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Abstract

Our objective is to discover the topology of an energy distribution
network modeled by a flow digraph from which we know the set of arcs
without identification of their extremities. We also know possible correla-
tions between these arcs from measurements in which errors could occur.
To discover the network’s topology from the obtained correlation matrix
between arcs, we consider the graph whose incidence matrix is the corre-
lation matrix with entries rounded to zero or one. Without errors in the
correlations, this graph is the line-graph of the distribution network. We
propose an algorithm that given the rounded correlation matrix M, finds
the incidence matrix of a line-graph with minimum Hamming distance to
M. We then evaluate the performance of this approach by simulation.
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1 Introduction

The maintenance of energy networks, especially electricity distribution net-
works, requires a good knowledge of the equipment used and their state, but
also the topology and capabilities of networks [10]. This knowledge is not often
perfect because of changes in the topology that have not been reported or in-
consistencies in energy flow measurements from which the topology is deduced.
This can have serious consequences on the resilience of equipment in such a
network [11].
In order to correct these errors, the approach considered here is to predict a
probable topology of the network, represented by a Directed Acyclic Graph
(DAG), by correlating the measures regularly performed and from the a pri-
ori knowledge of the topology. This problem of prediction can be related to
a problem of discovery of network topologies. This type of problem has been
particularly studied in the context of telecommunication networks based on to-
mography or traffic analysis [5]. Those techniques cannot be used in the case
of energy networks as the only available data are correlations between links of
the networks obtained from electrical flow measurements. These correlations, if
they are correct, induce the line-graph [3, 9] of the underlying undirected graph
of the electrical network. In most cases, the errors or lack of measurements
mean that the graph deduced from the correlations also contains errors (added
and deleted edges) and that it is therefore not the expected line-graph of the
topology of the electrical network (in most cases, it is no longer a line-graph).
The objective is to correct this graph in order to obtain a line-graph as close as
possible to the expected line-graph [6].

Various works have been devoted to determine if a graph is a line-graph and
if yes, to discover a graph of which it is the line-graph (called root graph of
the line-graph) [1, 4, 12, 14, 15]. In particular, initial works [12] show that a
graph is a line-graph if and only if it admits a decomposition of its set of edges in
maximum complete induced subgraphs such that each vertex belongs to at most
two of these subgraphs. Line-graphs can also be characterized by a set of nine
forbidden induced subgraphs [1]. The concept of root graph was introduced by
Whitney [16] and he proved that if two connected line-graphs are isomorphic,
then their root graphs are isomorphic except for the triangle graph. Finally, it
is possible to compute the root graph G = (V,E) in time O(|E|) [12] and in
time O(log|V |) with a parallel algorithm using O(|E|) processors [14].

The problem we are dealing with is, given an input graph, to determine
the minimum number of edges to add or remove to obtain a line-graph. In the
context of power grids, the assumption we want to verify is that if the number of
correlation errors is small, then the line-graph obtained after adding or deleting
edges is close to the one of the actual topology of the network. In this paper,
we firstly focus on the complexity of the problem. When only edge deletion is
allowed, the problem is NP-Complete [8, 17]. Determining whether the problem
remains NP-Complete if we allow both edge addition and deletion is an open
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problem. In this paper, we make a step closer to this result by proving that
the problem is NP-Complete if we only allow edge addition. The second part of
the paper is dedicated to the description of an heuristic algorithm to solve the
problem on graphs with small degrees.

The paper is organized as follows. In Section 2, we define the problem and
we deal with its complexity. Section 3 is dedicated to the definition and the
analysis of the proposed algorithms, based on some line-graph properties. Fi-
nally, Section 4 presents an evaluation of these algorithms based on experiments
on generated graphs.

2 Network modeling and problem formulation

In this paper, we consider the graph theory definitions and notations from [2].
We consider an electrical network modeled by a DAG H = (V,A), in which each
vertex with incoming (resp. outgoing) degree equal to zero is a source of energy
(resp. final consumer of energy). We also consider a matrix µC , obtained from
measurements on links, in which each row or column is associated with an arc of
the DAG. Each element µC [i, j] is a value between 0 and 1 being the correlation
between arc i and arc j in H. Ideally, if these two arcs have one extremity
(indifferently initial or final) in common, the value is close to 1, otherwise it is
close to 0. But as explained in the introduction, some measurement errors may
appear.

Starting from µC and a chosen threshold value S between 0 and 1, we con-
sider the matrix M of the same dimension as µC in which M [i, j] = 1 if and
only if µC [i, j] ≥ S, else M [i, j] = 0.

The line-graph of H is an undirected graph L(H) = (V ′, E), where V ′ = A
and a pair [a, a′] of vertices of L(H) is an edge if and only if a and a′ have a
common extremity node (indifferently initial or final) in H.

Let G = (V,E) be the undirected graph whose M is the adjacency matrix,
considering threshold S. If there is no error in µC [i, j] and if the threshold S is
well chosen, then G is the line-graph of H. We then focus on cases where some
errors may occur in µC and consequently in M .

We say that an undirected graph is a line-graph if and only if it is the line-
graph of a graph, called root graph of the line-graph. The following property
gives a characterization of line-graphs. Recall that a clique in a graphG = (V,E)
is a subset of V inducing a complete subgraph of G [2].

Property 1 [12] A graph G = (V,E) is a line-graph if and only if there is a
set C of cliques in V such that each vertex of V belongs to one or two cliques of
C and each edge of E belongs to the complete subgraph induced by one and only
one clique in C.

A line-coverage of a line-graph G is a set of cliques satisfying Property 1.
In our context, if there exists a line-coverage of G then we assume that G is
the exact line-graph of H (note that some errors in the adjacency matrix of a



136 Ehounou et al. Min. the Hamming dist. between a graph and a
line-graph

line-graph could transform it into another line-graph, but we do not consider
such cases here). Otherwise, we want to determine the line-graph LG with the
same set of vertices as G and minimizing a specific edit distance with G, defined
as follows.

Definition 1 Let G and G′ be two graphs with the same set of vertices. The
Hamming distance dH(G,G′) between G and G′ is the Hamming distance
between their two adjacency matrices, i.e., the number of elements having a
different value in each of the two matrices.

We consider the following problem.

Problem Proxi-Line
Data: A graph G = (V,E), an integer k.
Question: Does there exist a line-graph LG = (V,LE) with same set of vertices
than G such that dH(G,LG) ≤ k?

We conjecture that Problem Proxi-Line is NP-complete. This problem gener-
alizes one of the problems defined about hereditary graph properties on induced
subgraphs (to be a line-graph is such a property) and proved to be NP-complete
in [17]: given a graph G and an integer k, does there exist a line-graph LG that
is a spanning subgraph of G and such that dH(G,LG) ≤ k (i.e., Problem Proxi-
line in which only edge deletion is allowed). The NP-completeness proof given
in [17] uses a polynomial reduction from the NP-complete Hamiltonian path
problem. An integer programming solution for this problem has been given
in [8]. We prove here the following complexity property concerning Problem
Proxi-line in which only edge addition is allowed.

Theorem 1 Given a connected graph G and an integer k, the problem of know-
ing if there exists a line-graph LG such that G is a spanning subgraph of LG and
such that dH(G,LG) ≤ k is NP-complete.

Proof:
Determining whether a graph is a line-graph or not is a polynomial problem

[12]. Consequently, the target problem is in NP.
We now show a reduction from 3-SAT: considering a CNF-formula ϕ with n

variables {x1, x2, . . . , xn} and m clauses {C1, C2, . . . , Cm} containing 3 literals
each, is there a truth assignment of the variables satisfying ϕ?

Let I = ({x1, x2, . . . , xn}, {C1, C2, . . . , Cm}) be an instance of 3-SAT. We
build an instance J = (G = (V,E), k) of Problem Proxi-Line restricted to edge
addition only from I.

We set k = (4mn + nm(m + 3) + 12m + 6m)2. This reduction contains a
gadget for each variable and a gadget for each clause.

For each variable xi, we add a cliqueAxi with 4m nodes: {xji , x̄ij , x
j?
i , x̄i

j?, j ∈
J1;mK}. For each clause Cj containing the literal xi, we add a clique Bjxi

con-

taining m + 3 nodes: the node xji from the clique Axi , two nodes oj1xi
and oj2xi
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and a set of m nodes {pjj′xi
, j′ ∈ J1;mK}. We similarly create a clique Bjx̄i

for
each clause Cj containing the literal x̄i. Finally, for each variable xi and each
couple of clauses Cj and Cj′ such that the first one contains xi and the second

one contains x̄i, we build a clique of size k + 1 containing the two nodes pjj
′

xi

from the clique Bjxi
and pj

′j
x̄i

from the clique Bj
′

x̄i
and k − 1 new nodes. This

first gadget is illustrated on Figure 1.
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Figure 1: This graph is the gadget associated with the variable x1 in the fol-
lowing 3-SAT instance: ϕ = (x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x̄2 ∨ x3)∧ (x1 ∨ x̄2 ∨ x̄3). For
readability, the edges of the cliques are not drawn. The thick curved edges are
the cliques with k + 1 nodes.

A second gadget is built for each clause Cj = (l1 ∨ l2 ∨ l3). We add 3 cliques
C12
j , C13

j and C23
j , each one contains four nodes: C12

j contains the two nodes

oj1l1 from Bjl1 and oj2l2 from Bjl2 , and two new nodes q121
j and q122

j . We similarly

create the cliques C13
j and C23

j . We then add three cliques of size k+1, the first

one contains q121
j and q132

j , the second one contains q131
j and q232

j and the third

one contains q231
j and q122

j , each clique is completed with k − 1 new nodes.

We then add a single clique Dj with 6 nodes: the nodes lj1, lj2 and lj3 from

the cliques Ali or Al̄i and three new nodes rj1, rj2 and rj3. We finally build three

cliques of size k+ 1 containing lj?i , rji and k− 1 new nodes for each i ∈ {1, 2, 3}.
This second gadget is illustrated on Figure 2.

We first explain what should a solution of the instance J looks like. Only
the nodes xji (resp. x̄i

j) such that the corresponding literal is in the clause Cj



138 Ehounou et al. Min. the Hamming dist. between a graph and a
line-graph

x̄1
2x̄1

2?

r2
1

x̄2
2x̄2

2?

r2
2

x2
3x2?

3

r2
3

o22
x̄1

o21
x̄1

o22
x̄2

o21
x̄2

o22
x3

o21
x3

q121
2

q132
2

q231
2

q122
2

q131
2

q232
2

Ax1

Ax2

Ax3

D2

B2
x̄1

B2
x̄2

B2
x3

C12
2

C23
2

C13
2

Figure 2: This graph is the gadget associated with the second clause C2 in the
following 3-SAT instance: ϕ = (x1∨x2∨x3)∧ (x̄1∨ x̄2∨x3)∧ (x1∨ x̄2∨ x̄3). For
readability, the edges of the cliques are not drawn. The thick edges are cliques
with k + 1 nodes including the two nodes at the extremities.

are contained in three cliques in G: the cliques Axi
, Bjxi

(resp. Bjx̄i
) and Dj .

By Property 1, every node should be covered by at most two cliques. As we can
only add edges to build LG, the only way to satisfy the property is to merge at
least two of the three cliques into a bigger clique by adding the missing edges.
Indeed, not doing this would leave at least three disconnected neighbors of xji
(resp. x̄i

j), and thus no way to cover this node with at most two cliques. If C
and C ′ are two cliques, we write C × C ′ the clique obtained by adding all the
edges between the nodes of C and the nodes of C ′.

However, assuming xi is the first literal of Cj , the nodes xj?i from Axi
and

rj1 from Dj belong to the same clique of size k + 1. Let F be that clique. If we
decide to merge the cliques Axi

and Dj into a single clique Axi
×Dj , we would

obtain a graph where the cliques F and Axi
×Dj cover the same edge (xj?i , r

j
1).

However, by Property 1, each edge should be covered by only one clique. Those
cliques must then be merged too. But, if LG contains the clique F ×Axi ×Dj ,
then dH(G,LG) ≥ k + 1. As a consequence, the cliques Axi and Dj are not
merged in a solution of J . Thus, to obtain LG, we can either merge Bjxi

with
Axi

or with Dj .

Similarly, it is not possible to merge a clique Bjxi
with a clique Bj

′

x̄i
as those

cliques intersect a same clique with k + 1 nodes too. Consequently, we cannot

merge Bjxi
with Axi

and merge Bj
′

x̄i
with Axi

. It is then possible to decide
which variable is true: for each variable xi, we set xi to true if and only if Bjxi

is merged with Axi
for some j.
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This is where the clauses Dj , C
12
j , C

13
j and C23

j intervene. Let Cj = (l1 ∨
l2 ∨ l3) be a clause. We assume that we merge the three cliques Bjl1 , Bjl2 and

Bjl3 with Dj , which would mean that the clause is not satisfied. By doing this,

we get a clique containing oj1li and oj2li for each i ∈ J1; 3K. All those couples of

nodes are contained in the cliques C12
j , C13

j and C23
j , therefore we also have to

merge the super-clique Bjl1 × B
j
l2
× Bjl3 × Dj with those three cliques. As the

cliques C12
j , C13

j and C23
j intersect the same cliques of size k+ 1 with the nodes

q121
j , q122

j , . . . , q232
j , this would lead to a graph LG with dH(G,LG) ≥ k + 1.

Consequently, for every clause, it is not possible to merge the three cliques Bjl1 ,

Bjl2 and Bjl3 with Dj

Therefore, if there exists a line-graph LG such that G is a spanning subgraph
of G and dH(G,LG) ≤ k, the two previous paragraphs prove we can build a
truth assignment of the formula.

We now assume ϕ can be satisfied. For every true variable xi, we merge the

cliques Bjxi
with Axi

for all j such that xi appears in Cj and all cliques Bj
′

x̄i

with Dj′ . We similarly act with every false variable xi by merging Bjx̄i
with Axi

and Bj
′

xi
with Dj′ .

First, no two cliques Bjxi
and Bj

′

x̄i
are merged with Axi . Secondly, for each

clause Cj = (l1 ∨ l2 ∨ l3) the three cliques Bjli , B
j
l2

and Bjl3 are not all together
merged with Dj . We are then not in the case mentioned above, there is no need
to merge more than one of the cliques C12

j , C13
j or C23

j with Dj . We then get a
line-graph where no clique of size k+ 1 is merged with another clique. As there
are at most 4mn+nm(m+ 3) + 12m+ 6m =

√
k nodes in the rest of the graph,

we add at most k edges. Thus LG is a connected line-graph such that G is a
spanning subgraph of LG and dH(G,LG) ≤ k. This concludes the proof of the
theorem.

QED

Knowing that Problem Proxiline is NP-complete when only the addition of
edges or the deletion of edges is allowed does not imply that it remains NP-
complete when the addition and deletion are simultaneously authorized, since
these two operations could complement each other and thus make the problem
polynomial. However, we conjecture that the problem remains NP-complete in
this case.

3 Solving Proxi-Line problem

In this section, we describe and analyze two algorithms to be consecutively used
to provide a line-graph LG from an input graph G with dH(G,LG) as small as
possible. These algorithms are in particular based on some specific line-graph
properties we first focus on.
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3.1 Line-graph properties

The first proposed algorithm consists in trying to obtain a line-coverage of the
input graph G to determine a root graph, if G is a line-graph. Except for the
complete graph K3, it has been shown that each connected line-graph has only
one root graph, up to an isomorphism [16]. Such an isomorphism corresponds to
different possible line-coverages for a same line-graph. As a direct consequence
of the proof given in [16], the line-graphs admitting different line-coverages are
the ones given in Figure 3. Such a graph is here called an ambiguity.

Given a graph G = (V,E), we denote G[V ′] the subgraph of G induced by
a subset V ′ of V (see [2]). A node u such that {u} ∪ ΓG(u) (with ΓG(u) the
neighborhood of u in G) can be covered by two cliques in two different ways is
called an ambiguity-anchor. Note that in each ambiguity given in Figure 3
each vertex is an ambiguity-anchor. Some different line-coverages of some such
line-graphs are given in Figure 4.

A

B

C

A

B

C

D A

B

C

DE

A

B

C

D

E

F

Figure 3: Graphs with two possible line-coverages.

If a vertex u in a line-graph G is an ambiguity-anchor, either G is isomorphic
to an ambiguity in Figure 3, or only one of the two possible partitions of {u} ∪
ΓG(u) in two cliques allows a line-coverage of G.

Let G be a graph and u a vertex in G. A partition of ΓG(u) in two cliques
Cu1, Cu2 is consistent if and only if each vertex v of Cu1 (resp. Cu2) has at
most one neighbor in Cu2 (resp. Cu1). We can conclude the following property
from these definitions and the results of [16] with reference to Figure 3.

Lemma 1 Let G be a line-graph, u a vertex in G and a consistent partition
of {u} ∪ ΓG(v) in two cliques Cu1, Cu2. If the cardinality of one of these two
cliques is greater than or equal to 4, then this consistent partition is unique.

In all the following, we consider that G is not isomorphic to a graph of Figure
3 (this can easily be verified).

3.2 Heuristics to solve Proxi-Line problem on small de-
gree graphs

In this section, we are interested in the minimization problem associated with
Proxi-Line, i.e., given a graph G the determination of the minimum Hamming
distance between G and a line-graph LG with same vertex-set. We consider
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Case 1: one clique of size 3
or 3 cliques of size 2.
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Case 2: two cliques of size 2
and one of size 3.

a b

cd

x
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cd
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Case 3: two cliques of size 2
and two cliques of size 3.

Figure 4: Ambiguities with possible line-coverages represented by solid, thick,
dashed, and dashed thick cliques; nodes ”x” are chosen ambiguity-anchors.

here a graph with small bounded degrees, which corresponds to most electrical
distribution networks.

In order to deal with this problem, we consider an approach consisting in
the execution of two consecutive algorithms: a covering algorithm, trying to
obtain a line-coverage of the target graph, and, if it fails, a correction algorithm
that adds and deletes edges in the target graph to obtain a line-graph. After
the first algorithm proposed in [12] to determine if a given graph is a line-graph
some other algorithms with linear complexity have also been defined (see [13]
and references). In our context if G is not a line-graph, the goal of the covering
algorithm is to cover as much as possible edges and vertices of G with cliques
respecting Property 1, to minimize as far as possible the number of edges to be
added or removed by the correction algorithm.

3.2.1 Covering algorithm

Given graph G = (V,E), the following algorithm aims to determine a line-
coverage if it exists, i.e., if G is a line-graph. If not, the algorithm will cover as
much as possible vertices of G with one or two cliques, with each edge contained
in at most one such clique.

In this algorithm, each vertex v ∈ V is associated to an evolving status
Cliq(v) initialized to 0. This function gives the state of each vertex during the
execution of the algorithm: Cliq(v) = 0 says that v has not been considered yet,
Cliq(v) = 1 says that v is contained in one clique (i.e., this clique contains v and
all its neighbors), Cliq(v) = 2 says that v is contained in two cliques (obtaining
together all its neighbors), Cliq(v) = 3 says that v is contained in one clique
and has still some neighbors not contained in cliques, and Cliq(v) = −1 says
that the algorithm cannot cover v by only one or two cliques.

We execute Algorithm 1 on an input graph G not in those of Figure 3. An
example of such an execution is given in Figure 5.

Note that, if G is a line-graph not isomorphic to an ambiguity, the vertex
u chosen between Lines 3 and 11 of Algorithm 1 exists at each step of the
execution. Then any such choice leads to a unique correct consistent partition,
since there is only one possible line-coverage of G. We can indeed show by
induction on the set of vertices that at each stage, there is a vertex
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Algorithm 1 The covering algorithm

1: C ← ∅
2: loop
3: U0 ← the set of vertices u such that Cliq(u) = 0 and u is not an

ambiguity-anchor
4: U3 ← the set of vertices u such that Cliq(u) = 3
5: if U0 6= ∅ then
6: Choose any vertex u in U0

7: else if U3 6= ∅ then
8: Choose any vertex u in U3

9: else
10: Set Cliq(u)← −1 for every vertex u with Cliq(u) = 0
11: Quit the loop
12: if {u} ∪ ΓG(u) can be covered by two cliques C1 and C2 with C1 being

maximal and C1 and C2 being consistent if C2 is not empty then
13: if Cliq(u) = 3 and C2 6= ∅ then
14: Cliq(u)← −1
15: else
16: { Checking the neighbors of u in the two cliques }
17: for each w neighbor of u do
18: if there exists a neighbor of w not in C1 ∪ C2 then
19: if Cliq(w) = 3 then Cliq(w)← −1
20: else if Cliq(w) = 0 then Cliq(w)← 3
21: else
22: if Cliq(w) = 3 then Cliq(w)← 2
23: else if Cliq(w) = 0 then Cliq(w)← 1
24: { Updating the status of u }
25: if Cliq(u) = 0 and C2 is empty then Cliq(u)← 1
26: else Cliq(u)← 2
27: { Removing the two cliques from G }
28: Remove each edge in E between two vertices in C1 and two

vertices in C2

29: Add C1 and C2 (if not empty) to C
30: else
31: Cliq(u)← −1
32: return C

• not contained in any clique and such that its remaining neighborhood can
be covered by one or two new cliques (Cliq(v) = 0, see steps 1 and 2 in
Figure 5),

• contained in a clique already in C and such that its remaining non covered
neighborhood can be covered by a new clique (Cliq(v) = 3, see steps 3
and 4 in Figure 5).

Thus, if the initial graph G is a line-graph then the covering algorithm deter-
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mines a line-coverage.
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Steps 5, 6 and 7

Figure 5: Steps of execution of the covering algorithm on a graph. For each
vertex v the value of Cliq(v) is given. At each step, the selected vertex v is
designated by an arrow. Each dashed, thick and/or double edge corresponds to
a clique C1 or C2 added to C in Algorithm 1

If the input graph G is not a line-graph, then at some step there is a vertex
such that it is not possible to cover it by two cliques, or there are two ways to
cover it by two cliques. In this last case, we arbitrarily choose one of these two
coverings (this will only impact the correction algorithm). Note that we do the
same if G is not connected, even if some connected components are isomorphic
to a graph in Figure 3, since the final target line-graph to be obtained has to
be connected.

Concerning the complexity, searching all maximal cliques in the subgraph is
usually a complex problem, solved in [7] in time O(n∆(G)3∆(G)/3), but in our
context, we just need to determine for each vertex v in G if v can be contained
in one or two cliques. This can be done with complexity O(∆(G)2) (i.e., by
determining if the chromatic number of the complementary graph is 1 or 2).
Thus the complexity of the covering algorithm is at worst O(n ×∆(G)2) with
n the number of vertices. Recall that the algorithm of [12] has a complexity in
O(n×∆(G)), but if the graph is not a line-graph, it does not provide a partial
line-coverage.

3.2.2 Correction algorithm

If the initial graph G = (V,E) is not a line-graph, the covering algorithm pro-
vides a partial line-coverage C. In this case, we denote by Z the set of vertices
v such that Cliq(v) = −1 and then we execute the correction algorithm given
in this section. In the example of Figure 5, even though there is a vertex v such
that Cliq(v) = −1, each edge is covered by a clique; this is not always the case.
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Thus if not, for each edge [u, v] of G not covered by a clique in C, we add the
set {u, v} in C (but u and v stay in Z).

Let z be a vertex in Z. For each such a vertex z the objective of the correc-
tion algorithm is to add and delete edges such that z can then be contained in
one or two cliques, without loosing this same property for each vertex v not in Z.

We consider first two types of cliques in C related to the correction of a
vertex z ∈ Z.

• A local clique of z is a clique in C containing z; we denote C(z) the set
of such cliques.

• A neighbored clique of z is a clique c ∈ C − C(z) such that there exists
at least two local cliques c1 and c2 of C(z) with |c∩c1| = 1 and |c∩c2| = 1.
We denote by N (z) the set of neighbored cliques of z.

z1
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3 4

5

6

78

9

10

11

C4

C0

C5

C6

C3C2

C1

(a)

z1

2

3 4

5

6

78

9

10

11

(b)

Figure 6: (a) An example of local and neighbored cliques of a node z and (b)
an example of compression, with π1 the dashed rectangle, π2 the solid one and
πs = {10}. A correction is done by adding the thick (dashed and solid) edges
and by removing the dotted edge.

In the example of Figure 6(a), the set C(z) contains the cliques C0, C2,
C3, C4 and C5; the set N (z) contains C1 and C6. Indeed, C1 has a common
vertex with C0 and another with C2, and C6 has a common vertex with C4
and another with C5.

The purpose of the algorithm is to replace some cliques in C(z)
⋃
N (z) by a

unique clique (by adding the missing edges in the graph), or to remove the edges
linking z to all the vertices in some local cliques. For this purpose, we define a
property for a subset of cliques to determine whether or not those cliques can
merged into one super-clique.

Definition 2 A subset of cliques S ⊆ C(z) ∪ N (z) is extensible for z if and
only if for each edge [u, v] in the graph such that u and v are in two different
cliques in S, set {u, v} is a clique in C or {u, v} is a subset of a clique in S.
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Applying an extension from such an extensible set of cliques S consists in
adding the union of these cliques to C, in removing from C any clique covered
by this union, and in adding in G the missing edges between pairs of vertices
in this union. We thus obtain a new clique in G. In the example of Figure 6(a)
the subset {C4, C5} is not extensible because the edge [8, 10] is neither a clique
of C (it is strictly included in C6) nor covered by C4 or C5, but the subset
{C4, C5, C6} is extensible.

The set C obtained after such an extension is still a partial line-coverage of
the modified graph since by Definition 2, each edge of this graph is still covered
by at most one clique. Moreover, each vertex initially contained in one or two
cliques still has this property.

By using only extensible sets, we do not take advantage of edge deletions.
We now define a second concept to correct a node using addition and deletion
of edges at the same time.

Definition 3 A compression of z as a triple (π1, π2, πS) where

• π1 and π2 are the vertex sets of two extensible sets Sπ1
and Sπ2

in C(z)∪
N (z)

• π1 and π2 cannot simultaneously be equal to {z} and π1 ∩ π2 = {z},

• πS is the subset of neighbors of z not in π1 ∪ π2,

• the set of edges {[u, z] ∈ E : u ∈ πS} is not disconnecting G after applying
extensions of Sπ1 and Sπ2 .

In the example of Figure 6(b), the considered compression is π1 = C0∪C1∪
C2, π2 = C3 ∪ C4 and πS = {10}.

Note that there always exists such a compression. Let {CC1, . . . , CCp} be
the p connected components in G/z, the graph obtained by removing z from G,
and, for any 1 ≤ i ≤ p, let Ci ∈ C(z) be a clique in CCi. Then since there is no
edge between two different cliques Ci and Cj , with i 6= j, the set {C1, . . . , Cp}
is extensible. Consider π1 =

⋃
1≤i≤p

Ci, π2 = {z} and πS be the subset of vertices

in ΓG(z) not in π1. Then (π1, π2, πS) is a compression. Indeed, consider v ∈ πS
and let CCv be the connected component of G/z containing v; then for each
vertex v′ in CCv, there exists a chain between v and v′ in G/z. Thus, removing
the edge between z and v does not disconnect G.

Applying such a compression T = (π1, π2, πS) consists in applying extensions
from Sπ1

and Sπ2
and deleting all edges [z, x] with x ∈ πS . More precisely, it

consists in

1. Adding to E edges [u, v] such that u and v are not adjacent vertices in π1

(resp. π2) ,

2. Removing from E all edges [z, v] with v ∈ πS ,
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3. Deleting all cliques covered by π1 and the ones covered by π2 in C, and
adding π1 and π2 in C,

4. Assigning Cliq(z) to 1 (if π1 or π2 = {z}, meaning that z is now contained
in one clique in C) or 2 (meaning that z is contained in two non empty
cliques π1 and π2).

Note that, by definition, for each vertex x ∈ πS , the vertices in the clique
of C(z) containing z and x is a subset of {z} ∪ πS . Then after applying the
compression T , each vertex in πS initially contained in one or two cliques still
has this property. In addition, the vertex z is contained in one or two cliques
in C: it is corrected. The cost c(T ) of a compression T = (π1, π2, πS) is the
number of edges added and removed when applying extensions from Sπ1

and
Sπ2

and deleting edges related to πS . More precisely,

c(T ) = |{{u, v} ⊆ π1 : [u, v] 6∈ E}| + |{{u, v} ⊆ π2 : [u, v] 6∈ E}| + |v ∈ πS |

The compression given in Figure 6 (b) has cost 10, i.e., the number of thick
(dashed or solid) edges plus the dotted removed edge [10, z].

Thus, the correction algorithm is the following: while there exists a vertex z
such that Cliq(z) = −1, choose a compression T = (π1, π2, πS) for z such that
c(T ) is minimum, and apply it. Note that the correction of such a vertex z could
also imply the correction of some other vertices z′ such that Cliq(z′) = −1, i.e.,
the optimal compression for them will have then cost zero.

In terms of complexity, the correction algorithm treats each vertex of the
graph at most once. Furthermore |C(z)| ≤ ∆(G), |N (z)| ≤ ∆(G)/2 and the
cardinal of each of these cliques is less or equal to ∆(G), the maximum degree
of a vertex in G. In the worst case, the algorithm must check if each subset
of N (z) ∪ C(z) is extensible. Thus, the complexity of computing a minimum
cost compression is less than O(2∆(G) × ∆(G)4). Note that this upper bound
is rarely reached in practice, as we will see in the next section; for example,
the number of cliques |C(z)| and the average size of these cliques are inversely
proportional, thus they can not simultaneously reach their respective upper
bounds. Moreover, in theory, the maximum degree of the graph could increase
after each correction, but here again in practice, this maximum degree does not
really increase, in particular when the final obtained hamming distance with the
initial graph is low. Thus, this algorithm is realistic for corrupted line-graphs
of distribution network since corresponding graphs have usually a small degree.

4 Performance evaluation

We evaluate the performances of the covering and correction algorithms by con-
sidering randomly generated graphs. To do this, we first generate 500 undirected
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connected graphs H with 25 vertices and a probability 1
5 for an edge to occur

between each pair of vertices. Note that if the obtained graph is not connected,
we also randomly add some edges between the connected components to connect
them. The finally obtained graphs have thus an average degree near to 5 (recall
that we focus on small degree graphs). Given such a graph H, we consider L(H)
the line-graph of H, with ML(H) its adjacency matrix.

We randomly choose and modify k elements of ML(H), where k ≥ 0 is a
parameter of the experimentation. For each element, we first decide with prob-
ability 1

2 if we pick a zero or a one in the matrix, then we pick it uniformly

among all the possible elements (in other words, we choose on average k
2 zeros

and k
2 ones in the matrix). We then replace the value x of each such chosen

element with 1 − x, which corresponds to the addition or removal of k edges
in L(H). Let G be the obtained graph; then dH(L(H), G) = k. Note that, if
k > 0, G can be a line-graph but not the line-graph of H. We will evaluate
the performances of each algorithm in terms of the number of corrections as a
function of k.

For each generated graph H and each tested value of k, we consider 5 mod-
ified graphs G from L(H). On each one we then execute consecutively the
covering and correction algorithms. Note that at each execution step of the
correction algorithm, the vertex z is chosen in Z in a uniform random manner
(the choice of a vertex z minimizing the cost having proved experimentally less
effective on average). Thus for each k we consider 500 × 5 executions of the
algorithms.

H L(H)

LGG

(Linegraphs)

dCH,k

k

dHH,k

Figure 7: Graphs and process of the performance evaluation

Let LG be the line-graph obtained from each G after the execution of the
covering then correcting algorithms (see Figure 7). We consider dCH,k the
average of the five measured distances dH(G,LG) corresponding to the five
modified graphs G from each L(H) and dHH,k the average of the five measured
distances dH(L(H), LG), for each G and each k. Thus, ideally if dCH,k = k
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then dHH,k = 0; note that if dCH,k < k for some G then it means that the
algorithms have found a line-graph LG different from L(H) with less than k
corrections of edges. To evaluate the correlation between these two parameters
dCH,k and dHH,k, we also consider a coefficient measuring the proportion of the
k edges initially added or removed in LG that the algorithm corrects compared
to the total number of edges it adds or removes. More precisely,

corrH,k =
|dHH,k − |dCH,k − k||

dCH,k + k

Thus, the more the correction algorithm corrects the k initial modifications in
ML(H), the more the coefficient tends to zero. Indeed, if the correction algorithm
does not correct any of these k initial modifications then the Hamming distance
between LG and L(H) is dCH,k + k (recall that dHH,k ≤ dCH,k + k). Likewise,
the closer both the correction number dCH,k and the number of corrected initial
modifications are to k, the closer |dHH,k − |dCH,k − k|| is to zero.

Figure 8: Distributions for k ∈ {2, 5, 10}.
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Figure 9: Distributions for k ∈ {20, 40}.

Figures 8 and 9 show the distributions of the values of dCH,k, dHH,k, cu-
mulative dHH,k and corrH,k respectively, for k ∈ {2, 5, 10, 20, 40}. The dash
red lines represent the values of k and the yellow dash lines the average of the
considered values.

For k = 1 and for each tested graph H we have dCH,1 = 1 and dHH,1 = 0
(i.e., LG is L(H)). When k ≥ 2 the results given in Figure 8 show that for
small values of k, the algorithms determine Hamming distances that are mostly
equal or very close to the minimum value, correcting the k initial modifications.
Indeed for k < 10 the results show a difference between dCH,k and dHH,k which
shows that the corrections made by the algorithms tend to bring LG closer to
L(H). This is no longer the case when k increases. This can be simply explained
by the fact that the closest line-graph is not L(H) anymore. The two averages
of the values of dCH,k and dHH,k are similar (close to 2k) and the shape of the
cumulative correlation curves stabilizes. In fact, it can be seen that the larger
k is, the lower the proportion of corrections made by the algorithms among
the initial modifications of k are, but the link is almost linearly. Note that, if
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dHH,k is the average value 2k and if none of the modified edges/non-edges were
repaired, then dCH,k = k which means that the correction algorithm may have
found a solution close to the optimal solution and that this optimal solution is
not L(H). We also found that the lower the average size of cliques given by
the covering algorithm (between 2 and 3) is, the larger Z and the higher the
average value of dHH,k are.

Moreover as also shows Figure 10(b), when k increases, the ratios between
the average value of dHH,k and k is less than 3 for each k ∈ {1, 5, 10, 20, 40}, in
particular less than 2 for k = 40 (remember that the number of edges of each
generated line-graph is on average equal to 310, so that k = 40 corresponds to
10% of edge modifications). Similarly, if the average correlation increases only
slowly over 0.3 when k increases.

These experiments show that for small degree graphs, the performances of
the algorithms proposed are effective for the resolution of the Proxiline problem
for small values of k and that these performances deteriorate slowly when k
increases; these results thus show the relevance of a needed study of possible
approximation properties of the Proxiline problem for bounded degree graphs.

Figure 10: (a) Distribution of the 500 average execution times of the algorithms
(one for each graph H) in increasing order, for the different values of k. (b) For
each value of k, the average value of dHG,k divided by k.

Figure 10(a) also shows that the execution times of the algorithms are quite
homogeneous and reasonable for most of the graphs tested, and that the average
execution time increases slowly when k increases. Note that these experiments
took about a day to run on a personal computer, which shows that the proposed
algorithms can be used for realistic network topologies. Moreover, the longer
the execution time that a graph requires, the greater the number of cliques
covering it after execution of the correction algorithm is, and the smaller these
cliques are. So unsurprisingly, the higher dCH,k and dHH,k are, the longer the
running time is, as shown in Table 1 for six graphs H and k = 2. Note finally
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that for only one graph among the 500 considered, the running time is excep-
tionally long (2000 seconds for k = 20); the topology of the graph causes the
correction algorithm to correct a large number of small cliques, but the value
dCH,k obtained is not exceptionally large. Such cases seem rare.

Table 1: Average execution times, dCH,k, dHH,k and number of edges for 5
graphs H and k = 2

dCH,k dHH,k Number df edges Runtime (s)

139 141 434 7.507

245 247 434 7.773

326 328 461 25.613

336 338 475 27.57

384 386 410 144.02

369 371 394 137.044

Some other experiments have shown that executing again the covering al-
gorithm after each correction phase on a vertex in Z does not improve the
performances. Moreover, similar experiments have been done considering no
more the number of the edges for the cost of a compression but the sum of the
corresponding correlation values, for real data of measurements within Data
Centers. The behavior of the algorithms remained similar to those described in
this article [6].

5 Conclusion

The contributions of this article have a dual purpose. First, to propose an ef-
fective heuristic approach to solving the Proxiline problem, for which we have
shown a new complexity result. Then, to evaluate the impact of the heuris-
tic resolution of this problem for the problem of discovering the topology of
an electrical distribution network with measurement errors. We have proposed
an approach consisting of executing two algorithms consecutively, an approach
which is relatively effective for small degree graphs. Experiments show that
these algorithms achieve good performance in solving the Proxiline problem.
These experiments also show that this resolution only makes it possible to re-
spond to the problem of discovering topologies only for a very small number of
correlation errors. On this second point, it is therefore interesting to determine
to what extent partial knowledge of the topology would improve the quality of
this discovery. Another improvement could be to search for the list of p-closest
line-graphs instead of the optimal one and to let an expert decide if the topol-
ogy matches one of them. Finally, even if the complexity of our approach is
due to the correction algorithm, it could be interesting to determine a covering
algorithm with linear complexity trying to cover as many vertices as possible.
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