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Abstract

Given a graph G = (V,E) with two distinguished vertices s, t ∈ V and
an integer L, an L-bounded flow is a flow between s and t that can be
decomposed into paths of length at most L. In the maximum L-bounded
flow problem the task is to find a maximum L-bounded flow between a
given pair of vertices in the input graph.

For networks with unit edge lengths (or, more generally, with poly-
nomially bounded edge lengths, with respect to the number of vertices),
the problem can be solved in polynomial time using linear programming.
However, as far as we know, no polynomial-time combinatorial algorithm1

for the L-bounded flow is known. For general edge lengths, the problem is
NP-hard. The only attempt, that we are aware of, to describe a combina-
torial algorithm for the maximum L-bounded flow problem was done by
Koubek and Ř́ıha in 1981. Unfortunately, their paper contains substantial
flaws and the algorithm does not work; in the first part of this paper, we
describe these problems.

In the second part of this paper we describe a combinatorial algorithm
based on the exponential length method that finds a (1+ε)-approximation
of the maximum L-bounded flow in time O(ε−2m2L logL) where m is the
number of edges in the graph. Moreover, we show that this approach
works even for the NP-hard generalization of the maximum L-bounded
flow problem in which each edge has a length.
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1 Introduction

Given a graph G = (V,E) with two distinguished vertices s, t ∈ V and an integer
L, an L-bounded flow is a flow between s and t that can be decomposed into
paths of length at most L. In the maximum L-bounded flow problem the task
is to find a maximum L-bounded flow between a given pair of vertices in the
input graph. The L-bounded flow was first studied, as far as we know, in 1971
by Adámek and Koubek [1]. In connection with telecommunication networks,
L-bounded flows in networks with unit edge lengths have been widely studied
and are known as hop-constrained flows [8].

For networks with unit edge lengths (or, more generally, with polynomially
bounded edge lengths, with respect to the number of vertices), the problem can
be solved in polynomial time using linear programming. Linear programming
is a very general tool that does not make use of special properties of the prob-
lem at hand. This often leaves space for superior combinatorial algorithms that
do exploit the structure of the problem. For example, maximum flow, match-
ing, minimum spanning tree or shortest path problems can all be described as
linear programs but there are many algorithms that outperform general linear
programming approaches. However, as far as we know, no polynomial-time
combinatorial algorithm for the L-bounded flow is known.

1.1 Related results

For clarity we review the definitions of a few more terms that are used in this
paper. A network is a quintuple G = (X,R, c, s, t), where G = (X,R) is a
directed graph, X denotes the set of vertices, R the set of edges, c is the edge
capacity function c : R→ R+, s and t are two distinguished vertices called the
source and the sink. We use m and n to denote the number of edges and the
number of vertices, respectively, in the network G, that is, m = |R| and n = |X|.
Given an L-bounded flow f , we denote by |f | the size of the flow, and for an
edge e ∈ R, we denote by f(e) the total amount of flow f through the edge e.

An L-bounded flow problem with edge lengths is a generalization of the L-
bounded flow problem: each edge has also an integer length and the length of a
path is computed not with respect to the number of edges on it but with respect
the sum of lengths of edges on it.

Given a network G and an integer parameter L, an L-bounded cut is a subset
C of edges R in G such that there is no path from s to t of length at most L in
the network G = (X,R \ C, c, s, t). In the minimum L-bounded cut problem the
task is to find an L-bounded cut of minimum size. We sometimes abbreviate
the phrase L-bounded cut to L-cut and, similarly, we abbreviate the phrase
L-bounded flow to L-flow.

Although the problems of finding an L-flow and an L-cut are easy to de-
fine and they have been studied since the 1970’s, still some fundamental open
problems remain unsolved. Here we briefly survey the main known results.
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L-bounded flows As far as we know, the L-bounded flow was first considered
in 1971 by Adámek and Koubek [1]. They published a paper introducing the
L-bounded flows and cuts and describing some interesting properties of them.
Among other results, they show that, in contrast to the ordinary flows and cuts,
the duality between the maximum L-flow and the minimum L-cut does not hold.

The maximum L-flow can be computed in polynomial time using linear
programming [5, 19, 5, 23]. The only attempt, that we are aware of, to de-
scribe a combinatorial algorithm for the maximum L-bounded flow problem
was done by Koubek and Ř́ıha in 1981 [20]. The authors say the algorithm
finds a maximum L-flow in time O(m · |I|2 · S/ψ(G)), where I denotes the set
of paths in the constructed L-flow, S is the size of the maximum L-flow, and
ψ(G) = min(|c(e) − c(g)| : c(e) 6= c(g), e, g ∈ R ∪ {e′}), where c(e′) = 0. Un-
fortunately, their paper contains substantial flaws and the algorithm does not
work as we show in the first part of this paper. Thus, it is a challenging problem
to find a polynomial time combinatorial algorithm for the maximum L-bounded
flow.

Surprisingly, the maximum L-bounded flow problem with edge lengths is
NP-hard [5] even in outer-planar graphs. Baier [4] describes a FPTAS for the
maximum L-bounded flow with edge lengths that is based on the ellipsoid al-
gorithm. He also shows that the problem of finding a decomposition of a given
L-bounded flow into paths of length at most L is NP-hard, again even if the
graph is outer-planar.

A related problem is that of L-bounded disjoint paths: the task is to find
the maximum number of vertex or edge disjoint paths, between a given pair of
vertices, each of length at most L. The vertex version of the problem is known
to be solvable in polynomial time for L ≤ 4 and NP-hard for L ≥ 5 [17], and the
edge version is solvable in polynomial time for L ≤ 5 and NP-hard for L ≥ 6 [7].
The polyhedra associated with L-bouded paths was studied by Dahl [9].

L-bounded cuts The L-bounded cut problem is NP-hard [24]. Baier et al. [5]
show that it is NP-hard to approximate it by a factor of 1.377 for L ≥ 5 in the
case of the vertex L-cut, and for L ≥ 4 in the case of the edge L-cut. Assuming
the Unique Games Conjecture, Lee at al. [21] proved that the minimum L-
bounded cut problem is NP-hard to approximate within any constant factor.
For planar graphs, the problem is known to be NP-hard [11, 26], too.

The best approximations that we are aware of are by Baier et al. [5]: they
describe an algorithm with an O(min{L, n/L}) ⊆ O(

√
n)-approximation for the

L-bounded vertex cut, and O(min{L, n2/L2,
√
m}) ⊆ O(n2/3)-approximation

for the L-bounded edge cut. The approximation factors are closely related with
the cut-flow gaps: there are instances where the minimum edge L-cut (vertex
L-cut) is Θ(n2/3)-times (Θ(

√
n)-times) bigger than the maximum L-flow [5].

For the vertex version of the problem, there is a τ -approximation algorithm for
graphs of treewidth τ [18].

The L-bounded cut was also studied from the perspective of parameterized
complexity. It is fixed parameter tractable (FPT) with respect to the treewidth
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of the underlying graph [10, 18]. Golovach and Thilikos [14] consider several
parameterizations and show FPT-algorithms for many variants of the problem
(directed/undirected graphs, edge/vertex cuts). On planar graphs, it is FPT
with respect to the length bound L [18]. Fluschnik et al. [12] show that the
L-bounded cut has no kernel of polynomial size when parameterized by L and
the size of the cut (with reasonable complexity assumptions).

The L-bounded cut appears in the literature also as the short paths inter-
diction problem [6], [18], [21] or as the most vital edges for shortest paths [6].

1.2 Our contributions

In the first part of the paper, we show that the combinatorial algorithm by
Koubek and Ř́ıha [20] for the maximum L-bounded flow is not correct.

In the second part of the paper we describe an iterative combinatorial algo-
rithm, based on the exponential length method, that finds a (1+ε)-approximation
of the maximum L-bounded flow in time O(ε−2m2L logL); that is, we describe
a fully polynomial approximation scheme (FPTAS) for the problem.

Moreover, we show that this approach works even for the NP-hard gener-
alization of the maximum L-bounded flow problem in which each edge has a
length. This approach is more efficient than the FPTAS based on the ellipsoid
method [4].

Our result is not surprising (e.g., Baier [4] mentions the possibility, without
giving the details, to use the exponential length method to obtain a FPTAS for
the problem); however, considering the absence of other polynomial time algo-
rithms for the problem that are not based on the general LP algorithms, despite
of the effort to find some, we regard it as a meaningful contribution. The paper
is based on the results in the bachelor’s thesis of Kateřina Altmanová [2] and in
the master’s thesis of Jan Voborńık [25]. A preliminary version of this work was
presented at the 2019 WADS Algorithms and Data Structures Symposium [3].

2 The algorithm of Koubek and Řı́ha

2.1 Increasing an L-bounded flow

The following notation is needed for the main definition of this subsection.

Definition 1 (Relevant parts of Definition 2.2 in [20]) Given a directed
graph (X,R), a directed path of length n from z0 to zn is a finite sequence p =
(z0, u1, z1, . . . , un, zn), where zi ∈ X (i = 0, 1, . . . , n), uj ∈ R (j = 1, 2, . . . , n),
uj = (zj−1, zJ). We shall write L(p) = n,BEG(p) = z0, END(p) = zn.
Whenever possible, we omit the edges in the notation of a path; we write e.g.
p = (z0, z1, . . . , zn).
Given a directed path p = (z0, u1, z1, . . . , un, zn),

• If w = zi, then for any integer b, −i ≤ b ≤ n − i, we define (x + b)
mod p = zi+b.
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• If i < j, then p|{zi, zj} is the directed path (zi, ui+1, zi+1, . . . , uj , zj) of
length (j − i) from zi to zj.

For the sake of completeness, we now proceed with the definition of an
increasing L-system, a key notion in the paper by Koubek and Ř́ıha [20]. After
the formal definition, we provide an informal explanation of the relevant parts
of it. By Z+ we denote the set of all non-negative integers.

Definition 2 (Definition 4.1 in [20]) Assume that f is an L-bounded flow
from s to t in G = (X,R, c, s, t) and {(pi, ri); i ∈ I} a decomposition of f into
paths of length at most L, path pi carrying ri units of flow, for each i ∈ I. An
increasing L-system with respect to the L-flow f in the network G is a labeled
oriented tree T = (V,E, v0, LABV,LABE), where

a) V is the set of vertices, E is the set of edges, v0 is the root of an oriented
tree (V,E)

b) LABV is a mapping labeling vertices: for each v ∈ V LABV (v) =
((q(v), i(v), a(v), b(v)), where q(v) is a path in G, i(v) ∈ I, a(v), b(v) ∈ Z+

c) LABE is a partial mapping labeling edges: for each edge u = (x, y)
LABE(u) is not defined or is equal to (h(u), j(u), d(u), o(u)), where h(u) ∈
I or h(u) ⊂ R, j(u) ∈ I, d(u) ∈ Z+, o(u) ∈ Z+ or o(u) ∈ V and if
h(u) ∈ I then o(u) ∈ Z+;
if LABE(u) is undefined, then we say that y is a 1-son of x, if h(u) ∈ I,
o(u) ∈ Z+ then y is a 2-son of x, if h(u) ⊂ R, o(u) ∈ Z+ then y is a 3-son
of x, if h(u) ⊂ R, o(u) ∈ V then y is a 4-son of x; as (V,E) is a tree we
get that an edge u = (x, y) is uniquely determined by its end-vertex y, and
therefore we shall often write for y ∈ V LABE(y) = (h(y), j(y), d(y), o(y))
instead of LABE(u) where u = (x, y);

and for values of LABV , LABE the following conditions hold:

1) for each v ∈ V :

– if u ∈ q(v) then f(u) = 0,

– END(q(v)) ∈ pi(v),
– a(v) + L(q(v)) + b(v) ≤ L and a(v) + L(q(v)) + b(v) = L implies

(END(q(v)) + b(v)) mod pi(v) = t;

2) BEG(q(v0)) = s, a(v0) = 0 and either L(q(v0)) > 0 or u = (s, (s + 1)
mod pi(v0)) is not saturated;

3) for each v ∈ V :

a) if v is a 4-son then v is a leaf of the tree (V,E)

b) if v is a 1-son or a 3-son then v has a 1-son iff (END(q(v)) + b(v))
mod pi(v) 6= t

c) v has at most one 1-son and at most one 2-son
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d) v has a 2-son iff v is a 2-son or a 3-son and d(v) > o(v) > 0

e) v has a 3-son or a 4-son iff there is u ∈ q̄(v) with f(u) = c(u), and
where here and in what follows q̄(v) = pi(v) | {END(q(v)), (END(q(v))+
b(v)) mod pi(v)};

4) if v is a 1-son of w then BEG(q(v)) = (END(q(w) + b(w)) mod pi(w),
a(v) = a(w) + L(q(w)) + b(w);

5) if v is a 2-son of w then d(w) − o(w) ≥ d(v) − o(v), a(v) = o(v), a(v) =
L(q(v)) + b(v) = a(w), (s+ d(v)) mod pj(v) = BEG(q(v)), i(v) = h(v);

6) if v is a 3-son of w then h(v) ⊆ {u; u ∈ q̄(w), f(u) = c(u)} ∩ pj(v),
h(v) 6= ∅, a(v) = o(v), BEG(q(v)) = (s+ d(v)) mod pj(v) precedes every
edge u ∈ h(v);

7) if v is a 4-son of w then j(v) = j(o(v)), o(v) is a 3-son, ∅ 6= h(v) ⊆
{u; u ∈ q̄(w), f(u) = c(u)} ∩ pj(v), and the following condition hold: let
u1, . . . , un (v1, . . . , vm) be the sequence of vertices of the tree (V,E) such
that for i = 1, . . . , n − 1 (j = 1, . . . ,m − 1) ui+1 is a 2-son of ui (vj+1

is a 1-son of vj), u1 = v1 = o(v), un (vm) has no 2-son (1-son); then
z 6∈ pj(um)|{s, s + o(un} and z 6∈ q̄(ui), z 6∈ q̄(vj) for each z ∈ h(v),
1 < i ≤ n, 1 < j ≤ m;

8) for each vertex v: if Y (v) is the set of all 3-sons and 4-sons of v then
{u; u ∈ q̄(v), f(u) = c(u)} =

⋃
h(w) where the union is taken over all

w ∈ Y (v); if w1 6= w2, w1, w2 ∈ Y (v), then h(w1) ∩ h(w2) = ∅;

9) for every path p in (V,E) and for every couple of vertices v1, v2 ∈ p,
v1 6= v2, v1, v2 being a 3-son or a 4-son, it holds h(v1) ∩ h(v2) = ∅.

The algorithm of Koubek and Ř́ıha [20] is supposed to work as follows: given
an arbitrary L-flow f from s to t in G that is not a maximum L-flow, build an
increasing L-system T = (V,E, v0, LABV,LABE) and use it to derive a larger
L-flow f ′ from the L-flow f (cf. Lemma 1). In the rest of this subsection
we provide an informal description of the meaning of various attributes of the
increasing L-system.

For (almost) each node u in T , there are two consecutive paths in G associ-
ated with: the first one, denoted by q(u), contains only edges that are not used
by the current L-flow f , and the second one, denoted by q̄(u), coincides with a
subpath of some path from the current L-flow f (Fig. 1). The tree T encodes
a combination of these paths with paths in f and this combination is supposed
to yield the larger L-flow f ′. To explain the error in the paper, it is sufficient to
deal only with three of the four types of nodes in T , namely with types 1-son,
3-son and 4-son.

The attributes a(v) and d(v) of the node labels store information about the
distance of the path segments q(v) and q̄(v) from s along the paths used in the
new L-flow f ′, the attribute i(v) specifies the index of a path from f s.t. q̄(v) is
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s t

a(v) b(v)

pi(v)

q(v) q(v)

Figure 1: The paths q(v) and q(v) associated with the node v.

a subpath of pi(v), and the attributes b(v) specifies the number of edges along
which the path pi(v) is being followed by q̄(v).

Consider a node w in the tree T such that at least one edge in q̄(w), say
an edge e, is saturated in the L-flow f (i.e., f(e) = c(e)). In this case, the
properties of the tree T enforce that the node w has at least one 3-son u whose
responsibility is to desaturate the edge e by diverting one of the paths that use e
in f along a new route; the attribute j(u) specifies the index of the path from f
that is being diverted by the node u (Fig. 2), and h(u) specifies which saturated

s

t

f(e) = c(e)

q(w)

q(w)

pi(w)

pj(u)

d(u)

q(u) q(u)

e

Figure 2: Desaturation of a saturated edge e in a q̄(w) by a 3-son u.

edge(s) from q̄(w) are desaturated this way by the node u.

As the definition of the tree T does not pose any requirements on the dis-
jointness of the q̄-paths corresponding to different nodes of T , it may happen
that the paths q̄(w) and q̄(w′) for two different nodes w and w′ of the tree T
overlap in a saturated edge e. In such a case, Koubek and Ř́ıha allow an ex-
ception (our terminology) to the rule described in previous paragraph: if one of
the nodes w and w′, say the node w, has a 3-son u that desaturates e, and if w′

is not a descendant of u, then the node w′ need not have a 3-son for desatura-
tion of e but it may have a 4-son instead. The purpose of this 4-son is just to
provide a pointer to the 3-son u of w that takes care about the desaturation of
the edge e.
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2.2 The main error

We start by recalling a few more definitions and lemmas from the original pa-
per [20]. In this section we identify an L-bounded flow f with its decomposition
{(pi, ri); i ∈ I}.

Definition 3 (Definition 4.2 in [20]) Let T be an increasing L-system with
respect to an L-flow f = {(pi, ri) : i ∈ I} in a network G = (X,R, c, s, t). Given
an edge u ∈ R, we define:

• T1(u) is the number of vertices x in the tree T such that u ∈ q(x) and
if there is a saturated edge v ∈ q(x) then there is a 3-son y of x with
v ∈ h(y), u /∈ pj(y).

• T2(u) is the number of vertices x in the tree T such that u ∈ q(x).

• T3(u) is the number of vertices x which are 3-sons or 4-sons with u ∈ h(x).

For i ∈ I we denote mi = sup{T3(u) : u ∈ pi}, |T | = min{ c(u)T2(u)
: u ∈ R, f(u) =

0} ∪ { c(u)−f(u)T1(u)
: u ∈ R} ∪ { rimi : i ∈ I}, where the expressions that are not

defined are omitted.

Lemma 1 (Lemma 4.2 in [20]) If there is an increasing L-system with re-
spect to an L-flow f , then there is an L-flow g with |g| = |f |+ |T |.

Definition 4 (Definition 4.3 in [20]) Let R = R ∪ {u′}, where u′ /∈ R and
c(u′) = 0. We put ψ(G) = min(|c(u)− c(v)| : c(u) 6= c(v), u, v ∈ R).

s t

ca

b d

1/∞

1/∞ 1.5/∞1/1

1/1

0.5/0.5

flow/capacity

1/1

0.5/∞

Figure 3: A network G with a 4-bounded flow f .

Lemma 2 (Lemma 4.4 in [20]) For each increasing L-system T (with re-
spect to an L-flow f = {(pi, ri) : i ∈ I}) constructed by the above procedure it
holds |T | ≥ ψ(G)/|I|.

The above procedure in Lemma 2 refers to a construction of an increasing L-
system that is outlined in the original paper. As Definition 4 implies ψ(G) > 0,
we also know by Lemma 2 that for every increasing L-system T , |T | > 0.

Now we are ready to describe the counter example.
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Lemma 3 There exist a network G, a maximum L-flow f in G and an increas-
ing L-system T with respect to f .

Proof:
Take L = 4 and let G be a network G = (X,R, c, s, t) defined as follows: X =

{s, t, a, b, c, d}, R = {(s, a), (s, b), (s, c), (a, c), (b, d), (c, d), (c, t), (d, t)}, c(a, c) =
c(b, d) = c(c, t) = 1, c(c, d) = 1/2 and all other edges have unbounded capacity.
Consider a 4-flow f defined by the following path decomposition: p0 = (s, c, t),
p1 = (s, a, c, t), p2 = (s, b, d, t), p3 = (s, a, c, d, t) and r0 = r1 = r3 = 1/2 and
r2 = 1; note that f is a maximum 4-flow between s and t.

We are going to show that there exists an increasing system T for f . Ac-
cording to Lemmas 1 and 2 this implies the existence of a 4-bounded flow g of
size |f |+ |T | > |f |. As the flow f is a maximum 4-bounded flow in G, this is a
contradiction.

v1: 3-son
q(v1) = (s, a, c, t)
saturated edges: {ac, ct}

v3: 3-sonq(v2) = (s)
q(v2) = (s, c, t) q(v3) = (s, a, c, d, t)

h(v3) = {ct}

h(v5) = {ac, cd}

saturated edges: {ac, cd}

o(v5) = v2

saturated edges: {ct}

v4: 4-son
h(v4) = {ct}
o(v4) = v3

v5: 4-son

v0:

q(v1) = (s)

q(v3) = (s)

h(v1) = {bd}

h(v2) = {ac}

q(v0) = (s)
q(v0) = (s, b, d, t)
saturated edges: {bd}

v2: 3-son

Figure 4: Increasing 4-system T . Saturated edges are the edges from q that are
saturated in f .

q q i a b h j d o type

v0 (s) (s, b, d, t) 2 0 3 − − − − 1-son
v1 (s) (s, a, c, t) 1 0 3 {bd} 2 0 0 3-son
v2 (s) (s, c, t) 0 0 2 {ac} 3 0 0 3-son
v3 (s) (s, a, c, d, t) 3 0 4 {ct} 1 0 0 3-son
v4 (s) (s) 1 0 0 {ct} 1 0 v3 4-son
v5 (s) (s) 1 0 0 {ac, cd} 3 0 v2 4-son

Table 1: The labels of the increasing 4-system T .

The increasing system T is depicted in Figure 4 and described in detail
in Table 1. It is just a matter of a mechanical effort to check that it meets
Definition 22 �

2Due to an attempt for simpicity, the counter-example given in the preliminary version of
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In words, the essence of the counter example is the following. The purpose
of the root of the tree, the node v0, is to increase the flow from s to t along
the path q(v0)q̄(v0) = (s, b, d, t). As there is an edge saturated in f on this
path, namely the edge bd, there is a 3-son of the node v0, the node v1, whose
purpose is to desaturate the edge bd by diverting one of the paths that use it
in f along an alternative route; in particular, the node v1 is diverting the path
pj(v1) = p2 and it is diverting it from the very beginning, from s, along the path
q(v1)q̄(v1) = (s, a, c, t).

As there are two edges saturated in f on this path, namely the edges ac
and ct, there are two 3-sons v2 and v3 of the node v1. The purpose the node
v2 is to desaturate the edge ac by diverting one of the paths that use it along
an alternative route and, similarly, the purpose the node v3 is to desaturate
the edge ct by diverting one of the paths that use it along an alternative route.
In particular, the node v2 is diverting the path pj(v2) = p3 and it is diverting
it along the path q(v2)q̄(v2) = (s, c, t), and the node v3 is diverting the path
pj(v3) = p1 along the path q(v3)q̄(v3) = (s, a, c, d, t).

As there is a saturated edge on the path (s, c, t), namely the edge ct, and
as there is already another node in the tree that is desaturating ct, namely the
node v3, the node v2 does not have a 3-son but it has a 4-son v4 instead, which
is just a pointer to the node v3. Similarly, as there is a saturated edge on the
path (s, a, c, d, t), namely the edge ac, and as there is already another node in
the tree that is desaturating ac, namely the node v2, the node v3 does not have
a 3-son but it has a 4-son v5 instead, which is just a pointer to the node v3; the
diversion of the path pj(v5) = p3 will desaturate also the edge cd.

This way, there is a kind of a deadlock cycle in the increasing system: the
task of v4 is to desaturate the edge ct for the node v2 but it itself needs v3 to
do it; v3 in turn needs v5 to desaturate the edge ac, but v5 delegates this task
back to v2. Thus, none of the nodes does the real desaturation that is needed
for the increase of the flow.

Corollary 1 The algorithm for maximum L-bounded flow [20] does not work.

At this point, we know that Lemma 1 or Lemma 2 is not correct. By Definition 3,
one can check that |T | > 0 which implies, as we started with a maximum flow,
that it is Lemma 1 that does not hold.

3 FPTAS for maximum L-bounded flow

We first describe a fully polynomial approximation scheme for maximum L-
bounded flow on networks with unit edge length. The algorithm is based on
the primal-dual algorithm for the maximum multicommodity flow by Garg and
Könemann [13].

Then we describe a FPTAS for the L-bounded flow problem with general
edge lengths. Our approximation schemas for the maximum L-bounded flow

the paper [3] is erroneous - it does not satisfy the property 9.
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on unit edge lengths and the maximum L-bounded flow with edge lengths are
almost identical, the only difference is in using an approximate subroutine for
resource constrained shortest path in the general case which slightly complicates
the analysis.

3.1 FPTAS for unit edge lengths

Let us consider the path based linear programming (LP) formulation of the
maximum L-bounded flow, Ppath, and its dual, Dpath. We assume that G =
(V,E, c, s, t) is a given network and L is a given length bound. Let PL denote
the set of all s-t paths of length at most L in G. There is a primal variable
x(p) for each path p ∈ PL, and a dual variable y(e) for each edge e ∈ E. Note
that the dual LP is a relaxation of an integer LP formulation of the minimum
L-bounded cut problem.

max
∑
P∈PL

x(P )

s.t.
∑
P∈PL:
e∈P

x(P ) ≤ c(e) ∀e ∈ E

x ≥ 0

min
∑
e∈E

c(e)y(e)

s.t.
∑
e∈P

y(e) ≥ 1 ∀P ∈ PL

y ≥ 0

The algorithm simultaneously constructs solutions for the maximum L-
bounded flow and the minimum fractional L-bounded cut. It iteratively routes
flow over shortest paths with respect to properly chosen dual edge lengths and
at the same time increases these dual lengths; dual edge length of the edge
e after i iterations will be denoted by yi(e). The progress of the algorithm
depends on two positive parameters, ε < 1, δ < 1. During the runtime of the
algorithm, the constructed flow need not respect the edge capacities; however,
with the right choice of parameters ε, δ the resulting flow can be scaled down
to a feasible (i.e., respecting the edge capacities) flow (Lemma 4) that is a
(1 + ε)-approximation of the maximum L-bounded flow (Theorem 3).

For a vector y of dual variables, let dLy (s, t) denote the length of the y-

shortest s− t path from the set of paths PL and let αL(i) = dLyi(s, t). Note that
a shortest s − t path with respect to edge lengths y that uses at most a given
number of edges can be computed in polynomial time by a modification of the
Dijkstra’s shortest path algorithm.

Let fi denote the size of the flow after i iterations, fi =
∑
P∈PL xi(P ), and

let τ denote the total number of iterations performed by Approx; then xτ is
the output of the algorithm and fτ its size.

Lemma 4 The flow xτ scaled down by a factor of log1+ε
1+ε
δ is a feasible L-

bounded flow.

Proof: By construction, for every i, xi is an L-bounded flow. Thus, we only
have to care about the feasibility of the flow

xτ

log1+ε
1+ε
δ

. (1)
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Algorithm 1 Approx(ε, δ)

1: i← 0, y0(e)← δ ∀e ∈ E, x0(P )← 0 ∀P ∈ PL
2: while αL(i) < 1 do
3: i← i+ 1
4: xi ← xi−1, yi ← yi−1
5: P ← yi-shortest s-t path with at most L edges
6: c← min

e∈P
c(e)

7: xi(P )← xi(P ) + c
8: yi(e)← yi(e)(1 + εc/c(e)) ∀e ∈ P
9: end while

10: return xi

For every iteration i and every edge e ∈ E, as αL(i − 1) < 1, we also have
yi−1(e) < 1 and so yi(e) < 1 + ε. It follows that

yτ (e) < 1 + ε . (2)

Consider an arbitrary edge e ∈ E and suppose that the flow fτ (e) along e has
been routed in iterations i1, i2, . . . , ir and the amount of flow routed in iteration
ij is cj . Then fτ (e) =

∑r
j=1 cj and yτ (e) = δ

∏r
j=1(1 + εcj/c(e)). Because

each cj was chosen such that cj ≤ c(e), we have by Bernoulli’s inequality that
1 + εcj/c(e) ≥ (1 + ε)cj/c(e) and

yτ (e) ≥ δ
r∏
j=1

(1 + ε)cj/c(e) = δ(1 + ε)fτ (e)/c(e). (3)

Combining inequalities (2) and (3) gives

fτ (e)

c(e)
≤ log1+ε

1 + ε

δ

which completes the proof. �

Claim 2 For i = 1, . . . , τ ,

αL(i) ≤ δLeεfi/β . (4)

Proof: For a vector y of dual variables, let D(y) =
∑
e c(e)y(e) and let β =

minyD(y)/dLy (s, t). Note that β is equal to the optimal value of the dual linear
program. For notational simplicity we abbreviate D(yi) as D(i).

Let Pi be the path chosen in iteration i and ci be the value of c in iteration
i. For every i ≥ 1 we have

D(i) =
∑
e∈E

yi(e)c(e)

=
∑
e∈E

yi−1(e)c(e) + ε
∑
e∈Pi

yi−1(e)ci

= D(i− 1) + ε(fi − fi−1)αL(i− 1)
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which implies that

D(i) = D(0) + ε

i∑
j=1

(fj − fj−1)αL(j − 1). (5)

Now consider the length function yi−y0. Note that D(yi−y0) = D(i)−D(0)
and dLyi−y0(s, t) ≥ αL(i)− δL. Hence,

β ≤ D(yi − y0)

dLyi−y0(s, t)
≤ D(i)−D(0)

αL(i)− δL
. (6)

By combining relations (5) and (6) we get

αL(i) ≤ δL+
ε

β

i∑
j=1

(fj − fj−1)αL(j − 1) .

Now we define z(0) = αL(0) and for i = 1, . . . , τ , z(i) = δL + ε
β

∑i
j=1(fj −

fj−1)z(j − 1). Note that for each i, αL(i) ≤ z(i). Furthermore,

z(i) = δL+
ε

β

i∑
j=1

(fj − fj−1)z(j − 1)

=

δL+
ε

β

i−1∑
j=1

(fj − fj−1)z(j − 1)

+
ε

β
(fi − fi−1)z(i− 1)

= z(i− 1)(1 + ε(fi − fi−1)/β)

≤ z(i− 1)eε(fi−fi−1)/β .

Since z(0) ≤ δL, we have z(i) ≤ δLeεfi/β , and thus also, for i = 1, . . . , τ ,
αL(i) ≤ δLeεfi/β . �

Theorem 3 For every 0 < ε < 1 there is an algorithm that computes an (1+ε)-
approximation to the maximum L-bounded flow in a network with unit edge
lengths in time O(ε−2m2L logL).

Proof: We start by showing that for every ε < 1
3 there is a constant δ = δ(ε)

such that xτ , the output of Approx(ε, δ), scaled down by log1+ε
1+ε
δ as in

Lemma 4, is a (1 + 3ε)-approximation.
Let γ denote the approximation ratio of such an algorithm, that is, let γ

denote the ratio of the optimal dual solution (β) to the appropriately scaled
output of Approx(ε, δ),

γ =
β log1+ε

1+ε
δ

fτ
, (7)

where the constant δ will be specified later.
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By Claim 2 and the stopping condition of the while cycle we have

1 ≤ αL(τ) ≤ δLeεfτ/β

and hence
β

fτ
≤ ε

log 1
δL

.

Plugging this bound in the equality for the approximation ratio γ, we obtain

γ ≤
ε log1+ε

1+ε
δ

log 1
δL

=
ε

log(1 + ε)

log 1+ε
δ

log 1
δL

.

Setting δ = 1+ε
((1+ε)L)1/ε

yields

log 1+ε
δ

log 1
δL

=
1
ε log((1 + ε)L)(

1
ε − 1

)
log((1 + ε)L)

=
1

1− ε
.

Taylor expansion of log(1 + ε) gives a bound log(1 + ε) ≥ ε− ε2

2 for ε < 1 and
it follows for ε < 1

3 that

γ ≤ ε

(1− ε) log(1 + ε)
≤ ε

(1− ε)(ε− ε2/2)
≤ 1

1− 3
2ε
≤ 1 + 3ε.

To complete the proof, we just put ε′ = ε/3 and run Approx(ε′, δ(ε′)). It
remains to prove the time complexity of the algorithm. In every iteration i
of Approx, the length yi(e) of an edge e with the smallest capacity on the
chosen path P is increased by a factor of 1 + ε′. Because P was chosen such
that yi(P ) < 1 also yi(e) < 1 for every edge e ∈ P . Lengths of other edges
get increased by a factor of at most 1 + ε′, therefore yτ (e) < 1 + ε′ for every
edge e ∈ E. Every edge has the minimum capacity on the chosen path in

at most
⌈
log1+ε′

1+ε′

δ

⌉
= O( 1

ε log1+ε L) iterations, so Approx makes at most

O(mε log1+ε L) = O(mε2 logL) iterations.
Each iteration takes time O(Lm) so the total time taken by Approx is

O(ε−2m2L logL). �

3.2 FPTAS for general edge lengths

Now we extend the approximation algorithm to networks with general edge
lengths that are given by a length function ` : E → N. The dynamic program-
ming algorithm for computing shortest paths that have a restricted length with
respect to another length function, does not work in this case. In fact, the prob-
lem of finding shortest path with respect to a given edge length function while
restricting to paths of bounded length with respect to another length function is
NP-hard in general [15]. On the other hand, there exists a FPTAS for it [16, 22].

We assume that we are given as a black-box an algorithm that for a given
graph G, two edge length functions y and `, two distinguished vertices s and
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t from G, a length bound L and an error parameter w > 0, computes a (1 +
w)-approximation of the y-shortest path of `-length at most L; we denote by
dLy,`(s, t;w) the length of such a path and we also introduce an abbreviation

ᾱL(i) = dLyi,`(s, t;w). Note that for every i, ᾱL(i) ≤ (1 + w)αL(i). We can use
the FPTAS of Lorenz and Raz [22] for this task.

The structure of the L-bounded flow algorithm with general edge lengths
stays the same as in the unit edge lengths case. The only difference is that
instead of y-shortest L-bounded paths, approximations of y-shortest L-bounded
paths are used (steps 2 and 5).

Algorithm 2 ApproxGeneral(ε, δ, w)

1: i← 0, y0(e)← δ ∀e ∈ E, x0(P )← 0 ∀P ∈ PL
2: while ᾱL(i) < 1 + w do
3: i← i+ 1
4: xi ← xi−1, yi ← yi−1
5: P ← (1 + w)-approximation of the yi-shortest L-bounded path
6: c← min

e∈P
c(e)

7: xi(P )← xi(P ) + c
8: yi(e)← yi(e)(1 + εc/c(e)) ∀e ∈ P
9: end while

10: return xi

The analysis of the algorithm follows the same steps as the analysis of Al-
gorithm 1 but one has to be more careful when dealing with the lengths.

As in the previous subsection, let fi denote the size of the flow after i iter-
ations and let τ denote the total number of iterations performed by Approx-
General; then xτ is the output flow and fτ its size.

Lemma 5 The flow xτ scaled down by a factor of log1+ε
(1+ε)(1+w)

δ is a feasible
L-bounded flow.

Proof: For every edge e ∈ E and iteration i, as ᾱL(i − 1) < 1 + w, we also
have yi−1(e) < 1 + w. By description of the algorithms, this implies yi(e) <
(1 + ε)(1 + w), and in particular,

yτ (e) < (1 + ε)(1 + w) . (8)

Combining this with yτ (e) ≥ δ(1 + ε)fτ (e)/c(e) from inequality (3) in previous
subsection, we derive

fτ (e)

c(e)
≤ log1+ε

(1 + ε)(1 + w)

δ

which completes the proof. �

Claim 4 For i = 1, . . . , τ ,

αL(i) ≤ δLeε(1+w)fi/β . (9)
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Proof: By the same reasoning as in the proof of Claim 2, we obtain

D(i) ≤ D(0) + ε

i∑
j=1

(fj − fj−1)(1 + w)αL(i− 1) , (10)

where the extra 1 + w factors stems from the fact that we work, in iteration i,
not with a path of length α(i) but with a path of length ᾱ(i) ≤ (1 + w)α(i).

Combining this with β ≤ D(i)−D(0)
αL(i)−δL from inequality (6), we obtain

αL(i) ≤ δL+
ε(1 + w)

β

i∑
j=1

(fj − fj−1)αL(j − 1) .

From this point, we proceed again along the same lines as in the proof of
Claim 2 (the only difference is that instead of ε/β, we work now with (1+w)ε/β)
and get the desired bound. �

Theorem 5 There is an algorithm that computes an (1 + ε)-approximation
to the maximum L-bounded flow in a graph with general edge lengths in time

O(m
2n
ε2 logL(log log n+ 1

ε )).

Proof: We show that for every ε ≤ 1
3 there are constants δ and w such that

xτ , the output of ApproxGeneral(ε, δ, w), scaled down by log1+ε
(1+ε)(1+w)

δ
as in Lemma 5, is a (1 + 5ε)-approximation to the maximum L-bounded flow
with general capacities; the theorem easily follows.

Let γ denote the approximation ratio of such an algorithm, that is, let γ
denote the ratio of the optimal dual solution (β) to the appropriately scaled
output of ApproxGeneral(ε, δ, w),

γ =
β log1+ε

(1+ε)(1+w)
δ

fτ
, (11)

where the constants δ and w will be specified later.
By the stopping condition of the while cycle we have 1 + w ≤ ᾱL(τ) ≤

(1 + w)αL(τ), that is, 1 ≤ αL(τ); combining it with Claim 4, we get

β

fτ
≤ ε(1 + w)

log 1
δL

.

Plugging this bound in the equality for the approximation ratio γ, we obtain

γ ≤
ε(1 + w) log1+ε

(1+ε)(1+w)
δ

log 1
δL

=
ε(1 + w)

log(1 + ε)

log (1+ε)(1+w)
δ

log 1
δL

. (12)

Setting δ = (1+ε)(1+w)
((1+ε)(1+w)L)1/ε

yields

log (1+ε)(1+w)
δ

log 1
δL

=
1
ε log((1 + ε)(1 + w)L)(

1
ε − 1

)
log((1 + ε)(1 + w)L)

=
1

1− ε
. (13)
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Thus, the bound on the approximation ratio γ (12) simplifies to

γ ≤ ε(1 + w)

(1− ε) log(1 + ε)
≤ ε(1 + w)

(1− ε)(ε− ε2

2 )
≤ 1 + w

1− 3
2ε

,

where the second inequality follows from the Taylor expansion of log(1 + ε) and

the bound log(1 + ε) ≥ ε − ε2

2 , for ε < 1. By setting w = ε, for ε ≤ 1
3 we get

the promised bound

γ ≤ 1 + w

1− 3
2ε
≤ (1 + ε)(1 + 3ε) ≤ 1 + 5ε .

Concerning the running time, we observe that in every iteration the length of
at least one edge gets increased by the ratio 1+ε. For every edge e ∈ E we have
yτ (e) ≤ (1 + ε)(1 + w). By the same arguments as in the previous subsection,
our choice of the parameters ensures that the total number of iterations is at
most O(mε log1+ε L) = O(mε2 logL). The FPTAS approximating the resource
bounded shortest path takes time O(mn(log log n + 1

ε )). Combining these two
bounds completes the proof. �

4 Conclusion and Open Problems

The maximum L-bounded flow problem looks as a simple modification of the
maximum flow problem. We know that it is solvable in polynomial time using
LP algorithms. However, it is not obvious how to solve it by combinatorial
algorithms (though, e.g., the Dinic’s algorithm for maximum flow implicitly
deals with lengths of flow paths) and currently, no such algorithm is known,
despite the effort to find some. The best we can do without LP algorithms is
the FPTAS described in this paper.

We note that the exponential length method can be used for many fractional
packing problems and using the same technique we could get an approximation
algorithm for maximum multicommodity L-bounded flow.

It is a challenging open problem to design an exact polynomial time com-
binatorial algorithm for the maximum L-bounded flow. Considering the fact
that one of the first algorithms for the maximum flow problem was a primal-
dual algorithm, a more specific question is whether we can solve the maximum
L-bounded problem exactly by a primal-dual algorithm.
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[25] J. Voborńık. Algorithms for L-bounded flows. Master’s thesis, Charles
University, Faculty of Mathematics and Physics, Department of Applied
Mathematics, 2016.

[26] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. The Computa-
tional Complexity of Finding Separators in Temporal Graphs. ArXiv, Nov.
2017. arXiv:1711.00963.

http://arxiv.org/abs/1711.00963

	Introduction
	Related results
	Our contributions

	The algorithm of Koubek and Ríha
	Increasing an L-bounded flow
	The main error

	FPTAS for maximum L-bounded flow
	FPTAS for unit edge lengths
	FPTAS for general edge lengths

	Conclusion and Open Problems

