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Abstract

The Minimum Weight t-partite Clique Problem MWtCP is the
problem of finding a t-clique with minimum weight in a complete edge-
weighted t-partite graph. The motivation for studying this problem is its
potential in modelling the problem of identifying sets of commonly ex-
isting putative co-regulated, co-expressed genes, called gene clusters. In
this paper, we show that MWtCP is NP-hard, APX-hard in the general
case. We also present a 2-approximation algorithm that runs in O(n2) for
the metric case and has 1+ 1

t
-approximation performance guarantee for

the ultrametric subclass of instances. We further show how relaxing or
tightening the application of the metricity property affects the approxi-
mation ratio. Finally insights on the application MWtCP to gene cluster
discovery are presented.
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1 Introduction

Combinatorial optimization problems involve the search for an optimal solution
in a finite or countably infinite set of potential solutions. Many of these problems
involve searching for a discrete structure of extremal weight in a given graph.
Paths, cycles, spanning trees, matchings, and cliques are just some examples
of such structures. Some of these problems are polynomially solvable such as
the minimum spanning tree problem [15, 26]. Unfortunately, however, many
of these combinatorial problems are intractable. Among such problems is the
Weighted Clique Problem (WCP), which is the problem of finding a clique
of a given size (or number of vertices) that is of extremal weight, measured as the
sum of weights of the edges included in the said clique, in a complete weighted
graph. Nonetheless, these problems are still extensively studied because of their
important applications in different domains. [14, 19, 25].

Cliques have been thoroughly studied in the area of graph theory (e.g.,
[18, 7, 4, 9, 34, 16, 17, 15, 20]). Up to the most recent years, much is still
being explored on the WCP and its variants [2, 22, 27, 32]. It was shown in
[19] that the optimization variant of the maximum clique problem is hardly
approximable, i.e. it is hard to approximate the problem in polynomial time
within a factor of n1−ε, for any ε > 0 unless NP = coR. In [12] it was shown
that both minimum and maximum WCPs are not approximable in the general
case, i.e. if there are no restrictions on the weights, then it would not be possible
to come up with a polynomial-time approximation algorithm and a small value
r such that on every input, the algorithm finds a solution whose cost is at most
r times the optimum, for minimization problems (at least 1/r for maximization
problems)[33]. A fast 2-approximation algorithm was presented, however, in [12]
for two important cases of the problem, in which vertex weights are nonnegative
and edge weights either satisfy the triangle inequality (the metric WCP) or are
squared pairwise distances for a point configuration in Euclidean space (the
quadratic Euclidean WCP).

Here we consider a slightly different version of the problem motivated by
the problem of identifying sets of commonly existing putative co-regulated, co-
expressed genes, called gene clusters, for which extensive studies are being pur-
sued [28, 6, 21, 10, 11, 13, 29]. In molecular biology, genes belonging to a cluster
may share functional dependencies and may be involved in the expression of a
specific trait. Identifying these clusters is also essential in establishing rela-
tionships between organisms as well as in the discovery of drugs and disease
treatments [1, 23]. This biological problem of identifying associations among
genes across genomes can be formalized as searching for cliques on undirected
weighted graphs [3, 5, 8, 24, 31]. For instance, one-to-one correspondence can be
made between genomes and partitions, i.e. t partitions can represent t genomes.
Gene contents of different intervals of genes in a genome can correspond to ver-
tices in a partition. Co-expression or similarity among the gene content of two
interval groups can be represented by the weight placed on the edge joining the
pair of vertices corresponding to them. Depending on the weight formulation
this task of discovering gene groups that highly resemble each other across the



JGAA, 24(3) 171–190 (2020) 173

t genomes, also known as approximate gene clusters, can be reduced intuitively
to the problem of finding either the maximum or minimum weighted clique.

In this paper, we present the Minimum Weight t-partite Clique Prob-
lem (MWtCP), which is the problem of finding a t-clique with minimum weight
in a complete edge-weighted t-partite graph. We first show how it is related to
WCP. We also show that it is NP-hard, APX-hard in the general case. We
present a 2-approximation algorithm that runs in O(n2) for the metric case and
has a 1+ 1

t approximation performance guarantee for the ultrametric subclass
of instances. We further show how relaxing or tightening the application of
the metricity property affects the approximation ratio. Finally we present some
insights when MWtCP is applied to gene cluster discovery.

2 Preliminaries

2.1 The Weighted Clique Problem (WCP)

Eremin et. al., in [12], presented a general combinatorial problem called the
Weighted Clique Problem (WCP). Given a complete simple weighted undi-
rected graph G = (V,E, a, c) and weight functions a : V → Q and c : E → Q,
which define the vertex weights and the edge weights respectively. The sum
Σv∈V av + Σe∈Ece is called the weight of the graph G.

Weighted Clique Problem (WCP)
Given: a complete weighted undirected graph G = (V,E, a, c), where a : V →
Q and c : E → Q, and a positive integer k.
Find: a complete subgraph (clique) of the graph G of order k, i.e. having k
vertices, with the smallest (largest) weight.

Without loss of generality, we identify the sets V and Nn = {1, . . . , n}, where
n = |V |, and use the short notation cij for the image ce of an edge e = i, j ∈ E
under the weight mapping c.

The problem Min-EWCP, a variant of WCP, was further defined in [12] as
the problem of finding the clique of order m in the weighted complete graph
G = (V,E, a, c) with the smallest weight, where ai = 0 and cij ≥ 0. It was
shown that this problem is not in APX.

In the following section we present a related problem to Min-EWCP which
is the Minimum Weighted t-partite Clique Problem (MWtCP).

2.2 The Minimum Weighted t-partite Clique Problem

A t-partite graph is a graph G = (V,E) whose vertices can be partitioned into
t different independent sets {V1, V2, . . . Vt} (i.e., V = V1 ∪ V2 ∪ . . . Vt and any
graph induced by a Vi, 1 ≤ i ≤ t, has no edge). Equivalently, if G is a t-partite
graph, then each of its vertices can be colored with any one of its t colors such
that no edge is incident to two vertices having the same color. A complete
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t-partite graph is a t-partite graph in which there is an edge between every
pair of vertices from different independent sets. If there are m vertices in each
partition, then | V |= mt, making G m(t− 1)-regular. Using the Handshaking
Lemma, the total number of edges in the graph G, is | E |= m

(
t
2

)
[30].

Provided a weight for each edge (e.g., defined as a function w : E → N), a
main problem in graph theory lies in finding a clique with maximum or mini-
mum weight. We formally define the Minimum Weighted t-partite Clique
Problem (MWtCP) as follows:

Minimum Weighted t-partite Clique Problem (MWtCP)
Given: a complete edge-weighted t-partite graph G = (V,E,w), where | V |=
n.
Find: a complete subgraph (clique) of order t in G of minimum weight

Every maximal clique in graph G is of order t, each of which has
(
t
2

)
edges,

and the total number of unique t-cliques in G is mt. Clearly, each vertex in
the t-clique belongs to a unique partition. Each unique edge is a part of mt−2

cliques. Naively, we can check all t-cliques and determine which among them
has the minimum total weight in O(mt).

A case of MWtCP is called metric if all edge weights in G follow the triangle
inequality, i.e., for any distinct vertices a, b, c ∈ V , w(a, b) ≤ w(b, c) + w(a, c),
where w(u, v) is the weight of the edge (a, b). Similarly, a case of MWtCP
is called ultrametric if all edge weights in G follow the rule: for any distinct
vertices a, b, c,∈ V , w(a, b) = max(w(b, c), w(a, c)).

Following the method presented in [25, 12] we assign to each MWtCP the
polynomial time equivalent problem of finding the extremum of the integer lin-
ear function

∑
1≤i,j≤m,1≤p,q≤t,p 6=q

wpqij y
pq
ij → min

ypqij ∈{0,1}

on the feasible set∑
1≤i≤m

x1i = 1,
∑

1≤i≤m
x2i = 1 . . .

∑
1≤i≤m

xti = 1∑
1≤i,j≤m,1≤p,q≤t

ypqij =
(
t
2

)
ypqij = xpi ∧ x

q
j

wpqij ≥ 0, xpi ∈ {0, 1}

where xpi and xqj represents the ith node in partition p and the jth node
in partition q respectively. wpqij represents the weight of the edge incident to
nodes xpi and xqj , while ypqij whose value is either 0 or 1, indicates its inclusion

or non-inclusion in the t-clique, which has
(
t
2

)
edges.
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2.3 Minimum Weighted t-partite Clique Problem is Map-
ping Reducible to Min-EWCP

Earlier it was already mentioned that MWtCP is closely related to Min-EWCP.
Here we show that MWtCP is at most as hard as Min-EWCP.

Theorem 1 MWtCP ≤M Min-EWCP

Proof: To prove this, there must be a computable function f such that a is an
input to MWtCP if and only if f(a) is an input to Min-EWCP

Given any instance G = (V,E,w) of the MWtCP, i.e. a complete edge-
weighted t-partite graph, where V = {v1, v2, v3, . . . , vn}, we define a function
f that builds a corresponding instance G′ = (V ′, E′, a′, c′) of Min-EWCP, i.e.
G′ = f(G).

We let V ′ = V , and note that a′r = 0 for 1 ≤ r ≤ n. For every edge
eij = (vi, vj) ∈ E where vi and vj ∈ V , then e′ij = eij where e′ij ∈ E′

and c′ij = wij = weight(eij). Furthermore, for every vi and vj ∈ V , where
1 ≤ i 6= j ≤ n, if eij /∈ E, then eij ∈ E′ and c′ij = weight(e′ij) =∞, making G′

a complete edge-weighted graph.
Clearly, the problem of finding the clique of order t with the least total

weight in G′, is the same as obtaining the solution to the MWtCP for the input
graph G′.

Thus, f , where G′ = f(G), is a computable function. Therefore, MWtCP
≤M Min-EWCP 2

We note, however, that the converse may not be so since reducing any in-
put for Min-EWCP into an input for MWtCP, i.e. converting a complete
graph into a complete t-partite graph, would entail deletion of edges as well as
partitioning of vertices. Moreover, m, which is the order of the clique in Min-
EWCP, may assume a range of values, i.e. 1 < m ≤ n, whereas the order of
clique in MWtCP is specifically the number of partitions.

Nonetheless, the MWtCP, though it can never be harder than Min-EWCP,
remains to be of particular interest because of its potential in modelling the
problem of identifying approximate gene clusters. In the next section we show
that it is both NP-hard and APX-Hard.

3 NP and APX Hardness of the MWtCP

In this section, we provide the two main hardness results concerning the general
case of MWtCP; that is its NP and APX hardness.

To prove that MWtCP is NP hard, we first show a variant of WCP, which
is the Maximum Clique problem:

Given: a graph G = (V,E), where | V |= n and an integer t.
Does there exist: a clique of order t in G, i.e., a vertex set Vc ⊆ V , such that
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| Vc |= t and ∀u, v ∈ Vc, (u, v) ∈ E ?

We now show that there is a reduction from Maximum Clique problem to
MWtCP.

Lemma 2 An instance of Maximum Clique problem can be transformed to
an instance of MWtCP in polynomial time.

Proof: Starting from any instance (G = (V,E), t) of the Maximum Clique
problem where V = {v1, v2, v3, . . . , vn}, we build a corresponding instance G′ =
(V ′, E′, w) of MWtCP problem as follows. The set of vertices is defined as
V ′ = V ′1 ∪ V ′2 ∪ V ′3 ∪ . . . V ′t , where for 1 ≤ i ≤ t, and there is a copy of each
vertex of V in every V ′i = {vi1, vi2, vi3, . . . , vin}. The set of edges is defined as
E′ = {(vxi , v

y
j ) | ∀1 ≤ x, y ≤ t;x 6= y; (vi, vj) ∈ E}. Roughly, for each edge

(vi, vj) ∈ E, we build a complete bipartite graph Kt,t using the following two
disjoint sets of vertices {v1i , v2i , . . . vti} and {v1j , v2j , . . . vtj} and remove all the
following edges from it {(vxi , vxj ) | 1 ≤ x ≤ t}.

Furthermore, for all such edges e currently in E′, we set w(e) = 0. We then
add edges to E′ to come up with a complete t-partite graph, i.e., E′ = E′ ∪E′r
where E′r = {(vxi , v

y
j ), | ∀1 ≤ x ≤ y ≤ t; i 6= j; (x == y || (vi, vj) 6∈ E)}. Each

edge e ∈ E′r has a unit weight defined as w(e) = 1. A complete illustration on a
small instance can be seen in Figure 1 (for ease of readability, only the edges not
in E′r have been drawn). Clearly, this construction can be done in polynomial
time. 2

We note some interesting properties of the above construction. As already
mentioned, each vertex vi ∈ V of the original graph G is represented as a clique
in G′ composed of the vertices {v1i , v2i , . . . , vti} with edges weighted to 1 (for
ease denoted as vi’s). Also, each edge (vi, vj) ∈ E of the original graph G is
represented as a bipartite graph with null weight between the sets of vertices

vi’s and vj ’s representing respectively vi and vj (for ease denoted as B
(i,j)
t,t ).

Lemma 3 At most one arc from each B
(i,j)
t,t can be part of any solution of null

cost to MWtCP.

Proof: To reach a solution of null cost to MWtCP, only edges of null weight
can be taken. Therefore, from the previous observation and by construction, if
two nodes of vi’s were part of the solution, they will not be linked by an edge
in the solution. Thus, for any i and j, at most one vertex of both vi’s and vj ’s

can belong to the solution, inducing that only one arc from each B
(i,j)
t,t can be

part of the solution. 2

Lemma 4 Let (G = (V,E), t) be an instance of the Maximum Clique problem
and the corresponding graph G′ = (V ′, E′, w) of the MWtCP obtained by the
above construction. G contains a t-clique if and only if G′ contains a t-clique
of null cost.
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v1 v3

v4v2

G = (V,E)

v11

V ′1︷︸︸︷

v12

v13

v14

v21

V ′2︷︸︸︷

v22

v23

v24

v31

V ′3︷︸︸︷

v32

v33

v34

G′ = (V ′, E′, w)

Figure 1: The graph G of the Maximum Clique problem and the corresponding
graph G′ of the MWtCP where only arc of null weight have been drawn; missing
arcs (for readability) are of weight 1.

Proof: (⇒) Suppose G contains a t-clique composed of the vertices in Vc ⊆ V .
We build a solution V ′c ⊆ V ′ to MWtCP as follows. For each vertex vi ∈ Vc,
add the vertex vii to V ′c . Clearly, for each vertex vi of the t-clique Vc, a copy of
vi in exactly one of V ′j s is selected to be part of V ′c .

Let us now prove that V ′c forms a t-clique in G′. By definition, since Vc is
a t-clique then there exists an edge between any two of the t vertices belonging
to Vc. In G′ there is an edge between any vertex vxi and any vertex of the vyj ,
where i 6= j and x 6= y, if vi and vj are adjacent in G. Thus, any two pair of

vertices vii and vjj in V ′c are adjacent in G′ if the corresponding two vertices vi
and vj are in Vc. Clearly, it follows that V ′c also forms a t-clique.

Let us now prove that the corresponding clique has null cost. By construc-
tion of V ′c , we selected a vertex in each independent set V ′j , therefore in V ′c , only
edges between vertices belonging to different V ′j ’s exist. Since Vc is a clique,
there is an edge in G between any pair of vertices of V ′c . Remind that, by
construction, each edge (vi, vj) ∈ E of the original graph G is represented as a
bipartite graph with null weight between the sets of vertices vi’s and vj ’s repre-
senting respectively vi and vj . Thus, any edge between nodes in V ′c has a null
cost.

(⇐) Suppose G′ contains a t-clique of null cost composed of the vertices in
V ′c ⊆ V ′. We build a solution Vc ⊆ V to the Maximal Clique problem as



178 Solano, Blin, Raffinot, Clemente & Caro Approximability of MWtCP

follows. For each vertex vxi ∈ V ′c , add the vertex vi to Vc. Roughly, for any copy
of a vertex vi belonging to the t-clique V ′c , we select the vertex vi as part of Vc.

Let us prove that Vc is indeed a t-clique in G. First note that | Vc |= t.
Indeed, since V ′c is a t-clique of null cost, it cannot contain any edge between
two vertices vxi and vyi for all 1 ≤ i ≤ n and 1 ≤ x, y ≤ t and thus, exactly t
different nodes have been added to Vc. By Lemma 3, we know that the subgraph
induced by V ′c is a null clique and thus that it only uses edges of null weight;

that is edges belonging to {B(i,j)
t,t |1 ≤ i < j ≤ n}. By Lemma 3, at most on

edge of each {B(i,j)
t,t |1 ≤ i < j ≤ n} is used in V ′c . This implies by construction,

that there exists also an edge between any pair of vertices in Vc. All together,
this leads to prove that Vc forms a t-clique inducing the correctnes of Lemma 4.

2

Theorem 5 MWtCP is NP-hard when the weighting function w is not a con-
stant function (i.e., at least two different output values are provided).

Proof: First, we note that, in case of a constant function w, the problem is
trivial since any set {v1, v2, . . . vt|vi ∈ Vi} is an optimal solution. In the case
when there exists at least two different output values from the weighting function
w, it clearly shown from the proofs of Lemma 2 and Lemma 4 that MWtCP is
NP-hard. 2

Let us now prove moreover that this reduction is an L-reduction provided a
slight modification in the construction of G′.

Theorem 6 MWtCP is APX-hard, for any t ≥ 3.

Proof: We proceed with a similar construction as in the previous proof by only
adapting the weight of the edges belonging to E′r as follows: ∀e ∈ E′r, w(e) =

2
t(t−1) .

First, notice that in this new construction, an optimal t-clique in G′ has still
a null cost. Therefore, OPT (MWtCP) < OPT (Maximum Clique Problem).

Starting from any given candidate solution to MWtCP, that is a t-clique of
cost ζ (which may not be optimal), we can build a solution to the Maximum
Clique problem, say, of size 2. This can be done by arbitrarily picking any
edge in E, which indeed forms a clique. Let us now compare the score of the
solutions. We obtain that the distance from the optimal solution to Minimum
Weight t-Partite Clique and the candidate solution is | 0 − ζ | while the
distance between the optimal solution to the Maximum Clique and the built
candidate solution is | t − 2 |. In order for the reduction to be an L-reduction,
the following inequality should hold | t−2 |≤| 0− ζ |. Since the optimal t-clique
has a null cost, then ζ ≥ 0. Therefore, | t − 2 |≤ ζ. One of the possible cases

implies that t − 2 ≤ ζ. Since any t-clique is composed of t(t−1)
2 edges and, by

construction, if any edge has a weight greater than or equal to 2
t(t−1) , then the

requested inequality indeed holds for any t ≥ 3. The proposed reduction is
therefore an L-reduction. Since the Maximum Clique problem is APX-hard,
so is MWtCP. 2
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4 An Approximation Algorithm for the Metric
Case of MWtCP

In the previous section we demonstrated that MWtCP is both NP-hard and
APX-hard. By definition, in the general case, it would not be possible to develop
an algorithm that yields to a constant approximation ratio.

This opens up the question of whether the presence of restrictions on edge
weights, such as the triangle inequality, would provide for a more approximable
result. In this section, we present an algorithm for the MWtCP that runs in
O(n2) that has a relative performance guarantee of 2 for the metric case and a
relative performance guarantee of 1+ 1

t for the ultrametric subclass of instances.
We also demonstrate how the approximation ratio is affected when tightening
or relaxing the metric property.

4.1 Algorithm Definition

We first define a t-partite star. An n-star is the graph K1,n that has n + 1
vertices. Of these vertices, n have the degree 1 and one has a degree n, which,
in this study will be referred to as the hub or center of the star. A t-partite
star is a (t − 1)-star in a complete t-partite graph where all the vertices are
part of a distinct partition. The proposed algorithm tries to approximate the
solution to the MWtCP by finding the minimum weighted t-partite star. The
approach is based on the fact that a complete graph Kn can be decomposed
as a complete graph Kn−1 and a star K1,n−1. The weight of a candidate star
is computed as the sum of the weights of the edges in the t-partite star. The
algorithm searches for the minimum weighted t-partite star in the complete t-
partite graph, from the n candidate stars, and uses its vertex set to define the
candidate t-clique.

A formal definition of the algorithm is given in Algorithm 1.

Input: A complete weighted t-partite graph G = (V,E,w)

1: for every node x find the minimum weighted t-star with x as the hub or
center vertex

2: find the minimum weighted t-star from the n candidate t-stars in #1
3: return the t-clique formed from the vertex set of the t-star in #2

Output: a weighted t-Clique

Algorithm 1: Minimum Weighted t-1 Star Algorithm for MWtCP

4.2 A Related Problem and Solution

It has been shown earlier in this study that MWtCP ≤M Min-EWCP. In the
study [12] Eremin et. al. presented the row’s subset of symmetric matrix prob-
lem (RSSM) as a polynomial time equivalent formulation of Min-EWCP in the
form of property verification problem.



180 Solano, Blin, Raffinot, Clemente & Caro Approximability of MWtCP

Definition 4.1 (Row’s subset of symmetric matrix problem (RSSM) [12])
Given a symmetric n x n matrix W = (wij) with nonnegative entries and
wii = 0, a positive integer m and a positive number D, determine whether
the set of rows of W contains a subset C of cardinality m such that

F (C) =
1

2

∑
i∈C

∑
j∈C

wij ≤ D

The algorithm presented in the said study, which we will refer to here as
Algorithm A is as follows:

Step 1. For each j = 1, ..., n, find a set Bj that consists of indices of m
smallest entries in the jth row of W including the index j itself. Define S(Bj) =∑
i∈Bj

wij .

Step 2. Denote by k∗ the value j for which S(Bj) takes the minimum value
S∗ = S(B∗) =

∑
i∈B∗ wik∗ .

Take C = B∗ as an approximate solution of RSSM.

Algorithm A was shown in the said study as a 2-approximation algorithm
for the metric case of RSSM, and consequently, therefore a 2-approximation
algorithm for the metric case of Min-EWCP. It does not automatically follow,
however, that Algorithm A will provide the same performance guarantee for an
input of Min-EWCP that was converted from an input of MWtCP and that
it will always return feasible solutions for MWtCP. Recall that in performing
the function f to produce a graph G′ from an input graph G of MWtCP,
edges are added to G′ that were not in G and such edges have the weight ∞.
The presence of edges in G′ with such weights violates the metric property.
Furthermore, since Algorithm A does not take into consideration the presence
of partitions, two or more of the m smallest entries returned for a particular row
may actually come from the same partition. However, a solution for MWtCP
is a t-clique, in which, by definition, no two vertices are elements of the same
partition. Thus, an approximation solution for Min-EWCP may not always be
applicable for MWtCP.

Some modifications, therefore, must be made on Algorithm A to make it ap-
plicable for MWtCP. We note that the adjacency matrix of G has n columns.
Since n = m ∗ t, the columns of the adjacency matrix can be represented as
having t partitions, each having m columns. We now consider the following
modified approximation algorithm as Algorithm A′:

Step 1. For each row j = 1, ..., n, find a set Bj that consists of indices of t
smallest entries for each of the t partitions of m columns in the jth row of W
including the index j itself. Define S(Bj) =

∑
i∈Bj

wij .

Step 2. Denote by k∗ the value j for which S(Bj) takes the minimum value
S∗ = S(B∗) =

∑
i∈B∗ wik∗ .

Take C ′ = B∗ as an approximate solution.
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Figure 2: The optimal t-clique Q and the solution Q′ in graph G by Algorithm
1 for t = 5

4.3 Analysis of Algorithm 1 for MWtCP

With careful observation, it is easy to see that performing Algorithm 1 to obtain
the minimum weight (t−1)-star for G in MWtCP is actually equivalent to per-
forming Algorithm A′ on the adjacency matrix of G for MWtCP. Equivalently,
Algorithm A′ does the following steps in approximating the MWtCP, this time
from a graph perspective.

Step 1. For each vertex u = 1, ..., n, find the set of vertices Bu, where | Bu |=
(t−1), such that if u ∈ partition Ui, then for each vertex v ∈ Bu, if v ∈ partition
Uj , where Uj 6= Ui , then cost(u, v) is minimum
Step 2. For all the (t − 1)-stars obtained in Step 1, determine the one with
minimum weight.

Theorem 7 Algorithm 1 is a 2-approximation algorithm for the metric case of
Minimum Weight t-Partite Clique Problem which runs in O(n2) on a
complete weighted t-partite graph of n vertices.

Proof: Algorithm 1 clearly tries to determine the minimum weighted (t − 1)-
star and then uses this to approximate the minimum weighted t-clique. We now
show through another approach that it is a 2-approximation efficient algorithm,
that is, the weight of the clique returned by Algorithm 1 is at the worst case
twice that of the optimal solution.

Given a complete graph G with positive edge weights and Q as the t-
clique of minimum weight with e edges, where e =

(
t
2

)
, having the weights

w1, w2, w3, . . . we , we let Q′ be the t-clique returned by Algorithm 1 whose
edges have the weights w′1, w

′
2, w

′
3, . . . , w

′
e. We note that Q′ is derived from the

minimal (t− 1)-star Q∗. For ease of notation, let {v′1, v′2, . . . v′t} be the vertices

of Q∗ and, without loss of generality, v′t be its center (or hub) and
t−1∑
i=1

w′i be the
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total weights of its edges (w′i being the weight of the edge between v′t and v′i).
An instance where t = 5 is shown in Figure 2, where Q∗ has dashed edges.

By definition,

cost(Q) ≤ cost(Q′) =

e∑
i=1

w′i.

By correctness of Algorithm 1, there is no (t−1)-star in G of cost lower than

that of Q∗, which is
t−1∑
i=1

w′i. Also, of the (t − 1)-stars in Q, of which there are

m, none would have a cost lower than that of Q∗. Therefore, at best, there will
be t minimum weighted (t−1)-stars in G and all of them are in Q, that is, each
of the t vertices in Q is a hub of a minimum weighted (t− 1)-star in G. We can
deduce that

1

t− 1
·
(
t

2

)
·
t−1∑
i=1

w′i ≤ cost(Q)

t

2
· cost(Q∗) ≤ cost(Q)

Let us now seek for an upper-bound on cost(Q′). We note that the cost of
Q′ is actually the sum of the cost of Q∗ and the cost of the remaining edges in

Q′ but not in Q∗: cost(Q′) =
e∑
i=1

w′i =
t−1∑
i=1

w′i +
e∑
i=t

w′i.

Clearly, the cost of the remaining
(
t−1
2

)
edges that are part of Q′ but not

part of Q∗ is
e∑
i=t

w′i. We note that these
(
t−1
2

)
edges form a (t− 1)-clique that is

composed of vertices {v′1, v′2, v′3, ..., v′t−1} via the Handshaking Theorem. Let us
study the constraints due to the metric property in triangles using v′t and any
two vertices v′p and v′q of Q′, 1 ≤ p < q < t. Due to the triangular inequality,
we can upper-bound the cost of the edge incident to v′p and v′q by

w((v′p, v
′
q)) ≤ w((v′p, v

′
t)) + w((v′q, v

′
t)) = w′p + w′q

We moreover deduce that

e∑
i=t

w′i =
∑

1≤p<q≤t−1
w((v′p, v

′
q)) ≤

∑
1≤p<q≤t−1

(w′p + w′q)

≤ (t− 2) ·
t−1∑
i=1

w′i

Thus,

cost(Q′) =
t−1∑
i=1

w′i +
e∑
i=t

w′i ≤
t−1∑
i=1

w′i + (t− 2) ·
t−1∑
i=1

w′i

≤ (t− 1) ·
t−1∑
i=1

w′i

≤ (t− 1) · cost(Q∗)
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Since cost(Q∗) ≤ 2
t · cost(Q),

cost(Q′) ≤ (t− 1) · 2t · cost(Q)
≤ (2− 2

t ) · cost(Q)
≤ 2 · cost(Q)

2

We just showed that the weight of the clique returned by Algorithm 1 is at
the worst case twice that of the optimal solution. Intuitively, the performance
of the algorithm improves with smaller values of t.

5 Approximation Ratios for Ultrametric Case

We now show performance guarantee of Algorithm 1 in another case of inputs,
specifically, the ultrametric case.

Approximation Ratio for Ultrametric Case for Algorithm 1

Theorem 8 Algorithm 1 is a 1 + 1
t -approximation algorithm for ultrametric

case of MWtCP

Proof: When considering ultrametric weight function w (i.e., for any distinct
vertices a, b, c,∈ V ′, w(a, b) ≤ max(w(b, c), w(c, a))), we note the following:

In obtaining the performance guarantee of Algorithm 1 for the ultrametric
case of inputs, we wish to obtain α for which cost(Q′) ≤ α · cost(Q). Intuitively,
necessary for this is determining and describing the instance when difference
between the costs of Q′ and Q is the greatest.

To describe such instance, we note that cost(Q′) ≤ cost(Q∗) +
e∑
i=t

w′i, and

cost(Q) ≤ cost(QA)+
e∑
i=t

wi, where, by definition, QA is a (t−1)-star, such that

cost(Q∗) < cost(QA), even if cost(Q) ≤ cost(Q′). For Q∗ to be chosen as the
(t−1)-star in G of minimum weight, it is because though it has (t−2) edges that
have relatively larger weight, say b, it has an edge that has a very small weight,
say a, making the cost(Q∗) still the least among the (t − 1)-stars. The same,

however, cannot be said about Q′. We note that
e∑
i=t

w′i makes use of edges that

are part of Q∗, as is shown in Figure 2, but because of the ultrametric property,
each of the edges in Q′ but not in Q∗, i.e. E(Q′ \Q∗) = w′5, w

′
6, ..., w

′
9, w

′
10, will

assume the weight value of the higher-weighted edge between the two edges it
forms a triangle with. Since each of the edges in E(Q′ \Q∗), i.e. the non-dashed
edges, would have to be from between the dashed edges (i.e. edges in Q∗), then
e∑
i=t

w′i =
(
t−1
2

)
· b. Therefore, cost(Q′) = a+ (t− 2) · b+

(
t−1
2

)
· b
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Figure 3: The instance where α is greatest where cost(Q′) ≤ α · cost(Q)

On the other hand, in describing such instance for Q, since cost(Q) ≤
cost(QA) +

e∑
i=t

wi, where cost(Q∗) < cost(QA), then given that a is a very

small positive value, we can let cost(Q∗) = cost(QA) + a. For the edges
that are not in QA, without loss of generality, if we let w1 ≤ w2 ≤ w3 ≤
... ≤ wt−1, where wi ∈ E(QA), then because of the ultrametric property,
e∑
i=t

wi = w2(1) + w3(2) + w4(3) + ...+ ≤ wt−1(t− 2).

Since larger weighted edges would be chosen more often to be in E(Q \QA),
i.e. wi for t ≤ i ≤ e, consequently making cost(Q) larger, then clearly the
instance when cost(Q) is minimum is when all the edges in Q are all of equal
weight, say c. Thus, cost(Q) =

(
t
2

)
· c as shown in Figure 3 , where c =

cost(QA)+a
t−1 = 2a+(t−2)·b

t−1 .

Therefore,

cost(Q′) =
a+(t−2)·b+(t−1

2 )·b
2a+(t−2)·b

t−1 ·(t
2)
· cost(Q)

= (1 + ε) · cost(Q)

where ε = 1
t −

2a
2a+(t−2)b .

We further note that ε ≈ 1
t as a→ 0.

Therefore, Algorithm 1 is a 1+ 1
t -approximation algorithm for the ultrametric

case of MWtCP 2



JGAA, 24(3) 171–190 (2020) 185

6 Varying the strictness of the metricity through
a given factor σ

We introduce a variable σ in analyzing Algorithm 1 as a means of tightening or
relaxing the metric property.

Theorem 9 If for any distinct vertices a, b, c,∈ V , w(a, b) ≤ σ(w(b, c)+w(c, a)),
then Algorithm 1 is a (2σ − 4σ−2

t ) -approximation algorithm for MWtCP

Proof: The triangle inequality states that for any distinct vertices a, b, c,∈ V ,
w(a, b) ≤ w(b, c)+w(c, a). We observe the effect if w(a, b) ≤ σ(w(b, c)+w(c, a)).
It has already been established that

cost(Q) ≤ cost(Q′)
e∑
i=1

wi ≤
e∑
i=1

w′i

≤
t−1∑
i=1

w′i +
e∑
i=t

w′i

≤ cost(Q∗) +
e∑
i=t

w′i

and that what is being approximated here is
e∑
i=t

w′i. Applying the proposed

bounds on the third side of the triangle, the weights of each of the
(
t−1
2

)
remain-

ing edges may be computed as follows for 1 ≤ p < q ≤ t− 1
cost(v′p, v

′
q) ≤ σ(cost(v′t, v

′
p) + cost(v′t, v

′
q))

≤ σ(w′p + w′q)

As has already been shown, each of the vertices v′1, v
′
2, v
′
3, ..., v

′
t−1 in the

(t− 1)-clique, by definition, is adjacent to t− 2 vertices in the (t− 1)-clique as
is illustrated in Figure 4 for t = 5.

Hence,
e∑
i=t

w′i ≤ σ(t− 2) ·
t−1∑
i=1

w′i

Using this to provide bounds for the cost of Q′:

cost(Q′) =
m−1∑
i=1

w′i +
e∑
i=t

w′i ≤
t−1∑
i=1

w′i + σ(t− 2) ·
t−1∑
i=1

w′i

=
t−1∑
i=1

w′i +
e∑
i=t

w′i ≤ (1 + σ(t− 2)) ·
t−1∑
i=1

w′i

=
e∑
i=1

w′i ≤ (1 + σ(t− 2)) ·
t−1∑
i=1

w′i

Therefore,

t

2
· cost(Q∗) ≤ cost(Q) ≤ cost(Q′) ≤ (1 + σ(t− 2)) · cost(Q∗)
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Figure 4: The weights of the edges of Q∗ are used to provide variable upper
bounds on the remaining edges of the solution Q′ for t = 5

The upper bound for cost(Q′) will therefore be (1+σ(t−2)) ·cost(Q∗). Not-
ing that cost(Q∗) ≤ 2

t · cost(Q), the computation for the approximation ratio is
as follows.

cost(Q′) ≤ (1 + σ(m− 2)) · 2t · cost(Q)
≤ 2σ − 4σ−2

t · cost(Q)

Therefore, applying the property for any distinct verticesa, b, c,∈ V , w(a, b) ≤
σ(w(b, c) + w(c, a)) will make Algorithm 1 a (2σ − 4σ−2

t )-approximation algo-
rithm for MWtCP 2

7 On Returning a Set of Candidate Gene Clus-
ters

It was mentioned at the beginning that this study on MWtCP is motivated
by the problem of identifying approximate gene clusters. Correspondence can
be made between genomes and partitions, gene contents in linear interval in
a genome can correspond to vertices in a partition, while co-expression value
between two gene groups can be represented by weights placed on edges joining
a pair of vertices. The output of MWtCP would be a clique representing a set
of highly identical gene groups across a set of genomes which will be a candidate
gene cluster. In practice, however, experts are more concerned with obtaining
not just one candidate gene cluster but a set of candidate gene clusters, which
can then be validated by experiments.

For this, a modified version of Algorithm 1 can be made - one that does
not return only one solution but returns a list of candidate solutions sorted
according to a metric. The algorithm can be modified to allow the selection



JGAA, 24(3) 171–190 (2020) 187

of r candidate gene clusters, where 1 ≤ r ≤ n. Recall that in the algorithm,
the weight of each t-clique in G is approximated using the weight of the star.
A slight modification can be made on Algorithm 1 that would allow storage of
weights for each of the stars and which can then be sorted later. The r stars
with least total weight will be the candidate genes.

With this, the modified algorithm provides a sorted list of approximate gene
clusters. Since Algorithm 1 runs in O(n2), then this modified version will run
in O(n2) + n log n = O(n2).

8 Conclusion and Future Work

Searching for cliques in undirected weighted graphs has been used in many stud-
ies to formalize the biological problem of identifying associations among genes.
In this study we explored Minimum Weight t-Partite Clique Problem
(MWtCP), which is the problem of finding the t-clique of minimum weight in a
complete edge-weighted t-partite graph. It was shown that MWtCP is NP-hard
and APX-hard in the general case. An algorithm that runs in O(n2) which uses
the minimum (t− 1)-star to approximate the minimum t-clique is presented. It
was shown that the said algorithm has a relative performance guarantee of 2 for
the metric case and a relative performance guarantee of 1+ 1

t for the ultrametric
subclass of instances was also presented. It was further shown how relaxing or
tightening the application of the metricity property of input instances affects
the approximation ratio. Some insights on the application of MWtCP to ap-
proximate gene cluster discovery were also presented such as providing multiple
gene clusters.

Further investigation needs to be done in MWtCP, specifically in applying
it to real genomic data. Studies are ongoing and we look forward to present
them soon.
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