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Abstract

We provide tight bounds on the diameter of γ-graphs, which are reconfigu-
ration graphs of the minimum dominating sets of a graph G. In particular,
we prove that for any tree T of order n ≥ 3, the diameter of its γ-graph
is at most n/2 in the single vertex replacement adjacency model, whereas
in the slide adjacency model, it is at most 2(n − 1)/3. Our proof is con-
structive, leading to a simple linear-time algorithm for determining the
optimal sequence of “moves” between two minimum dominating sets of
a tree.
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1 Introduction

For a vertex v of a (simple) graph G = (VG, EG), its neighborhood , denoted
by NG(v), is the set of all vertices adjacent to v. The cardinality of NG(v),
denoted by dG(v), is termed the degree of v. A vertex of degree one is termed
a leaf, and the only neighbor of a leaf is called its support vertex (or simply,
its support). If a support vertex has at least two leaves as neighbors, we call it
a strong support, otherwise it is a weak support. A set of vertices D ⊆ VG of
G is dominating if every vertex in the set VG − D has a neighbor in D. The
cardinality of a minimum dominating set in G is termed the domination number

of G and denoted by γ(G), and any minimum dominating set of G is referred
to as a γ-set.

Over the years, researchers have published thousands of papers on domina-
tion in graphs, exploring the topic in a variety of contexts. In particular, quite
recently, two closely related concepts of reconfiguration graphs of the minimum
dominating sets were introduced. In both of these variants, for a given graph
G, the vertex set of the reconfiguration graph is the collection of all γ-sets of
G; however, the difference lies in the adjacency concept. Namely, in the sin-

gle vertex replacement adjacency model, introduced in 2008 by Subramanian
and Sridharan [16], two γ-sets X and Y of G are adjacent if there are vertices
x ∈ X and y ∈ Y such that X − {x} = Y − {y}, whereas in the slide ad-

jacency model, introduced by Fricke et al. [5] in 2011, it is required that, in
addition, xy ∈ EG. The single vertex replacement adjacency model was fur-
ther studied in [10, 14, 15], and the slide adjacency model was further studied
in [2, 3, 4]. Finally, reconfiguration graphs for dominating sets that are not nec-
essarily minimum or for other models of domination have also been considered,
see for example [1, 7, 8, 9, 11, 12, 17].

Herein, we focus on reconfiguration graphs of trees. For simplicity of pre-
sentation, we shall assume that in the two aforementioned models, both the
reconfiguration graphs are termed the γ-graphs and denoted by ΓG because
the model under consideration is always either clear from the context, or not
relevant. In 2011, Fricke et al. [5] posed the following question (among oth-
ers, just as interesting, some of them having been already solved completely,
see [3, 4, 13]): In the slide adjacency model, is diam(ΓT ) = O(n) for any tree

T of order n? The partial answer for so-called caterpillars with one leg and for
trees of diameter at most five was given by Bień [2], and only in 2018, Edwards
et al. [4] answered the question in an affirmative way for all trees.

Theorem 1 [4] For any tree T of order n, diam(ΓT ) ≤ 2γ(T ) ≤ n in the

single vertex replacement adjacency model, whereas in the slide adjacency model,

diam(ΓT ) ≤ 2(2γ(T )− |ST |) ≤ 2(n− 2), where ST is the set of support vertices

in T .

However, the upper bounds established in Theorem 1 are not tight; in the
single vertex replacement adjacency model, the best lower bound is n/2 [4]
(being attained by the corona graph of a tree [6]), whereas in the slide adjacency
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M

∈ FM

∈ FM

Figure 1: The mixed tree M has two arc-separators, marked with blue and
green, respectively.

model it is 2(n−1)/3 [5] (being attained by the path of order n = 3k+1, k ≥ 1).
Therefore, in this paper, we undertake their study and close down these gaps.
Namely, our result is the following theorem:

Theorem 2 For any tree T of order n ≥ 3, we have diam(ΓT ) ≤ γ(T ) −
|S′′

T | ≤ n/2 in the single vertex replacement adjacency model, whereas in the

slide adjacency model, diam(ΓT ) ≤ min{2(γ(T ) − |S′′
T |) − |S′

T |, 2(n − 1)/3},
where S′

T (resp. S′′
T ) is the set of weak (resp. strong) support vertices in T .

Notation. For a vertex v of a graph G = (VG, EG), the closed neighborhood of
v, denoted by NG[v], is the set NG(v)∪{v}, and for a subset X ⊆ VG of vertices,
the neighborhood of X , denoted by NG(X), is defined to be

⋃
v∈X NG(v), and

the closed neighborhood of X , denoted by NG[X ], is the set NG(X) ∪X . Next,
for a vertex v ∈ X , the private neighborhood of v with respect to X is the set
pnG(v,X) = NG[v] − NG[X − {v}], that is, the set of vertices that are in the
closed neighborhood of v, but are not in the closed neighborhood of any other
vertex in X . A vertex in pnG(v,X) is referred as to a private neighbor of v
(with respect to X), and private neighbor of v is external if it is distinct from v
itself. The set of leaves, the set of weak supports, the set of strong supports, and
the set of all supports of G are denoted by LG, S

′
G, S

′′
G, and SG, respectively.

For a mixed tree M = (VM , EM , AM ), the sets of tails and heads of arcs
in AM are denoted by V ◦

M and V ◮

M , respectively (notice that v ∈ VM may be
an element of both V ◦

M and V ◮

M ). Next, let FM be the family of all maximal
connected arc-free subgraphs of M , and let R = (VR, ER) ∈ FM be a subgraph
of M such that VR ∩ V ◮

M = ∅. Then the set SR = VR ∩ V ◦
M is called an arc-

separator in M , whereas the graph R itself — the certificate graph of SR; see
Fig. 1 for an illustration. Observe that for any two distinct arc-separators S1

and S2 in M , we have S1∩S2 = ∅, and moreover, there is neither edge uv ∈ EM

nor arc (u, v) ∈ AM , nor arc (v, u) ∈ AM such that u ∈ S1 and v ∈ S2.

Observation 1 Every mixed tree possesses an arc-separator.

A rooted tree is a pair (T, r), for simplicity denoted by Tr, where T =
(VT , ET ) is a tree and r ∈ VT is a distinguished vertex termed the root. A
vertex x ∈ VT is labelled an ancestor of a vertex y in Tr if x belongs to the
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unique path joining y and r, and if, in addition, xy ∈ ET , then x is a parent of
y. Next, symmetrically, the terms descendant of x and child of x, respectively,
are used to describe such a vertex y. Note that x is both an ancestor and a
descendant of itself. Finally, we use Tr(x) to describe the subtree of Tr induced
by the descendants of x and rooted at x.

2 The proof of Theorem 2

The statement is trivially valid for the case of γ(T ) = 1. Thus, assume now that
T = (VT , ET ) is a tree of order n ≥ 4, with γ(T ) ≥ 2. We start with a simple
general lemma.

Lemma 1 Let X and Y be two distinct minimal dominating sets of a graph

G. If X − {x} = Y − {y} for some x ∈ X and y ∈ Y , then:

a) 1 ≤ distG(x, y) ≤ 2 holds;

b) If the girth of G is at least five, that is, G is acyclic or the shortest cycle

in G is of the length at least five, then |pn(x,X) − {x}| ≤ 1 as well as

|pn(y, Y )− {y}| ≤ 1.

Proof: (a) Because X and Y are minimal dominating sets of G and X −{x} =
Y − {y}, we have that pnG(x,X) = pnG(y, Y ) 6= ∅. Consequently, NG(x) ∩
NG(y) 6= ∅, and hence 1 ≤ distG(x, y) ≤ 2. (b) Next, if |pn(x,X)− {x}| ≥ 2 or
|pn(y, Y )− {y}| ≥ 2, then G would have a cycle of length three or four, which
is a contradiction. �

The idea of our proof of Theorem 2 is to treat a γ-set of the tree T as a set of
k tokens, where k = γ(T ), that can be relocated within T , in discrete time steps,
maintaining domination of the tree. Specifically, assume VT = {1, 2, . . . , n} and
let D be the γ-set of T with the following property. When D is represented
as the ordered k-tuple (vD1 , . . . , vDk ) of vertices in VT , with vDi−1 < vDi , i ∈
[k] − {1},1, then the sequence vD1 . . . vDk is lexicographically the smallest one
over the alphabet VT , taken over all γ-sets of T . Next, let the k tokens, where
k = γ(T ), be once labeled with identifying numbers 1, . . . , k, which we shall
refer to as Idi, i ∈ [k]. Finally, let us initially locate these k tokens in such
a way that the (unique) vertex occupied by the token Idi is v

D
i , i ∈ [k]. Because

the γ-graph of a tree T is connected [5], in both adjacency models, any sequence
of consecutive (feasible) vertex replacements/slides (moves), starting from the
set D and finishing at another γ-set of T , may be thought of as relocating our
k-tokens, keeping their identifiers unchanged. In other words, we may uniquely
associate any γ-set X of T with the ordered k-tuple (vX1 , . . . , vXk ), where vXi is
the vertex occupied by token Idi. Following this convention, we observe that for
any two (ordered) γ-sets X and Y of T , vertices X and Y are adjacent in the
graph ΓT if and only if for all but one i ∈ [k], vXi = vYi holds. Next, for i ∈ [k],

1Herein, we use the convention that [k] stands for the index set {1, 2, 3, . . . , k}, k ≥ 1.
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let V i
T be the set of all vertices that can ever be occupied by token Idi, that is,

V i
T = {vXi : X is a γ-set of T} (we emphasize that the set D defining the token

labeling remains fixed).

Lemma 2 For any i ∈ [k], the relevant vertex sets V i
T are the same in both

adjacency models. In particular, the induced subgraph T [V i
T ] is connected for

any i ∈ [k] (in both adjacency models).

Proof: Due to the fact that every γ-graph in the slide adjacency model is
a spanning subgraph of the relevant γ-graph in the single vertex replacement
adjacency model [2], all we need is to argue that in the latter model, if X and Y
are two adjacent γ-sets in the γ-graph of T , then a single move of a token in T
from a vertex in X to a vertex in Y can be simulated by at most two subsequent
moves of that token in the former model.

Let X − {x} = Y − {y} for some x ∈ X , y ∈ Y . Assume without loss of
generality that distT (x, y) = 2 (see Lemma 2). First, observe that the unique
vertex z ∈ NT (x) ∩ NT (y) neither belongs to X nor to Y (otherwise, the set
X − {x} (= Y − {y}) would be a smaller dominating set of T , which is a con-
tradiction). Next, the minimality of X and Y combined with Lemma 1 implies
that pn(x,X) = {z} = pn(y, Y ), and hence the set Z = (X − {x}) ∪ {z} is
a γ-set of T , being adjacent to both X and Y in the γ-graph of T . Therefore,
because distT (x, z) = distT (z, y) = 1, a single move of a token in T from x to y
can be simulated by two subsequent moves of that token (from x to z and then
from z to y) in the slide adjacency model, as required. �

In the following sequence of lemmas we describe other properties of the
sets V i

T . These will be useful for the proof of Theorem 2.

Lemma 3 V i
T ∩ V j

T = ∅ for any distinct i, j ∈ [k] (in both adjacency models).

Proof: By Lemma 2, we may restrict ourselves only to the slide adjacency
model. Suppose on the contrary that there exist distinct i, j ∈ [k] such that
V i
T ∩ V j

T 6= ∅. Let Π be any (finite) walk in ΓT starting at the γ-set D and
traversing the edges of ΓT until all vertices in ∪k

t=1V
t
T have been visited/occupied

by tokens (tokens are moving with respect to the γ-sets visited along the walk);
clearly, such a walk Π exists as ΓT is connected [5]. Because V i

T ∩V j
T 6= ∅, there

exist two γ-sets of T being adjacent along Π, say Y and Z, such that one of the
tokens, say Ida, is moved from a vertex of T , say y, and placed for the first time
at another vertex of T , say z, that has already been visited by another token,
say Idb, with b 6= a. Let X be the γ-set of T with Idb occupying vertex z for
the first time along the walk Π. Consider now the rooted subtree T ′ = Tz(y)
of Tz, and, symmetrically, the rooted subtree T ′′ = Ty(z) of Ty, see Fig. 2 for
an illustration. From the choice of y and z, acyclity of T and distT (y, z) = 1, it
follows that:

• Z ∩ VT ′ dominates all vertices in VT ′ − {y} and |Z ∩ VT ′ | = |Y ∩ VT ′ | − 1;
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T ′′T ′

y ∈ Y z /∈ Y

– elements of Y

token Ida is located at y

token Idb is located in T ′′

token Ida is located at z

token Idb is located in T ′′

Ida

– elements of Z

T ′′T ′

y /∈ Z z ∈ Z

token Ida is located in T ′

token Idb is located at z

– elements of X

T ′′T ′

y z ∈ X

Figure 2: The set S = (Z ∩ VT ′ ) ∪ (X ∩ VT ′′) is a dominating set of T , and
|S| = γ(T )− 1; notice that y may belong to X .

• X ∩ VT ′′ dominates all vertices in VT ′′ ∪ {y}, and |X ∩ VT ′′ | = |Y ∩ VT ′′ |.

Consequently, because VT = VT ′ ∪ VT ′′ and VT ′ ∩ VT ′′ = ∅, the set S = (Z ∩
VT ′) ∪ (X ∩ VT ′′ ) is a dominating set of T with |S| = γ(T ) − 1, which is a
contradiction. �

Lemma 4 For any i ∈ [k], the distance between any two vertices in V i
T is at

most two in T (in both adjacency models).

Proof: By Lemma 2, we may again restrict ourselves only to the slide adjacency
model. Suppose to the contrary that for some i ∈ [k], there are two vertices
y, z ∈ V i

T such that distT (y, z) = 3 (notice that in our supposition, we may,
without loss of generality, restrict ourselves to vertices at the distance three
because T [V i

T ] is connected by Lemma 2). Let π = v0v1v2v3 be the shortest path
between v0 = y and v3 = z in T . Let Y and Z be two γ-sets of T such that token
Idl is located at vertex v0 (= y) and at vertex v3 (= z), respectively. Consider
the rooted subtree T ′ = Tv2(v1) of Tv2 and the rooted subtree T ′′ = Tv1(v2) of
Tv1 , see Fig. 3 for an illustration. Now, because T is a tree, T [V i

T ] is connected

(by Lemma 2), and V i
T ∩ V j

T = ∅ for any distinct i, j ∈ [k] (by Lemma 3), we
observe that vertices v1, v2 /∈ Y and v1, v2 /∈ Z. Consequently:

• Z ∩ VT ′ dominates all vertices in VT ′ and |Z ∩ VT ′ | = |Y ∩ VT ′ | − 1;



JGAA, 24(1) 47–61 (2020) 53

T ′′T ′

y = v0 ∈ Y

v1 /∈ Y v2 /∈ Y

z = v3 /∈ Y

– elements of Y

token Idl is located at y

T ′′T ′

y = v0 /∈ Z

v1 /∈ Z v2 /∈ Z

z = v3 ∈ Z

– elements of Z

token Idl is located at z

Figure 3: The set S = (Z ∩ VT ′) ∪ (Y ∩ VT ′′) is a dominating set of T , and
|S| = γ(T )− 1.

• Y ∩ VT ′′ dominates all vertices in VT ′′ .

Consequently, because VT = VT ′ ∪ VT ′′ and VT ′ ∩ VT ′′ = ∅, the set S = (Z ∩
VT ′) ∪ (Y ∩ VT ′′ ) is a dominating set of T with |S| = γ(T ) − 1, which is a
contradiction. �

Lemma 5 If s ∈ S′
T , then there exists is ∈ [k] such that V is

T ⊆ {s, ls}, where ls
is the unique leaf adjacent to s in T , and so diam(T [V is

T ]) ≤ 1 (in both adjacency

models).

Proof: By Lemma 2, we may focus only on the slide adjacency model. Let
X be a γ-set of T such that s ∈ X (clearly, such a γ-set exists) and let Idis
be the token located at vertex s. It follows from the minimality of X that no
other token occupies the leaf ls. Therefore, in order to move Idis from s to
a vertex distinct from the leaf ls in T while maintaining domination of ls, there
must have already been located another token at s, together with Idis , which
contradicts Lemma 3. �

Lemma 6 If s ∈ S′′
T , then there exists is ∈ [k] such that V is

T = {s}, and so

diam(T [V is
T ]) = 0 (in both adjacency models).

Proof: It follows by arguments analogous to those in the proof of Lemma 5. �
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We say that two (ordered) γ-sets X = (vX1 , . . . , vXk ) and Y = (vY1 , . . . , vYk )
of the given tree T are inconsistent at the coordinate i ∈ [k] if vXi 6= vYi ; such
a coordinate i itself, the vertices vXi and vYi as well as the token Idi are then
also referred to as inconsistent, whereas the set X − (X ∩ Y ) of all inconsistent
vertices in Y (with respect to Y ) is denoted by In(X,Y ), respectively.

Let X and Z be two (different) inconsistent γ-sets of the tree T (and so
In(X,Z) 6= ∅), and let M = (VM , EM , AM ) be the mixed tree, with the vertex
set VM = VT , the edge set EM and the arc set AM , respectively, resulting
from T by assigning the orientation to the edges (towards vZi ) on the shortest
path between vXi and vZi , for each vXi ∈ In(X,Z). Let R = (VR, ER) be
the certificate graph of some arc-separator in M (such a graph R exists by
Observation 1, and it is a subgraph of both T and M). We have a sequence of
observations.

(A) In the mixed tree M , all maximal directed paths are vertex-disjoint and of
length of at most two (by combining Lemma 2, Lemma 3, and Lemma 4).

(B) Therefore, In(X,Z) = X − (X ∩ Z) ⊆ V ◦
M and Z − (X ∩ Z) ⊆ V ◮

M − V ◦
M ,

and thus (Z − (X ∩Z))∩VR = ∅ (by the definition of a certificate graph);
in other words, there is no inconsistent vertex in Z that belongs to VR.

(C) Finally, it follows from the definition of an arc-separator that if l is a leaf
of R, then l is a leaf of T or l = vXi (6= vZi ) for some inconsistent coordinate
i ∈ [k]. Notice that in the former case, l = vXj = vZj for some j ∈ [k] may
also hold.

Next, let Ud denote the set of all inconsistent vertices vXi ∈ In(X,Z) such
that distT (v

X
i , vZi ) = d; notice d ∈ {1, 2} by Lemma 4. Observe that (see Fig. 4

for an illustration):

(D) Because Z is a γ-set of T and distT (v
X
i , vZi ) ≥ 1 for every vZi ∈ Z−(Z∩X),

the set (Z ∩ VR) − U2 dominates all vertices in VR, and so does the set
(X ∩ VR) − U2 (because Z ∩ VR = X ∩ VR by the definition of an arc-
separator). In other words, for the purpose of domination of R, vertices
in the set {vZi : vXi ∈ U2} ⊆ Z − (Z ∩X) are useless.

(E) By similar arguments, the set (Z ∩ VR)− In(X,Z) dominates all vertices
in VR− In(X,Z), and so does the set (X∩VR)− In(X,Z). In other words,
no vertex in U1 (= In(X,Z)∩ (VR −U2)) has an external private neighbor
in VR, that is, any such vertex may be required only to dominate itself
in R.

(F) Finally, NT (xi) ∩ (VT − VR) ⊆ NT (zi) ∩ (VT − VR).

Consequently, tokens at inconsistent vertices in In(X,Z) ∩ VR can be slid
along the relevant arcs of M (recall that all maximal directed paths in M are
vertex-disjoint), in a sequence, in total number |U1| + 2|U2| of slides, to make
all of them consistent, and the resulting set Y is a γ-set of T (by the properties
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mixed tree M

xi zi

xj zj

xl = zl
U1

U2

a maximal arc-free subgraph of M with

the certificate graph R of SR

no vertex being the head of an arc in M

X ∩ VR

SR = In(X,Z) ∩ VR

an arc-separator SR

X − Z Z −X X ∩ Z

Figure 4: The set (X ∩ VR) − U2 dominates all vertices in VR, while the set
(X ∩ VR)− In(X,Z) dominates all vertices in VR − In(X,Z).

discussed above), with |In(Y, Z)| < |In(X,Z)|. Applying this approach repeat-
edly will eventually move all tokens from their initial positions vX1 , . . . , vXk to
the desired positions vZ1 , . . . , v

Z
k , and — supported by Lemmas 4-6 — we may

conclude that in the single vertex replacement adjacency model, the number of
jumps is at most γ(T ) − |S′′

T | ≤ n/2, and so diam(ΓT ) ≤ γ(T ) − |S′′
T | ≤ n/2

in this model, whereas in the slide adjacency model, the number of slides is at
most 2(γ(T )−|ST |)+ |S′

T |, and hence diam(ΓT ) ≤ 2(γ(T )−|S′′
T |)−|S′

T | in that
model, as required.

Regarding the slide adjacency model and bounding the diameter of ΓT in
terms of the number of vertices, taking into account Lemmas 5 and 6, first
observe that there are at least |ST | ≥ 2 tokens that require at most |ST | slides
in total to make them consistent (recall that T is a tree of order at least four and
γ(T ) ≥ 2). Next, if the number of slides to make a token Idi consistent is equal
to 2, then |V i

T | ≥ 3, and hence the number of such “expensive” tokens is at most
(|VT | − 2|ST |)/3 ≤ (n− 4)/3 (by Lemma 3). Therefore, a simple calculus shows
that the maximum (total) number of slides is at most 2+2(n−4)/3 = 2(n−1)/3,
which finishes the proof of Theorem 2.

Remark. Let us note that the statements of Lemmas 3–4 cannot be carried over
to the class of arbitrary graphs. As an example, consider the cycle G = C3k+1

in which V i
G = VG for any token Idi (defined with respect to the γ-set D).
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3 Algorithmic result

Observe that in the proof of Theorem 2, the relevant graph R can be extended
and defined to be the union of the certificate graphs of an arbitrary number of
(distinct) arc-separators in the mixed tree M . This is a core property that gives
rise to a simple linear-time algorithm for determining the optimal sequence of
jumps between two minimum dominating sets of a tree. The algorithm consists
of three phases: pre-processing, assigning levels and final phase.

Pre-processing Phase. We identify pairs of vertices (xi, zi) ∈ X×Z,
each of which corresponds to the placement of the (unique by Lemma 3)
token Idi.

In that phase (see Fig. 5(a,b) for an illustration), we perform a DFS-based ap-
proach starting from a leaf l ∈ LT , and for each vertex v ∈ VT , we recursively
determine the number nX

v (resp. nZ
v ) of inconsistent vertices in the rooted sub-

tree Tl(v) that belong to a γ-setX (resp. to a γ-set Z). Notice that |nX
v −nZ

v | ≤ 1
(because otherwise, vertex v must have been visited by two distinct tokens by
Lemma 4 — a contradiction with Lemma 3). Next, using these data, starting
from the same leaf l, the second pass of DFS is sufficient to identify the afore-
mentioned pairs of vertices. More specifically, for the currently handled vertex
v (in a post-order manner while performing DFS), assuming that the i− 1 pairs
(x, z) ∈ X ×Z has already been identified in all subtrees of Tl(v) rooted at the
children of v (if any), the following rules can be applied (they are exhaustive
and distinct by Lemma 3 and Lemma 4).

• If v ∈ X ∩ Z, then xi := v and zi := v. (Notice that nX
v = nZ

v in this
case.)

• If v ∈ X−Z and nX
v = nZ

v , then xi := v, whereas zi is assigned the unique
non-associated yet vertex in Tl(v) that belongs to Z.

• If v ∈ Z−X and nX
v = nZ

v , then zi := v, whereas xi is assigned the unique
non-associated yet vertex in Tl(v) that belongs to X .

• Otherwise, continue: no vertices are associated, but if v ∈ X , then v is
marked as “non-associated x”, and if v ∈ Z then it is marked as “non-
associated z”.

Assigning Levels Phase. We assigns levels to vertices/tokens in X .
These levels will constitute the ordering that the tokens will move with
respect to.

Let M = (VM , EM , AM ) be the mixed tree defined in the proof of Theorem 2
(Section 2), resulting from T by assigning the orientation to the edges (towards
zi) on the shortest path between xi and zi, for each xi ∈ In(X,Z); see Fig. 6(a)
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a)
(1, 0) (1, 1) (0, 0) (15, 15) (0, 1) (1, 1) (1, 0) (0, 0)

(1, 1) (0, 1) (6, 6) (6, 5) (6, 5) (5, 4) (5, 4) (0, 0) (0, 1) (1, 0)

(1, 1)

(0, 0)

(6, 6)

(0, 1) (7, 7)
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(0, 0) (0, 0)

(4, 4)

(4, 4) (2, 2)

(1, 1)

(1, 1) (2, 3) (3, 3) (7, 7)
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Figure 5: Pre-processing Phase. A tree T with γ(T ) = 20 and the γ-sets X and
Z of T : X−Z is marked red, Z−X is marked blue, and X∩Z is marked green.
(a) Determining the numbers nX

v and nZ
v (depicted as pairs (nX

v , nZ
v ), starting

at the black leaf). (b) Identifying the pairs (xi, zi) ∈ X × Z; herein, children
of a vertex are visited in a counterclockwise manner, with respect to the given
plane embedding of T .
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layer L4

layer L3

layer L2

layer L1

Figure 6: Assignig Levels Phase. (a) The mixed tree M . (b) The Hasse diagram
H = (In(X,Z), A) of 〈In(X,Z),≺〉.

for an illustration. Recall that all directed paths in M are vertex-disjoint and
of a length of at most two. Define the partially ordered set 〈In(X,Z),≺〉,
where for two distinct xi, xj ∈ In(X,Z), ≺ xj if and only if there is no arc-free
path between xi and xj in M and all the arcs on the (unique) path between
xi and xj are oriented towards xj . Next, consider the transitive reduction
H = (In(X,Z), A) of 〈In(X,Z),≺〉 in the form of the Hasse diagram, with
the layers L1, . . . , Lt, where t ≤ γ(T ) (notice that because T is a tree, such
a transitive reduction exists); see Fig. 6(b). These layers define now the labeling
of inconsistent vertices in X : if xi ∈ Lk, then xi is assigned the level k. Observe
that H is not necessarily connected, but it is a directed forest, that is, its
underlying undirected graph is a forest (because T is a tree). Moreover, it can
be computed, together with the layers L1, . . . , Lt, in linear time by applying the
third pass of a DFS-based approach on the tree T .
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Final Phase. We move tokens from xi to zi with respect to the in-
creasing order of the assigned levels to inconsistent vertices.

Before we proceed with the correctness proof of our 3-phase algorithm, let us
point out that it was not our intention to optimize the number of DFS-phases
in our algorithm. Therefore, we believe that with respect to this criterion,
some improvement is possible, and we eventually conclude our paper with the
following theorem.

Theorem 3 Given two γ-sets X and Z of a tree T , an optimal sequence of

jumps through which X can be transformed into Z can be computed in linear

time (in both adjacency models).

Proof: For a level l ∈ {1, . . . , t}, let Yl+1 denote the set resulting from mov-
ing all tokens in Ll to the relevant vertices in Z. It follows from the defini-
tion/construction that Yt+1 = Z, and for each l ∈ {1, . . . , t − 1}, Ll+1 ⊆ Yl+1

and In(Yl+1, Z) = In(X,Z)−
⋃l

i=1 Ll.
Due to the fact that L1 is the set of minimal elements in 〈In(X,Z),≺〉, L1

is the sum of a number of arc-separators in the mixed tree M1 = M (exploited
in Phase 2 and defined in the proof of Theorem 2). Consequently, it follows
from the proof of Theorem 2 (i.e., the arguments from the paragraph just after
Lemma 6) that the set Y2, resulting from moving tokens located at inconsistent
vertices in L1 towards the relevant vertices in Y2 (and so in Z), in any order, is
a γ-set of T .

But the same argument can be inductively (successively) applied to all the
γ-sets Yl and Z, l ∈ {1, 2, . . . , t}, and the partially ordered set 〈In(Yl, Z),≺〉,
defined now with respect to Yl and Z. Namely, observe that Ll+1 is the set
of minimal elements in 〈In(Yl+1, Z),≺〉, which implies that Ll+1 is the sum of
a number of arc-separators in the relevant mixed tree Ml (defined now with
respect to Yl and Z). Consequently, it follows from the proof of Theorem 2 that
the set Yl+1 is a γ-set of T for each l ∈ {1, . . . , t}. Therefore, moving tokens
with respect to the increasing order of the assigned levels to inconsistent vertices
constitutes a feasible optimal reconfiguration of the γ-set X into the γ-set Z.

Finally, with respect to the complexity issue, all we need is to observe that
all three phases can clearly be accomplished in linear time. �
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