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Abstract

Optimization problems consist of either maximizing or minimizing an
objective function. Instead of looking for a maximum solution (resp. min-
imum solution), one can find a minimum maximal solution (resp. max-
imum minimal solution). Such “flipping” of the objective function was
done for many classical optimization problems. For example, Minimum
Vertex Cover becomes Maximum Minimal Vertex Cover, Maxi-
mum Independent Set becomes Minimum Maximal Independent Set
and so on. In this paper, we propose to study the weighted version of Max-
imum Minimal Edge Cover called Upper Edge Cover, a problem having
application in genomic sequence alignment. It is well-known that Mini-
mum Edge Cover is polynomial-time solvable and the ”flipped” version is
NP-hard, but constant approximable. We show that the weighted Upper
Edge Cover is much more difficult than Upper Edge Cover because it
is not O( 1

n1/2−ε ) approximable, nor O( 1
∆1−ε ) in edge-weighted graphs of

size n and maximum degree ∆ respectively. Indeed, we give some hard-
ness of approximation results for some special restricted graph classes such
as bipartite graphs, split graphs and k-trees. We counter-balance these
negative results by giving some positive approximation results in specific
graph classes.
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1 Introduction

Considering a MaxMin or MinMax version of a problem by “flipping” the ob-
jective is not a new idea; in fact, such questions have been posed before for
many classical optimisation problems. Some of the most well-known examples
include the Minimum Maximal Independent Set problem [10] (also known
as Minimum Independent Dominating Set), the Maximum Minimal Ver-
tex Cover problem [9, 38], the Lazy Bureaucrat problem [23, 25] (which is
a MinMax version of Subset Sum), the Minimum Maximal Matching prob-
lem (also known as Minimum Independent Edge Dominating Set) [37], and
the Maximum Minimal Dominating Set problem (also called Upper Dom-
inating Set) [1, 6]. However, to the best of our knowledge, weighted MaxMin
and MinMax versions have not been considered so far, except for Minimum
Independent Dominating Set [14, 31], and weighted upper dominating
set problem [11]. MaxMin or MinMax versions of classical problems turn out
to be much harder than the originals, especially when one considers complex-
ity and approximation. For example, Maximum Minimal Vertex Cover
does not admit any n

1
2−ε approximation [9], while Vertex Cover admits a

simple 2-approximation. Minimum Maximal Matching is NP-hard (but 2-
approximable) while Maximum Matching is polynomial.

The focus of this paper is on edge cover. An edge cover of a graph G = (V,E)
without isolated vertices is a subset of edges S ⊆ E which covers all vertices
of G. The edge cover number of G = (V,E), is the minimum size of an edge
cover of G. An optimal edge cover can be computed in polynomial time, even
for the weighted version where a weight is given for each edge and one wants
to minimize the sum of the weight of the edges in the solution (called here the
weighted edge cover number). An edge cover S ⊆ E is minimal (with respect
to inclusion) if the deletion of any subset of edges from S destroys the covering
property. Minimal edge cover is also known in the literature as an enclaveless
set [35] or as a nonblocker set [20].

In this paper, we study the computational complexity of the weighted upper
edge cover number, denoted here uec(G,w), that is the solution with maximum
weight among all minimal edge covers. Formally, the associated optimization
problem called the Weighted Upper Edge Cover problem asks to find the
largest weighted minimal edge cover of an edge-weighted graph.

Weighted Upper Edge Cover
Input: A weighted connected graph G = (V,E,w), where w(e) ≥ 0 for all
e ∈ E.
Solution: Minimal edge cover S ⊆ E.
Objective: Maximizing w(S) =

∑
e∈S w(e).

Hence, if S∗ is an optimal solution of Weighted Upper Edge Cover on
(G,w), then w(S∗) = uec(G,w). The unweighted value of the optimal solution
is uec(G) (denoted upper edge cover number). To the best of our knowledge,
the complexity of computing the weighted upper edge cover number has never
been studied in the literature, while a lot of results appear for the unweighted
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case (corresponding to w(e) = 1 for all e ∈ E) [33, 4, 16, 27]. The unweighted
variant was firstly investigated in [32], where it is proven that the complexity of
computing the upper edge cover number is equivalent to solve the dominating
set problem because uec(G) = |V | − γ(G) where γ(G) is the size of minimum
dominating set of graph G. We will consider the implications of this important
remark afterwards in the paper.

We will now define a related problem useful in the following because it is
proved in [32] that S ⊆ E is a minimal edge cover of G = (V,E) iff S is a
spanning star forest of G without trivial stars (i.e. without stars consisting of
a single vertex). A spanning star forest is a spanning forest of G = (V,E) into
stars where a `-star S is a subset of edges such that the partial subgraph induced
by S is isomorphic to K1,`; The center of the star is the vertex different to the
leaves (if ` 6= 1) and a 0-star is also called a trivial star.

Maximum Weighted Spanning Star Forest problem (MaxWSSF in
short)
Input: An edge-weighted graph (G,w) on n vertices where G = (V,E) and
w(e) ≥ 0 for all e ∈ E.
Solution: Spanning star forest S = {S1, . . . , Sp} ⊆ 2E .
Objective: maximizing w(S) =

∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e).

Given an instance (G,w) of MaxWSSF, optMaxWSSF (G,w) denotes the
value of an optimal spanning star forest. Authors of [33] describe in details
how to apply MaxWSSF model to alignment of multiple genomic sequence,
a critical task in comparative genomics. They also show that this approach is
promising with real data. In this model, taking weights into account is funda-
mental since it represents alignment score. Also, their model uses each edge of
the spanning star forest to output the solution. Therefore, having trivial star
is probably undesirable, which enforces the motivation of studying Weighted
Upper Edge Cover.

The unweighted version (corresponding to the case w(e) = 1 for all edges e)
is denoted by MaxSSF. In this case, the optimal value is optMaxSSF (G). For
unweighted graphs without isolated vertices, we have uec(G) = optMaxSSF (G)
since any spanning star forest (with possible trivial stars) can be (polynomially)
converted into a spanning star forest without trivial stars (i.e. a minimal edge
cover) with same size [32]. Hence, these two problems are completely equivalent
even from an approximation point of view.

Concerning edge-weighted graphs, the relationship between Weighted Up-
per Edge Cover and MaxWSSF is less obvious. For instance, we only have:
optMaxWSSF (G,w) ≥ uec(G,w) because any minimal edge cover is a partic-
ular spanning star forest. However, the difference between these two values
can be arbitrarily large as indicated in Figure 1 (in the graph drawn in Fig-
ure 1.(b), v4 is an isolated vertex when ε goes to infinity). This means that
isolated vertices play an important role in feasible solutions. Given a spanning
star forest S = {S1, . . . , Sr} of (G,w), we rename vertices such that there is
some p, 0 ≤ p < r such that Si = {vi} are trivial stars for all 1 ≤ i ≤ p (if
p = 0, then there is no trivial stars), and Sj are non-trivial stars whose cj is
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Figure 1: (a) : The weighted graph G = (V,E,w). (b) : Optimal solution of
MaxWSSF(G,w). (c) : Optimal solution of Weighted Upper Edge Cover
for G with value uec(G,w) = 2.

the center for all j > p (if Sj is a single edge, both endpoints are considered as
possible centers). We define Triv = {vi : i ≤ p} as the set of isolated vertices
of (V,E(S)) where E(S) = ∪rj>pSj ; moreover, Vl and Vc are respectively the
set of leaves and the set of centers of stars in V \ Triv. Finally, for v ∈ Vl,
ev(S) = c′v ∈ E(S) denotes the edge linking the center c′ to the leaf v.

We mainly focus on specific solutions of MaxWSSF called nice spanning
star forests defined as follows:

Definition 1 S is a nice spanning star forest of (G,w) if Triv = {vi : i ≤ p} is
an independent set in G and all edges of G starting at Triv are linked to leaves
of some `-stars of S with ` ≥ 2. Moreover, w(uv) ≤ w(ev(S)) for u ∈ Triv,
v ∈ Vl.

Property 2 Any spanning star forest of (G,w) can be polynomially converted
into a nice one with at least the same weight.

Proof: The weights of (G,w) are non-negative. Thus, if Triv is not an inde-
pendent set or if some vertex of Triv is linked to some center of S, we could
obtain a better spanning star forest with less isolated vertices. In particular,
it implies that no vertex of Triv is linked to a 1-star (i.e. a K2 of S). Finally,
if w(uv) > w(ev(S)), then S ′ = (S \ {ev(S)}) ∪ {uv} is a better spanning star
forest. �

It is well known that optimization problems are easier to approximate when
the input is a complete weighted graphs satisfying the triangle inequality, like for
example in the traveling salesman problem. Here, we introduce a generalization
of this notion which works to any class of graphs.

Definition 3 An edge weighted graph (G,w) where G = (V,E) satisfies the
cycle inequality, if for every cycle C, we have:

∀e ∈ C, 2w(e) ≤ w(C) =
∑
e′∈C

w(e′)

Clearly, for complete graphs, cycle and triangle inequality notions coincide. Def-
inition 3 is interesting when focusing on classes of graphs like split graphs or k-
trees. In this article, we are also interested in bivaluate weights (resp., trivalued)
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corresponding to the case w(e) ∈ {a, b} with 0 ≤ a < b (resp., w(e) ∈ {a, b, c}
where 0 ≤ a < b < c are 3 reals). The particular case a = 0 and b = 1 (called
here binary weights) is interesting by itself because MaxWSSF with binary
weights exactly corresponds to MaxSSF and has been extensively studied in
the literature [33, 15, 5]. Moreover for instance, binary weighted Minimum
Independent Dominating Set for chordal graphs has been studied in [21],
where it is shown that this restriction is polynomial, but bivalued weighted
Minimum Independent Dominating Set for chordal graphs with a > 0 is
NP-hard [14].

1.1 Graph terminology and definitions

Throughout this paper, we consider edge-weighted undirected connected graphs
G = (V,E) on n = |V | vertices and m = |E| edges. Each edge e = uv ∈ E
between vertices u and v is weighted by a non-negative weight w(e) ≥ 0. The
degree dG(v) of vertex v ∈ V in G is the number of edges incident to v and
∆(G) is the maximum degree of the graph G.

Kn denotes the complete graph on n vertices. A bipartite graph (resp., split
graph) G = (L∪R,E) is a graph where the vertex set L∪R can be decomposed
into an independent set (resp., a clique) L and an independent set R. A k-tree
is a graph which can be formed by starting from a k-clique and then repeatedly
adding vertices in such a way that each added vertex has exactly k neighbors
completely connected together (this neighborhood is a k-clique). For instance,
1-trees are trees and 2-trees are maximal series-parallel graphs. A graph is a
partial k-tree (or equivalently with treewidth at most k) if it is a subgraph of a
k-tree.

A star S ⊆ E of a graph G = (V,E) is a tree of G where at most one vertex
has a degree greater than 1, or, equivalently, it is isomorphic to K1,` for some
` ≥ 0. The vertices of degree 1 (except the center when ` ≤ 1) are called leaves
of the star while the remaining vertex is called center of the star. A `-star is a
star of ` leaves. If ` = 0, the star is called trivial and it is reduced to a single
vertex (the center); otherwise, the star is said non-trivial.

A spanning star forest S = {S1, . . . , Sp} ⊆ 2E of G is a spanning forest
into stars, that is, each Si is a star (possibly trivial), V (Si) ∩ V (Sj) = ∅ and
∪pi=1V (Si) = V . An independent set S ⊆ V of a graph G = (V,E) is a sub-
set of vertices pairwise non-adjacent. The NP-hard problem MaxIS seeks an
independent set of maximum size. The value of an optimal independent set of
G is denoted α(G). A matching M ⊆ E is a subset of pairwise non-adjacent
edges. A matching M of G is perfect if all vertices of G are covered by M . A
dominating set for a graph G is a subset D of V such that every vertex not in
D is adjacent to at least one vertex of D. The domination number γ(G) is the
number of vertices in the smallest dominating set of G.

1.2 Related work

Upper Edge Cover has been investigated intensively during the recent years
for unweighted graphs, mainly using the terminologies of spanning star forests or
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dominating sets. The minimum dominating set problem (denoted MinDS) seeks
the smallest dominating set of G of value γ(G). As indicated before, we have
uec(G) = n − γ(G). Thus, using the complexity results known on MinDS, we
deduce that Upper Edge Cover is NP-hard in planar graphs of maximum
degree 3 [24], chordal graphs [8] (even in undirected path graphs, the class of
vertex intersection graphs of a collection of paths in a tree), bipartite graphs,
split graphs [7] and k-trees with arbitrary k [18], and it is polynomial in k-trees
with fixed k, convex bipartite graphs [19], strongly chordal graphs [22].

Concerning the approximability, an APX-hardness proof with explicit inap-
proximability bound and a combinatorial 0.6-approximation algorithm is pro-
posed in [33]. Better algorithms with approximation ratio 0.71 and 0.803 are
given respectively in [16] and [4]. For any ε > 0, Upper Edge Cover is
hard to approximate within a factor of 259

260 + ε unless P=NP [33]. It admits
a PTAS in k-trees (with arbitrary fixed k). A graph is called c-dense if it

contains at least cn
2

2 edges and it is called everywhere-c-dense if the minimum
degree is cn; when c ∈ (0; 1) is a constant, we say dense and everywhere-dense
graphs [3]. In [27], it is proved that Upper Edge Cover remains APX-
complete in c-dense graphs; they also proposed an approximation algorithm
with ratio 0.804 + 0.196

√
c for c-dense graphs, while they proved that the prob-

lem does not admit a PTAS assuming P 6= NP for c-dense graphs. He and
Liang in [26] claimed that Upper Edge Cover on everywhere-c-dense graphs
are easier than c-dense graph; they proved this claim by showing that that for
a given graph of order n and minimum degree δ(n) for every vertex, Upper
Edge Cover is APX-complete when 1 ≤ δ(n) ≤ O(1), is NP-hard but allows
a PTAS when ω(1) ≤ δ(n) ≤ O(n1−ε) for some constant ε, and is not NP-hard
assuming ETH when δ(n) ≥ ω(n1−ε) for every constant ε > 0.

In contrast, to the best of our knowledge, for edge weighted graphs with
non-negative weights, no result for Weighted Upper Edge Cover is known,
although some results are given for Maximum Weighted Spanning Star
forest problem: a 0.5-approximation is given in [33] (which is the best ratio
obtained so far) and polynomial-time algorithms for special classes of graphs
such as trees and cactus graphs are presented in [33, 34]. Negative approxi-
mation results are presented in [33, 12, 16]. In particular, MaxWSSF is NP-
hard to approximate within 10

11 +ε [12]. Two generalizations of WSSF, denoted
MinExtWSSF and MaxExtWSSF, have been introduced very recently in [29]
where the goal consists in extending some partial stars into spanning star forests.
In this context, a partial feasible solution is given in advance and the goal is to
extend this partial solution. Formally, the problem is defined as follow:

Extended weighted spanning star forest problem (ExtWSSF in
short)
Input: A weighted graph (G,w) and a packing of stars U = {U1, . . . , Ur}
where G = (V,E) and w(e) ≥ 0 for e ∈ E.
Solution: Spanning star forest S = {S1, . . . , Sp} ⊆ E containing U .
Output: w(S) =

∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e).

In [29], several results have been given for both minimization
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(MinExtWSSF) and maximization (MaxExtWSSF) versions of ExtWSSF
(denoted MinExtWSSF and MaxExtWSSF respectively). Dealing with
the minimization version for complete graphs: a dichotomy result of the
computational complexity is presented depending on parameter c of the
(extended) c-relaxed triangle inequality and an FPT algorithm is given. For
the maximization version, a positive approximation of 1/2 and a negative
approximation result of 7

8 (even for binary weights) are proposed.
A subset of vertices V ′ is called non-blocking if every vertex in V ′ has at

least one neighbor in V \ V ′. Actually, non-blocking is dual of dominating set
and vice versa. For a given graph G = (V,E) and a positive integer k, the Non-
blocker problem asks if there is a non-blocking set V ′ ⊆ V with |V ′| ≥ k.
Hence, for unweighted graphs, optimal value of non-blocking number equals
the upper edge cover number. In [20] Dehne et al. propose a parameterized
perspective of the Non-blocker problem. They give a linear kernel and an
FPT algorithm running in time O∗(2.5154k). They also give faster algorithms
for planar and bipartite graphs.

1.3 Contributions

The paper is organized in the following way. We first show in Section 2 that
Weighted Upper Edge Cover in complete graphs is equivalent for its ap-
proximation to MaxWSSF in general graphs. Then, we study the approxima-
tion of Weighted Upper Edge Cover for bipartite graphs, split graphs and
k-trees respectively in Sections 3, 4 and 5.

Motivated by the above results mostly negative, we propose a constant ap-
proximation ratio algorithm in Section 6 for Weighted Upper Edge Cover
in bounded degree graphs.

Note that all results given in this paper are valid if G is isolated vertex free
instead of connected.

2 Approximation of Weighted Upper Edge
Cover in complete graphs

In this section, we deal with edge-weighted complete graphs. This case seems to
be the simplest one because the equivalence between Upper Edge Cover and
MaxSSF for the unweighted case proven in [32] remains valid for the weighted
case, as proven in the following.

Theorem 4 MaxWSSF in general graphs is equivalent to approximate
Weighted Upper Edge Cover in complete graphs.

Proof: We propose two approximation preserving reductions, one from
MaxWSSF in general graphs to Weighted Upper Edge Cover in
complete graphs and the other from Weighted Upper Edge Cover to
MaxWSSF in complete graphs.



72 Khoshkhah et al. Weighted Upper Edge Cover

• Reduction from MaxWSSF to Weighted Upper Edge Cover in complete
graphs.

Let (G,w) be an instance of MaxWSSF where G = (V,E) is a connected
graph with n vertices, edge-weighted using w. We build an instance (Kn, w

′)
of Weighted Upper Edge Cover where Kn is an edge-weighted complete
graph (V,E(Kn)) over n vertices, edge-weighted with w′, such that ∀u, v ∈ V
with u 6= v, w′(uv) = w(uv) if uv ∈ E and w′(uv) = 0 otherwise.

Let S′ ⊆ E(Kn) be a minimal edge cover of Weighted Upper Edge
Cover with weight w′(S′). The restriction of S′ to G gives a spanning star
forest (possibly with trivial stars) S. By construction we have:

w(S) = w′(S′) (1)

Thus, from equality (1) we deduce optMaxWSSF (G,w) ≥ uec(Kn, w
′).

Conversely, let S∗ be an optimal solution of MaxWSSF with value
optMaxWSSF (G,w). By adding some edges from the center of some stars to
the isolated vertices of S∗, we obtain a minimal edge cover of Kn of at least
same value. Hence, uec(Kn, w

′) ≥ optMaxWSSF (G,w). We can deduce,

uec(Kn, w
′) = optMaxWSSF (G,w) (2)

From equalities (1) and (2), we deduce that any ρ approximation of
Weighted Upper Edge Cover for (Kn, w

′) can be polynomially converted
into a ρ approximation of MaxWSSF for (G,w).

• Reduction from Weighted Upper Edge Cover to MaxWSSF in complete
graphs.

From an edge-weighted complete graph (Kn, w) instance of Weighted Up-
per Edge Cover, we set (G,w′) = (Kn, w) as an instance of MaxWSSF.
Since the graph is complete, the weights are non-negative and the goal is max-
imization, we can only consider spanning star forests without trivial stars, i.e.
minimal edge covers. Hence, Weighted Upper Edge Cover is as a subprob-
lem of MaxWSSF, even from an approximation point of view. �

From Theorem 4 and from known results on MaxWSSF given in [33, 12],
we deduce the following:

Corollary 5 In complete graphs, Weighted Upper Edge Cover is 1/2-
approximable but not approximable within 10

11 + ε unless P=NP.

3 Approximation of Weighted Upper Edge
Cover in bipartite graphs

Let us now focus on bipartite graphs. We prove that, even in bipartite graphs
with binary weights, Weighted Upper Edge Cover is not O(n

1
2−ε) approx-

imable unless P = NP. Also, we show the problem is APX-complete even for
bipartite graphs with fixed maximum degree ∆.
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Figure 2: Construction of H from G. The weights are indicated on edges.

Theorem 6 Weighted Upper Edge Cover in bipartite graphs with binary
weights and cycle inequality is as hard as MaxIS in general graphs.

Proof: We propose an approximation preserving APX-reduction1 from Inde-
pendent Set (denoted by MaxIS) to Weighted Upper Edge Cover.

Given a connected graph G = (V,E) with n vertices and m edges where
V = {v1, . . . , vn}, as an instance of MaxIS, we build a connected bipartite
edge-weighted graph H = (VH , EH , w) as follows (see also Figure 2):

• For each vi ∈ V , add a P3 with edge set {viv′i, v′iv′′i }.

• For each edge e = vivj ∈ E where i < j, add a middle vertex vi,j on edge
e.

• w(e) :=

{
1 if e = viv

′
i for some vi ∈ V

0 otherwise.

Clearly, H is a connected bipartite graph with |VH | = 3n + m vertices and
|EH | = 2(m+ n) edges. Moreover, weights are binary and the instance satisfies
cycle inequality.

Let S∗ be a maximum independent set of G with size α(G). For each e ∈ E,
let ve ∈ V \ S∗ be a vertex which covers e; it is possible since V \ S∗ is a vertex
cover of G. Moreover, {ve : e ∈ E} = V \S∗ since S∗ is a maximum independent
set of G. Clearly, S′ = {vx,yve : e = xy ∈ E}∪{v′iv′′i : vi ∈ V }∪{viv′i : vi ∈ S∗}
covers all vertices of H and since it does not include any P3, then S′ is a minimal
edge cover of H. By construction, w(S′) = |S∗| = α(G). Hence, we deduce:

uec(H,w) ≥ α(G) (3)

Conversely, suppose S′ is a minimal edge cover of H with weight w(S′). Let
us make some simple observations of every minimal edge cover of H. Clearly,
{v′iv′′i : vi ∈ V } is part of every feasible solution because v′′i for vi ∈ V are leaves
of H. Moreover, for each e = vivj ∈ E with i < j, at least one edge between
vivi,j or vjvi,j belongs to any minimal edge cover of H. If vivi,j /∈ S′, it implies

1The reduction is actually a Strict-reduction and it is a particular A-reduction which
preserves constant approximation.
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that vjvi,j ∈ S′ and vjv
′
j /∈ S′ is not a part of the feasible solution because of

minimality of S′. Hence, S = {vi : viv
′
i ∈ S′} is an independent set of G with

size |S| = w(S′). We deduce:

α(G) ≥ uec(H,w) (4)

Using inequalities (3) and (4) we deduce:

α(G) = uec(H,w) (5)

In conclusion, for each minimal edge cover S′ on H, there is an independent
set S of G (computed in polynomial-time) such that |S| ≥ w(S′). �

From Theorem 6, we immediately deduce that Weighted Upper Edge
Cover in bipartite graphs is not in APX unless P=NP. However, using the
results concerning the APX-completeness of MaxIS in connected graph G
with constant maximum degree ∆(G) ≥ 3 or NP-hardness of MaxIS in planar
graphs [24, 2], we obtain:

Corollary 7 Weighted Upper Edge Cover in bipartite (resp., planar bi-
partite) graphs of maximum degree ∆ for any fixed ∆ ≥ 4 and binary weights is
APX-complete (resp. NP-complete).

Proof: Let us revisit the construction given in Theorem 6. If the instance of
MaxIS has maximum degree 3 (resp. is planar with maximum degree 3), then
the constructed instance of Weighted Upper Edge Cover is a bipartite
(resp., planar bipartite) graph of maximum degree 4. �

Using the strong inapproximability result for MaxIS given in [39], and be-
cause the reduction given in the previous theorem is a gap-reduction, we also
deduce:

Corollary 8 For any constant ε > 0, and any ρ ∈ Ω(nε−
1
2 ), Weighted Up-

per Edge Cover does not admit a polynomial ρ-approximation algorithm in
bipartite graphs of n vertices unless P=NP, even for binary weights and cycle
inequality.

Proof: We use the reduction given in Theorem 6 and the inapproximability of
MaxIS. MaxIS is known to be hard to approximate [39]. In particular, it is
known that, for all ε > 0, it is NP-hard to distinguish for an n-vertex graph G
between α(G) > n1−ε and α(G) < nε.

In the construction of H (see Figure 2), we know that |VH | = m + 3n
and |EH | = 2(m + n) where m,n are numbers of the edges and vertices of G
respectively. Hence, |VH | ≤ 2n2, and the claimed result follows. �

We also deduce one inapproximability result depending on the maximum
degree.

Corollary 9 For any constant ε > 0, unless NP⊆ZPTIME(npoly logn), it is
hard to approximate Weighted Upper Edge Cover on bipartite graphs of
maximum degree ∆ within a factor of Θ

(
1

∆1−ε

)
.
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Proof: We will prove that it is difficult for a graph H (even bipartite with
binary weights) of maximum degree ∆ to distinguish between the following two
cases:

• (Yes-Instance)uec(H,w) ≥ |V (H)|
∆(G)1+ε ,

• (No-Instance) uec(H,w) ≤ |V (H)|
∆(G)2−ε .

Hence, the result consists of showing that the transformation given in The-
orem 6 is a gap reduction. It is proved that: Let τ(n) be any function
from integers to integers. Assuming that NP*ZPTIME(nO(τ(n))), there is
no polynomial-time algorithm that can solve the following problem [13] (Theo-
rem 5.7, adapted from [36]). For any constant ε > 0 and any integer q, given a
regular graph G of size qO(τ(n)) such that all vertices have degree ∆ = 2O(τ(n)),
the goal is to distinguish between the following two cases:

• (Yes-Instance) α(G) ≥ |V (G)|
∆ε ,

• (No-Instance) α(G) ≤ |V (G)|
∆1−ε .

Note that if G is a ∆-regular graph, then graph H resulting of Theorem 6 is
a bipartite graph of maximum degree ∆ + 1 = Θ(∆). Thus, since α(G) =
uec(H,w) and |V (H)| = 3|V (G)|+ |E(G)| = Θ(∆|V (G)|), we get the expected
result. �

4 Approximation of Weighted Upper Edge
Cover in split graphs

We will now focus on split graphs. Recall that a graph G = (L ∪ R,E) is a
split graph if the subgraph induced by L and R is a maximum clique and an
independent set respectively. It is called ∆-subregular split graph if for v ∈ L,
dG(v) ≤ ∆ + |L| − 1 and for v ∈ R, dG(v) ≤ ∆. This means that the graph
induced by crossing edges is of maximum degree at most ∆.

Theorem 10 Weighted Upper Edge Cover in split graphs with binary
weights and cycle inequality is as hard as MaxIS in general graphs.

Proof: The proof is based on a reduction2 from MaxIS. Given a graph G =
(V,E) of n vertices and m edges where V = {v1, . . . , vn} and E = {e1, . . . , em},
as an instance of MaxIS, we build a split weighted graph H = (VH , EH , w) as
follows:

• Put two copies of vertices V in H, denoted by C = {c1, . . . , cn} and
C ′ = {c′1, . . . , c′n} and make them cliques of size n such that all pairs of
vertices in C and C ′ are connected to each other with edges of weight 0.

2The reduction is actually a Strict-reduction and it is a particular A-reduction which
preserves constant approximation.
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v1

v2

v3

e1 e2

c1

c2

c3 c′1

c′2

c′3

p1 p2 t1 t2 t3

Figure 3: Construction of split graph H = (VH , EH) from a P3. The weights of
thick edges in H are 1 and for the others are 0.

• Connect all pairs cic
′
j for 1 ≤ i, j ≤ n with edges of weight 1 to make a

clique of size 2n.

• Add a set of m new vertices {p1, . . . , pm} corresponding to edges of E and
connect pi to cj , ck with edges of weight 0 if ei = vjvk ∈ E.

• Add a set of n new vertices {t1, . . . , tn} and connect each ti to c′i with
edges of weight 0.

The built graph H is a weighted split graph with binary weights and cycle
inequality, and it contains a clique of size 2n and an independent set of size
n+m. Figure 3 gives an illustration of the construction of H from a P3.

We claim that G has an independent set of size k iff there exists a minimal
edge cover of H with total weight k.

Let S be an independent set of G with size |S|. For each ei ∈ E, there is
a vertex vei /∈ S which covers ei since S is an independent set of G. Consider
the set {cei : vei /∈ S} of vertices in C corresponding to vertices of V \ S,
S′ = {ceipi : ei ∈ E} ∪ {c′iti : vi ∈ V } ∪ {cic′i : vi ∈ S} is a minimal edge cover
of H. By construction, w(S′) = |S|. Hence, we deduce:

uec(H,w) ≥ α(G) (6)

Conversely, let S′ be a minimal edge cover of H with weight w(S′). Since
for 1 ≤ i ≤ n, ti’s are leaves in H, {tic′i : vi ∈ V } is a part of S′. Moreover, for
each ek = vivj ∈ E with i < j, at least one edge among cipk or cjpk belongs to
S′. W.l.o.g., assume that cipk ∈ S′; this means that cic

′
j /∈ S′ for all 1 ≤ j ≤ n.

Furthermore, for each ci ∈ C at most one edge cic
′
j ∈ S′ for 1 ≤ j ≤ n. Hence,

S = {vi : cic
′
j ∈ S′} is an independent set of G with size |S| = w(S′). We

deduce,

α(G) ≥ uec(H,w) (7)

Using inequalities (6) and (7) we deduce α(G) = uec(H,w). �
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Corollary 11 Weighted Upper Edge Cover in split 3-subregular graphs is
APX-complete and for any constant ε > 0, and any ρ ∈ Ω(nε−

1
2 ), Weighted

Upper Edge Cover does not admit a polynomial ρ-approximation algorithm
in split graphs of n vertices unless P=NP.

5 Approximation of Weighted Upper Edge
Cover in k-trees

Recall that a k-tree is a graph which results from the following inductive defi-
nition:

• A Kk+1 is a k-tree,

• If a graph G is a k-tree, then the addition of a new vertex which has
exactly k neighbors in G such that these k + 1 vertices induce a Kk+1

forms a k-tree.

As a main result in this section, we prove Weighted Upper Edge Cover is
APX-complete in weighted-dense k-trees even for binary weights.

5.1 Hardness of approximation

From Corollary 5, we already know that Weighted Upper Edge Cover is
NP-hard to approximate within a ratio strictly better than 10

11 because the class
of all k-trees contains the class of complete graphs. However, this lower bound
needs a non-constant number of distinct values [12]. Moreover, in Theorem 4,
we showed that Weighted Upper Edge Cover in weighted complete graphs
is equivalent to MaxWSSF in general graphs. In [33, Theorem 3.6], it is proved
that MaxSSF is hard to approximate in general graphs within ratio 259

260 + ε for
any ε > 0, so Weighted Upper Edge Cover in complete graphs and k-
trees with binary weights is not strictly approximable within ratio better than
259
260 ≤ 0.9962. Here, we propose a new approximation preserving reduction for
Weighted Upper Edge Cover in k-trees. Our reduction does not improve
the existed bound 259

260 , but help us to find some new upper bounds for weighted
Upper edge Cover in weighted-dense k-trees and Upper Edge Cover in
dense graphs.

Recall that a graph G = (V,E) with |V | = n is called c-dense if |E| ≥ cn2

2 [3,
27]. This concept can be adapted to edge-weighted maximization problems as
follows. For a non-negative edge-weighted graph (G,w), we assume w(xy) = 0
for a non-edge xy /∈ E and for all the p distinct weights wi > 0, i = 1, . . . , p of

the instance, the denote by w̄ the average weight such that w̄ =
∑p

i=1 wi

p .

Definition 12 An edge weighted graph G = (V,E,w) with w ≥ 0 is c-weighted-
dense if ∑

xy∈E
w(xy) ≥ cn2 × w̄
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v1 v2

v3v4

v′1 v′2

v′3v′4

v1,2

v2,3

v3,4

Figure 4: On the right side, the constructed weighted graph G′ = (V ′, E′, w)
build from a P4. The edges drawn bold have weight 1 and the weight of all
dotted edges is 0.

This notion captures the fact that a huge number of edges with average
weight are available in the graph. In particular, using Definition 12, we deduce
that a c-dense graph is also weighted c-dense by taking w(xy) = 1 if xy ∈ E.

Theorem 13 Weighted Upper Edge Cover is APX-hard in the class of
weighted c-dense k-trees, even for binary weights and c = 4

25 .

Proof: We give an approximation preserving reduction from independent set
problem. It is known that MaxIS is APX-complete in graphs of maximum
degree ∆ with ∆ ≥ 3 [2].

Let G = (V,E) be an instance of MaxIS where G is a connected graph of
maximum degree ∆ and V = {v1, . . . , vn} and |E| = m. We build a weighted
dense k-tree G′ = (V ′, E′, w) for Weighted Upper Edge Cover such that
V ′ = V ′C ∪ V ′E as follows:

• V ′C = {v′i : vi ∈ V } and V ′E = {vi,j : e = vivj ∈ E, 1 ≤ i < j ≤ n}.

• G′[V ′C ], the subgraph induced by V ′c is a Kn.

• For each vi,j ∈ V ′E , add n edges vkvi,j for 1 ≤ k ≤ n to E′.

The weight function w for xy ∈ E′ is defined as follows:

w(xy) =

{
1 (x, y ∈ V ′C) or (x = vi,j and y ∈ {v′i, v′j}),
0 otherwise.

Note that |V ′| = n + m and clearly G′ can be constructed from G in poly-
nomial time. G′ is a n-tree because initially all V ′C ∪ {vi,j ∈ V ′E} is a clique of
size n+ 1, and any other vertices in V ′E is connected to all vertices in V ′C which
makes a Kn+1. Figure 4 proposes an illustration of this construction for a P4.

We are going to prove that any ρ-approximation for Weighted Upper

Edge Cover in k-trees can be polynomially converted into a (1 + ∆2

2 )ρ − ∆2

2
approximation ratio for MaxIS in graphs of maximum degree ∆.
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First, consider an arbitrary independent set S of G. From S, we make a
minimal edge cover F of G′ of size at least |S| + m. For each e = vivj ∈ E,
there is a vertex f(e) ∈ ((V \ S) ∩ {vi, vj}) because S is an independent set.
Let X = {f(e) : e ∈ E}, then choose arbitrarily a vertex r ∈ X. We set
F = {f(e)′vi,j : e = vivj ∈ E} ∪ {r′v′ : v ∈ (V \X)}. We deduce uec(G′, w′) ≥
w(F ) = m + |V \X| ≥ m + |S| and considering S as a maximum independent
set induces:

uec(G′, w′) ≥ m+ α(G) (8)

Conversely, assume that F is a minimal edge cover of G′. We will polyno-
mially modify F into another minimal edge cover F ′ such that w(F ′) ≥ w(F )
which holds the following property.

Property 14 We can assume that F satisfies the following facts:

(a) for each e = vivj ∈ E at least one of v′i or v′j is a center of a star in F ,

(b) for each e = vivj ∈ E, any vertex of vi,j is a leaf and its center is vi or
vj.

Remind that for an star K1,1, both endpoints can be its center and its leaf.

Proof: For (a), suppose there exist some edges e = vivj ∈ E such that none
of v′i and v′j is a center in F . We modify F into F ′′ by repeating the following
process for all of such edges: Let S′i,j = {xy ∈ F : x ∈ {vi, vj , vi,j}} and let
Si,j = {vivj , vivi,j}, then F ′′ = (F \S′i,j)∪Si,j . Since F is a minimal edge cover
of G, F ′′ is a spanning star forest in G′ with possibly some isolated vertices in
V ′c . Considering the weight function w, w(F ′′) = w(F ). Easily by connecting
all of the trivial stars to one center in F ′′, we make a new minimal edge cover
F ′ such that w(F ′) ≥ w(F ′′) ≥ w(F ).

For (b), suppose there exist some edges vivj ∈ E such that vi,j is not a leaf in
F . We modify F into F ′′ by repeating the following process for all of such edges:
regarding (a), w.l.o.g. suppose v′i is a center in F . Let S′i,j = {xy ∈ F : x = vi,j}
and let Si,j = v′ivi,j , then F ′′ = (F \ S′i,j) ∪ Si,j is a spanning star forest with
possibly trivial stars of G′ with w(F ′′) ≥ w(F ) which satisfies (b). Notice after
these stages, we may create some isolated vertices included in V ′C . However,
connecting every isolated vertex in V ′C to an arbitrary center in V ′C induces a
minimal edge cover with larger weight. �

Let X ′ = {x : xy ∈ F, y ∈ V ′E} and I ′ = V ′C \ X ′. By considering (a) in
Property 14, I = {v : v′ ∈ I ′} is an independent set of G. Since for each minimal
edge cover F , there exist a minimal edge cover F ′ such that:

w(F ) ≤ w(F ′) = m+ |I| ≤ m+ α(G) (9)

Hence by considering inequality (8) uec(G′, w′) = m+ α(G).
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Let F be a ρ-approximation solution for Weighted Upper Edge Cover
for (G′, w) and I be an independent set of G which made by F ′ then:

ρ ≤ w(F )

uec(G′, w)
≤ w(F ′)

uec(G′, w)
=

m+ |I|
m+ α(G)

(10)

since G is connected of maximum degree ∆, so n ≤ ∆α(G) (using Brook’s

Theorem), and then m ≤ ∆2

2 α(G). Hence, we can deduce that:

⇒ 1− ρ ≥ α(G)− |I|
m+ α(G)

≥ α(G)− |I|
(1 + ∆2

2 )α(G)

⇒ (1 +
∆2

2
)ρ− ∆2

2
≤ |I|
α(G)

or equivalently |I|
α(G) ≥ (1 + ∆2

2 ) · w(F )
uec(G′,w) −

∆2

2 . Remind that G′ is a binary

weighted graph and |V ′| = n + m. In the following property, we show that G′

is a c-dense graph with c ≥ 4
(2+∆)2 .

Property 15 G′ is a c-dense graph with c ≤ 4
(2+∆)2 .

Proof: Regarding the construction of G′ = (V ′, E′, w), we have

N = |V ′| = n+m ≤ n+
∆

2
n = (

2 + ∆

2
)n. (11)

On the other hand, since G′ is with binary weight function, then w̄ = 1 and we

have
∑
u,v∈V ′ w(u, v) = 2(n(n−1)

2 + 2m) ≥ n2. Using inequality (11), we have:∑
u,v∈V ′

w(u, v) ≥ 4

(2 + ∆)2
N2 (12)

�

So G′ is a c-dense graph with c = 4
(2+∆)2 . By putting ∆ = 3, we deduce

c = 4
25 . �

He and Liang in [27], studied the MaxSSF (or equivalently UEC) in c-dense
graphs where c ∈ (0, 1). They have shown that MaxSSF in c-dense graphs does
not admit a polynomial time approximation scheme (PTAS) unless P = NP.
Specifically, they proved that for any c ∈ (0, 1), there exists ε = ε(c) > 0 such
that approximating MaxSSF in c-dense graphs within a factor (1− ε) is NP-
hard. In the following, we strengthen this result by proving the existence of
constant lower bounds for Weighted Upper Edge Cover in c-dense graphs
and particularly in c-dense k-trees for some different constants c.

Corollary 16 Weighted Upper Edge Cover is not approximable within
1043
1045 + ε, 431

432 + ε, 620
621 + ε and 835

836 + ε for every ε > 0 unless P=NP in the class

of weighted c-dense k-trees with c equals to 4
25 ,

1
9 ,

4
49 and 1

16 respectively, even
for binary weight function.
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Proof: By Property 15, we know that the construction proposed in Theorem 13,
is a c-dense graph with c = 4

(2+∆)2 . Thus, by Theorem 13, we deduce that a

( (1+∆2)
2 ρ − ∆2

2 )-approximation for MaxIS in graphs of maximum degree ∆ is
reachable in polynomial time from a ρ-approximation algorithm of Weighted
Upper Edge Cover on c-dense k-trees with c ≤ 4

(2+∆)2 . On the other hand,

MaxIS is not approximable within ratio 94
95 + ε, 47

48 + ε, 45
46 + ε and 43

44 + ε in
graphs of maximum degree 3, 4, 5 and 6 respectively [17]. Hence, by a simple
calculation, we complete the proof. �

By deleting all edges of weight 0 in the graph G′ given in Theorem 13,
we can infer that all the above bounds are valid for Upper edge Cover (or
equivalently MaxSSF) in c-dense graphs.

Corollary 17 Upper Edge Cover is not approximable within 1043
1045 +ε, 431

432 +

ε, 620
621 + ε and 835

836 + ε for every ε > 0 unless P=NP in c-dense graphs with c

equals to 4
25 ,

1
9 ,

4
49 and 1

16 respectively.

He and Liang in [27], proposed an approximation algorithm for the un-
weighted variant of the spanning star forest problem in c-dense graphs with
ratio 0.804 + 0.196

√
c. Note that this factor is larger than 0.835 when c = 4

25 .

However, we showed in Corollary 17 that, for c = 4
25 , it is hard to approximate

MaxSSF within ratio 1043
1045 + ε ≤ 0.999 + ε.

Finally, note that Upper Edge Cover has at least a PTAS on everywhere-
c-dense graphs using the result given in [26].

5.2 Positive approximation result

Now, we propose a positive approximation result of Weighted Upper Edge
Cover via the use of an approximation preserving reduction from MaxWSSF
which polynomially transforms any ρ-approximation into a k−1

k+1ρ-approximation
for weighted upper edge cover.

Theorem 18 In k-trees, Weighted Upper Edge Cover is
k−1

2(k+1) -approximable.

Proof: The proof uses an approximation preserving reduction from
MaxWSSF which polynomially transforms any ρ-approximation into a
k−1
k+1ρ-approximation for weighted upper edge cover. Then, using the

0.5-approximation of MaxWSSF given in [33], we will get the expected result.

Consider an edge-weighted k-tree (G,w) where G = (V,E) and assume G
is not complete. Let S = {S1, . . . , Sr} ⊆ E be a nice spanning star forest of
(G,w) (see Property 2) which is a ρ-approximation of MaxWSSF, that is:

w(S) ≥ ρ · optMaxWSSF (G,w) (13)

Now, we show how to modify S into a minimal edge cover S without loosing
”too much”.



82 Khoshkhah et al. Weighted Upper Edge Cover

Before, we need to introduce some definitions and notations. A vertex-
coloring C = (C1, . . . , Cq) of a graph G is a partition of vertices into independent
sets (called colors). The chromatic number of G, denoted χ(G), is the minimum
number of colors used in a vertex-coloring. If G is a k-tree, it is well known
that χ(G) = k + 1 and such an optimal vertex-coloring can be done in linear
time; hence, consider any optimal vertex-coloring C = {C1, . . . , Ck+1} of G.
Moreover, in k-trees we know that each vertex u ∈ Ci of color i is adjacent to
some vertex v ∈ Cj of color j for every j 6= i.

We color the edges of E(S) incident to every isolated vertex of Triv using
the k+1 colors where the color of such edge is given by the same color of its leaf.
Formally, let E′ = {uv ∈ E : v ∈ Triv} ⊆ E(S) be the subset of edges incident
to isolated vertices Triv and let Ei = {cv = ev(S) ∈ E(S) : v ∈ Ci \ Triv} for
every i ≤ k + 1 where c is some center of S. The key property is the following:

Property 19 For any i < i′, by deleting some edges of Ei ∪Ei′ and by adding
edges from E′ we obtain a minimal edge cover.

Proof: It is valid because each vertex of color i is adjacent to some vertices
of every other colors. Formally, fix two indices 1 ≤ i < i′ ≤ k + 1. Iteratively
apply the following procedure: consider v ∈ Triv; there is u ∈ V \ Triv such
that u ∈ Ci ∪Ci′ (say Ci) and vu ∈ E. By hypothesis, u is a leaf of some `-star
Sr of S. If at this stage ` ≥ 2, then add edge uv ∈ E′ and delete edge uc ∈ Ei
of color i; otherwise ` = 1 and we just add edge uv ∈ E′. At the end, we get a
minimal edge cover. �

Now, consider i1, i2 with i1 < i2 such that w(Ei1 ∪ Ei2) = min{w(Ei ∪
Ei′) : 1 ≤ i < i′ ≤ k + 1}. Using Property 19 we can polynomially find a

minimal edge cover S of (G,w). By construction,
∑k+1
i=1 w(Ei) ≤ w(E(S)) and

then:

w(Ei1 ∪ Ei2) ≤ 2

k + 1
w(E(S)) (14)

Hence using inequalities (13) and (14), we get:

w(S′) ≥ w(E(S))−w(Ei1∪Ei2) ≥ k − 1

k + 1
w(E(S)) ≥ k − 1

k + 1
ρ·optMaxWSSF (G,w)

Finally, since optMaxWSSF (G,w) ≥ uec(G,w) we get the expected result. �

Remark 20 Results given in this section implicitly suppose that the parameter
k of k-trees is unbounded because using the same approach as given in [30], we
can prove that Weighted Upper Edge Cover can be solved in O∗(6k) for
graphs of treewidth at most k (containing k-trees).
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6 Approximation of Weighted Upper Edge
Cover in bounded degree graphs

In this section, we propose some positive approximation results depending on
the maximum degree ∆ in complement to the negative result given in Corollary
9.

Theorem 21 In general graphs with maximum degree ∆, there is an approxi-
mation preserving reduction from Weighted Upper Edge Cover to Max-
ExtWSSF with expansion3 c(ρ) = 1

∆ · ρ.

Proof: Consider an edge-weighted graph (G,w) of maximum degree ∆(G)
bounded by ∆ as an instance of Weighted Upper Edge Cover. We make
an instance (G,w,U) of MaxExtWSSF by putting all pendant edges of G in
the forced edge set U . Property 2 also works in this context since U is the set of
pendant edges. In particular, we deduce that optExtWSSF (G,w,U) ≥ uec(G,w)
because U belongs to any minimal edge cover. Let S = {S1, . . . , Sr} ⊆ E be a
nice spanning star forest of (G,w) containing U satisfying:

w(S) ≥ ρ · optExtWSSF (G,w,U) ≥ ρ · uec(G,w) (15)

For each t ∈ Triv, we choose two edges incident to it with maximum weights
et1 = txt and et2 = tyt in E \ E(S) (since by construction dG(v) ≥ 2), i.e.,
w(et1) ≥ w(et2) ≥ w(tv) for all possible v; let W =

∑
t∈Triv (w(et1) + w(et2)) be

this global quantity. Also, recall that Vc and Vl are the set of vertices labeled by
centers and leaves respectively according to S. We build a new vertex weighted
graph G(S) = G′ = (V ′, E′, w′) with maximum degree ∆(G′) ≤ ∆(G) − 1 as
follows:

• V ′ = Vl.

• uv ∈ E′ iff there exists t ∈ Triv with txt = tu and tyt = tv.

• For v ∈ V ′, we set w′(v) = w (ev(S)) (recall that ev(S) is the edge of S
linking leaf v to its center).

Clearly, G′ is a graph with bounded degree ∆ − 1. We mainly prove that
from any independent set I ⊆ V ′ we can polynomially build an upper edge cover
SI of G satisfying:

w(SI) ≥ w′(I) +

(
W −

∑
t∈Triv

w(et1)

)
≥ w′(I) (16)

Let I ⊆ V ′ be a maximal independent set of G′. This implies that V ′ \ I is a
vertex cover of G′. By construction of G′, for every t ∈ Triv, at least one vertex
xt or yt is not in I (say xt in the worst case). Recall ext(S) is the edge of the

3The expansion c(ρ) of a reduction is a mapping transforming a ρ-approximation for the
target problem into a c(ρ)-approximation for the initial problem.
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spanning star forest incident to xt (since xt ∈ Vl). We will iteratively apply the
following procedure for all t ∈ Triv to build SI :

• If the current `-star Sr of S containing ext
(S) satisfies ` ≥ 2 (it is true

initially by hypothesis), then delete edge ext
(S) from S, add edge et1 and

update spanning star forest S.

• Otherwise, ` = 1 and only add et1.

At the end of the procedure, we get a minimal edge cover SI of G satisfying
inequality (16).

Now, apply as solution of I the greedy algorithm of MaxIS for G′ taking,
at each step, one vertex with maximum weight w′ and by removing all the
remaining neighbors of it. It is well known that we have:

w′(I) ≥ w′(V ′)

∆(G′) + 1
≥ w(S)

∆(G)
(17)

Hence, using inequalities (15), (16) and (17), we get the expected result. �

Using the 0.5-approximation algorithm of MaxExtWSSF given in [29], we
deduce:

Corollary 22 Weighted Upper Edge Cover is 1
2∆ -approximable in graphs

with bounded degree ∆.

7 Conclusion

In this article we gave positive and negative approximability aspects of
Weighted Upper Edge Cover for special classes of graphs. We considered
different types of weight function w for edges of input graph. Hardness of
approximation on complete graphs when w satisfies cycle inequality remains
open. Also for graphs with bounded degree ∆, we have shown that our
problem is 1

2∆ -approximable while we proved it can not be better than Θ
(

1
∆

)
.

Finding a tighter approximation algorithm depending on ∆ or on the average
degree can be interesting.
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