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Abstract

We provide tight bounds on the diameter of «-graphs, which are reconfigu-
ration graphs of the minimum dominating sets of a graph G. In particular,
we prove that for any tree T of order n > 3, the diameter of its y-graph
is at most n/2 in the single vertex replacement adjacency model, whereas
in the slide adjacency model, it is at most 2(n — 1)/3. Our proof is con-
structive, leading to a simple linear-time algorithm for determining the
optimal sequence of “moves” between two minimum dominating sets of

a tree.
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1 Introduction

For a vertex v of a (simple) graph G = (Vi, Eg), its neighborhood, denoted
by Ng(v), is the set of all vertices adjacent to v. The cardinality of Ng(v),
denoted by dg(v), is termed the degree of v. A vertex of degree one is termed
a leaf, and the only neighbor of a leaf is called its support vertex (or simply,
its support). If a support vertex has at least two leaves as neighbors, we call it
a strong support, otherwise it is a weak support. A set of vertices D C Vg of
G is dominating if every vertex in the set Vg — D has a neighbor in D. The
cardinality of a minimum dominating set in G is termed the domination number
of G and denoted by 7(G), and any minimum dominating set of G is referred
to as a y-set.

Over the years, researchers have published thousands of papers on domina-
tion in graphs, exploring the topic in a variety of contexts. In particular, quite
recently, two closely related concepts of reconfiguration graphs of the minimum
dominating sets were introduced. In both of these variants, for a given graph
G, the vertex set of the reconfiguration graph is the collection of all v-sets of
G; however, the difference lies in the adjacency concept. Namely, in the sin-
gle vertex replacement adjacency model, introduced in 2008 by Subramanian
and Sridharan [10], two y-sets X and Y of G are adjacent if there are vertices
xz € X and y € Y such that X — {z} = Y — {y}, whereas in the slide ad-
jacency model, introduced by Fricke et al. [B] in 2011, it is required that, in
addition, xy € Eg. The single vertex replacement adjacency model was fur-
ther studied in [I0} 14} [15], and the slide adjacency model was further studied
in [2,[3L4]. Finally, reconfiguration graphs for dominating sets that are not nec-
essarily minimum or for other models of domination have also been considered,
see for example [T}, [7] [8 @] 111 12} [17].

Herein, we focus on reconfiguration graphs of trees. For simplicity of pre-
sentation, we shall assume that in the two aforementioned models, both the
reconfiguration graphs are termed the ~y-graphs and denoted by I'¢ because
the model under consideration is always either clear from the context, or not
relevant. In 2011, Fricke et al. [5] posed the following question (among oth-
ers, just as interesting, some of them having been already solved completely,
see [3, 4, [13]): In the slide adjacency model, is diam(T'r) = O(n) for any tree
T of order n? The partial answer for so-called caterpillars with one leg and for
trees of diameter at most five was given by Bien [2], and only in 2018, Edwards
et al. [4] answered the question in an affirmative way for all trees.

Theorem 1 [4] For any tree T of order n, diam(I'r) < 29(T) < n in the
single vertex replacement adjacency model, whereas in the slide adjacency model,
diam(T'r) < 2(2y(T) — |S7|) < 2(n —2), where St is the set of support vertices
m T.

However, the upper bounds established in Theorem [ are not tight; in the
single vertex replacement adjacency model, the best lower bound is n/2 [4]
(being attained by the corona graph of a tree [6] ), whereas in the slide adjacency
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Figure 1: The mixed tree M has two arc-separators, marked with blue and
green, respectively.

model it is 2(n—1)/3 [5] (being attained by the path of order n = 3k+1, k > 1).
Therefore, in this paper, we undertake their study and close down these gaps.
Namely, our result is the following theorem:

Theorem 2 For any tree T of order n > 3, we have diam(I'y) < (T) —
[S%| < n/2 in the single vertex replacement adjacency model, whereas in the
slide adjacency model, diam(I'r) < min{2(y(T) — |S4]) — |S%],2(n — 1)/3},
where S (resp. SY) is the set of weak (resp. strong) support vertices in T.

Notation. For a vertex v of a graph G = (Viz, E), the closed neighborhood of
v, denoted by Ng[v], is the set Ng(v)U{v}, and for a subset X C Vi of vertices,
the neighborhood of X, denoted by Ng(X), is defined to be |J,.x Na(v), and
the closed neighborhood of X, denoted by Ng[X], is the set Ng(X) U X. Next,
for a vertex v € X, the private neighborhood of v with respect to X is the set
png(v, X) = Ng[v] — Ng[X — {v}], that is, the set of vertices that are in the
closed neighborhood of v, but are not in the closed neighborhood of any other
vertex in X. A vertex in png(v, X) is referred as to a private neighbor of v
(with respect to X), and private neighbor of v is external if it is distinct from v
itself. The set of leaves, the set of weak supports, the set of strong supports, and
the set of all supports of G are denoted by Lg, Sg;, Si, and S, respectively.

For a mixed tree M = (Vas, Enr, Anr), the sets of tails and heads of arcs
in Ay are denoted by Vy; and V}y, respectively (notice that v € Vi may be
an element of both Vy; and V). Next, let Fas be the family of all maximal
connected arc-free subgraphs of M, and let R = (Vg, Er) € Fu be a subgraph
of M such that Vg NV = 0. Then the set Sg = Vg NV, is called an arc-
separator in M, whereas the graph R itself — the certificate graph of Sg; see
Fig. [ for an illustration. Observe that for any two distinct arc-separators Sy
and Ss in M, we have S;NSs = (), and moreover, there is neither edge uv € Eyy
nor arc (u,v) € A, nor arc (v,u) € Ay such that u € Sp and v € Ss.

Observation 1 FEvery mized tree possesses an arc-separator.
A rooted tree is a pair (T,r), for simplicity denoted by 7T, where T =

(Vr,Er) is a tree and r € Vp is a distinguished vertex termed the root. A
vertex x € Vp is labelled an ancestor of a vertex y in T, if  belongs to the
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unique path joining y and 7, and if, in addition, xy € Er, then z is a parent of
y. Next, symmetrically, the terms descendant of x and child of x, respectively,
are used to describe such a vertex y. Note that x is both an ancestor and a
descendant of itself. Finally, we use T).(z) to describe the subtree of T, induced
by the descendants of x and rooted at x.

2 The proof of Theorem

The statement is trivially valid for the case of 4(T') = 1. Thus, assume now that
T = (Vp,Er) is a tree of order n > 4, with v(T) > 2. We start with a simple
general lemma.

Lemma 1 Let X and Y be two distinct minimal dominating sets of a graph
G. If X — {2} =Y — {y} for some x € X and y € Y, then:

a) 1 < distg(z,y) <2 holds;

b) If the girth of G is at least five, that is, G is acyclic or the shortest cycle
in G is of the length at least five, then |pn(z,X) — {z}| < 1 as well as

Ipn(y, Y) — {y}| < 1.

Proof: (a) Because X and Y are minimal dominating sets of G and X — {z} =
Y — {y}, we have that png(z, X) = png(y,Y) # 0. Consequently, Ng(z) N
Neg(y) # 0, and hence 1 < distg(z,y) < 2. (b) Next, if |pn(z, X) — {z}| > 2 or
[pn(y,Y) — {y}| > 2, then G would have a cycle of length three or four, which
is a contradiction. O

The idea of our proof of Theorem[2is to treat a y-set of the tree T' as a set of
k tokens, where k = v(T), that can be relocated within T, in discrete time steps,
maintaining domination of the tree. Specifically, assume Vpr = {1,2,...,n} and
let D be the v-set of T' with the following property. When D is represented
as the ordered k-tuple (vP,...,vP) of vertices in Vp, with v?, < vP, i €
[k] — {1}]1 then the sequence v{ ...vP is lexicographically the smallest one
over the alphabet Vi, taken over all y-sets of T'. Next, let the k tokens, where
k = 4(T), be once labeled with identifying numbers 1,...,%, which we shall
refer to as Id;, i € [k]. Finally, let us initially locate these k tokens in such
a way that the (unique) vertex occupied by the token Id; is vP, i € [k]. Because
the ~-graph of a tree T is connected [5], in both adjacency models, any sequence
of consecutive (feasible) vertex replacements/slides (moves), starting from the
set D and finishing at another v-set of T, may be thought of as relocating our
k-tokens, keeping their identifiers unchanged. In other words, we may uniquely
associate any vy-set X of T with the ordered k-tuple (v, ... ,v,f), where v is
the vertex occupied by token Id;. Following this convention, we observe that for
any two (ordered) v-sets X and Y of T, vertices X and Y are adjacent in the
graph Tz if and only if for all but one i € [k], vX = v} holds. Next, for i € [k],

7

IHerein, we use the convention that [k] stands for the index set {1,2,3,...,k}, k > 1.
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let VTi be the set of all vertices that can ever be occupied by token Id;, that is,
Vi ={v¥ : X is a y-set of T} (we emphasize that the set D defining the token
labeling remains fixed).

Lemma 2 For any i € [k], the relevant vertex sets V. are the same in both
adjacency models. In particular, the induced subgraph T[V.] is connected for
any i € [k] (in both adjacency models).

Proof: Due to the fact that every ~-graph in the slide adjacency model is
a spanning subgraph of the relevant y-graph in the single vertex replacement
adjacency model [2], all we need is to argue that in the latter model, if X and Y
are two adjacent y-sets in the y-graph of T', then a single move of a token in T'
from a vertex in X to a vertex in Y can be simulated by at most two subsequent
moves of that token in the former model.

Let X —{z} =Y — {y} for some z € X, y € Y. Assume without loss of
generality that disty(z,y) = 2 (see Lemma [2). First, observe that the unique
vertex z € Np(z) N Np(y) neither belongs to X nor to Y (otherwise, the set
X — {2} (=Y — {y}) would be a smaller dominating set of T', which is a con-
tradiction). Next, the minimality of X and Y combined with Lemma [l implies
that pn(z, X) = {2z} = pn(y,Y), and hence the set Z = (X — {a}) U {2} is
a y-set of T, being adjacent to both X and Y in the y-graph of T'. Therefore,
because distr(x, z) = distr(z,y) = 1, a single move of a token in T from z to y
can be simulated by two subsequent moves of that token (from z to z and then
from z to y) in the slide adjacency model, as required. O

In the following sequence of lemmas we describe other properties of the
sets V.. These will be useful for the proof of Theorem [2

Lemma 3 Vi NV, =0 for any distinct i, j € [k] (in both adjacency models).

Proof: By Lemma 2] we may restrict ourselves only to the slide adjacency
model. Suppose on the contrary that there exist distinct 7,5 € [k] such that
ViNVy # 0. Let II be any (finite) walk in I'y starting at the v-set D and
traversing the edges of I'r until all vertices in UF_, Vi have been visited /occupied
by tokens (tokens are moving with respect to the y-sets visited along the walk);
clearly, such a walk II exists as I'r is connected [5]. Because Vi N V3. # 0, there
exist two y-sets of T" being adjacent along II, say Y and Z, such that one of the
tokens, say Id,, is moved from a vertex of T', say y, and placed for the first time
at another vertex of T, say z, that has already been visited by another token,
say Id,, with b # a. Let X be the y-set of T with Id, occupying vertex z for
the first time along the walk II. Consider now the rooted subtree TV = T.(y)
of T, and, symmetrically, the rooted subtree T = Ty(z) of Ty, see Fig. [ for
an illustration. From the choice of y and z, acyclity of T' and distr(y, z) = 1, it
follows that:

e Z NV dominates all vertices in Vi — {y} and |Z NV | = Y NV | — 1
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token Id, is located at y token Id, is located at z
token Idy is located in T token Id; is located in T

y &z 2 €Z

@ - clements of Y @ - clements of Z

token Id, is located in T’
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Figure 2: The set S = (Z N Vy) U (X N Vpr) is a dominating set of T, and
|S| = v(T') — 1; notice that y may belong to X.

e X N Vpr dominates all vertices in Vpr U {y}, and | X N Vpr| =Y N Vo]

Consequently, because Vp = Vi U Vpr and Ve N Vi = B, the set S = (Z N
V) U (X N Vpr) is a dominating set of T with |S| = v(T') — 1, which is a
contradiction. O

Lemma 4 For any i € [k], the distance between any two vertices in V- is at
most two in T (in both adjacency models).

Proof: By Lemma 2] we may again restrict ourselves only to the slide adjacency
model. Suppose to the contrary that for some i € [k], there are two vertices
y,z € Vi such that distr(y,z) = 3 (notice that in our supposition, we may,
without loss of generality, restrict ourselves to vertices at the distance three
because T[V4] is connected by Lemmal[2). Let m = voviv2vs3 be the shortest path
between vg = y and v = zin T'. Let Y and Z be two -sets of T" such that token
Id; is located at vertex vy (= y) and at vertex vs (= z), respectively. Consider
the rooted subtree T’ = Ty, (v1) of Ty, and the rooted subtree T” = Ty, (v2) of
Ty, , see Fig. Bl for an illustration. Now, because T is a tree, T[V;}:] is connected
(by Lemma ), and V. N VTj = () for any distinct 4,5 € [k] (by Lemma (), we
observe that vertices v1,ve ¢ Y and vy,vs ¢ Z. Consequently:

e Z N Vp: dominates all vertices in Vpr and |Z NV | =Y N V| — 1,
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! e token Id; is located at y PR !
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T T A

@ - clements of Z

Figure 3: The set S = (Z NV ) U (Y N Vpr) is a dominating set of T, and
|S] =(T) - 1.

e Y N Vpn dominates all vertices in V.

Consequently, because Vp = Vi U Vpr and Ve N Vi = B, the set S = (Z N
Vi) U (Y N Vpr) is a dominating set of T' with |S| = ~(T) — 1, which is a
contradiction. O

Lemma 5 Ifs € S}, then there exists is € [k] such that V2 C {s,ls}, where I,
is the unique leaf adjacent to s in T, and so diam(T'[V%*]) < 1 (in both adjacency
models).

Proof: By Lemma [2, we may focus only on the slide adjacency model. Let
X be a vy-set of T such that s € X (clearly, such a 7-set exists) and let Id;,
be the token located at vertex s. It follows from the minimality of X that no
other token occupies the leaf [;. Therefore, in order to move Id;, from s to
a vertex distinct from the leaf I in T" while maintaining domination of 5, there
must have already been located another token at s, together with Id;,, which
contradicts Lemma, [3l O

Lemma 6 If s € S, then there exists iy € [k] such that V> = {s}, and so
diam(T'[Vz#]) = 0 (in both adjacency models).

Proof: It follows by arguments analogous to those in the proof of Lemma Bl
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We say that two (ordered) v-sets X = (vX,...,o%) and Y = (v} ,...,v})
of the given tree T are inconsistent at the coordinate i € [k] if v¥ # v}; such
a coordinate i itself, the vertices v:¥ and v} as well as the token Id; are then
also referred to as inconsistent, whereas the set X — (X NY’) of all inconsistent
vertices in Y (with respect to V) is denoted by In(X,Y), respectively.

Let X and Z be two (different) inconsistent ~y-sets of the tree T' (and so
In(X,Z) #0), and let M = (Vag, Enr, Apr) be the mixed tree, with the vertex
set Vs = Vp, the edge set Ej; and the arc set Ay, respectively, resulting
from T by assigning the orientation to the edges (towards vZ) on the shortest
path between v and vZ, for each v¥ € In(X,Z). Let R = (Vg,Eg) be
the certificate graph of some arc-separator in M (such a graph R exists by
Observation [I} and it is a subgraph of both T and M). We have a sequence of
observations.

(A) In the mixed tree M, all maximal directed paths are vertex-disjoint and of
length of at most two (by combining Lemma 2] Lemma [3, and Lemma []).

(B) Therefore, n(X,Z) =X — (XNZ)C Vg and Z— (XNZ)CVy — Vg,
and thus (Z — (XN Z))NVgr = 0 (by the definition of a certificate graph);
in other words, there is no inconsistent vertex in Z that belongs to Vg.

(C) Finally, it follows from the definition of an arc-separator that if [ is a leaf
of R, then [ is a leaf of T or | = vX (# vZ) for some inconsistent coordinate
i € [k]. Notice that in the former case, | = vX = vZ for some j € [k] may

also hold.

Next, let Uy denote the set of all inconsistent vertices v;X € In(X, Z) such
that distr(vX,v#) = d; notice d € {1,2} by Lemma[d Observe that (see Fig. dl
for an illustration):

(D) Because Z is ay-set of T and distr(v;X,vZ) > 1 for every vZ € Z—(ZNX),
the set (Z N Vi) — Uz dominates all vertices in Vg, and so does the set
(X NVR) — Uz (because Z N Vg = X N Vg by the definition of an arc-
separator). In other words, for the purpose of domination of R, vertices

in the set {vZ : v¥ € U} C Z — (Z N X) are useless.

(E) By similar arguments, the set (Z N Vg) —In(X, Z) dominates all vertices
in Vg —In(X, Z), and so does the set (X NVg)—In(X, Z). In other words,
no vertex in U; (= In(X, Z) N (Vg — Uz)) has an external private neighbor
in Vg, that is, any such vertex may be required only to dominate itself
in R.

(F) Finally, Nz (z;) N (Vr — Vr) € N (zi) N (Ve — Vg).

Consequently, tokens at inconsistent vertices in In(X, Z) N Vi can be slid
along the relevant arcs of M (recall that all maximal directed paths in M are
vertex-disjoint), in a sequence, in total number |Uy| + 2|Uz| of slides, to make
all of them consistent, and the resulting set Y is a y-set of T' (by the properties
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mixed tree M

T = 2

5
&
®
\Ir
&

Sr = IH(X, Z) N Ve

an arc-separator Sg

X NVgr
@

the certificate graph R of Sg
a maximal arc-free subgraph of M with .
no vertex being the head of an arc in M

®@x-7 @7z-X OXxnz

Figure 4: The set (X N Vg) — Uz dominates all vertices in Vg, while the set
(X NVg) —In(X,Z) dominates all vertices in Vi — In(X, Z).

discussed above), with [In(Y, Z)| < [In(X, Z)|. Applying this approach repeat-

edly will eventually move all tokens from their initial positions vf(, e ,’U]i( to
the desired positions v?, ... ,’UkZ, and — supported by Lemmas — we may

conclude that in the single vertex replacement adjacency model, the number of
jumps is at most y(T') — |S7| < n/2, and so diam(I'r) < ~(T) — |S7| < n/2
in this model, whereas in the slide adjacency model, the number of slides is at
most 2(y(T) —|Sr|) + |S%|, and hence diam(I'r) < 2(y(T) — |S%|) — || in that
model, as required.

Regarding the slide adjacency model and bounding the diameter of I'r in
terms of the number of vertices, taking into account Lemmas [B and [ first
observe that there are at least |Sp| > 2 tokens that require at most |St| slides
in total to make them consistent (recall that T is a tree of order at least four and
~v(T) > 2). Next, if the number of slides to make a token Id; consistent is equal
to 2, then |V| > 3, and hence the number of such “expensive” tokens is at most
(IVr|—2|S7|)/3 < (n—4)/3 (by Lemma[3]). Therefore, a simple calculus shows
that the maximum (total) number of slides is at most 2+2(n—4)/3 = 2(n—1)/3,
which finishes the proof of Theorem

Remark. Let us note that the statements of Lemmas[BH4] cannot be carried over
to the class of arbitrary graphs. As an example, consider the cycle G = Csgy1
in which V}, = Vi for any token Id; (defined with respect to the vy-set D).
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3 Algorithmic result

Observe that in the proof of Theorem [2] the relevant graph R can be extended
and defined to be the union of the certificate graphs of an arbitrary number of
(distinct) arc-separators in the mixed tree M. This is a core property that gives
rise to a simple linear-time algorithm for determining the optimal sequence of
jumps between two minimum dominating sets of a tree. The algorithm consists
of three phases: pre-processing, assigning levels and final phase.

Pre-processing Phase. We identify pairs of vertices (z;, z;) € X X Z,
each of which corresponds to the placement of the (unique by Lemma [3])
token Id;.

In that phase (see Fig. [Bl(a,b) for an illustration), we perform a DFS-based ap-
proach starting from a leaf [ € Ly, and for each vertex v € Vp, we recursively
determine the number n:¥ (resp. n?) of inconsistent vertices in the rooted sub-
tree Tj(v) that belong to a y-set X (resp. to ay-set Z). Notice that [n;X —nZ| < 1
(because otherwise, vertex v must have been visited by two distinct tokens by
Lemma [ — a contradiction with Lemma [B]). Next, using these data, starting
from the same leaf [, the second pass of DFS is sufficient to identify the afore-
mentioned pairs of vertices. More specifically, for the currently handled vertex
v (in a post-order manner while performing DFS), assuming that the ¢ — 1 pairs
(x,2) € X X Z has already been identified in all subtrees of T}(v) rooted at the
children of v (if any), the following rules can be applied (they are exhaustive
and distinct by Lemma Bl and Lemma [)).

e If v € XNZ, then z; := v and z; := v. (Notice that n;X = nZ in this
case.)

e Ifv € X—Zand n¥ =nZ, then x; := v, whereas z; is assigned the unique
non-associated yet vertex in T;(v) that belongs to Z.

e Ifv € Z—X and n¥ =nZ, then z; := v, whereas z; is assigned the unique
non-associated yet vertex in T;(v) that belongs to X.

e Otherwise, continue: no vertices are associated, but if v € X, then v is
marked as “non-associated z”, and if v € Z then it is marked as “non-
associated z”.

Assigning Levels Phase. We assigns levels to vertices/tokens in X.
These levels will constitute the ordering that the tokens will move with
respect to.

Let M = (Vag, Enr, Apr) be the mixed tree defined in the proof of Theorem
(Section [2]), resulting from T by assigning the orientation to the edges (towards
z;) on the shortest path between z; and z;, for each z; € In(X, Z); see Fig. [Bl(a)
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a) (1,0)  (1,1)  (0,0) (15,15) (0,1  (1,1) (1,00  (0,0)
(1,0) (1,1) (2,1) (0,0) (0,0)
(15,15)
(1,1) (2,3) (3,3) (7,7)

(10,10)
(5,5)

(2,2) (0,0)

(1.1) 1)

(0,0) (0,1) (7,7) (0,0) (0,0) (2,2)

)

(L1 (01  (6,6) (6\:/5) (6,5) (5,4) (54 (0,00 (0,1) (1,0)

Figure 5: Pre-processing Phase. A tree T' with v(T") = 20 and the y-sets X and
Z of T: X —Z is marked red, Z — X is marked blue, and X NZ is marked green.
(a) Determining the numbers n;X and nZ (depicted as pairs (n:X,nZ), starting
at the black leaf). (b) Identifying the pairs (x;,2;) € X x Z; herein, children
of a vertex are visited in a counterclockwise manner, with respect to the given
plane embedding of T'.
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b
) m /1—\ layer Lg

layer L7
T16 17 9 layer Lg
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f\/@y fayer Ls
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/x—\ T12 layer Ls

/\/W layer Lo
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D
\
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Figure 6: Assignig Levels Phase. (a) The mixed tree M. (b) The Hasse diagram

H = (In(X,Z),A) of (In(X, Z), <).

for an illustration. Recall that all directed paths in M are vertex-disjoint and
of a length of at most two. Define the partially ordered set (In(X,Z), <),
where for two distinct z;, z; € In(X, Z), < z; if and only if there is no arc-free
path between z; and x; in M and all the arcs on the (unique) path between
x; and z; are oriented towards x;. Next, consider the transitive reduction
H = (In(X,Z2),A) of (In(X,Z),<) in the form of the Hasse diagram, with
the layers Lq,...,L;, where t < 4(T) (notice that because T is a tree, such
a transitive reduction exists); see Fig.[Bl(b). These layers define now the labeling
of inconsistent vertices in X: if x; € Ly, then x; is assigned the level k. Observe
that H is not necessarily connected, but it is a directed forest, that is, its
underlying undirected graph is a forest (because T is a tree). Moreover, it can
be computed, together with the layers L1, ..., L, in linear time by applying the
third pass of a DFS-based approach on the tree T'.



JGAA, 24(1) 47-61 (2020) 59

Final Phase. We move tokens from x; to z; with respect to the in-
creasing order of the assigned levels to inconsistent vertices.

Before we proceed with the correctness proof of our 3-phase algorithm, let us
point out that it was not our intention to optimize the number of DFS-phases
in our algorithm. Therefore, we believe that with respect to this criterion,
some improvement is possible, and we eventually conclude our paper with the
following theorem.

Theorem 3 Given two vy-sets X and Z of a tree T, an optimal sequence of
Jumps through which X can be transformed into Z can be computed in linear
time (in both adjacency models).

Proof: For a level [ € {1,...,t}, let Y11 denote the set resulting from mov-
ing all tokens in L; to the relevant vertices in Z. It follows from the defini-
tion/construction that Y;y; = Z, and for each I € {1,...,t — 1}, Liy1 C Vi
and In(Y;11, Z) = In(X, Z2) — U'_, L.

Due to the fact that Ly is the set of minimal elements in (In(X, Z), <), Ly
is the sum of a number of arc-separators in the mixed tree M; = M (exploited
in Phase 2 and defined in the proof of Theorem B]). Consequently, it follows
from the proof of Theorem [2 (i.e., the arguments from the paragraph just after
Lemmal[@)) that the set Ys, resulting from moving tokens located at inconsistent
vertices in L towards the relevant vertices in Y3 (and so in Z), in any order, is
a y-set of T'.

But the same argument can be inductively (successively) applied to all the
~v-sets Vi and Z, I € {1,2,...,t}, and the partially ordered set (In(Y;, Z), <),
defined now with respect to ¥; and Z. Namely, observe that L;;; is the set
of minimal elements in (In(Y;+1, Z), <), which implies that L;4; is the sum of
a number of arc-separators in the relevant mixed tree M; (defined now with
respect to ¥; and Z). Consequently, it follows from the proof of Theorem 2] that
the set Yi41 is a y-set of T for each | € {1,...,t}. Therefore, moving tokens
with respect to the increasing order of the assigned levels to inconsistent vertices
constitutes a feasible optimal reconfiguration of the y-set X into the v-set Z.

Finally, with respect to the complexity issue, all we need is to observe that
all three phases can clearly be accomplished in linear time. O
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