
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 24, no. 4, pp. 603–620 (2020)
DOI: 10.7155/jgaa.00526

Parameterized Algorithms
for Book Embedding Problems

Sujoy Bhore 1 Robert Ganian 1

Fabrizio Montecchiani 2 Martin Nöllenburg 1

1Algorithms and Complexity Group, TU Wien, Vienna, Austria
2Engineering Department, University of Perugia, Perugia, Italy

Abstract

A k-page book embedding of a graph G draws the vertices of G on a
line and the edges on k half-planes (called pages) bounded by this line,
such that no two edges on the same page cross. We study the problem of
determining whether G admits a k-page book embedding both when the
linear order of the vertices is fixed, called Fixed-Order Book Thick-
ness, or not fixed, called Book Thickness. Both problems are known to
be NP-complete in general. We show that Fixed-Order Book Thick-
ness and Book Thickness are fixed-parameter tractable parameterized
by the vertex cover number of the graph and that Fixed-Order Book
Thickness is fixed-parameter tractable parameterized by the pathwidth
of the vertex order.

Submitted:
October 2019

Reviewed:
January 2020

Revised:
March 2020

Accepted:
April 2020

Final:
April 2020

Published:
December 2020

Article type:
Regular paper

Communicated by:
D. Archambault and C. Tóth

A preliminary version of this paper appeared in the Proceedings of the 27th International

Symposium on Graph Drawing and Network Visualization (GD 2019). Research of Fabrizio

Montecchiani partially supported by: (i) MIUR, under grant 20174LF3T8 “AHeAD: efficient

Algorithms for HArnessing networked Data”; (ii) Dipartimento di Ingegneria dell’Università

degli Studi di Perugia, under grant RICBA19FM: “Modelli, algoritmi e sistemi per la visualiz-

zazione di grafi e reti”. Robert Ganian and Sujoy Bhore acknowledge support by the Austrian

Science Fund (FWF) Project P 31336 “NFPC”. Sujoy Bhore and Martin Nöllenburg were

supported by the Austrian Science Fund (FWF) under grant P 31119.

E-mail addresses: sujoy@ac.tuwien.ac.at (Sujoy Bhore) rganian@ac.tuwien.ac.at (Robert Ga-

nian) fabrizio.montecchiani@unipg.it (Fabrizio Montecchiani) noellenburg@ac.tuwien.ac.at (Mar-

tin Nöllenburg)

http://dx.doi.org/10.7155/jgaa.00526
mailto:sujoy@ac.tuwien.ac.at
mailto:rganian@ac.tuwien.ac.at
mailto:fabrizio.montecchiani@unipg.it
mailto:noellenburg@ac.tuwien.ac.at

604 Bhore et al. Parameterized Algorithms for Book Embedding Problems

1 Introduction

A k-page book embedding of a graph G is a drawing that maps the vertices of G
to distinct points on a line, called spine, and each edge to a simple curve drawn
inside one of k half-planes bounded by the spine, called pages, such that no two
edges on the same page cross [20, 28]; see Figure 1 for an illustration. This
kind of layout can be alternatively defined in combinatorial terms as follows. A
k-page book embedding of G is a linear order ≺ of its vertices and a coloring
of its edges which guarantee that no two edges uv, wx of the same color have
their vertices ordered as u ≺ w ≺ v ≺ x. The minimum k such that G admits
a k-page book embedding is the book thickness of G, denoted by bt(G), also
known as the stack number of G.

Book embeddings have been extensively studied in the literature, among
others due to their applications in bioinformatics, VLSI, and parallel comput-
ing (see, e.g., [7, 19] and refer also to [11] for a survey). A famous result by
Yannakakis [32] states that every planar graph has book thickness at most four.
Several other bounds are known for special graph families, for instance planar
graphs with vertex degree at most four have book thickness two [3], while graphs
of treewidth w > 2 have book thickness w + 1 [12, 17].

1

2 5

3 4

(a)

1 2 3 4 5

(b)

1 3 4 2 5

(c)

Figure 1: (a) A planar graph G with book thickness two. (b) A 2-page book
embedding of G. (c) A linear order of G such that its fixed-order book thickness
is three (and the corresponding 3-page book embedding).

Given a graph G and an integer k ≥ 1, the problem of determining whether
bt(G) ≤ k, called Book Thickness, is known to be NP-complete. Namely,
Bernhart and Kainen [4] proved that bt(G) ≤ 2 if and only if G is subhamil-
tonian, i.e., G is a subgraph of a planar Hamiltonian graph. Since deciding
whether a graph is subhamiltonian is an NP-complete problem, Book Thick-
ness is NP-complete in general [7]. Book Thickness has also been studied
when the linear order ≺ of the vertices is fixed. Indeed, this is one of the original
formulations of the problem, which arises in the context of sorting with parallel
stacks [7]. We call this problem Fixed-Order Book Thickness and denote by
fo-bt(G,≺) the fixed-order book thickness of a graph G with order ≺. Obviously,
we have fo-bt(G,≺) ≥ bt(G), see Figure 1. Deciding whether fo-bt(G,≺) ≤ 2
corresponds to testing the bipartiteness of a suitable conflict graph, and thus it
can be solved in linear time. On the other hand, deciding if fo-bt(G,≺) ≤ 4 is
equivalent to finding a 4-coloring of a circle graph and hence is NP-complete [31].

JGAA, 24(4) 603–620 (2020) 605

Our Results. In this paper we study the parameterized complexity of Book
Thickness and Fixed-Order Book Thickness. For both problems, when
the answer is positive, we naturally also expect to be able to compute a cor-
responding k-page book embedding as a witness. While both problems are
NP-complete already for small fixed values of k on general graphs, it is natural
to ask which structural properties of the input (formalized in terms of structural
parameters) allow us to solve these problems efficiently.

Indeed, already Dujmovic and Wood [13] asked whether Book Thick-
ness can be solved in polynomial time when the input graph has bounded
treewidth [30]—a question which has turned out to be surprisingly resilient to
existing algorithmic techniques and remains open to this day. Bannister and
Eppstein [2] made partial progress towards answering Dujmovic and Wood’s
question by showing that Book Thickness is fixed-parameter tractable pa-
rameterized by the treewidth of G when k = 2.

We provide the first fixed-parameter algorithms for Fixed-Order Book
Thickness and also the first such algorithm for Book Thickness that can be
used when k > 2. In particular, we provide fixed-parameter algorithms for:

1. Fixed-Order Book Thickness parameterized by the vertex cover num-
ber of the graph;

2. Fixed-Order Book Thickness parameterized by the pathwidth of the
graph and the vertex order; and

3. Book Thickness parameterized by the vertex cover number of the graph.

Results 1 and 2 are obtained by combining dynamic programming techniques
with insights about the structure of an optimal book embedding. Result 3 then
applies a kernelization technique to obtain an equivalent instance of bounded
size (which can then be solved, e.g., by brute force). All three of our algorithms
can also output a corresponding k-page book embedding as a witness (if it
exists).

Paper Organization. The remainder of this paper is organized as follows.
Section 2 contains preliminaries and basic definitions. Results 1 and 2 on Fixed-
Order Book Thickness are presented in Section 3 and Section 4, respectively.
Result 3 on Book Thickness is described in Section 5. Conclusions and open
problems are found in Section 6.

2 Preliminaries

Basic Definitions and Notation. We use standard terminology from graph
theory [9]. For r ∈ N, we write [r] as shorthand for the set {1, . . . , r}.

A k-page book embedding of a graph G = (V,E) will be denoted by a pair
〈≺, σ〉, where ≺ is a linear order of V , and σ : E → [k] is a function that maps
each edge of E to one of k pages [k] = {1, 2, . . . , k}. In a k-page book embedding

606 Bhore et al. Parameterized Algorithms for Book Embedding Problems

〈≺, σ〉 it is required that for no pair of edges uv,wx ∈ E with σ(uv) = σ(wx)
the vertices are ordered as u ≺ w ≺ v ≺ x, i.e., each page is crossing-free.

In parameterized algorithmics [8, 10] the complexity of a problem is studied
not only with respect to the input size n but also a parameter k ∈ N. The
basic idea is to find a parameter that describes the structure of the problem in-
stance such that the combinatorial explosion can be confined to this parameter.
In this respect, the most desiredable complexity class is FPT (fixed-parameter
tractable), which contains all problems that can be solved by an algorithm run-
ning in time f(k) ·nO(1), where f is a computable function. Algorithms running
in this time are called fixed-parameter algorithms.

Graph Parameters. We consider two graph parameters for our algorithms.

A vertex cover C of a graph G = (V,E) is a subset C ⊆ V such that each
edge in E has at least one end-vertex in C. The vertex cover number of G,
denoted by τ(G), is the size of a minimum vertex cover of G.

The second parameter is pathwidth, a classical graph parameter [29] which
admits several equivalent definitions. The definition that will be most useful
here is the one tied to linear orders [21]; see also [23, 24] for recent works using
this formulation. Given an n-vertex graph G = (V,E) with a linear order ≺
of V such that v1 ≺ v2 ≺ · · · ≺ vn, the pathwidth of (G,≺) is the minimum
number κ such that for each vertex vi (i ∈ [n]), there are at most κ vertices left
of vi that are adjacent to vi or a vertex right of vi. Formally, for each vi we call
the set Pi = {vj | j < i,∃q ≥ i such that vjvq ∈ E} the guard set for vi, and
the pathwidth of (G,≺) is simply maxi∈[n] |Pi|. The elements of the guard sets
are called the guards (for vi). We remark that the pathwidth of G is equal to
the minimum pathwidth over all linear orders ≺.

3 Fixed-Order Book Thickness Parameterized
by the Vertex Cover Number

Recall that in Fixed-Order Book Thickness the input consists of a graph
G = (V,E), a linear order ≺ of V , and a positive integer k. We assume that
V = {v1, v2, . . . , vn} is indexed such that i < j ⇔ vi ≺ vj . The task is to decide
if there is a page assignment σ : E → [k] such that 〈≺, σ〉 is a k-page book
embedding of G, i.e., whether fo-bt(G,≺) ≤ k. If the answer is ‘YES’, then we
shall return a corresponding k-page book embedding as a witness. In fact, our
algorithms will return a book embedding with the minimum number of pages.

As our first result, we will show that Fixed-Order Book Thickness is
fixed-parameter tractable when parameterized by the vertex cover number. We
note that the vertex cover number is a graph parameter, which, while restricting
the structure of the graph in a fairly strong way, has been used to obtain fixed-
parameter algorithms for numerous difficult problems [1, 14, 15]. Of particular
relevance is the work of Fellows et al. [14], who have studied problems that
are also related to linear orders, in particular the Cutwidth, Bandwidth,

JGAA, 24(4) 603–620 (2020) 607

Imbalance, and Distortion problems. They used the vertex cover number
as a parameter in combination with integer linear programming. Our approach,
however, considers the linear layout directly and does not take the detour via
integer linear programming.

Let C be a minimum vertex cover of size τ = τ(G); we remark that such
a vertex cover C can be computed in time O(2τ + τ · n) [6]. Moreover, let
U = V \ C. Our first observation shows that the problem becomes trivial if
τ ≤ k.

Observation 1 Every n-vertex graph G with a vertex cover C of size k admits
a k-page book embedding with any vertex order ≺. Moreover, if G and C are
given as input, such a book embedding can be computed in O(n+ k · n) time.

Proof: Let C = {c1, . . . , ck} be a vertex cover of size k and let σ be a page
assignment on k pages defined as follows. For each i ∈ [k] all edges uci with
u ∈ U ∪ {c1, . . . , ci−1} are assigned to page i. Now, consider the edges assigned
to any page i ∈ [k]. By construction, they are all incident to vertex ci, and thus
no two of them cross each other. Therefore, the pair 〈≺, σ〉 is a k-page book
embedding of G and can be computed in O(n+ k · n) time. �

We note that the bound given in Observation 1 is tight, since it is known
that complete bipartite graphs Gk,h with bipartitions of size k and h > k(k−1)
have book thickness k [4] and vertex cover number k.

We now proceed to a description of our algorithm. For ease of presentation,
we will add to G an additional vertex of degree 0, add it to U , and place it at
the end of ≺ (observe that this does not change the solution to the instance).

If τ ≤ k then we are done by Observation 1. In this case, the fixed-order book
thickness can be obtained by running a binary search between 1 and τ , and for
each value, we can check whether it gives a valid book-embedding by using the
algorithm below. Otherwise, let S be the set of all possible non-crossing page
assignments of the edges whose both endpoints lie in C, and note that |S| < τ τ

2

and S can be constructed in time O(τ τ
2

) (recall that k < τ by assumption). As
its first step, the algorithm branches over each choice of s ∈ S, where no pair of
edges assigned to the same page crosses.

For each such non-crossing assignment s, the algorithm performs a dynamic
programming procedure that runs on the vertices of the input graph in sequential
(left-to-right) order. We will define a record set that the algorithm is going to
compute for each individual vertex in left-to-right order. Let c1 ≺ . . . ≺ cτ be
the ordering of vertices of C, and let u1 ≺ . . . ≺ un−τ be the ordering of vertices
of U .

In order to formalize our records, we need the notion of visibility. Let i ∈
[n − τ] and let Ei = {ujc ∈ E | j < i, c ∈ C} be the set of all edges with one
endpoint outside of C that lies to the left of ui. We call αi : Ei → [k] a valid
partial page assignment if αi ∪ s maps edges to pages in a non-crossing fashion.
Now, consider a valid partial page assignment αi : Ei → [k]. We say that a
vertex c ∈ C is (αi, s)-visible to ut (for t ∈ [n− τ]) on page p if it is possible to

608 Bhore et al. Parameterized Algorithms for Book Embedding Problems

c2 c3 c4 c5 c6 c7
c1 u3

u4 M2(3, α, s) =

(
1 1 0 0 0 1 1
1 1 1 1 0 0 0

)
. . .u2u1

Figure 2: A partial 2-page book embedding of a graph G with a vertex cover
C of size 7. The visibilities of vertices in C (squares) from u3 are marked by
dashed edges (left). Corresponding visibility matrix M2(3, αi, s) (right).

draw an edge from ut to c on page p without crossing any other edge mapped
to page p by αi ∪ s. Figure 2 shows the visibilities of a vertex in two pages.

Based on this notion of visibility, for an index a ∈ [n − τ] we can define a
k× τ visibility matrix Mi(a, αi, s), where an entry (p, b) of Mi(a, αi, s) is 1 if cb
is (αi, s)-visible to ua on page p and 0 otherwise (see Figure 2). Intuitively, this
visibility matrix captures information about the reachability via crossing-free
edges (i.e., visibility) to the vertices in C from ua on individual pages given a
particular assignment αi of edges in Ei. Note that for a given tuple (i, a, αi, s),
it is straightforward to compute Mi(a, αi, s) in polynomial time.

Observe that, while the number of possible choices of valid partial page as-
signments αi : Ei → [k] (for some i ∈ [n− τ]) is not bounded by a function of τ ,
for each i, a ∈ [n−τ] the number of possible visibility matrices is upper-bounded

by 2τ
2

. On a high level, the core idea in the algorithm is to dynamically process
the vertices in U in a left-to-right fashion and compute, for each such vertex, a
bounded-size “snapshot” of its visibility matrices—whereas for each such snap-
shot we will store only one (arbitrarily chosen) valid partial page assignment.
We will later (in Lemma 1) show that all valid partial page assignments leading
to the same visibility matrices are “interchangeable”.

With this basic intuition, we can proceed to formally define our records.
Let X = {x ∈ [n − τ] | ∃c ∈ C : ux is the immediate successor of c in ≺}
be the set of indices of vertices in U which occur immediately after a cover
vertex; we will denote the integers in X as x1, . . . , xz (in ascending order),
and we note that z ≤ τ . For a vertex ui ∈ U , we define our record set as
follows: Ri(s) = {

(
Mi(i, αi, s),Mi(x1, αi, s),Mi(x2, αi, s), . . . ,Mi(xz, αi, s)

)
|

∃ valid partial page assignment αi : Ei → [k]}. Note that each entry in Ri(s)
captures one possible set (a “snapshot”) of at most τ + 1 visibility matrices:
the visibility matrix for ui itself, and the visibility matrices for the z non-cover
vertices which follow immediately after the vertices in C. The intuition behind
these latter visibility matrices is that they allow us to update our visibility
matrix when our left-to-right dynamic programming algorithm reaches a vertex
in C (in particular, as we will see later, for i ∈ X it is not possible to update
the visibility matrix Mi(i, αi, s) only based on Mi−1(i−1, αi−1, s)). Along with
Ri(s), we also store a mapping Λsi from Ri(s) to valid partial page assignments

JGAA, 24(4) 603–620 (2020) 609

of Ei which maps (M0, . . . ,Mz) ∈ Ri(s) to some αi such that (M0, . . . ,Mz) =
(Mi(i, αi, s),Mi(x1, αi, s),Mi(x2, αi, s), . . . ,Mi(xz, αi, s)).

Let us make some observations about our records Ri(s). First, since there

are at most 2τ
2

possible visibility matrices and the size of a tuple in Ri(s) is

at most τ + 1, we obtain that |Ri(s)| ≤ 2τ
3+τ2

. Second, if Rn−τ (s) 6= ∅ for
some s, since un−τ is a dummy vertex of degree 0, then there is a valid partial
page assignment αn−τ : En−τ → [k] such that s ∪ αn−τ is a non-crossing page
assignment of all edges in G. Hence we can output a k-page book embedding
by invoking Λsn−τ on any entry in Rn−τ (s). Third:

Observation 2 If for all s ∈ S it holds that Rn−τ (s) = ∅, then (G,≺, k) is a
NO-instance of Fixed-Order Book Thickness.

Proof: Assume for a contradiction that G admits a k-page book embedding
with order ≺. Let s be the restriction of that book embedding to edges whose
both endpoints lie in C, and let αn−τ be the restriction of that book embed-
ding to all other edges. Then αn−τ is a valid page assignment, and hence
by definition (Mn−τ (n− τ, αn−τ , s),Mn−τ (x1, αn−τ , s),Mn−τ (x2, αn−τ , s), . . . ,
Mn−τ (xz, αn−τ , s)) ∈ Rn−τ (s). In particular, Rn−τ (s) 6= ∅. �

The above implies that in order to solve our instance, it suffices to com-
pute Rn−τ (s) for each s ∈ S. As mentioned earlier, we do this dynamically,
with the first step consisting of the computation of R1(s). Since E1 = ∅, the
visibility matrices M1(1, ∅, s),M1(x1, ∅, s), . . . ,M1(xz, ∅, s) required to populate
R1(s) depend only on s and are easy to compute in polynomial time.

Finally, we proceed to the dynamic step. Assume we have computedRi−1(s).
We branch over each possible page assignment β of the (at most τ) edges incident
to ui−1, and each tuple ρ ∈ Ri−1(s). For each such β and γ = Λsi−1(ρ), we check
whether β ∪ γ is a valid partial page assignment (i.e., whether β ∪ γ ∪ s is non-
crossing); if this is not the case, then we discard this pair of (β, ρ). Otherwise
we compute the visibility matrices Mi(i, β∪γ, s),Mi(x1, β∪γ, s), . . . ,Mi(xz, β∪
γ, s), add the corresponding tuple into Ri(s), and set Λsi to map this tuple to
β ∪ γ. We remark that here the use of Λsi−1(ρ) allows us not to distinguish
between i ∈ X and i 6∈ X—in both cases, the partial page assignment γ will
correctly capture the visibility matrix for ui.

Lemma 1 The above procedure correctly computes Ri(s) from Ri−1(s).

Proof: Consider an entry (M0, . . . ,Mz) computed by the above procedure from
some β ∪ γ. Since we explicitly checked that β ∪ γ is a valid partial page
assignment, this implies that (M0, . . . ,Mz) ∈ Ri(s), as desired.

For the opposite direction, consider a tuple (M0, . . . ,Mz) ∈ Ri(s). By def-
inition, there exists some valid partial page assignment αi of Ei such that
M0 = Mi(i, αi, s), M1 = Mi(x1, αi, s), . . . , Mz = Mi(xz, αi, s). Now let β
be the restriction of αi to the edges incident to ui−1, and let γ′ be the restric-
tion of αi to all other edges (i.e., all those not incident to ui−1). Since γ′ ∪ s
is non-crossing and in particular γ′ is a valid partial page assignment for Ei−1,

610 Bhore et al. Parameterized Algorithms for Book Embedding Problems

Ri−1(s) must contain an entry ω = (Mi−1(i− 1, γ′, s), . . . , (Mi−1(xz, γ
′, s))—

let γ = Λsi−1(ω).
To conclude the proof, it suffices to show that (1) β ∪ γ is a valid par-

tial page assignment, and (2) (Mi(i, β ∪ γ′, s), . . . ,Mi(xz, β ∪ γ′, s)), which is
the original tuple corresponding to the hypothetical αi, is equal to (Mi(i, β ∪
γ, s), . . . ,Mi(xz, β ∪ γ, s)), which is the entry our algorithm computes from β
and γ. Point (1) follows from the fact that Mi−1(i− 1, γ′, s) = Mi−1(i− 1, γ, s)
in conjunction with the fact that ui−1 is adjacent only to vertices in C. Point
(2) then follows by the same argument, but applied to each visibility matrix in
the respective tuples: for each x ∈ X we have Mi−1(x, γ′, s) = Mi−1(x, γ, s)—
meaning that the visibilities of ux were identical before considering the edges
incident to ui−1—and so assigning these edges to pages as prescribed by β leads
to an identical outcome in terms of visibility. �

This proves the correctness of our algorithm. The runtime is upper-bounded
by the product of |S| < τ τ

2

(the initial branching factor), n (the number of

times we compute a new record set Ri(s)), and 2τ
3+τ2 · τ τ (to consider all

combinations of γ and β so to compute a new record set from the previous
one). A minimum-page book embedding can be computed by trying all possible
choices for k ∈ [τ]. We summarize Result 1 below.

Theorem 1 There is an algorithm which takes as input an n-vertex graph G
with a vertex order ≺, runs in time 2O(τ3) ·n where τ is the vertex cover number
of G, and computes a page assignment σ such that (≺, σ) is a (fo-bt(G,≺))-page
book embedding of G.

4 Fixed-Order Book Thickness Parameterized
by the Pathwidth of the Vertex Order

In this section, we show that Fixed-Order Book Thickness is fixed-parameter
tractable parameterized by the pathwidth of (G,≺). While the pathwidth of G
is always upper-bounded by the vertex cover number, this does not hold when
we consider a fixed ordering ≺, and hence this result is incomparable to Theo-
rem 1. For instance, if G is a path, it has arbitrarily large vertex cover number
while (G,≺) may have a pathwidth of 1. On the other hand if G is a star, it has
a vertex cover number of 1 while (G,≺) may have arbitrarily large pathwidth.

To begin, we can show that the pathwidth of (G,≺) provides an upper bound
on the number of pages required for an embedding.

Lemma 2 Every n-vertex graph G = (V,E) with a linear order ≺ of V such
that (G,≺) has pathwidth k admits a k-page book embedding 〈≺, σ〉, which can
be computed in O(n+ k · n) time.

Proof: Let σ be the page assignment to [k] defined as follows. We parse the
vertices of G following ≺ from right to left. Consider the rightmost vertex vn
of ≺, and let Un be an arbitrary injective assignment from Pn (the guard set

JGAA, 24(4) 603–620 (2020) 611

of vn) to [k]. For each edge e incident to vn there exists some p ∈ Pn, and
we assign e to page Un(p). Observe that this results in a non-crossing page
assignment of the edges incident to vn.

Next, we proceed by induction. Assume, we have obtained a non-crossing
page assignment for all edges incident to the last i vertices, i.e., for all edges
incident to {vj | j ≥ n − i}, and that furthermore we have a mapping Un−i
which maps the guards Pn−i for vn−i to [k] and a non-crossing partial page
assignment which maps all edges pvj where p ∈ Pn−i and j ≥ n− i to Un−i(p).
In particular, all edges with precisely one endpoint to the left of vn−i end in
the guards for vn−i and are assigned to distinct pages if and only if they are
incident to distinct guards.

We extend this page assignment to all edges incident to the last i+1 vertices
as follows. First, we extend Un−i to an arbitrary injective mapping Un−i−1,
which is always possible since the number of guards for vn−i−1 is at most k.
Second, we assign each left edge e = vn−i−1p of vn−i−1 to Un−i−1(p).

To conclude the proof, observe that the page assignment obtained in this way
is non-crossing. Indeed, the only edges added to the current page assignment
are left edges of vn−i−1, and each such edge e = vn−i−1p is assigned to the page
Un−i−1(p)—notably, they maintain the property of being assigned to distinct
pages if and only if they are incident to distinct guards. Also, it can be computed
in O(n+ k · n) time. �

We note that the bound given in Lemma 2 is also tight for the same reason as
for Observation 1: complete bipartite graphs with bipartitions of size k and h >
k(k − 1) have book thickness k [4], but admit an ordering ≺ with pathwidth k.

We now proceed to a description of our algorithm. Our input consists of
the graph G, the vertex ordering ≺, and an integer k that upper-bounds the
desired number of pages in a book embedding. Let κ be our parameter, i.e.,
the pathwidth of (G,≺); observe that due to Lemma 2, we may assume that
k ≤ κ. The algorithm performs a dynamic programming procedure on the
vertices v1, v2, . . . , vn of the input graph G in right-to-left order along ≺. For
technical reasons, we initially add a vertex v0 of degree 0 to G and place it to
the left of v1 in ≺; note that this does not increase the pathwidth of G.

We now adapt the concept of visibility introduced in Section 3 for use in
this algorithm. First, let us expand our notion of guard set (see Section 2) as
follows: for a vertex vi, let P ∗vi = {gi1, . . . , gim} where for each j ∈ [m− 1], gij is

the j-th guard of vi in reverse order of ≺ (i.e., gi1 is the guard that is nearest
to vi in ≺), and gim = v0. For a vertex vi, let Ei = {vavb | vavb ∈ E, b > i}
be the set of all edges with at least one endpoint to the right of vi and let
Si = {gijvb | gij ∈ P ∗vi , g

i
jvb ∈ Ei} be the restriction of Ei to edges between a

vertex to the right of vi and a guard in P ∗vi . An assignment αi : Ei → [k] is
called a valid partial page assignment if αi maps the edges in Ei to pages in a
non-crossing manner. Given a valid partial page assignment αi : Ei → [k] and
a vertex va with a ≤ i, we say that a vertex vx (x < a) is αi-visible to va on
a page p if it is possible to draw the edge vavx in page p without crossing any
other edge mapped to p by αi.

612 Bhore et al. Parameterized Algorithms for Book Embedding Problems

vavc vi vd

Figure 3: An assignment of the edges of Si to a page p, where the edge vcvd is
the (αi, i, p)-important edge of va. Any vertex w with vc ≺ w ≺ va is visible to
va, and any vertex w′ ≺ vc is not visible to va.

Before we describe our algorithm, we will show that the visibilities of ver-
tices w.r.t. valid partial page assignments exhibit a certain regularity property.
Given a ≤ i ≤ n, p ∈ [k], and a valid partial page assignment αi of Ei, let the
(αi, i, p)-important edge of va be the edge vcvd ∈ Si with the following proper-
ties: (1) αi(vcvd) = p, (2) c < a, and (3) |a − c| is minimum among all such
edges in Si. If multiple edges with these properties exist, we choose the edge
with minimum |d − c|. Intuitively, the (αi, i, p)-important edge of va is simply
the shortest edge of Si which encloses va on page p; note that it may happen
that va has no (αi, i, p)-important edge. Observe that, if the edge exists, its left
endpoint is vc ∈ P ∗vi , and we call vc the (αi, i, p)-important guard of va. The
next observation easily follows from the definition of (αi, i, p)-important edge,
see also Figure 3.

Observation 3 If va has no (αi, i, p)-important edge, then every vertex vx with
x < a is αi-visible to va. If the (αi, i, p)-important guard of va is vc, then vx
(x < a) is αi-visible to va if and only if x ≥ c.

Observation 3 not only provides us with a way of handling vertex visibilities
in the pathwidth setting, but also allows us to store all the information we
require about vertex visibilities in a more concise way than via the matrices
used in Section 3. For an index i ∈ [n], a vertex va where a ≤ i, and a valid
partial page assignment αi, we define the visibility vector Ui(va, αi) as follows:
the p-th component of Ui(va, αi) is the (αi, i, p)-important guard of va, whereas
we use the special symbol “�” if va has no (αi, i, p)-important guard. Observe
that since the number of pages is upper-bounded by κ by assumption and the
cardinality of P ∗vi is at most κ+ 1, there are at most (κ+ 2)κ possible distinct
visibility vectors for any fixed i.

Observe that thanks to Observation 3 the visibility vector Ui(vi, αi) provides
us with complete information about the visibility of vertices vb (b < i) from vi—
notably, vb is not αi-visible to vi on page p if and only if vb lies to the left of the
(αi, i, p)-important guard Ui(vi, αi)[p] (and, in particular, if Ui(vi, αi)[p] = �,
then every such vb is αi-visible to vi on page p). On a high level, the algorithm
will traverse vertices in right-to-left order along ≺ and store the set of all possible
visibility vectors at each vertex. To this end, it will use the following observation
to update its visibility vectors.

JGAA, 24(4) 603–620 (2020) 613

Observation 4 Let αi be a valid partial page assignment of Ei and p be a page.
If vi−1 6∈ P ∗vi , then a vertex vb (b < i− 1) is αi-visible to vi−1 on page p if and
only if vb is αi-visible to vi on page p.

Proof: By definition, vi−1 and vi are consecutive in ≺. Since vi−1 6∈ P ∗vi there
is no edge incident to vi−1 in Ei. Let vb (for b < i − 1) be a vertex that is
αi-visible to vi−1 on page p. If vb is not αi-visible to vi on p, then there must
be a vertex w 6= vi−1 between vi−1 and vi that is incident to an edge in Ei
separating vi−1 and vi on page p. But this contradicts that vi−1 and vi are
consecutive in ≺. The other direction follows by the same argument. �

There is, however, a caveat: Observation 4 does not (and in fact cannot)
allow us to compute the new visibility vector if vi−1 ∈ P ∗i . To circumvent this
issue, our algorithm will not only store the visibility vector Ui(vi, αi) but also the
visibility vectors for each guard of vi. We now prove that we can compute the
visibility vector for any vertex from the visibility vectors of the guards—this is
important when updating our records, since we will need to obtain the visibility
records for new guards that are introduced at some step of the algorithm.

Lemma 3 Let va ≺ vi, αi be a valid partial page assignment of Ei, p ∈ [k] be
a page, and assume va /∈ P ∗i . Let vb ∈ P ∗i ∪ {vi} be such that b > a and |b− a|
is minimized, i.e., vb is the first guard to the right of va. Then Ui(va, αi) =
Ui(vb, αi).

Proof: Let vx for x < a be any vertex that is αi-visible to va in page p and
assume vx is not αi-visible to vb. Then there must be an edge wz ∈ Ei separating
va from vb in page p, i.e., va ≺ w ≺ vb. But in that case w is a guard in P ∗i closer
to va contradicting the choice of vb. Conversely, let vx for x < a be a vertex
that is not αi-visible to va in page p. Then there must be an edge wz ∈ Ei
separating vx from va on page p. Then edge wz also separates vx from vb and vx
is not αi-visible to vb. Therefore, the visibility vectors Ui(va, αi) and Ui(vb, αi)
corresponding to the vertices va and vb, respectively, are equal. �

We can now formally define our record set asQi = {(Ui(vi, αi), Ui(gi1, αi), . . . ,
Ui(g

i
m−1, αi)) | ∃ valid partial page assignment αi : Ei → [k]}, where each indi-

vidual element (record) in Qi can be seen as a queue starting with the visibility
vector for vi and then storing the visibility vectors for individual guards (note
that there is no reason to store an “empty” visibility vector for gim). To facili-
tate the construction of a solution, we will also store a function Λi from Qi to
valid partial page assignments of Ei which maps each tuple ω ∈ Qi to some αi
such that ω = (Ui(vi, αi), Ui(g

i
1, αi), . . . , Ui(g

i
m−1, αi)).

Let us make some observations about our records Qi. First of all, since there
are at most (κ+2)κ many visibility vectors, |Qi| ≤ (κ+2)κ

2

. Second, if |Q0| > 0
then, since E0 = E, the mapping Λ0(ω) will produce a valid page assignment of
E for any ω ∈ Q0. On the other hand, if G admits a k-page book embedding
αi with order ≺, then αi witnesses the fact that Q0 cannot be empty. Hence,
the algorithm can return one, once it correctly computes Q0 and Λ0.

614 Bhore et al. Parameterized Algorithms for Book Embedding Problems

The computation is carried out dynamically and starts by setting Qn = {ω},
where ω = (�), and Λn(ω) = ∅. For the inductive step, assume that we have
correctly computed Qi and Λi, and the aim is to compute Qi−1 and Λi−1. For
each ω = (ω0, . . . , ωm−1) ∈ Qi, we compute an intermediate record ω′ which
represents the visibility vector of vi−1 w.r.t. αi = Λi(ω) as follows:

• if vi−1 ∈ P ∗i , then ω′ = (ω1, . . . , ωm−1), and

• if vi−1 6∈ P ∗i , then ω′ = (ω0, . . . , ωm−1) (Recall Observation 4).

We now need to update our intermediate record ω′ to take into account
the new guards. In particular, we expand ω′ by adding, for each new guard
gi−1j ∈ P ∗i−1 \ P ∗i , an intermediate visibility vector Ui−1(gi−1j , αi−1) at the ap-
propriate position in ω′ (i.e., mirroring the ordering of guards in P ∗i−1). Recalling

Lemma 3, we compute this new intermediate visibility vector Ui−1(gi−1j , αi−1)
by copying the visibility vector that immediately succeeds it in ω′.

Next, let Fi−1 = Ei−1 \ Ei be the at most κ new edges that we need to
account for, and let us branch over all assignments β : Fi−1 → [k]. For each
such β, we check whether αi−1 ∪ β is a valid partial page assignment of Ei−1,
i.e., whether the new edges in Fi−1 do not cross with each other or other edges
in Ei when following the chosen assignment β and the assignment αi obtained
from Λi. As expected, we discard any β such that αi ∪ β is not valid.

Our final task is to update the intermediate visibility vectors Ui−1(∗, αi−1)
(with ∗ being a placeholder) to Ui−1(∗, αi−1∪β). This can be done in a straight-
forward way by, e.g., looping over each edge e ∈ Fi−1, obtaining the page
p = β(e) that e is mapped to, reading Ui−1(∗, αi−1)[p] and replacing that value
by the guard g incident to e if g occurs to the right of Ui−1(∗, αi−1)[p] and to
the left of ∗. Finally, we enter the resulting record ω′ into Qi−1.

Lemma 4 The above procedure correctly computes Qi−1 from Qi.

Proof: Consider an entry ω′ computed by the above procedure from some αi−1β
and ω. Since we explicitly checked that αi−1 ∪ β is a valid partial page assign-
ment for Ei−1, there must exist a record (Ui−1(vi−1, αi−1∪β), Ui−1(gi−11 , αi−1∪
β), . . . , Ui−1(gi−1m−1)) ∈ Qi−1, and by recalling Observation 3, Lemma 3 and Ob-
servation 4 it can be straightforwardly verified that this record is equal to ω′.

For the opposite direction, consider a tuple ω� ∈ Qi−1 that arises from the
valid partial page assignment γ of Ei−1, and let β, αi be the restrictions of γ to
Fi−1 and Ei, respectively. Since αi is a valid partial page assignment of Ei, there
must exist a tuple ω ∈ Qi that arises from αi. Let α′i = Λi(ω). To conclude
the proof, it suffices to note that during the branching stage the algorithm will
compute a record from a combination of α′i (due to ω being in Qi) and β, and
the record computed in this way will be precisely ω�. �

This proves the correctness of the algorithm. The runtime is upper bounded
by O(n · (κ+ 2)κ

2 · κκ) (the product of the number of times we compute a new
record, the number of records and the branching factor for β). A minimum-page

JGAA, 24(4) 603–620 (2020) 615

book embedding can be obtained by trying all possible choices for k ∈ [κ]). We
summarize Result 2 below.

Theorem 2 There is an algorithm which takes as input an n-vertex graph G =
(V,E) with a vertex ordering ≺ and computes a page assignment σ of E such
that (≺, σ) is a (fo-bt(G,≺))-page book embedding of G. The algorithm runs in

n · κO(κ2) time where κ is the pathwidth of (G,≺).

5 Book Thickness Parameterized by the Vertex
Cover Number

We now turn our attention to the general definition of book thickness (without
a fixed vertex order). We show that, given a graph G, we can construct in
polynomial time an equivalent instance G∗ whose size is upper-bounded by a
function of the vertex cover number τ(G). Such an algorithm is called a ker-
nelization and directly implies the fixed-parameter tractability of the problem
with this parameterization [8, 10].

Lemma 5 There is an algorithm which takes as input an n-vertex graph G =

(V,E) and a positive integer k, runs in time O(2τ
O(τ)

+ τ · n) where τ = τ(G)
is the vertex cover number of G, and decides whether bt(G) ≤ k. If the answer
is positive, it can also output a k-page book embedding of G.

Proof: If k > τ , by Observation 1 we can immediately conclude that G admits
a k-page book embedding. Hence we shall assume that k ≤ τ . We compute a
vertex cover C of size τ in time O(2τ + τ · n) using well-known results [6].

For any subset U ⊆ C we say that a vertex of V \ C is of type U if its set
of neighbors is equal to U . This defines an equivalence relation on V \ C and
partitions V \C into at most

∑τ
i=0

(
τ
i

)
= 2τ distinct types. In what follows, we

denote by VU the set of vertices of type U . We claim the following.

Claim 1 Let v ∈ VU such that |VU | ≥ 2 · kτ + 2. Then G admits a k-page book
embedding if and only if G′ = G \ {v} does. Moreover, a k-page book embedding
of G′ can be extended to such an embedding for G in linear time.

Proof. One direction is trivial, since removing a vertex from a book embedding
preserves the property of being a book embedding of the resulting graph. So let
〈≺, σ〉 be a k-page book embedding of G′. We prove that a k-page book embed-
ding of G can be easily constructed by inserting v right next to a suitable vertex
u in VU and by assigning the edges of v to the same pages as the corresponding
edges of u.

We say that two vertices u1, u2 ∈ VU are page equivalent, if for each vertex
w ∈ U , the edges u1w and u2w are both assigned to the same page according
to σ. Each vertex in VU has degree exactly |U |, hence this relation partitions
the vertices of VU into at most k|U | ≤ kτ sets. Since |VU | \ {v} ≥ 2 · kτ + 1,
at least three vertices of this set, which we denote by u1, u2, and u3, are page

616 Bhore et al. Parameterized Algorithms for Book Embedding Problems

u1 u2 u3v

Figure 4: Illustration for the proof of Claim 1. Reinsertion of a vertex v in a
2-page book embedding, based on three page-equivalent vertices u1, u2 and u3
of the same type as v.

equivalent. Consider now the graph induced by the edges of these three vertices
that are assigned to a particular page. By the above argument, such a graph is
a Kh,3, for some h > 0. However, since already K2,3 does not admit a 1-page
book embedding, we have h ≤ 1, that is, each ui has at most one edge on each
page. Then we can extend ≺ by introducing v right next to u1 and assign each
edge vw to the same page as u1w; see Figure 4 for an illustration. Since each
such edge vw runs arbitrarily close to the corresponding crossing-free edge u1w,
this results in a k-page book embedding of G and concludes the proof of the
claim. �

We now construct a kernel G∗ from G of size kO(τ) as follows. We first
classify each vertex of G based on its type. We then remove an arbitrary subset
of vertices from each set VU with |VU | > 2 · kτ + 1 until |VU | = 2 · kτ + 1. Thus,
constructing G∗ can be done in O(2τ + τ · n) time, where 2τ is the number
of types and τ · n is the maximum number of edges of G. From Claim 1 we
can conclude that G∗ admits a k-page book embedding if and only if G does.
Determining the book thickness of G∗ can be done by guessing all possible linear
orders and for each of them applying Theorem 1. Since we have 2τ types, and
each of the 2 · kτ + 1 elements of the same type are equivalent in the book
embedding (the position of two elements of the same type can be exchanged
in a linear order without affecting the page assignment), the number of linear

orders is (2τ)O(kτ) = 2τ
O(τ)

. Thus, the book thickness of G∗ can be determined

in 2τ
O(τ) · 2O(τ3) · kO(τ) = 2τ

O(τ)

time. A k-page book embedding of G∗ (if any)
can be extended to one of G by iteratively applying the constructive procedure
from the proof of the above claim, in O(τ · n) time. �

The next theorem easily follows from Lemma 5, by applying a binary search
on the number of pages k ≤ τ and by observing that a vertex cover of minimum
size τ can be computed in 2O(τ) + τ · n time [6].

Theorem 3 Let G be a graph with n vertices and vertex cover number τ . A book

embedding of G with minimum number of pages can be computed in O(2τ
O(τ)

+
τ log τ · n) time.

JGAA, 24(4) 603–620 (2020) 617

6 Conclusions and Open Problems

We investigated the parameterized complexity of Book Thickness and Fixed-
Order Book Thickness. We proved that both problems can be parameter-
ized by the vertex cover number of the graph, and that the second problem can
be parameterized by the pathwidth of the fixed linear order. The algorithm for
Book Thickness is the first fixed-parameter algorithm that works for general
values of k, while, to the best of our knowledge, no such algorithms were known
for Fixed-Order Book Thickness.

We believe that our techniques can be extended to the setting in which we
allow edges on the same page to cross, with a given budget of at most c crossings
over all pages. This problem has been studied, among others, by Bannister and
Eppstein [2] with the number of pages k restricted to be either 1 or 2 (see
also [7, 22, 25, 26]). It would also be interesting to investigate the setting where
an upper bound on the maximum number of crossings per edge is given as part
of the input, which is studied in [5].

The main question that remains open is whether Book Thickness (and
Fixed-Order Book Thickness) can be solved in polynomial time (and even
fixed-parameter time) for graphs of bounded treewidth, which was asked by
Dujmović and Wood [13]. As an intermediate step towards solving this problem,
we ask whether the two problems can be solved efficiently when parameterized
by the treedepth [27] of the graph. Treedepth restricts the graph structure in a
stronger way than treewidth, and has been used to obtain algorithms for several
problems which have proven resistant to parameterization by treewidth [16,
18]. It seems that the main obstruction preventing the development of such
algorithms is a lack of understanding of which structural properties can be
expected from an optimal solution—storing all the information about possible
solutions in a dynamic programming table seems difficult, but would be possible
if one could assume that there is an optimal solution with some useful properties.

Acknowledgments. We thank the anonymous referees of this paper for their
valuable comments and suggestions.

618 Bhore et al. Parameterized Algorithms for Book Embedding Problems

References

[1] M. J. Bannister, S. Cabello, and D. Eppstein. Parameterized complexity of
1-planarity. J. Graph Algorithms Appl., 22(1):23–49, 2018. doi:10.7155/

jgaa.00457.

[2] M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and
2-page drawings of graphs with bounded treewidth. J. Graph Algorithms
Appl., 22(4):577–606, 2018. doi:10.7155/jgaa.00479.

[3] M. A. Bekos, M. Gronemann, and C. N. Raftopoulou. Two-page book
embeddings of 4-planar graphs. Algorithmica, 75(1):158–185, 2016. doi:

10.1007/s00453-015-0016-8.

[4] F. Bernhart and P. C. Kainen. The book thickness of a graph. J.
Comb. Theory, Ser. B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)
90021-2.

[5] C. Binucci, E. Di Giacomo, M. I. Hossain, and G. Liotta. 1-page and 2-
page drawings with bounded number of crossings per edge. Eur. J. Comb.,
68:24–37, 2018. doi:10.1016/j.ejc.2017.07.009.

[6] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover.
Theor. Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.

2010.06.026.

[7] F. Chung, F. Leighton, and A. Rosenberg. Embedding graphs in books:
A layout problem with applications to VLSI design. SIAM J. Alg. Discr.
Meth., 8(1):33–58, 1987. doi:10.1137/0608002.

[8] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

[9] R. Diestel. Graph Theory, volume 173 of Graduate texts in mathematics.
Springer, 4th edition, 2012. doi:10.1007/978-3-662-53622-3.

[10] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013. doi:10.1007/

978-1-4471-5559-1.

[11] V. Dujmović and D. R. Wood. On linear layouts of graphs. Discrete Math.
Theor. Comput. Sci., 6(2):339–358, 2004. URL: https://www.dmtcs.org/
dmtcs-ojs/index.php/dmtcs/article/view/193.1.html.

[12] V. Dujmović and D. R. Wood. Graph treewidth and geometric thickness
parameters. Discrete Computat. Geom., 37(4):641–670, 2007. doi:10.

1007/s00454-007-1318-7.

https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00457
https://doi.org/10.7155/jgaa.00479
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/j.ejc.2017.07.009
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1137/0608002
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/193.1.html
https://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/193.1.html
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1007/s00454-007-1318-7

JGAA, 24(4) 603–620 (2020) 619

[13] V. Dujmović and D. R. Wood. On the book thickness of k-trees. Discrete
Math. Theor. Comput. Sci., 13(3):39–44, 2011. URL: https://www.dmtcs.
org/dmtcs-ojs/index.php/dmtcs/article/view/1778.1.html.

[14] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh.
Graph layout problems parameterized by vertex cover. In S.-H. Hong,
H. Nagamochi, and T. Fukunaga, editors, Algorithms and Computation
(ISAAC’08), volume 5369 of LNCS, pages 294–305. Springer, 2008. doi:

10.1007/978-3-540-92182-0_28.

[15] R. Ganian. Improving vertex cover as a graph parameter. Discrete Math.
Theor. Comput. Sci., 17(2):77–100, 2015. URL: https://www.dmtcs.org/
dmtcs-ojs/index.php/dmtcs/article/viewArticle/2378.html.

[16] R. Ganian and S. Ordyniak. The complexity landscape of decomposi-
tional parameters for ILP. Artif. Intell., 257:61–71, 2018. doi:10.1016/

j.artint.2017.12.006.

[17] J. L. Ganley and L. S. Heath. The pagenumber of k-trees is O(k). Dis-
crete Appl. Math., 109(3):215–221, 2001. doi:10.1016/S0166-218X(00)

00178-5.

[18] G. Z. Gutin, M. Jones, and M. Wahlström. The mixed Chinese postman
problem parameterized by pathwidth and treedepth. SIAM J. Discrete
Math., 30(4):2177–2205, 2016. doi:10.1137/15M1034337.

[19] C. Haslinger and P. F. Stadler. RNA structures with pseudo-knots: Graph-
theoretical, combinatorial, and statistical properties. Bull. Math. Biol.,
61(3):437–467, 1999. doi:10.1006/bulm.1998.0085.

[20] P. C. Kainen. Some recent results in topological graph theory. In R. A. Bari
and F. Harary, editors, Graphs and Combinatorics, pages 76–108. Springer,
1974. doi:10.1007/BFb0066436.

[21] N. G. Kinnersley. The vertex separation number of a graph equals its
path-width. Inf. Process. Lett., 42(6):345–350, 1992. doi:10.1016/

0020-0190(92)90234-M.

[22] Y. Kobayashi, H. Ohtsuka, and H. Tamaki. An improved fixed-parameter
algorithm for one-page crossing minimization. In D. Lokshtanov and
N. Nishimura, editors, Parameterized and Exact Computation (IPEC’17),
volume 89 of LIPIcs, pages 25:1–25:12. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.IPEC.2017.25.

[23] N. Lodha, S. Ordyniak, and S. Szeider. Sat-encodings for special treewidth
and pathwidth. In S. Gaspers and T. Walsh, editors, Theory and Appli-
cations of Satisfiability Testing (SAT’17), volume 10491 of LNCS, pages
429–445. Springer, 2017. doi:10.1007/978-3-319-66263-3_27.

https://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1778.1.html
https://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1778.1.html
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/978-3-540-92182-0_28
https://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/viewArticle/2378.html
https://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/viewArticle/2378.html
https://doi.org/10.1016/j.artint.2017.12.006
https://doi.org/10.1016/j.artint.2017.12.006
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1137/15M1034337
https://doi.org/10.1006/bulm.1998.0085
https://doi.org/10.1007/BFb0066436
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.4230/LIPIcs.IPEC.2017.25
https://doi.org/10.1007/978-3-319-66263-3_27

620 Bhore et al. Parameterized Algorithms for Book Embedding Problems

[24] S. Mallach. Linear ordering based MIP formulations for the vertex sepa-
ration or pathwidth problem. In L. Brankovic, J. Ryan, and W. Smyth,
editors, Combinatorial Algorithms (IWOCA’17), volume 10765 of LNCS,
pages 327–340. Springer, 2017. doi:10.1007/978-3-319-78825-8_27.

[25] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-
completeness of a computer network layout problem. In IEEE Circuits and
Systems (ISCAS’87), pages 292–295, 1987.

[26] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing
minimization in linear embeddings of graphs. IEEE Trans. Computers,
39(1):124–127, 1990. doi:10.1109/12.46286.

[27] J. Nesetril and P. O. de Mendez. Sparsity – Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.
doi:10.1007/978-3-642-27875-4.

[28] L. T. Ollmann. On the book thicknesses of various graphs. In 4th South-
eastern Conference on Combinatorics, Graph Theory and Computing, vol-
ume 8, page 459, 1973.

[29] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J.
Comb. Theory, Ser. B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)

90079-5.

[30] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic as-
pects of tree-width. J. Algorithms, 7(3):309–322, 1986. doi:10.1016/

0196-6774(86)90023-4.

[31] W. Unger. The complexity of colouring circle graphs (extended abstract).
In A. Finkel and M. Jantzen, editors, Theoretical Aspects of Computer
Science (STACS’92), volume 577 of LNCS, pages 389–400. Springer, 1992.
doi:10.1007/3-540-55210-3_199.

[32] M. Yannakakis. Embedding planar graphs in four pages. J. Comput. Syst.
Sci., 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.

https://doi.org/10.1007/978-3-319-78825-8_27
https://doi.org/10.1109/12.46286
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1007/3-540-55210-3_199
https://doi.org/10.1016/0022-0000(89)90032-9

	Introduction
	Preliminaries
	Fixed-Order Book Thickness Parameterized by the Vertex Cover Number
	Fixed-Order Book Thickness Parameterized by the Pathwidth of the Vertex Order
	Book Thickness Parameterized by the Vertex Cover Number
	Conclusions and Open Problems

