that the
treewidth of G is at most 10. We then enumerate drawings of up to four edges
in the circle. For the drawing DF that is valid for the set F of frame edges
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of one bundled crossing, we define our surface and its regions (which makes
the augmentation well-defined). We have intentionally phrased these properties
so that it is clear that they are expressible in MSO2 (see Section 3.4). The
only property that is not obviously expressible is the planarity of G∗ri . To this
end, recall that planarity is characterized by two forbidden minors (i.e., K5 and
K3,3) and that, for every fixed graph H, there is an MSO formula minorH so
that for all graphs G, it holds that G |= minorH if and only if G contains H
as a minor [11, Corollary 1.14]. Additionally, each G∗ri can be expressed as an
MSO-transduction4 of G and our variables (our transduction can be thought
of as a kind of 2-copying transduction). Thus, by [11, Theorem 7.10] using the
transduction and the MSO formula testing planarity, we can construct an MSO2

formula ι so that when G |= ι, G∗ri is planar for every i. Therefore, Properties 1–
6 can be expressed as an MSO2 formula ψ and, by Courcelle’s theorem, there
is a computable function f such that we can test (in O(f(ψ, t)n) time) whether
G |= ψ for an input graph G of treewidth at most t. Thus, since our graph has
treewidth at most 10, applying Courcelle’s theorem completes our algorihtm.

3.3 Recognizing a Graph with k Bundled Crossings

We now generalize the above approach to k bundled crossings. In a drawing D
of G together with a solution consisting of k bundled crossings, there are 2k
bundles making (up to) 4k frame edges F . As described above, these bundled
crossings provide a surface S, its subdivision Ω, and the corresponding set of
regions. The key ingredient above was that every region r contained an outer-
plane graph Gr. However, that is now non-trivial as our regions can go over and
under many handles. To show this property, we first consider the following two
partial drawings DA(p) and DB(p) of a matching with p+ 1 edges f0, f1, . . . , fp
(see Fig. 6) such that

• edge fi crosses only fi−1 mod p+1 and fi+1 mod p+1 for i = 0, . . . , p;

• the endpoints of each edge fi, i = 1, . . . , p−1, are inside the closed curve C
formed by the crossing points and the edge-pieces between these crossing
points;

• only one endpoint of f0, and only one endpoint of fp are contained in C
in the drawing DA(p);

• both endpoints of f0 and fp are contained in C in the drawing DB(p).

Note that the partial drawings DA(p) and DB(p) differ only in how the last
edge is drawn with respect to the first one. Arroyo et al. [4, Theorem 1.2]
showed that such partial drawings are obstructions for pseudolinearity, that is,
they cannot be part of any pseudoline arrangement. Therefore, neither of these
partial drawings can be completed to a simple circular drawing, that is, the

4For the formalities of transductions, see the book of Courcelle and Engelfriet [11, Section
1.7.1, and Definitions 7.6 and 7.25].
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Figure 6: The two types of partial drawings (for p = 6) and the closed curve C
(light green) that they induce.

endpoints of the edges cannot be extended so that they lie on a circle which
contains the drawing. We highlight this fact in the following lemma.

Lemma 2 ([4]) For a matching with p+1 edges f0, f1, . . . , fp, neither the par-
tial drawing DA(p) nor the partial drawing DB(p) can be completed to a simple
circular drawing.

Using this lemma, we can now prove the following statement.

Lemma 3 Let r be a region of the surface subdivision Ω, and let r′ be its projec-
tion onto the plane. Then both r′ and r are topological disks, that is homeomor-
phic to a disk (with the boundary). Moreover, the projection map is injective.

Proof: Note that the boundary of r is formed by pieces of frame edges that
were lifted on the surface S as described above and by additional corner-cuts as
illustrated in Fig. 5b in blue. This means that the boundary of r is a (closed)
Jordan curve since we have only finitely many crossings in G. Then, we show
that r does not include part of both a handle and its undertunnel, that is, the
part of the surface over which the handle was built. This guarantees that the
projection of r onto the plane is injective, and thus the boundary of r′ is a Jordan
curve. We will also show that r does not include holes. Then we can conclude
that r′ is homeomorphic to a disk using the Jordan–Schoenflies theorem, which
says that for any closed Jordan curve there is a homeomorphism of the plane
that maps the curve to the unit circle.

Suppose now, for a contradiction, that there are bundled crossings for which r
contains both the handle and its undertunnel; see Fig. 7a. Then there exists a
non-intersecting Jordan arc γ ⊂ r going over and under some of these handles.
Consider the orthogonal projection γ′ of γ on the disk of the drawing D (see
Fig. 7b) and notice that it self-intersects where it went over and under some
handle in r. Choose the piece γ′1 of γ′ separated by the self-intersection point
XQ, corresponding to some bundled crossing Q, such that γ′1 starts and ends
in XQ and no intersection point (except XQ) is met twice when walking along γ′1
once; see Fig. 7b.

Let P be the planarization of the projected drawing, and let P ′ be a copy
of P without the edges that intersect γ′1. Consider the edges of P ′ in the interior
of the closed curve γ′1 (see Fig. 7c) that can be seen from γ′1, that is, for each
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(a) A region r with handles and under-
tunnels corresponding to the same bun-
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tion γ′ of the curve γ on the drawing D in
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(c) the planarization P ′;
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(d) the profile of the curve γ′
1 (light blue).

These edges form a partial drawing DA(p).

Figure 7: Illustration to the proof of Lemma 3.

of such edges, we can draw a curve β from some point of γ′1 so that β does
not intersect γ′1 and any other edge of P ′. We call the edges of the drawing D
that contain the edges of the planarization P ′ seen from γ′1 the profile of γ′1; see
Fig. 7d. These edges form a partial drawing DA(p) for some p > 0; see Fig. 6a.
According to Lemma 2, however, such a partial drawing cannot be completed
to a valid simple circular drawing; contradiction.

As for holes, it is easy to see that if r had a hole, the profile of any curve
around this hole would yield a partial drawing DB(p) for some p > 0; see Fig. 6b.
Again, according to Lemma 2, such a partial drawing cannot be completed to
a valid simple circular drawing; contradiction.

Note that, since r′ is a topological disk, its lifting r is also a topological disk.
�

In particular, since our projection is injective, a drawing on r can be regarded
as a drawing on r′ and vice versa.

The next lemma concerning treewidth is a direct consequence of Lemma 3.

Lemma 4 If a graph G admits a circular layout with k bundled crossings then
its treewidth is at most 8k + 2.

Proof: If the graph G can be drawn in a circular layout with k bundled cross-
ings then there exist at most 4k frame edges. According to Lemma 3, the
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Figure 8: (a) A bundled drawing D with six bundled crossings (pink); parallel
(blue) edges can be inserted to avoid degenerate bundled crossings; (b) the
corresponding surface of genus 6; the components of the surface that are not
regions are marked in green; the region r (light blue) has a boundary consisting
of the arcs of the disk (red) and the arcs c1, c2, c3, and c4 (traced in orange).

removal of their endpoints breaks up the graph into outerplanar components.
The treewidth of an outerplanar graph is at most two [26]. Moreover, adding a
vertex to a graph raises its treewidth by at most one. Thus, since deleting at
most 8k frame vertices leaves behind an outerplanar graph, G has treewidth at
most 8k + 2. �

We now prove Theorem 2, which says that deciding whether bc◦(G) ≤ k is
FPT in k.

Proof of Theorem 2: We use Lemma 3 and extend the algorithm of Sec-
tion 3.2.

Suppose that G has a circular drawing D with at most k bundled crossings.
Then D contains a set F of (up to) 4k frame edges of these bundled crossings. As
discussed before, F together with D defines a subdivided topological surface Ω
containing a set R of regions. As in the case of one bundled crossing, each edge
of G not in F is contained in exactly one such region, and each vertex of G either
is incident to an edge in F (in which case it belongs to at least two regions) or
belongs to exactly one region.

Throughout the proof we refer the reader to Fig. 8 for an example. By
Lemma 3, each region r in R is a topological disk. Therefore, the graph Gr
whose vertices lie on the boundary of r and whose edges lie in the interior
of r is outerplane with respect to the given order of the vertices along the
boundary. This boundary consists, in clockwise order, of arcs p1, . . . , pα of the
outer boundary of S (marked in red in Fig. 8b) and Jordan arcs c1, . . . , cα
(traced in orange in Fig. 8b), each of which connects two consecutive arcs of S.
For i ∈ {1, . . . , α}, let ui and u′i be the endpoints of pi, in clockwise order. The
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Figure 9: The augmented graph G∗r for a complex region r. The arc p3 is
degenerate.

arc pi can degenerate to a single point; then ui = u′i; see Fig. 9. So u′i and ui+1

(where uα+1 is u1) are the endpoints of ci. No vertex of Gr lies in the interior
of ci.

We now describe G∗r . First, we add a hub vertex h. Then, for each i ∈
{1, . . . , α}, if u′i and ui+1 (where uα+1 is u1) are not adjacent, we add an edge
between them. If the arc pi is non-degenerate, we add a boundary vertex bi
adjacent to all vertices on pi (including ui and u′i) and make h adjacent to ui,
bi, and u′i. Otherwise, we make h adjacent to ui = u′i and identify bi with ui
and u′i. The reason for this identification is technical; it allows us to iterate over
all (degenerate or non-degenerate) arcs and address their boundary vertices; see
Section 3.4 (page 641).

Observe that the resulting graph G∗r is planar due to the special outerplanar
drawing of Gr in r. Moreover, in every planar embedding of G∗r , there is an
outerplanar embedding of Gr where the cyclic order of the arcs ci and the sets
of vertices mapped to the pi’s match their cyclic order in r, implying that Gr
fits into r. This is due to the fact that the simple cycle C ′ around h must
be embedded planarly, with all of Gr inside (with the possible and easy-to-fix
exceptions described in Section 3.2 concerning the cycle C there). Then the
order of the vertices in an outerplanar embedding of Gr is the order of the
vertices incident to b1, . . . , bα in a planar embedding of G∗r . So the planarity
of G∗r guarantees that Gr fits into r as needed.

The reason why G has a circular drawing D with at most k bundled crossings
is that there is a β-edge k-bundled crossing drawing DF (of the graph formed
by F ), whose corresponding surface S consists of regions r1, . . . , rγ (note: γ ≤
2β ≤ 8k) so that Properties 1–6 hold.

Our algorithm first checks that the treewidth of G is at most 8k+ 2. Recall
that this can be done in linear time (FPT in k) [7]. The algorithm then enu-
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merates all possible simple drawings of at most 4k edges in the circle5. For each
drawing, it further enumerates the possible ways to form at most k bundled
crossings so that every edge is a frame edge of at least one bundled crossing.
Then, for each such bundled drawing DF , we build an MSO2 formula ϕ (see
Section 3.4) to express Properties 1–6. Finally, since G has treewidth at most
8k + 2, we can apply Courcelle’s theorem on (G,ϕ). �

3.4 MSO2: Definitions and Our Formula for a Specific
Layout of the Frame Edges

This subsection serves two purposes. First, we define the class MSO2 of logical
formulas as needed for our application of Courcelle’s theorem; see Theorem 5.
Second, we describe how to express the needed condition of our algorithm (as
given by Properties 1–6) in this logic.

Defining MSO2. The class of formulas expressible in MSO2 is defined as fol-
lows; see also the textbook of Courcelle and Engelfriet [11] for more background.

Extended Monadic Second-Order Logic (MSO2) is a subset of second-order
logic that can be used to express certain graph properties. It is built from the
following primitives:

• variables for vertices, edges, sets of vertices, and sets of edges;

• binary relations for: equality (=), membership in a set (∈), subset of a
set (⊆), and edge–vertex incidence (I);

• standard propositional logic operators: ¬, ∧, ∨, →, and ↔;

• standard quantifiers (∀,∃) which can be applied to all types of variables.

Note that, if we drop the “2” then we have Monadic Second-Order Logic (MSO)
where the only difference is that we are now not allowed to quantify over edge
sets. Additionally, the convention for MSO formulas is to use a binary adjacency
function (adjG) instead of the incidence function as in the definition of MSO2

above.
For a graph G and an MSO2 (or MSO) formula ψ, we use G |= ψ to indicate

that ψ can be satisfied by G in the obvious way. Note that we will use an
additional tool in the construction of our formula below, namely, that of MSO-
transductions. Essentially, an L-transduction is just the name for the operation
of constructing the model of one graph/structure from the model of another
graph/structure in the language of the logic L. A rigorous treatment on trans-
ductions is given in the book of Courcelle and Engelfriet [11, Section 1.7.1, and
Definitions 7.6 and 7.25]. For example, an MSO-transduction that constructs

5i.e., at most 4k curves extending to infinity in both directions where each pair of curves
cross at most once. The number of such drawings is proportional to k, and efficient enumer-
ation has been done for the case when every pair of curves cross exactly once [14].
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a graph G′ (modelled for MSO, using a vertex set V (G′) and adjacency func-
tion adjG′) by adding a universal vertex x to a given graph G (modelled for
MSO2, using a vertex set V (G), edge set E(G), and incidence function IG) can
be written as follows:

V (G′) := {x} ∪ V (G)

adjG′(u, v) := (u 6= v)∧((
(∃e ∈ E(G)) (IG(e, v) ∧ IG(e, u))

)
∨ (x = u) ∨ (x = v)

)
.

We will describe our augmented graphs (from Property 6) as an MSO-
transduction (also whose target is modelled for MSO and whose original graph
is modelled for MSO2) and this will allow us (via [11, Theorem 7.10]) to have
an MSO2 formula to implicitly check the planarity of our augmented graphs
inline within our (main) MSO2 formula (where our formula is applied only to
the graph prior to augmentation).

The formula for DF . We now construct an MSO2 formula to express the
following problem:

• Given a graph G = (V,E) and a simple circular drawing DF with k
bundled crossings so that F = {e1, . . . , eβ} is the set of frame edges (and
DF has no other edges) and VF = {v1, . . . , vξ} is the set of frame vertices
(and DF has no other vertices);

• determine whether G has a simple circular drawing with k bundled cross-
ings so that the frame edges and vertices occur as in DF .

This is based on Properties 1–6 on page 632: we express them as MSO2 formulas.
Properties 1 and 2 simply state that a set of elements is partitioned into a

certain number of disjoint subsets. We use a formula stated by Bannister and
Eppstein [5] to express this in MSO2. For example, partitioning of a set E into
disjoint subsets E0, E1, . . . , Eγ can be done as follows:

Partition(E;E0, . . . , Eγ) = (∀e ∈ E)
[( γ∨

i=0

e ∈ Ei
)
∧
( ∧
i 6=j

¬(e ∈ Ei∧e ∈ Ej)
)]
.

We will additionally use the following formula to state that a vertex set V ′

is the set of endpoints of an edge set E′:

Incident(V ′, E′) = (∀e ∈ E′) (∀v ∈ V (G)) [I(e, v)⇔ v ∈ V ′].

We now turn to the properties more specific to our fixed drawing DF with
β ≤ 4k frame edges F = {e1, e2, . . . , eβ} whose endpoints form the set V (F ) =
{v1, v2, . . . , vξ}, where ξ ≤ 2β. As discussed in Section 3.1 and Lemma 3, this
drawing induces a corresponding set of regions r1, . . . , rγ .



640 Chaplick et al. Bundled Crossings Revisited

Property 3 ensures that certain edges E0 = {f1, f2, . . . , fβ} and their end-
points V0 = {w1, w2, . . . , wξ} of the graph G induce a graph isomorphic to
(V (F ), F ). This can be modeled by the following formula.

θ3(V0, E0) =
(
∀i, j ∈ {1, 2, . . . , ξ}

)[(
(∃f ∈ E0) I(e, wi) ∧ I(f, wj)

)
⇔
(
(∃e ∈ F ) I(e, vi) ∧ I(e, vj)

)]
To express Properties 4 about the adjacencies of the frame vertices, we

introduce the following piece of notation. For each vertex vi ∈ V (F ) with
i ∈ {1, 2, . . . , ξ}, we denote by σ(i) the set of indices of the regions incident
to vi in the drawing DF . For example, in the case of one bundled crossing (see
Fig. 5), σ(1) = {1, 6}. Then Property 4 can be expressed in MSO2 as follows:

θ4(V0, E0) =
(
∀i ∈ {1, 2, . . . , ξ}

)
(∀e ∈ E)[

I(e, wi)⇒
[
e ∈ E0 ∨ (∃j ∈ σ(i)) [e ∈ Ej ]

]]
.

Property 5 expresses that, for each non-frame vertex v ∈ Vj , all edges inci-
dent to v are contained in Eij (recall that ij is the index of the region containing
the set Vj of non-frame vertices and that Eij is the set of non-frame edges of
this region):

θ5(V1, . . . , Vη) =
(
∀j ∈ {1, 2, . . . , η}

) (
∀v ∈ Vj

) (
∀e ∈ E

) [
I(e, v)⇒ e ∈ Eij

]
Finally, we turn to Property 6. First, note that testing planarity of a graph G

can be expressed as follows where the formula for MinorH(G) does not need
edge set quantification (i.e., it is in MSO) [11, Corollaries 1.14 and 1.15]:

Planar(G) = ¬MinorK5
(G) ∧ ¬MinorK3,3

(G).

Now, we describe the MSO-transduction6 τi of G to G∗ri (for each region
ri; see Section 3.3) subject to the variables w1, . . . , wξ, V1, . . . , Vη, f1, . . . , fβ ,
E1, . . . , Eγ . Note that in our transduction, the input uses the format allowing
for edge set quantification (i.e., where we have the objects V ∪E and the binary
incidence function I), but our output involves the format without edge set quan-
tifications (i.e., where we have the objects V and the binary adjacency function
adj). Let j1, . . . , jζ be the indices of the frame vertices incident to region ri and
suppose these are ordered cyclically as inDF . Further, let Vl1 , . . . , Vlα be the sets
corresponding to the arcs of the boundary of ri (in order). With this notation,
we can now set up the transduction τi which describes our graph G∗ri in terms of
our variables (note that in the statement of [11, Theorem 7.10] our variables are
the parameters). Note that the symbols h, b1, b2, . . . , bα are new objects that are
added in the construction (namely, the hub and boundary vertices of G∗ri). Fur-
ther, let C be the cycle of the wheel, that is, V (C) = {vj1 , . . . , vjζ , b1, . . . , bα}.

6Recall that, a transduction is essentially just the name for the operation of constructing
the model of one graph/structure from the model of another graph/structure in the language
of MSO.
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For each vertex x ∈ V (C), let NC(x) be the set consisting of the two neighbors
of x in C.

Now we can describe the transduction τi as follows.

V (G∗ri) := {h} ∪ V (C) ∪
α⋃
j=1

Vlj

adjG∗ri
(u, v) :=(u 6= v) ∧((

(∃e ∈ Ei) (I(e, v) ∧ I(e, u))
)

∨
(
(h = u) ∧ (v ∈ V (C))

)
∨
(
(h = v) ∧ (u ∈ V (C))

)
∨

 α∨
j=1

u = bj ∧ v ∈ Vlj

 ∨
 α∨
j=1

v = bj ∧ u ∈ Vlj


∨
(
(u ∈ V (C)) ∧ (v ∈ NC(u))

)
∨
(
(v ∈ V (C)) ∧ (u ∈ NC(v))

))
.

With this transduction τi and the expression Planar(G), we can now apply [11,
Theorem 7.10] to obtain the MSO2 formula ιi which, when applied to G (to-
gether with our variables), allows us to express that G∗ri is planar. Namely, by
taking the conjunction of all of these ιi, we obtain the needed MSO2 formula ι
(which can be applied to G and our variables) to express that all of the G∗ri ’s
are planar.

Now we construct the MSO2 formula corresponding to Properties 1–6. The
formula depends on the drawing DF of the set of frame edges F .

realizableDF (G) ≡
(∃f1, . . . , fβ , E0, E1, . . . , Eγ , w1, w2, . . . , wξ, V0, V1, . . . , Vη)[
E0 = {f1, . . . , fβ} ∧ V0 = {w1, w2, . . . , wξ}

∧ Partition(E;E0, E1, . . . , Eγ)

∧ Partition(V ;V0, V1, . . . , Vη)

∧ Incident(V0, E0)

∧ θ3(V0, E0) ∧ θ4(V0, E0) ∧ θ5(V1, . . . , Vη)

∧ ι(f1, . . . , fβ , E1, . . . , Eγ , w1, w2, . . . , wξ, V1, . . . , Vη)
]
.

4 Bundling a Drawing

We now establish the following parameterized results for bundling a given draw-
ing.

Theorem 6 Let G be a graph with n vertices and m ≥ n edges, and let D be a
drawing of G.
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(a) If D has c crossings, we can test whether bc′(G,D) ≤ k
in cO(

√
k) +O(m+ c) time.

(b) If D is simple, we can test whether bc(G,D) ≤ k in mO(
√
k) +O(m) time.

(c) If D is simple and circular, testing whether bc◦(G,D) ≤ k is FPT in k;

it takes 2O(
√
k log k) +O(m) time.

(d) For a permutation π of V (G), testing whether bc◦(G, π) ≤ k is FPT in k;

it takes 2O(k2) +O(m) time.

To prove this theorem, we will examine the number of combinatorially dif-
ferent bundled crossings we can make in our given fixed drawing D. Namely,
let B(D) be the entire family of subsets of crossings in D such that each subset
corresponds to a bundled crossing in D, that is, for each bundled crossing, the
subset S of the crossings in D contained in it is an element of B(D). We show
that |B(D)| ∈ O(c4) where c is the number of crossings in D; see Lemma 6.
For the case when D is simple, we show that |B(D)| ∈ O(m4) where m is the
number of edges in D; see Lemma 5.

Note that each element of B(D) forms a connected subgraph in the pla-
narization of the drawing. So, by finding k such connected subgraphs that are
pairwise disjoint and together cover the crossings of D, we can bundle the draw-
ing to have at most k crossings. Marx and Pilipczuk [25] studied exactly this
type of disjoint covering problem. Their result is as follows.

Theorem 7 ([25, Theorem 1.3]) Let G be a planar graph, let B be a family
of connected vertex sets in G, let C ⊆ V (G) be a set of vertices, and let k be

an integer. In time |B|O(
√
k)nO(1), we can find a set S of at most k pairwise

disjoint objects in B that maximizes the number of vertices of C in the union
of the vertex sets in S.

We use Theorem 7 and an algorithm of Alam et al. [2] to prove Theorem 6.

Proof of Theorem 6: (a) Consider a drawing D of G with c crossings, and
let B = B(D). By Lemma 6, |B| ∈ O(c4). Let D′ be the plane graph obtained
from D by creating a vertex at each crossing point in D (note that D′ does
not contain the vertices of G), and connecting two such vertices if they are
consecutive along an edge in D. Clearly, each element in B forms a connected
subgraph of D′. Thus, applying Theorem 7 with G = D′, B = B(D), C = V (D′)
establishes (a).

(b) This follows as in (a). Namely, since D is simple, by Lemma 5, |B| ∈
O(m4). This establishes (b).

(c) Alam et al. [2] showed that testing bc◦(G, π) ≤ k can be kernelized down
to an instance with at most 16k edges (or report that (G, π) is a no-instance)
in O(m) time. This also applies to a given simple circular drawing. Thus, by
applying their kernelization and using (b) with m ≤ 16k, we establish (c).



JGAA, 24(4) 621–655 (2020) 643

(d) Here, we use (b) to improve the FPT algorithm of Alam et al. [2] for

determining whether bc◦(G, π) ≤ k. (Their algorithm runs in time kO(k2) +
O(m) and proceeds in three stages). First, it applies a kernelization step to
obtain a graph with at most 16k edges in O(m) time; second, it enumerates all

possible O
(
20.657k2

)
weak pseudoline arrangements of 16k pseudolines [14]; and

third, for each such weak pseudoline arrangement it partitions the crossings
into the minimum number of bundled crossings by exhaustive search in time
O
(
k128k2

)
. For this last step, we apply (b) instead (now with m ≤ 16k), leading

to (16k)O(
√
k) = 2O(

√
k log k) time, and 2O(k2) +O(m) time in total. �

Note that since the number of crossings in a non-simple drawing is not
bounded by a function of the number of edges m in the drawing, we do not
obtain an analogous result for the circular layout as in Theorem 6(c) by using
the kernelization technique of Alam et al. [2]. On the other hand, we present a
2O(m)-time algorithm for not necessarily simple drawings in circular layouts in
the context of storyline visualization; see Section 5.

We now discuss the size of the family B(D) for some drawing D. Note that
each bundled crossing in D involves two pairs of frame arcs, and, conversely,
two pairs of frame arcs can determine at most one bundled crossing. We show
that if D is simple, then this is also true for frame edges, that is, two pairs of
frame edges can determine at most one bundled crossing; see Lemma 5. This
allows us to bound the number of distinct bundled crossings by the number of
edges from above, and thus, the size of the family B(D).

Lemma 5 Let D be a simple drawing D with m edges. Each bundled crossing
determines at most two pairs of frame edges, and, conversely, two pairs of frame
edges can determine at most one bundled crossing. In particular, |B(D)| ≤ m4.

Proof: Consider two bundles that form a given bundled crossing. Each bundle
has at most two not necessarily distinct frame edges. For the reverse direction,
consider a bundled crossing B and let (e2, e4), (e1, e3) be the two pairs of frame
edges each corresponding to a bundle. Let cij , for i = 1, 3, j = 2, 4 be the frame
crossing of ei and ej (if it exists). There are three cases how these two pairs
can determine a bundled crossing: (a) e1 = e3 and e2 = e4: then B is a single
crossing, clearly there cannot be another bundled crossing determined by the
same pairs; (b) e1 = e3 and e2 6= e4 (the case where e1 6= e3 and e2 = e4 is
symmetric): then B consists of all crossings on e1 between c12 and c14, since
e1 and e2 can cross e1 at most once, there cannot be another bundled crossing;
or (c) the edges are pairwise different, then all the crossings cij exist and are
distinct and any other bundled crossing would imply that for some fixed i and
j the crossings cij occurred twice, which is impossible in a simple drawing. �

In the case of a not necessarily simple drawing D, the number c of crossings
cannot be bounded in terms of the number m of edges. But if we define the size
of an instance in terms of the number of crossings, it is easy to see that B(D)
is of size polynomial in c.
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Lemma 6 For any not necessarily simple drawing D with c crossings |B(D)| ∈
O(c4).

Proof: Every bundled crossing can be determined by two pairs of frame arcs.
Since each crossing can be incident to at most four arcs, four crossings can
determine at most 44 different bundled crossings. Therefore, the total number of
bundled crossings is polynomially bounded by the number of crossings, namely
|B(D)| ≤ 16c4. �

5 Bundling Storyline Visualisations Is FPT

For our purposes, a storyline drawing D is a set of m x-monotone curves. Such
curves cannot self-intersect, but a pair of curves is allowed to intersect each
other multiple times; we only forbid the existence of digonal faces, that is, two
curves intersecting each other twice in a row. Finally, we assume here that all
curves start on distinct points of a vertical line vleft and end on distinct points
of a vertical line vright. This is common in storyline visualizations, but this
restriction can be dropped with additional care. We prove the following.

Theorem 8 Given a storyline drawing D with m characters and c crossings,
bcs(D) can be computed in O(ϕ2mmc) ⊂ O(2.62mmc) time, where ϕ is the
golden ratio. This runtime is fixed parameter tractable in m. An optimal
bundling can be constructed in the same time.

Recall that I(D) is the set of crossings. Each curve, being x-monotone, gives
a left-to-right order of its incident crossings. These orders give a partial order
on I(D). Let π be an arbitrary linear extension of these partial orders, which
can be found in polynomial time given D. Then we subdivide D into columns
according to π: see Definition 2 and Fig. 10. We call a face of this subdivision a
cell. In this section we define a way to label the cells to describe any bundling of
the drawing. The algorithm for Theorem 8 is based on dynamic programming
over such labelings.

Definition 2 A subdivision S(D) consists of the drawing D together with: hor-
izontal lines htop and hbot above and below all curves; vertical lines vleft and
vright going through the left and right endpoints of the curves, respectively; and
a set of c y-monotone curves with the following properties:

• for each crossing X in I(D), there is a unique curve going through X,
• each curve crosses htop, hbot and all curves of D,
• the curves do not intersect each other, and they are totally ordered from

left to right according to π.

See Fig. 10a for an example of a drawing D with its subdivision S(D). Let C
be the set of bounded faces of S(D); we call the elements of C the cells in
order to distinguish them from the faces of D. A drawing of S(D) in Fig. 10b
helps to understand its structure. (This drawing is stretched similarly to a
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(a) bundling of D with order π
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e

◦
◦
◦

S

◦
◦ ◦

S

◦

◦

◦
◦ ◦

◦

◦ ◦

◦
◦

◦
◦
◦
◦
◦
◦

× × × ×
↑ ↑ ↑ ↑

↓ ↓ ↓ ↓

1 2 3 4 5vleft vright

(b) corresponding real labeling of S(D)

Figure 10: Bundling of a storyline drawing: curves added in S(D) are dashed
and a bundling of the crossings is indicated in gray. Note the degenerate bundled
crossing at crossing 2.

wiring diagram [15].) Note that the subdivision consists of |I(D)|+ 1 columns,
each with m+ 1 cells, and all cells are either triangular or quadrangular: there
are triangles to the left and right of each intersection, and all other cells are
quadrangles. The cells in a column are numbered from top to bottom, starting
at 1. These numbers are their row numbers.

We use the set L = {×, S, ◦, ↓, ↑, l} of labels. In a fixed bundling of D, each
cell satisfies exactly one of the following conditions.

× This cell is inside a bundled crossing. (This can only happen if the cell is
part of a quadrangular face.)

For cells not inside a bundled crossing, there are five options.

S This cell is directly left of the π-earliest crossing of a bundled crossing: it
“starts” a bundled crossing.

◦ This cell does not touch the boundary of a bundled crossing, except pos-
sibly in a point.

↓ Only the lower boundary of this cell bounds a bundled crossing.

↑ Only the upper boundary of this cell bounds a bundled crossing.

l Both the upper and lower boundary of this cell bound a bundled crossing

We call a function from the set C of cells to the set L of labels a labeling. A
labeling is called real if there exists a bundling of D where each cell satisfies
the condition of its label. We now observe four necessary properties of real
labelings. Afterward, we prove that they are sufficient.

Crossing Property Any crossing must be part of a bundled crossing (though
possibly a degenerate one). Consider the six cells surrounding a crossing in
S(D). If the crossing lies in the interior of a bundled crossing, all six cells are
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labeled × in the real labeling. Otherwise it lies on the boundary of a bundled
crossing. Enumeration reveals the finite set of ways to label these cells that can
possibly be real: see Fig. 11. Any other way to label the six cells around the
crossing directly contradicts the conditions for the labels.

Column Property Note that in a real labeling, a column of S(D) can have
at most one cell labeled ‘S’, since by construction only one cell per column is left
of a crossing. Now consider the sequence of labels encountered top to bottom in
a column, for example [◦, ◦, ↓,×, ↑, ◦] in the third column of Fig. 10b. For any
real labeling, this sequence describes being inside (×) and outside (◦) of bundled
crossings, with ↓, ↑ and l marking the transitions, and possibly the label ‘S’ in
place of ◦ in one particular cell (left of the crossing). Such sequences without
‘S’ are walks through the directed graph in Fig. 12; the Column property says
that precisely these sequences are allowed, with the addition of also allowing ‘S’
in the appropriate cell (and only there).

Row Property In any real labeling, horizontally adjacent cells have the same
label unless they share a crossing on their boundary (and in that case the change
is governed by the Crossing property), where ◦ and ‘S’ are considered the same:
the labels ◦ and ‘S’ both describe a cell that does not touch the boundary of a
bundled crossing. Such pairs of horizontally adjacent cells must have the same
label, because they have the same incidences to any bundled crossings: these
incidences can only change at crossings.

Consider for example the sequence of labels encountered left to right in the
third row for Fig. 10b: [◦, ↓, ↓, ↓, ↓, ◦]. For the Row property, the third and
fourth labels must be the same; the other pairs are exempt due to sharing a
crossing. The ‘S’ in the second row is allowed to the right of ◦ since the two
labels are considered equal for the Row property.

Quadrangle Property In any real labeling, all faces inside a bundled crossing
are quadrangles. Therefore, only cells contained in a quadrangular face of D
can have the label ×.

These properties are necessary for real labelings (as argued above) and, once
we fix the leftmost and rightmost columns of the labeling, they are also sufficient.

Lemma 7 A labeling C → L is real if and only if:

1. the first column contains ‘S’ left of its crossing and ◦ everywhere else,
2. the last column contains ◦ everywhere, and
3. the Crossing, Column, Row, and Quadrangle properties hold everywhere.

The number of bundled crossings in the corresponding bundling equals the num-
ber of cells with label ‘S’.

Proof: First observe that in any real labeling, the first column consists of all ◦
except the label ‘S’ in the unique cell adjacent to a crossing: none of the cells
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Figure 11: All possible configurations of labels around a crossing on the bound-
ary of a bundled crossing, where the Greek variables may be substituted as
follows: α ∈ {◦, ↑}, β ∈ {◦, ↓}, γ1γ2 ∈ {◦ ↓, ↑ l}, δ1δ2 ∈ {◦ ↑, ↓ l}. Multiple
occurrences of the same variable within one configuration must be substituted
consistently, so for example the two α in the top left configuration must both
be ◦ or both be ↑. (If the crossing is in the interior of a boundled crossing, all
six cells must be ×.)
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↓

×

↑

◦ l

Figure 12: Directed graph for the Column property, reading a column top to
bottom; starting nodes are ◦ and ↓. (Further legal columns can be obtained by
replacing one occurrence of ◦ by ’S’.) Only the gray state corresponds to cells
inside of a bundled crossing.

bound (or are in) a bundled crossing except that the ‘S’ cell necessarily touches
one in a point. Similarly in any real labeling the last column cannot have cells
that are contained in a bundled crossing or adjacent to a crossing on their right,
so they are all labeled ◦. As argued above, the Crossing, Column, Row, and
Quadrangle properties hold everywhere in any real labelling. This establishes
one direction of the lemma.

We now show that if a labelling satisfies the three conditions of the lemma,
then it is real. Consider a connected component of cells labeled ×. Based on the
Row and Crossing properties, the surrounding cells are correctly labeled with
arrows and an ‘S’ label. Call such a connected component a blob. We show
that each blob is indeed a bundled crossing by Definition 1. (Note that blobs
are nondegenerate bundled crossings; we handle degenerate bundled crossings
later.)

Let B be a blob. Call a crossing on the boundary of B a convex corner if no
curve in this crossing goes into the interior of the blob; a side if one curve goes
into the interior, or; a reflex corner if two curves go into the interior. Notice
that the “start”, “top corner”, “bottom corner”, and “end” configurations of
the Crossing property represent convex corners, and the other configurations
with × represent sides. Therefore, a blob cannot have reflex corners. Thus, a
blob is a topological disk. Moreover, the first column of S(D) contains no ×
labels, so a blob has a unique “start” configuration.

Now we trace the boundary of B, starting at its π-earliest crossing X, and we
will find the four frame arcs. Start from X and follow the boundary along one of
the curves and call this frame arc e1. We switch to the next frame arc whenever
we encounter a convex corner. This process is repeated until we get back to X,
which must happen because the blob is a topological disk and bounded on the
right by the last column (which does not contain any ×). Let e1, e2, . . . , ek be
the frame arcs encountered. We only switched from a frame arc to the next at
convex corners, and according to the Quadrangle property all faces in the blob
are quadrangles. Then k = 4, since that is the only way to close a loop around
quadrangles using only convex corners. In fact, since all faces in the blob are
quadrangles, the crossings inside B form a grid and therefore B is a bundled
crossing.

Consider a cell labeled ‘S’ that does not precede a blob. If the “single
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crossing” configuration of the Crossing property applies, this correctly describes
a singleton bundled crossing. Otherwise, a “start linear up” or “start linear
down” configuration must apply (Crossing property). Because of the “continue
linear” configurations and the Row property, this must propagate and can only
end in an “end linear up” or “end linear down” configuration. This correctly
describes a linear bundled crossing.

Therefore, a labeling that starts correctly in the first column, where the
properties hold everywhere, and that arrives correctly in the final column, is
real. �

In preparation for the runtime bound of Theorem 8, we now bound the num-
ber of ways to label a column that are consistent with the Column property.

Lemma 8 The number of length-n strings over L that are consistent with the
Column property is O(ϕ2n) ⊂ O(2.62n), where ϕ is the golden ratio. The strings
can be enumerated with linear-time overhead.

Proof: Enumerating the walks in the graph from Fig. 12, with the additional
option of having ‘S’ in place of ◦ in one particular cell, can be achieved in
depth-first fashion using a stack. The optional ‘S’ at most doubles the number
of accepted strings, so we ignore it for the asymptotic analysis and consider only
the walks in the graph. We also ignore that there are two starting nodes (◦ and
↓), since again this only involves a factor two.

Now consider the adjacency matrix A of the graph; here the nodes are given
in the order ◦, ↓, ↑,×, l.

A =


1 1 0 0 0
0 0 1 1 1
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1


The characteristic polynomial det(A−λI) of the matrix A is −λ5 +3λ4−λ3.

Its roots are 0 of multiplicity three, 1
2 (3 +

√
5) = ϕ2, and ϕ−2, where ϕ is

the golden ratio. Since the root with the largest absolute value is ϕ2 > 1
and it has multiplicity one, the number of walks of length n is O(ϕ2n). The
lemma follows. (See, for example, Ardila’s treatment [3] of algebraic methods
for counting walks.) �

Proof of Theorem 8: We use dynamic programming, moving from left to right
by column of S(D): with L ∈ Lm+1 and i a column, let f(L, i) be the minimum
number of ‘S’ labels in any labeling of the columns up to column i, ending with
the labels L for column i. By Lemma 8, there are only O(ϕ2m) values of L that
satisfy the Column property and they can be enumerated with linear overhead.
Each individual f(L, i) can be computed with a constant number of lookups of
f( · , i − 1): by the Row property only the three rows adjacent to the crossing
between the columns can change and the Crossing property gives a finite set of
options for how they can change.
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Algorithm 1: Dynamic program for computing the bundled crossing
number of storyline visualizations.

Input: Drawing D.
Output: Bundled crossing number bcs(D).
C ← Columns of S(D) numbered 0 to c
Lstart ← Entire column is ◦, except ‘S’ left of the crossing of C[0]
F (Lstart, 0)← 1 // Dynamic programming data structure

for i← 1 to c do // O(c) times

foreach L ∈ Enum-Single-Columns(C[i]) do // O(ϕ2m) times

foreach L′ ∈ Enum-Valid-Predecessors(C[i− 1], C[i], L) do
F (L, i)← min{F (L, i), F (L′, i− 1)} // yO(1) times

if L contains ‘S’ then F (L, i)← F (L, i) + 1

Lend ← Entire column is ◦
return F (Lend, c)

Subroutine: Enum-Single-Columns(c)
Input: A single column c of S(D).
Output: Enumerates all ways to label the column according to

the Column property.

Subroutine: Enum-Valid-Predecessors(cpred, ccurr, L)
Input: Adjacent columns cpred and ccurr of S(D), labeling L

for ccurr.
Output: Enumerates all ways to label cpred according to the four

properties, given that ccurr is labeled L.

See Algorithm 1 for pseudocode, where F (L, i) is used to store and look up
values of f(L, i); we use the convention that accessing F (L, i) returns ∞ if that
value has not been stored yet. The values can be accessed in O(m) time by
storing them in a prefix tree (indexed by L) per column. This leads to a total
runtime of O(ϕ2mmc). �

If desired, the bundling itself can be read from F . In that case, the algorithm
uses O(ϕ2mmc) space: the c prefix trees each store O(ϕ2m) items and have
height m+ 1. If only the bundled crossing number is required, space usage can
be improved to O(ϕ2mm) by storing only two columns at a time.

6 Open Problems

Given our new FPT algorithm for simple circular layouts, it would be interest-
ing to improve its runtime and to investigate whether a similar result can be
obtained for general simple layouts. A starting point could be the FPT algo-
rithm of Kawarabayashi et al. [23] for computing the usual crossing number of
a graph. We also conjecture that it is NP-hard to compute bc◦(G, π), given a
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graph G and a vertex order π. It seems plausible to reduce from SortingBy-
Transpositions, but it is difficult to keep the resulting drawings simple.

We remind the reader of the open problem posed by Alam et al. [2] and Fink
et al. [16] concerning the computational complexity of bc◦(G).

Acknowledgements. We thank Bruno Courcelle for clarifying discussions on
the tools available when working with his meta-theorem and in particular MSO2.
We thank the reviewers for their helpful comments, in particular for pointing
out a gap in the correctness proof of our algorithm for bundling storylines, which
we fixed subsequently.



652 Chaplick et al. Bundled Crossings Revisited

References

[1] E. Ackerman and R. Pinchasi. On the degenerate crossing number. Discrete
Comput. Geom., 49(3):695–702, 2013. doi:10.1007/s00454-013-9493-1.

[2] M. Alam, M. Fink, and S. Pupyrev. The bundled crossing number. In
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