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Abstract

In this paper we study a recently proposed variant of the facility loca-
tion problem called the r-gathering problem.

Given sets C and F of points on the plane and distance d(c, f) for
each c ∈ C and f ∈ F , an r-gathering of C to F is an assignment A of C
to facilities F

′
⊂ F such that r or more customers are assigned to each

facility in F
′
. A facility is open in A if at least one customer is assigned

to it. The cost of an r-gathering is the maximum distance d(c, f) between
c ∈ C and A(c) ∈ F ′ among the assignment, which is maxc∈C{d(c, A(c))}.
The r-gathering problem finds the r-gathering that minimizes the cost.
When all points of C and F are on the line, an O((|C|+|F |) log(|C|+|F |))-
time algorithm and an O(|C|+ |F | log2 r + |F | log |F |)-time algorithm to
solve the r-gathering problem are known. In this paper we give a simple
O(|C| + r2|F |)-time algorithm to solve the r-gathering problem. Since
r << |F | << |C| holds in a typical case, say evacuation planning, our
new algorithm is O(log |F |) factor faster than the known algorithms.

We also give an algorithm to solve a simpler problem, called the r-
gather-clustering problem, defined as follows. Given a set C of n points on
the plane and distance for each pair of points in C, an r-gather-clustering
is a partition of the points into clusters such that each cluster has at least
r points. The cost of an r-gather-clustering is the maximum radius among
the clusters, where the radius of a cluster is the minimum radius of the
disk which can cover the points in the cluster. The r-gather-clustering
problem is the problem to find the r-gather-clustering that minimizes the
cost. In this paper we give an O(rn)-time simple algorithm to solve the
problem when all points of C are on the line.
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1 Introduction

The facility location problem and many of its variants are studied [6, 7]. In
this paper we study a recently proposed variant of the problem, the r-gathering
problem [2, 5].

We start with a rather simpler problem. Given a set C of n points on
the plane an r-gather-clustering is a partition of the points into clusters such
that each cluster has at least r points. The cost of an r-gather-clustering is
the maximum radius among the clusters, where the radius of a cluster is the
minimum radius of the disk which can cover the points in the cluster. The
r-gather-clustering problem [2] is the problem to find the r-gather-clustering
that minimizes the cost. The problem is NP-complete in general, however a
polynomial time 2-approximation algorithm for the problem is known [2]. When
all points of C are on the line, an O(n log n)-time algorithm, based on the matrix
search method [8, 1], for the problem is known [4].

In this paper we give an O(rn)-time simple algorithm to solve the problem
when all points of C are on the line, by reducing the problem to the min-max
path problem [9] in a weighted directed graph.

Assume that C is a set of residents on a street and we wish to locate emer-
gency shelters for the residents so that each shelter serves r or more residents.
Then r-gather-clustering computes optimal locations for shelters which mini-
mizes the evacuation time span, where each shelter for a cluster is located at
the center of the minimum disk which can cover the residents in the cluster.

Then we consider the r-gathering problem. Given two sets C and F of points
on the plane and distance d(c, f) for each c ∈ C and f ∈ F , an r-gathering of
C to F is an assignment A of C to F

′ ⊂ F such that r or more customers are
assigned to each facility in F

′
. A facility is open in A if at least one customer

is assigned to it. Note that no customer is assigned to each facility in F \ F ′
.

The cost of an r-gathering is the maximum distance d(c, f) between c ∈ C and
A(c) ∈ F ′ among the assignment, which is maxc∈C{d(c, A(c))}. The r-gathering
problem finds the r-gathering that minimizes the cost.

Armon [5] provides a simple 3-approximation algorithm for the r-gathering
problem and proves that with the assumption P 6= NP the problem cannot be
approximated within a factor less than 3 for any r ≥ 3. When all points of C
and F are on the line, an O((|C| + |F |) log(|C| + |F |))-time algorithm [4] and
an O(|C| + |F | log2 r + |F | log |F |)-time algorithm [10] to solve the r-gathering
problem are known.

In this paper we give an O(|C| + r2|F |)-time algorithm to solve the r-
gathering problem when all points of C and F are on the line. Since r <<
|F | << |C| holds in a typical case, say evacuation planning, our new algorithm
is O(log |F |) factor faster than the known algorithms.

Assume that we are planning an evacuation plan for the residents on a street,
F is a set of possible locations for emergency shelters, and d(c, f) is the time
needed for a person c ∈ C to reach a shelter f ∈ F . Then, an r-gathering (when
all points of C and F are on the line) corresponds to an evacuation assignment
such that each open shelter serves r or more people, and the r-gathering problem
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finds an evacuation plan that minimizes the evacuation time span.
The remainder of this paper is organized as follows. In Section 2 we consider

the r-gather-clustering problem and give an algorithm when all points in C are
on the line. The idea of the algorithm is to reduce the problem to the min-max
path problem for a weighted directed graph. Then in Section 3 we give our
algorithm for the r-gathering problem when all points in C and F are on the
line. The idea of our algorithm is (1) to reduce the problem to the min-max path
problem for a weighted directed graph, and (2) carefully bounding the number
of edges in the graph. Finally, Section 4 is a conclusion.

2 r-gather-clustering on the line

In this section we consider the r-gather-clustering problem, and give an algo-
rithm when all points in C are on the line. Let C = {c1, c2, · · · , cn} be points
on the horizontal line and we assume they are sorted from left to right. Our
idea is to reduce the r-gather-clustering problem to the min-max path problem
in a weighted directed (acyclic) graph. First we have the following two lemmas.

Lemma 1 There exists a solution in which the points in each cluster are con-
secutive in C.

Proof: We call three points ca, cb, cc ∈ C crossing triple if (1) a < b < c, (2)
ca, cc ∈ Cx and (3) cb ∈ Cy where Cx and Cy are clusters.

We provide a proof by contradiction. We assume any solution has some
crossing triple. Let S be a solution of the r-gather-clustering problem with the
minimum number of crossing triples, and S has a crossing triple ca, cb, cc with
ca, cc ∈ Cx and cb ∈ Cy. Let S

′
be the r-gather-clustering derived from S by

replacing Cx and Cy by C
′

x and C
′

y so that C
′

x are the leftmost |Cx| points in

Cx∪Cy and C
′

y are the rightmost |Cy| points in Cx∪Cy. Now, the cost of S
′

does

not increase and S
′

has less crossing triples than S, which is a contradiction. �

Thus we can assume each cluster in a solution consists of consecutive points
{ci, ci+1, · · · , cj} for some i and j.

Lemma 2 There exists a solution in which the number of points in each cluster
is at most 2r − 1.

Proof: We provide a proof by contradiction. Assume that a solution contains
a set of clusters C1, C2, · · · , Ck where each cluster Ci has more than 2r points.
We divide every cluster Ci into two (or more) clusters, respectively, so that each
of the divided clusters has r or more points, but at most 2r − 1 points. Since
this modification does not increase the cost, the resulting clustering is also a
solution. �

Then we define the directed (acyclic) graph D(V,E) and the weight of each
edge, as follows.
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Figure 1: (a) A point set C and (b) the weighted directed graph D with r = 3.

V = {p0, p1, p2, · · · , pn}

E = {(pi, pj)|i + r ≤ j ≤ i + 2r − 1}

See an example with r = 3 in Figure 1. Note that |V | = |C|+ 1 because of p0.
Each edge is directed from left to right. Also note that the number |E| of edges
is at most rn. The weight of an edge (pi, pj) is the half of the distance between
ci+1 and cj , and denoted by w(pi, pj).

The cost of a directed path from p0 to pn is defined by the weight of the
edge having the maximum weight in the directed path. The min-max path from
p0 to pn is the directed path from p0 to pn with the minimum cost.

Now C has an r-gather-clustering with cost k iff D(V,E) has a directed
path from p0 to pn with cost k. See Figure 2. Intuitively, each (directed) edge
in the min-max path corresponds to a cluster of an r-gather-clustering. Edge
(pi, pj) in the directed path corresponds to cluster {ci+1, ci+2, · · · , cj} in the
r-gather-clustering. If |C| ≥ r we can partition C into subsets so that each
subset consists of consecutive points with at most 2r−1 points and also at least
r points, so there always exists a path from p0 to pn.

Thus if we can compute the min-max path in D then it corresponds to the
solution of the r-gather-clustering problem.

We can construct the D(V,E) in O(rn) time. An O(|E| log∗ |V |) time algo-
rithm for the min-max path problem for a directed graph D = (V,E) is known
[9]. However, since D(V,E) is a DAG (directed acyclic graph) we can compute
the min-max path from p0 to pn in O(|E|) time by a simple dynamic program-
ming algorithm. (Let wi be the cost of the min-max path from p0 to pi. For
each pi, we can compute wi by checking each incoming edge (px, pi) to pi and
the cost wx of the min-max path from p0 to px.)

Thus we have the following theorem.
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Figure 2: (a) An r-gather-clustering and (b) its corresponding min-max path of
D.

Theorem 1 One can solve the r-gather-clustering problem in O(rn) time, when
all points in C are on the line.

3 r-gathering on the line

In this section we give an algorithm for the r-gathering problem when all points
in C and F are on the line, by reducing the problem to the min-max path
problem for a weighted directed graph, and bounding the number of edges in
the graph.

Let C = {c1, c2, · · · , cn} and F = {f1, f2, · · · , fm} be points on the horizon-
tal line and we assume they are sorted from left to right, respectively. Similar to
Lemma 1 we can assume the set of points assigned to a facility are consecutive
in a solution.

Lemma 3 There exists a solution in which the set of points assigned to a facility
are consecutive in C.

Proof: We call three points ca, cb, cc ∈ C crossing triple if (1) a < b < c, (2)
A(ca) = A(cc) = fx ∈ F ′ and (3) A(cb) = fy ∈ F ′.

We provide a proof by contradiction. We assume any solution has some
crossing triple. Let A be the solution of the r-gathering problem with the
minimum number of crossing triples, and A has a crossing triple ca, cb, cc with
A(ca) = A(cc) = fx and A(cb) = fy. Without loss of generality we can assume
x < y.

Let Cx be the set of points in C assigned to fx in A, and Cy the set of points

in C assigned to fy. Let C
′

x be the set of leftmost |Cx| points in Cx∪Cy, and C
′

y

the set of rightmost |Cy| points in Cx ∪ Cy. Let A
′

be the r-gathering derived
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from A by slightly modifying A so that reassign C
′

x to fx and C
′

y to fy. Now
we show maxc∈C′

y
{d(c, A′(c))} ≤ maxc∈Cy

{d(c, A(c))} holds as follows.

Let c` be the leftmost point in C assigned to fy in A′, and cr the rightmost
point in C assigned to fy. We consider two cases. In each case the cost of A′ is
less than or equal to A. A contradiction.
Case 1: d(c`, fy) ≤ d(cr, fy).

If A(cr) = fx then d(cr, fy) ≤ d(cr, fx) holds. Otherwise A(cr) = A′(cr) =
fy. Thus the cost of A′ is less than or equal to A.
Case 2: d(c`, fy) > d(cr, fy).

Let cz be the leftmost point assigned to fy in A. Now z < ` holds so
d(c`, fy) < d(cz, fy) holds. Thus the cost of A′ is less than or equal to A.

Similarly we can show maxc∈C′
x
{d(c, A′(c))} ≤ maxc∈Cx

{d(c, A(c))} holds.
�

For consecutive three facilities fj−1, fj and fj+1 in F let mL be the midpoint
of fj−1 and fj , and mR the midpoint of fj and fj+1. We have the following two
lemmas.

Lemma 4 Assume that C has 2r or more points on the left of mL. Let ci be
the 2r-th point from right in C ′ where C ′ is the set of points in C on or left of
mL. There exists a solution in which ci′ with i′ < i is never assigned to fj.

Proof: Assume for a contradiction such ci′ is assigned to fj . We have two
cases.

If the rightmost point assigned to fj is on the left of mL then reassigning
the points assigned to fj to fj−1 results in a new r-gathering and since it does
not increase the cost the resulting r-gathering is also a solution of the given
r-gathering problem.

Otherwise, the rightmost point assigned to fj is on or right of mL. Then
at least 2r points on or left of mL are assigned to fj by Lemma 3, with other
points on the right of mL. Let C ′ be the subset of C consisting of the points
(1) assigned to fj , (2) on or left of mL, and (3) but not the rightmost r points
on or left of mL. Note that |C ′| ≥ r holds and C ′ contains ci′ . Reassigning the
points in C ′ to fj−1 results in a new r-gathering and the resulting r-gathering
is also a solution since it does not increase the cost. �

Intuitively if ci′ is too far from fj then ci′ is never assigned to fj . Symmet-
rically we have the following lemma.

Lemma 5 If C has 2r or more points on the right of mR, then ci′ with i′ > i
is never assigned to fj, where ci is the 2r-th point in C on or right of mR.

We have more lemmas. Let C ′ be the set of points between mL and mR

except the leftmost 2r points and the rightmost 2r points.

Lemma 6 If C has 5r or more points between mL and mR, then the customers
in C ′ are assigned to fj in a solution of the r-gathering problem.
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Proof: Immediate from the two lemmas above. �

Thus if we can compute the solution for C −C ′, then appending the assign-
ment from the points in C ′ to fj results in the solution for C. From now on
assume that we have removed every such C ′ from C.

We have more lemmas for the boundary case. Let m be the midpoints of f1
and f2 in F .

Lemma 7 If C has 2r or more points on the left of m, then each ci′ with i′ < i
is assigned to f1 in a solution of the r-gathering problem, where ci is the 2r-th
customer in C on the left of m.

Proof: Immediate from Lemma 4. �

Let m be the midpoints of fm−1 and fm in F .

Lemma 8 If C has 2r or more points on the right of m, then each ci′ with
i′ > i is assigned to fm in a solution of the r-gathering problem, where ci is the
2r-th customer in C on the right of m.

Thus we have the following lemma.

Lemma 9 The number of points in C possibly assigning to each facility f ∈ F
is at most 9r.

Proof: For each fj with 1 < j < m define mL and mR as above. The number
of points possibly assigning to fj is (1) at most 2r on the left of mL, (2) at most
2r on the right of mR, and (3) at most 5r between mL and mR, by the lemmas
above. Similar for f1 and fm. �

Now we are going to define a weighted directed graph D(V,E) for F and C,
and the weight of each edge.

The set of vertices is defined as follows.

V = {p0, p1, p2, · · · , pn}

For each facility fh with h = 2, 3, · · · ,m− 1 and its possible cluster consisting
of points {ci+1, ci+2, · · · , cj} we define an edge (pi, pj). So (pi, pj) is an edge iff
(1) i + r ≤ j ≤ i + 2r − 1
(2) i ≥ i′ where ci′ is the 2r-th customer on the left of mL, and
(3) j ≤ j′ where cj′ is the 2r-th customer on the right of mR,
where mL and mR are defined for fh as above. Let Eh be the set of edges
consisting of edges defined for fh above. Similary we define E1 and Em.

Finally,
E = E1 ∪ E2 ∪ · · · ∪ Em

Note that E may contain many multi-edges.
The weight of an edge (pi, pj) for fh is the maximum of (1) the distance

between ci+1 and fh, and (2) the distance between cj and fh.
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The cost of a directed path from p0 to pn is defined by the weight of the
edge having the maximum weight in the directed path. The min-max path from
p0 to pn is the directed path from p0 to pn with the minimum cost.

We need to compute for each fh the 2r-th customer on the left of mL and the
2r-th customer on the right of mR. By scanning the line we can compute them
for all fh in O(|F |+ |C|) time in total. Note that each edge in E corresponds to
a pair of customers possibly assigning to a common facility. Thus the number of
the edges in E is at most 81r2|F | by Lemma 9. Thus we can construct D(V,E)
in O(|F |+ |C|+ r2|F |) time in total.

Now, similar to Section 2, there is an r-gathering with cost k iff D(V,E) has
a directed path from p0 to pn with cost k.

Theorem 2 When both C and F are on the line one can solve the r-gathering
problem in O(n + r2m) time, where n = |C| and m = |F |.

4 Conclusion

In this paper we have presented an algorithm to solve the r-gather-clustering
problem when all points of C are on the line. The running time of the algorithm
is O(rn), where n = |C|. We also presented an algorithm to solve the r-gathering
problem, which runs in time O(n + r2m), where n = |C| and m = |F | < n.

Can we solve the problem more efficiently or can we solve the problem for
more general input or cost?

Recently O(n+m)-time algorithm to solve the problem is reported [11]. Also
an algorithm to solve the problem for a star is reported [3].
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