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Efficient Algorithm for Box Folding
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Abstract

For a given polygon P and a polyhedron Q, the folding problem asks
if Q can be obtained from P by folding it. This simple problem is quite
complicated, and there is no known efficient algorithm that solves this
problem in general. In this paper, we focus on the case that Q is a box,
and the size of Q is not given. That is, input of the box folding problem
is a polygon P , and it asks if P can fold to boxes of certain sizes. We note
that there exist an infinite number of polygons P that can fold into three
boxes of different sizes. In this paper, we give a pseudo polynomial time
algorithm that computes all possible ways of folding of P to boxes.
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1 Introduction

In 1525, the German painter Albrecht Dürer published his masterwork on geom-
etry [7], whose title translates as, “On Teaching Measurement with a Compass
and Straightedge for lines, planes, and whole bodies.” In the book, he presented
each polyhedron by drawing a net for it: an unfolding of the surface to a planar
layout. To this day, it remains an important open problem whether every con-
vex polyhedron has a (non-overlapping) net by cut along edges. When we allow
to cut not only along edges, this problem is settled only for tetramonohedron,
which is a kind of tetrahedron: any net of a tetramonohedron is characterized
by a (non-overlapping) tiling [3].

To understand unfolding, it is interesting to look at the inverse: one folding
problem asks what polyhedra can be folded from a given polygonal sheet of
paper. For example, the Latin cross, which is one of eleven nets of a cube, can
form 23 different convex polyhedra (including doubly covered convex polygons)
by 85 distinct ways of folding (and an infinite number of doubly covered concave
polygons). Comprehensive surveys of folding and unfolding can be found in [6].
Recently, Abel et al. investigated the folding problem of bumpy pyramids [1]:
For a given petal polygon P (convex n-gon B with n triangular petals), it asks
if we can fold to a pyramid (with flat base B) or a convex bumpy pyramid by
folding along a certain triangulation of B. In [1], they gave nontrivial linear
time algorithms for the problem.

Let us elaborate on this and its related results. Alexandrov’s Theorem states
that every metric with the global topology, and local geometry required of a
convex polyhedron is, in fact, the intrinsic metric of some convex polyhedron.
Thus, if P is a net of a convex polyhedron, the shape is uniquely determined.
Alexandrov’s Theorem was stated in 1942, and a constructive proof was given
by Bobenko and Izmestiev in 2008 [4]. A pseudo-polynomial time algorithm
for Alexandrov’s Theorem was given by Kane, Price, and Demaine in 2009
[9]. However, it runs in O(n456.5r1891/ε121) time, where r is the ratio of the
largest and smallest distances between vertices, and ε is the coordinate relative
accuracy. The exponents in the time bound of the result are remarkably huge.
As far as the authors know, the results for the bumpy pyramids are the first
efficient algorithms for Alexandrov’s Theorem for a family of nontrivial convex
polyhedra.

In this paper, for a given polygon P , we consider the box folding problem that
asks if P can fold to a box or not. This problem seems to be natural and simple
from the viewpoint of our life. We first note that this problem is motivated by
counterintuitive polygons. In 1999, Biedl et al. found two polygons that can fold
into two different boxes [6, Figure 25.53]. Later, Mitani and Uehara proved that
there exist an infinite number of polygons that can fold into two boxes [10], and
Shirakawa and Uehara proved that there exist an infinite number of polygons
that can fold into three boxes [11]. So far, a polygon that can fold into three
different boxes in four different ways has been found by using a supercomputer
(Figure 1), and it is open that there exists a polygon that can fold into k different
boxes for k > 3 [12].
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Figure 1: A polygon that can fold into three different boxes of sizes 1 × 1 × 7,
1× 3× 3, and
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5 in four different ways [12].

P Q

Figure 2: A geometric parameter m that the number of line segments on an edge
of a cube Q. In this example, an edge of Q consists of m = 4 line segments,
however, it can be arbitrarily large if the slope of P is more slanted.

In the previous research, they did not solve the box folding problem in
general form. The results in [6, Figure 25.53] and [11] were obtained without
a computer. In [10], they assume that a polygon P is a polyomino, which is
a union of unit squares sharing on their edges, and they only search the boxes
obtained by folding along the edges of unit squares. In [12], they first obtain the
set of all polyominoes of area 30 that can fold into two boxes of sizes 1× 1× 7
and 1 × 3 × 3 on the similar model in [10]. Then they solved the box folding
problem for the special box of size

√
5×
√

5×
√

5 on these polyominoes. Namely,
it is specialized to this special size (see [12] for the details).

Recently, Horiyama and Mizunashi solved the box folding problem in more
general case with supporting parameters [8]; the input polygon P is a polyomino,
and the size a×b×c of the box Q is also given. Moreover, the matching of edges
(that gives us the gluing of the corresponding edges) of P is also given. In this
case, the box folding problem can be solved in O((n+m) log n) time, where m
is the maximum number of line segments on an edge of the folded box Q. We
here note that this geometric parameter m is independent from the number of
vertices in P and Q. Even in a simple example in Figure 2, m can be arbitrarily
large while P and Q have 10 and 8 vertices, respectively.

In this paper, from both viewpoints of theoretical and practical, we give an
efficient algorithm for the box folding problem in general. That is, the input is
a polygon P with n vertices. Then the output is the set of whole boxes Q folded
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Figure 3: Another polygon that can fold into three different boxes of sizes
1× 1× 7, 1× 3× 3, and

√
5×
√

5×
√

5 in four different ways not mentioned in
[12].

from P with distinct ways of folding. The algorithm runs in pseudo-polynomial
time of n and D, where geometric parameter D is the diameter of P .

We show a case study of our algorithm for the nine polyominoes shown in
[12]. In [12], the authors first compute the set of polyominoes that can fold two
boxes of sizes 1× 1× 7 and 1× 3× 3. There are 1080 polyominoes. Then they
solved the box folding problem for the special box of size

√
5×
√

5×
√

5 on these
1080 polyominoes. Finally, they found nine polyominoes that can fold into three
different boxes. We apply our algorithm to this set of nine polyominoes as a
case study. Surprisingly, among them, we have another special polyomino that
can fold into three different boxes in four different ways of folding (Figure 3).
We will discuss the reason why the authors of [12] missed finding it, while we
succeed.

2 Preliminaries

In this section, we first state the box folding problem:

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
Output: A set S = {Q0, Q1, . . . , Qk} of boxes that can be folded from

P

Note that S can be an empty set. Let x(pi) and y(pi) be the x-coordinate
and y-coordinate of a point pi, respectively. We assume that x(pi) and y(pi)
are rational numbers for each i = 0, . . . , n − 1. Then we have the following
observation:

Observation 1 Assume that each x(pi) and y(pi) in P are described by rational
numbers. Let qmin be the least common denominator of them. Scaling up by qmin,
the box folding problem can be solved for P ′ = (p′0, p

′
1, . . . , p

′
n−1, p

′
0) such that

each x(p′i) and y(p′i) in P ′ are integers in [0, pmaxqmin], where pmax is the largest
numerator.

Therefore, hereafter, we assume that each coordinates x(pi) and y(pi) are non-
negative integers without loss of generality. For the polygon P , its diameter
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D is defined by maxi,j |pi − pj | = maxi,j

√
(x(pi)− x(pj))2 + (y(pi)− y(pj))2.

Here we introduce another geometric parameter m that indicates the number
of line segments on an edge of Q. This is independent of the number of vertices
in P and Q. In a simple example in Figure 2, m can be arbitrarily large.

Now, we turn to the definition of a box and its development and net. Let Q
be a convex polyhedron. It is a box if Q consists of three pairs of rectangular
faces. It results that Q has 6 faces, 8 vertices, and 12 edges. At each vertex,
its curvature is 270◦, and at any other point, its curvature is 360◦1. When we
cut Q along a set of polygonal lines, unfold on a plane, and obtain a polygon
P , the set is called a development of Q. We assume that any cut ends at a
point with curvature less than 360◦. Otherwise, it makes a redundant cut on
P , which can be reduced. The development P is called a net of Q if and only if
P is a connected simple polygon without self-overlap or hole. Let T be the set
of cut lines on Q to obtain a net P . Then the following is well known (see [6,
Sec. 22.1.3] for details):

Theorem 1 T forms a spanning tree of the vertices of Q.

In this paper, the following theorem is useful:

Theorem 2 Let Q be a box and P be a net of Q. Then (1) all vertices of Q
appear on the boundary of P , and (2) P has at least two vertices of degree 270◦,
which correspond to two vertices of Q.

Proof: By Theorem 1, the set of cut lines on Q forms a spanning tree T . We
note that each edge of T appears twice on the boundary of P . If a vertex of Q
appears inside of P , P cannot be flat. Therefore, we obtain (1) immediately.
When the vertex v of Q has deg(v) ≥ 2 on T , the vertex will be cut into
deg(v) pieces and spread on the boundary of P . In this case, v appears deg(v)
times, and P has less than 270◦ at these points. Let ` be a leaf of T . Then `
corresponds to a vertex of Q; otherwise, the curvature around ` is 360◦, and it
does not make a boundary of P . Thus around at `, the curvature is 270◦. Since
T has at least two leaves, we have (2). �

As shown in [12, Theorem 2], for any positive integer k, there are a series
of boxes Qi of size ai × bi × ci for i = 1, 2, . . . , k such that all distinct Qi have
the same area. However, once an area is given, we have an upper bound of the
number of such boxes:

Observation 2 Let P be a polygon of area A, and it can fold into some boxes.
Then the number of possible edge lengths of boxes is O(A2/ log logA).

Proof: Let a, b, c be the edge lengths of a box Q of area A with a ≤ b ≤ c. Then
we have 2(ab + bc + ca) = A. Since A is an integer by Observation 1, each of
a, b, c can be represented by i

√
j for some positive integers i and j. By a ≤ b ≤ c

1We do not give the formal definition of curvature. Intuitively, it indicates the total angle
of paper surrounding a vertex by opening the vertex out in our context. See [6, Sec. 21.2] for
further details.
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and 2(ab+ bc+ ca) = A, we have 6a2 ≤ A, which implies the number of possible
a is O(A) since A is an integer, and a is i

√
j for some positive integers i and

j in general. In fact, the number of divisors of A is O(A1/ log logA). Then the
number of possible b is also O(A1/ log logA) since 2b2 ≤ 2(ab+bc+ca) = A. Once
a and b are fixed, c is uniquely determined. Therefore, the number of possible
edge lengths (a, b, c) is O(A2/ log logA). �

3 Algorithm Description

In this section, we describe our algorithm. We first give an outline of the
algorithm, and show the details about proof techniques.

3.1 Outline of Algorithm

The outline of our algorithm is simple:

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
Output: A set S = {Q0, Q1, . . . , Qk} of boxes that can be folded from

P
foreach box Q of size a× b× c such that 2(ab+ bc+ ca) is equal to area
of P do

for i← 0 to n− 1 do
if curvature at pi is 270◦ then

Check if P is a net of Q such that pi is a vertex of Q;
end

end

end

That is, the algorithm checks all possible points pi if it makes 270◦. By
Theorem 2, if Q can be folded from P , there are at least two points that fold to
the vertices of Q. Hereafter, we assume that p0 is the vertex of Q without loss
of generality. This time, for the given P and p0, the algorithm checks if P can
be folded into the box Q. This step is a loop for direction of Q as follows:

1. First, fix the direction of Q on P in an arbitrary way. That is, the algo-
rithm first arbitrarily chooses a direction of Q on P at the vertex p0.

2. Then the algorithm checks if all vertices of Q are on the boundary of P .
This is a necessary condition.

3. If any vertex v of Q is inside of P , the algorithm rotates the direction of
Q clockwise at the center p0 to move v to the boundary of P . Repeat this
rotation until no vertex of Q is inside of P .

4. Check if each vertex of Q makes 270◦ in total.

5. Finally, the algorithm checks these vertices can be glued to fold the box
Q. If they can be glued to the box Q, output it.
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6. The algorithm rotates the direction of Q clockwise to find the next posi-
tion. If the rotation makes 360◦, the algorithm halts.

Intuitively, the algorithm checks all possible positions of P to fold into Q. There
are two major points to be considered. The first point is how to check if P can
fold to Q at the position and direction. In order to check this point, we will use
a technique named “stamping”. The second point is the number of rotations
of Q. We will show that the number of rotations can be bounded above by a
polynomial of n and some geometric parameters.

Hereafter, we assume that p0 of P coincides with a vertex of Q, and it makes
an angle 270◦. Let v0 = p0 be a vertex of Q and v1, v2, v3 be three vertices of
Q adjacent to v0 on Q by three edges (or crease lines) v0v1, v0v2, and v0v3 in
clockwise. Without loss of generality, we assume that |v0v1| = a. Then we have
two cases that either |v0v2| = b and |v0v3| = c or |v0v3| = b and |v0v2| = c.
The algorithm will check these two cases. Here we suppose that |v0v2| = b and
|v0v3| = c since the other case is symmetry. We describe the details of above
two points and show the analysis of the algorithm.

3.2 Stamping

The algorithm first adjusts p0 of P on v0 of Q with the assumption the line
v0v3 is cut. From this position, it rotates the relative position of Q centered
at v0 = p0 to search a proper direction that satisfies the necessary conditions
for the vertices of P and Q. We will show that the number of these rotations
can be bounded by a polynomial of some geometric parameters. Let denote the
angle of rotation by θ = ∠v3p0p1 at p0 = v0. That is, the algorithm starts from
θ = 0◦ and updates θ. When θ ≥ 360◦, it finishes to check.

For a given angle θ, the algorithm has to check whether (1) all vertices of
Q are on the boundary of P , and (2) for each vertex vi of Q, the curvatures
corresponding to the points on the boundary of P sum up to 270◦. In order to
do that, the algorithm has to follow the corresponding points to the vertices of
Q on P .

The basic idea is called stamping in [2]. In [2], Akiyama rolls a regular
tetrahedron on a plane as a stamper and obtains a tiling by the stamping. The
key property of the stamping in [2] is that a regular tetrahedron has the same
direction and position when it returns to the original position, no matter what
the route was. Therefore, the cut lines of any net on the surface of a regular
tetrahedron tile plane, or the net tiles plane.

We use a box Q as a stamper on P . In this case, when the stamper Q returns
to the original position, its face and direction change according to the route.
In fact, it is used for designing puzzles, and its complexity is investigated [5].
However, the key properties we use here are that a box Q is orthogonal, and
each coordinate is an integer, which are useful to bound the number of possible
cases. As used in [2], when we roll Q on an edge e of Q on P , this operation
corresponds to develop Q to P . That is, when we draw the cut lines of Q on Q
and stamp it on the plane, it corresponds to develop Q into the net P .
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Figure 4: Tree structure of P : Each face of the box Q is cut into “particles”.
Then the adjacent relationship of the particles induces a tree on P .
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Figure 5: Rolling a box Q on P . When we roll it left and up, we have B and
C. When we roll it up and right, we have C and B′.

We will use the tree structure of P defined as follows (Figure 4). Each face
of the box Q is cut into “particles” when it is developed to P . In other words,
P is partitioned into particles by the edges of Q (or folding lines of P ). On P ,
the particles correspond to the vertices, and two vertices are joined by an edge
if and only if the corresponding particles share an edge of positive length on Q.
Then since P is a simple polygon and all vertices of Q are on the boundary of
P , the resulting graph induces a tree. Essentially, the algorithm performs the
breadth first search on this tree by rolling the box Q on P , and it obtains the
partition of P into the particles by stamping of Q.

A simple example is given in Figure 5. The stamper Q has six different labels
A, A′, B, B′, C, and C ′. (They are just labels to distinguish with each other,
and we do not mind the direction when it is “stamped” on P .) The stamper
Q starts at the initial position: It is on the face X that contains v0 = p0, and
the corner (90◦) is covered by P without cut. In the case of Figure 5, the initial
position is either on the polygons labeled A or B since the face C of Q is cut
into two pieces on P .

We assume that we have the curvature 270◦ at v0 = p0. Therefore, we always
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have at least two candidates for the initial position (when θ = 0, we have three
candidates). We choose any one as the initial position. In this case, assume
that we choose the face A with v0 = p0 as an initial position and put Q at the
initial position.

Let denote the intersection of P and the face of Q on P by Q∩P . Then, at
the initial position, Q ∩ P gives us the area (⊂ P ) labeled A. When Q is rolled
up and right, Q ∩ P gives us the areas labeled C and B′, respectively. On the
other hand, when Q is rolled (from the initial position) left and up, P ∩Q gives
us the areas labeled B and C, respectively.

Here, this stamping (or labeling ) should be continuous. Precisely, when Q
is rolled on an edge e, the resulting polygons in Q ∩ P obtain their labels only
if they share the edge e with the labeled area before rolling. (In the context of
the tree structure shown in Figure 4, the labeling is done for a polygon in Q∩P
only when it is adjacent to the labeled neighbor.) In the case of Figure 5, when
Q is rolled left from the initial position, the area labeled by B obtains its label
since it shares an edge with the area labeled by A. On the other hand, the area
with label ∗ does not obtain any label this time.

Intuitively, the stamping sweeps over P from the initial position along P .
We repeat rolling from the initial position until all points in P are included in
the labeled polygons. When all points in P are in the labeled polygons2, we say
Q stamps P . We say that the stamping is feasible if no vertex vi of Q is put
inside of P in the stamping. We will consider if P is a net of Q for the current
θ. In this situation, P may be a net of Q only if P is feasible by Theorem 2.

Lemma 1 Assume that Q and θ give us a feasible stamping of P . We also
assume that P is a net of Q. Then, each point in P obtains a unique label
(except on the edges of Q). That is, the stamping gives us a partition of P
along the edges of Q.

Proof: To derive a contradiction, we assume that p ∈ P obtains two labels.
Then there are two different sequences S1 and S2 of rolling of Q to stamp on p.
Without loss of generality, S1 and S2 share up to the same face F0, and then Q
is rolled up on the face F1 in S1 and Q is rolled right on the face F2 in S2. Let
v be the top right corner of F0, which is shared by F1 and F2. If v is inside of
P , the stamping is not feasible. Therefore, v is on the boundary of P . Now we
consider the point q at (x(v) + ε, y(v) + ε) for 0 < ε < 1. Since P is a simple
polygon, q is outside of P .

In this case, the sequences S1 and S2 will share the point p such that q is
outside of P (Figure 6). Then the union of rectangles in S1 and S2 from F0 to
p surrounds the initial position. Therefore, P should contain a hole, or a point
shared by two or more rectangles. The former case contradicts that P is a net
of Q, and the latter case contradicts that P is feasible. Therefore, the stamping
gives us a partition of P . �

2For sake of simplicity, we do not define the labels of points in P on an edge shared by two
rectangles of Q. We also do not define the label of a point p corresponding to the vertex vi of
Q.
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Figure 6: Stamping of Q generates a partition of P .

Lemma 2 Let D be the diameter of P . Then the total number of stampings of
Q on P at the vertex p0 = v0 by the algorithm is O((D/a)6n).

Proof: We first note that the algorithm contains two different steps. First, the
algorithm puts Q at the initial position. If the initial position is feasible, it is
okay. However, in general, we have to seek the first feasible position. After the
first step, we have to seek the next feasible position from the current feasible
position.

In the first step at the initial position, when the stamping is not feasible,
the algorithm first finds a vertex of Q inside of P . This is done from the initial
position by stamping by the breadth first search manner. Let v be the first
vertex of Q inside of P . Then the algorithm finds the first boundary of P by
rotating δ for the smallest rotation angle. Precisely, after rotation of angle δ,
v is moved on the boundary of P . This can be done by computing the locus
of v as a part of the circle centered at v0 with radius |vp0|. After the rotation,
the algorithm checks if it has a feasible stamping for the new angle. If it is not
feasible by some vertex of Q inside of P , the algorithm repeats the process until
there are no such vertices of Q inside of P .

In the second step, now all vertices of Q are on the boundary of P (or
outside of P ). By the stamping, the algorithm also knows the correspondence
between the vertices of Q and the vertices on the boundary of P . Therefore, the
algorithm checks whether each vertex of Q has curvature of 270◦ in total. If all
vertices are of curvature 270◦, the algorithm performs the check of gluing in the
next phase. After checking the gluing, the algorithm has to rotate for finding
the next angle of stamping such that no vertex is inside of P after the rotation
of, say, δ′. We assume that δ′ > 0 and the rotation direction is clockwise. For
each vertex vi on the boundary of P , vi is rotated along the circle centered at
v0 with radius |v0vi|. If the right side of vi on the circle is not inside of P , we do
not take care of it. When it is inside, we define v′i by the rightmost vertex on the
circle such that any other vertex v between vi and v′i is inside of P . Intuitively,
when δ′ is less than the angle ∠viv0v′i, this vertex vi will be inside of P , it is not
a feasible position after rotation. Therefore, δ′ is the maximum angle among
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these vertices on the boundary of P . After rotation of angle δ′, the algorithm
performs the new stamping of Q over P and checks if it is feasible or not. If
it is not, the algorithm performs the first step again. If all vertices are on the
boundary of P , it performs this second step again.

Now we turn to consider the total number of the rotations. We here note
that during the rotation, each vertex v of Q can be put on an edge e of P at
most twice. (It can occur twice only when the circle centered at p0 with radius
|vp0| has two intersection points with the edge e.)

Therefore, the total number of the repeating of these steps can be bounded
above by the summation of the number of intersection points on the circle
centered at p0 with radius |vp0| for each vertex v of the stamping.

We note that the number of the vertices v of a stamping depends on P and θ,
and m. We here show an upper bound of this number. To consider this number,
we switch the role of P and Q. The algorithm rotates the direction of Q, but now
we imagine that the direction of Q is fixed, and the polygon P is fixed. In this
case, we roll Q like a dice on P . Since P is of diameter D, it is enough to roll the
die Q in a square of size D×D. Then the set of vertices of Q forms a subset all
possible points in this square of size D×D. Let p be any of these possible points
in this square. Then its coordinates can be explained as x(p) = k1a+ k2b+ k3c
and y(p) = h1a + h2b + h3c with 0 ≤ x(p) ≤ D and 0 ≤ y(p) ≤ D for some
nonnegative integers k1, k2, k3, h1, h2, h3. Then k1a+k2b+k3c ≤ (k1+k2+k3)a,
which implies k1+k2+k3 ≤ D/a. Therefore, the number of possible x(p) can be
bounded above (D/a)3. By the same argument, the number of possible y(p) is
bounded above by (D/a)3. Thus, the total number of possible points of Q on P
is O((D/a)6). On the other hand, as discussed above, each of these O((D/a)6)
points can be put on one of n edges at most twice for each rotation. Therefore,
the number of rotations in the algorithm is O((D/a)6n) in total. �

We note that the upper bound O((D/a)6) of the number of rotations is
pessimistic. For example, when a = b = c, it is reduced to O((D/a)2).

We also note that each feasible stamping gives us the whole vertices vi of Q
on the boundary of P . Therefore, we can check if each vertex vi has a curvature
270◦ in total in linear time of n. Therefore, after the first phase, we know that
P is partitioned into particles of faces of Q with their corresponding labels, and
each vertex vi has a curvature 270◦ in total.

3.3 Check of gluing

In this phase, we check if we fold to Q by P along the crease lines given in the
first phase3.

Hereafter, we sometimes consider the polygon P = (p0, p1, . . . , pn−1, p0) con-
sists of vectors −−→p0p1,−−→p1p2, . . . ,−−−−→pn−1p0 for the sake of simplicity. Then we can
deal with “gluing of two edges” by an operation of vectors. For example, in

3Some readers may consider the first phase is enough. However, we have not yet checked
if some particles of polygons cause overlap on a face of Q. In other words, we have to check
each face is made by particles of polygons by gluing without overlap or hole.
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Figure 7: Examples of stamping Q along an edge e (gray lines) of P .

Figure 5, we assume that we glue two edges p0p1 and p0pn−1. Then, we have
three cases after gluing:
(1) |p0p1| > |p0pn−1|: We obtain −−−−→pn−1p1 such that |pn−1p1| = |p0p1| − |p0pn−1|.
(2) |p0p1| < |p0pn−1|: We obtain −−−−→pn−1p1 such that |pn−1p1| = |p0pn−1| − |p0p1|.
(3) |p0p1| = |p0pn−1|: We obtain pn−1 = p1.

We here remind that if P is a net of Q, the set of line segments of cut on Q
forms a spanning tree T (Theorem 1). Moreover, each edge of T appears twice
on the boundary of P . Now we know that v0 = p0 is the corner of Q of size
a × b × c, and which line is v0v1 of length a by θ. Therefore, from this point
v0, we can glue edge by edge and check if Q can be folded from v0 by P . The
details of this part can be found in [8], and it can be done in O((n + m) log n)
time, where m is the maximum number of line segments in an edge of Q (Each
line segment corresponds to two adjacent particles of two faces of Q). Now, we
give an upper bound on m.

Lemma 3 Let m be the maximum number of line segments in an edge of Q for
all Q ∈ Q, where Q is the set of boxes of the same surface area with P . Then,
m has an upper bound m = O(Dn), where D is the diameter of P , and n is the
number of vertices of P .

Proof: Suppose that edge L of some Q gives m, i.e., L is divided into m line
segments by the stamping. We can obtain an upper bound on m by counting
the number of crossings of L and the edges of P . An edge e of P may go across
several stamped copies of L. Figure 7 illustrates some examples of e between two
copies of L, where gray lines denote line segments of e, and bold lines denote the
copies of L. The stamped faces are obtained by rolling Q up or right along the
line segments of e. In any case (including the cases not illustrated in Figure 7),
a line segment of e between two copies of L is included in at least four stamped
faces, and its length is at least 1 (the unit length). Since the length of e is
bounded by D, the number of line segments of e divided by the copies of L is
O(D), which means that L and e have O(D) crossings. Therefore, as P has n
edges, L crosses the edges of P at most O(Dn) times. �

3.4 Analysis of algorithm

The correctness of the algorithm follows from the discussion above. Therefore,
we show that the algorithm runs in pseudo-polynomial time.
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Theorem 3 For a given polygon P of n vertices, the algorithm solves the box
folding problem in O(D11n2(D5 + log n)) time, where D is the diameter of P .

Proof: We first consider the main loop. The number of combinations of the
size a× b× c of a box is given by O(A2/ log logA), where A is the area of P . For
each trio (a, b, c) with a ≤ b ≤ c, the main loop checks for each point pi of P of
angle 270◦. There are O(n) such angles in the worst case.

For each pi = v0, the algorithm performs the stamping of Q on P . It is not
difficult to see that it can be done in O(M) time, where M is the number of
rectangles tiled over P to cover it.

Now we turn to the time complexity of the checking of vertices. First, the
algorithm puts a box Q on P so that v0 = p0 and θ = 0. Then it finds the next
feasible stamping if it is not.

The first step is that while there is a vertex of Q inside of P , repeat rotations
until all vertices of Q are on P . Finding the first vertex v inside of P takes
O(Mn) time; the stamping by the breadth first search takes O(M) rollings and
checks if a vertex of the rectangle face is in P takes O(n) time.

Once it finds a position of Q on P such that no vertex is inside of P , the
algorithm computes δ′, which is the maximum angle that needs to move vi not
inside of P for each vi. For each vertex vi, the computation of the corresponding
v′i on the circle centered at v0 of radius |v0vi| takes O(n) time (along the edges
of P ). The number of vertices of vi on the boundary of P is O(M). Therefore,
this step takes O(Mn) time.

Once we find a feasible stamping, we have to check if P can be glued to Q.
This step takes O((n+m) log n) time, where m is the maximum number of line
segments on an edge of the folded box Q by using the algorithm in [8].

Thus, the running time of this algorithm is O(A2/ log logA(Mn)(Mn + (n +
m) log n)) time for each phase. By Lemma 2, the total summation of M is
O((D/a)6). UsingA2/ log logA = O(D4), it is simply thatO(D4(D/a)6((D/a)6n+
(n+m) log n)n) time. Now taking a = 1 and m = O(Dn), we have the theorem.

�

In Theorem 3, we show that our algorithm runs in O(D11n2(D5 + log n))
time. It is much efficient than the pseudo-polynomial time algorithm given by
Kane, Price, and Demaine in 2009 [9], which runs in O(n456.5r1891/ε121) time.
In addition to that, from the practical viewpoint, our algorithm runs efficiently.
In the next section, we show the case study about polyominoes of area 30. We
examined several polyominoes of area 30. In these experiments, 44 ≤ n ≤ 58,
and our program runs in less than one second for each case.

4 Case Study

The authors investigated the case that P is an orthogonal polygon. We can
assume that P is a polyomino made of unit squares by refining, which simplifies
the implementation of the algorithm (the details are omitted). In [12], Xu et
al. found nine polyominoes of area 30 that can fold into three boxes of size
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1 × 1 × 7, 1 × 3 × 3, and
√

5 ×
√

5 ×
√

5. In our case study, n < 60 and
each computation takes less than one second. In [12], the authors said that
“Interestingly, one of nine such polygons folds into three different boxes 1×1×7,
1 × 3 × 3, and

√
5 ×
√

5 ×
√

5 in four different ways.” The polygon with four
different ways of folding is shown in Figure 1.

However, their claim is not correct. There is another polyomino that has
the same property as shown in Figure 3. That is, the precise claim is as follows.
Among polyomino of area 304, there are nine polyominoes that can fold into
three different boxes of these sizes. Among these nine, two polyominoes have
four different ways of folding into three different boxes, and seven polyominoes
have three (unique) different ways of folding into three different boxes.

The reason why the authors of [12] missed finding one is hidden in their
algorithm. Their first algorithm found all polyominoes that folded into two
boxes of sizes 1×1×7 and 1×3×3. There are 1080 polyominoes that fold into
these two boxes. This time, they did not consider how many ways of folding
into two boxes. (Or they never thought that there might have been a polyomino
that could fold into two boxes in three or more different ways.) For these 1080
polyominoes, their second algorithm checked all ways of folding and found nine
polyominoes that fold into the third box of size

√
5×
√

5×
√

5. Since their second
algorithm produced all ways of folding, as serendipity, they found that there was
a polyomino that folded into the box of size

√
5×
√

5×
√

5 in two different ways.
This is why they concluded that only one polyomino had 4 different ways.

4The number of polyomino of area 30 is 2,368,347,037,571,252.
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