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Abstract

Given a set A of n people and a set B ofm ≥ n items, with each person
having a list that ranks his/her preferred items in order of preference,
we want to match every person with a unique item. A matching M is
called popular if for any other matching M ′, the number of people who
prefer M to M ′ is not less than the number of those who prefer M ′

to M . For given n and m, consider the probability of existence of a
popular matching when each person’s preference list is independently and
uniformly generated at random. Previously, Mahdian [13] showed that
when people’s preference lists are strict (containing no ties) and complete
(containing all items in B), if α = m/n > α∗, where α∗ ≈ 1.42 is the root
of equation x2 = e1/x, then a popular matching exists with probability
1− o(1); and if α < α∗, then a popular matching exists with probability
o(1), i.e. a phase transition occurs at α∗. In this paper, we investigate
phase transitions in the case that people’s preference lists are strict but not
complete. We show that in the case where every person has a preference
list with length of a constant k ≥ 4, a similar phase transition occurs at
αk, where αk ≥ 1 is the root of equation xe−1/2x = 1− (1− e−1/x)k−1.
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1 Introduction

A simple problem of matching people with items, with each person having a
list that ranks his/her preferred items, models many important real-world situ-
ations such as the assignment of graduates to training positions [9], families to
government-subsidized housing [20], and DVDs to subscribers [13]. The main
target of such problems is to find an “optimal” matching in each situation. Var-
ious definitions of optimality have been proposed. The least restrictive one is
Pareto optimality [1, 2, 17]. A matching M is Pareto optimal if there is no other
matching M ′ such that at least one person prefers M ′ to M but no one prefers
M to M ′. Other stronger definitions include rank-maximality [10] (allocating
maximum number of people to their first choices, then maximum number to
their second choices, and so on), and popularity [3, 7] defined below.

1.1 Popular Matching

Consider a set A of n people and a set B of m ≥ n items, with α = m/n ≥ 1.
Each person in A has a preference list that ranks some items in B in order of
preference. A preference list is strict if it does not contain ties, and is complete
if it contains all items in B. Each person can only be matched with an item in
his/her preference list, and each item can be matched with at most one person.

For a matching M , a person a ∈ A, and an item b ∈ B, let M(a) denote
an item matched with a, and M(b) denote a person matched with b (for con-
venience, let M(a) be null for an unmatched person a). Let ra(b) denote the
rank of item b in a’s preference list, with the most preferred item having rank
1, the second most preferred item having rank 2, and so on (for convenience, let
ra(null) =∞). For any pair of matchings M and M ′, define φ(M,M ′) to be the
number of people who prefer M to M ′, i.e. φ(M,M ′) = |{a ∈ A|ra(M(a)) <
ra(M ′(a))}|. We say that a matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for
every other matching M ′. As the relation φ(M,M ′) ≥ φ(M ′,M) is not tran-
sitive, a popular matching may or may not exist depending on the preference
lists of people. See Example 1.

A probabilistic variant of this problem, the Random Popular Matching Prob-
lem (rpmp), studies the probability that a popular matching exists in a random
instance when given n and m, and each person’s preference list is defined inde-
pendently by selecting the first item b1 ∈ B uniformly at random, the second
item b2 ∈ B\{b1} uniformly at random, the third item b3 ∈ B\{b1, b2} uniformly
at random, and so on.

Example 1 Consider the following instance with three people a1, a2, a3 and
three items b1, b2, b3, with everyone having the same preferences.

Preference Lists
a1 : b1, b2, b3
a2 : b1, b2, b3
a3 : b1, b2, b3

M1 = {{a1, b1}, {a2, b2}, {a3, b3}}
M2 = {{a1, b2}, {a2, b3}, {a3, b1}}
M3 = {{a1, b3}, {a2, b1}, {a3, b2}}
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For the three above matchings, we have φ(M1,M2) = 2 > 1 = φ(M2,M1).
Similarly, we also have φ(M2,M3) = 2 > 1 = φ(M3,M2) and φ(M3,M1) = 2 >
1 = φ(M1,M3). In fact, a popular matching does not exist in this instance.

1.2 Related Work

The concept of popularity of a matching was first introduced by Gardenfors [7]
in the context of the Stable Marriage Problem. Abraham et al. [3] presented the
first polynomial time algorithm to find a popular matching in a given instance,
or to report that none exists. Later, Mestre [16] generalized that algorithm to
the case where people are given different voting weights. Manlove and Sng [14]
presented an algorithm to determine whether a popular matching exists in a
setting known as the Capacitated House Allocation Problem, which allows an
item to be matched with more than one person. The notion of popularity also
applies when the preference lists are two-sided (matching people with people),
both in a bipartite graph (Marriage Problem) and general graph (Roommates
Problem). Biró et al. [5] developed an algorithm to test popularity of a matching
in these two settings, and proved that determining whether a popular matching
exists in these settings is NP-hard when ties are allowed.

While a popular matching does not always exist, McCutchen [15] introduced
two measures of “unpopularity” of a matching, the unpopularity factor and the
unpopularity margin, and showed that finding a matching that minimizes either
measure is NP-hard. Huang et al. [8] later gave algorithms to find a matching
with bounded values of these measures in certain instances. Kavitha et al. [12]
introduced the concept of a mixed matching, which is a probability distribution
over matchings, and proved that a mixed matching that is popular always exists.

For rpmp in the case with strict and complete preference lists, Mahdian [13]
proved that if α = m/n > α∗, where α∗ ≈ 1.42 is the root of equation x2 = e1/x,
then a popular matching exists with high (1 − o(1)) probability in a random
instance. On the other hand, if α < α∗, a popular matching exists with low
(o(1)) probability. The point α = α∗ can be regarded as a phase transition
point, at which the probability rises from asymptotically zero to asymptotically
one. Itoh and Watanabe [11] later studied the weighted case where each person
has weight either w1 or w2, with w1 ≥ 2w2, and found a phase transition at
α = Θ(n1/3).

1.3 Our Contribution

rpmp in the case that preference lists are strict but not complete, with every
person’s preference list having the same length of a constant k was simulated
by Abraham et al. [3], and was conjectured by Mahdian [13] that the phase
transition will shift by an amount exponentially small in k. However, the exact
phase transition point, or whether it exists at all, had not been found yet. In
this paper, we study this case and prove a phase transition at α = αk, where
αk ≥ 1 is the root of equation xe−1/2x = 1 − (1 − e−1/x)k−1. In particular,
we prove that for k ≥ 4, if α > αk, then a popular matching exists with high
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probability; and if α < αk, then a popular matching exists with low probability.
For k ≤ 3, where the equation does not have a solution in [1,∞), a popular
matching always exists with high probability for any value of α ≥ 1 without a
phase transition.

2 Preliminaries

For convenience, for each person a ∈ A we append a unique auxiliary last resort
item `a to the end of a’s preference list (`a has lower preference than all other
items in the list). By introducing the last resort items, we can assume that
every person is matched because we can simply match any unmatched person a
with `a. Note that these last resort items are not in B and do not count toward
m, the total number of “real items.” Also, let L = {`a|a ∈ A} be the set of all
last resort items.

For each person a ∈ A, let f(a) denote the item at the top of a’s preference
list. Let F be the set of all items b ∈ B such that there exists a person a′ ∈ A
with f(a′) = b, and let S = B−F . Then, for each person a ∈ A, let s(a) denote
the highest ranked item in a’s preference list that is not in F . Note that s(a) is
well-defined for every a ∈ A because of the existence of last resort items.

We say that a matching M is A-perfect if every person a ∈ A is matched
with either f(a) or s(a). Abraham et al. [3] proved the following lemma, which
holds for any instance with strict (not necessarily complete) preference lists.

Lemma 1 [3] In an instance with strict preference lists, a popular matching
exists if and only if an A-perfect matching exists.

The proof of Lemma 1 first shows that a matching M is popular if and only
if M is an A-perfect matching such that every item in F is matched in M . This
equivalence implies the forward direction of the lemma. On the other hand, if an
A-perfect matching M exists in an instance, the proof shows that we can modify
M to make every item in F matched, hence implying the backward direction of
the lemma.

It is worth noting another useful lemma about independent and uniform se-
lection of items at random proved by Mahdian [13], which will be used through-
out this paper.

Lemma 2 [13] Suppose that we pick y elements from the set {1, ..., z} inde-
pendently and uniformly at random (with replacement). Let a random variable
X be the number of elements in the set that are not picked. Then, E[X] =
e−y/zz −Θ(1) and Var[X] < E[X].

3 Complete Preference Lists Setting

We first consider the setting that every person’s preference list is strict and
complete. Note that when m > n and the preference lists are complete, the last
resort items are not necessary.
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From a given instance, we construct a top-choice graph, a bipartite graph
with parts B′ = B and S′ = S such that each person a ∈ A corresponds to an
edge connecting f(a) ∈ B′ and s(a) ∈ S′. Note that multiple edges are allowed
in this graph. Previously, Mahdian [13] proved the following lemma.

Lemma 3 [13] In an instance with strict and complete preference lists, an A-
perfect matching exists if and only if its top-choice graph does not contain a
complex component, i.e. a connected component with more than one cycle.

By Lemmas 1 and 3, the problem of determining whether a popular matching
exists is equivalent to determining whether the top-choice graph contains a
complex component. However, the difficulty is that the number of vertices in
the randomly generated top-choice graph is not fixed. Therefore, a random
bipartite graph G(x, y, z) with fixed number of vertices is defined as follows to
approximate the top-choice graph.

Definition 1 For integers x, y, z, G(x, y, z) is a bipartite graph with V ∪ U as
a set of vertices, where V = {v1, v2, ..., vx} and U = {u1, u2, ..., uy}. Each of
the z edges of G(x, y, z) is selected independently and uniformly at random (with
replacement) from the set of all possible edges between a vertex in V and a vertex
in U .

This auxiliary graph has properties closely related to the top-choice graph.
Mahdian [13] then proved that if α > α∗ ≈ 1.42, then G(m,h, n) contains
a complex component with low probability for any integer h ∈ [e−1/αm −
m2/3, e−1/αm+m2/3], and used those properties to conclude that the top-choice
graph also contains a complex component with low probability, hence a popular
matching exists with high probability.

Theorem 1 [13] In a random instance with strict and complete preference lists,
if α > α∗, where α∗ ≈ 1.42 is the solution of the equation x2e−1/x = 1, then a
popular matching exists with probability 1− o(1).

Theorem 1 serves as an upper bound of the phase transition point in the
case of strict and complete preference lists. On the other hand, the following
lower bound was also proposed by Mahdian [13] along with a sketch of the proof,
although the fully detailed proof was not given.

Theorem 2 [13] In a random instance with strict and complete preference lists,
if α < α∗, then a popular matching exists with probability o(1).

4 Incomplete Preference Lists Setting

The previous section shows known results in the setting that preference lists are
strict and complete. However, preference lists in many real-world situations are
not complete, as people may regard only some items as acceptable for them. In
the setting that the preference lists are strict but not complete, we will consider
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the case that every person’s preference list has equal length of a constant k ≤ m
(not counting the last resort item). Such instance is called an instance with
k-incomplete preference lists.

Definition 2 For a positive integer k ≤ m, a random instance with strict
and k-incomplete preference lists is an instance with each person’s preference
list chosen independently and uniformly from the set of all m!

(m−k)! possible k-

permutations of the m items in B at random.

Recall that F = {b ∈ B|∃a′ ∈ A, f(a′) = b}, S = B−F , and for each person
a ∈ A, s(a) is the highest ranked item in a’s preference list not in F . The main
difference from the complete preference lists setting is that in the incomplete
preference lists setting, s(a) can be either a real item or the last resort item
`a. For each person a ∈ A, let Pa be the set of items in a’s preference list (not
including the last resort item `a). We then define A1 = {a ∈ A|Pa ⊆ F} and
A2 = {a ∈ A|Pa * F}. Note that s(a) = `a if and only if a ∈ A1.

4.1 Top-Choice Graph

Analogously to the complete preference lists setting, we define the top-choice
graph of an instance with strict and k-incomplete preference lists to be a bipar-
tite graph with parts B′ = B and S′ ∪ L′, where S′ = S and L′ = L. Each
person a ∈ A2 corresponds to an edge connecting f(a) ∈ B′ and s(a) ∈ S′.
We call these edges normal edges. Each person a ∈ A1 corresponds to an edge
connecting f(a) ∈ B′ and s(a) = `a ∈ L′. We call these edges last resort edges.

Although the statement of Lemma 3 proved by Mahdian [13] is for the com-
plete preference lists setting, exactly the same proof applies to incomplete pref-
erence lists setting as well. The proof first shows that an A-perfect matching
exists if and only if each edge in the top-choice graph can be oriented such that
each vertex has at most one incoming edge (because if an A-perfect matching
M exists, we can orient each edge corresponding to a ∈ A toward the endpoint
corresponding to M(a), and vice versa). Then, the proof shows that for any
undirected graph H, each edge of H can be oriented in such a manner if and only
if H does not have a complex component. Thus we can conclude the following
lemma.

Lemma 4 In an instance with strict and k-incomplete preference lists, an A-
perfect matching exists if and only if its top-choice graph does not contain a
complex component.

In contrast to the complete preference lists setting, the top-choice graph in
the incomplete preference lists setting has two types of edges (normal edges and
last resort edges) with different distributions, and thus cannot be approximated
by G(x, y, z) defined in the previous section. Therefore, we have to construct
another auxiliary graph G′(x, y, z1, z2) as follows.
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Definition 3 For integers x, y, z1, z2, G′(x, y, z1, z2) is a bipartite graph with
V ∪ U ∪ U ′ as a set of vertices, where V = {v1, v2, ..., vx}, U = {u1, u2, ..., uy},
and U ′ = {u′1, u′2, ..., u′z1+z2}. This graph has z1 + z2 edges. Each of the first z1
edges is selected independently and uniformly at random (with replacement) from
the set of all possible edges between a vertex in V and a vertex in U . Then, each
of the next z2 edges is constructed by the following procedures: Uniformly select
a vertex vi from V at random (with replacement); then, uniformly select a vertex
u′j that has not been selected before from U ′ at random (without replacement)
and construct an edge (vi, u

′
j).

The intuition of G′(x, y, z1, z2) is that we imitate the distribution of the
top-choice graph in the incomplete preference list setting, with V , U , and U ′

correspond to B′, S′, and L′, respectively, and the first z1 edges and the next
z2 edges correspond to normal edges and last resort edges, respectively.

Similarly to the complete preference lists setting, this auxiliary graph has
properties closely related to the top-choice graph in incomplete preference lists
setting, as shown in the following lemma.

Lemma 5 Suppose that α = m/n, the top-choice graph H has t normal edges
and n− t last resort edges for a fixed integer t ≤ n, and E is an arbitrary event
defined on graphs. If the probability of E on the random graph G′(m,h, t, n− t)
is at most O(1/n) for every fixed integer h ∈ [e−1/αm−m2/3, e−1/αm+m2/3],
then the probability of E on the top-choice graph H is at most O(n−1/3).

Proof: Using the same technique as in Mahdian’s proof of [13, Lemma 3], let
a random variable X be the number of isolated vertices (zero-degree vertices)
in part V (the part that has m vertices) of G′(m,h, t, n− t). By the definition
of G′(m,h, t, n− t), for each fixed value of h, the distribution of H conditioned
on |S′| = h is the same as the distribution of G′(m,h, t, n − t) conditioned on
X = h (because |S| = |S′| = h means that part B′ of H has exactly h isolated
vertices which correspond to the vertices in S). Also, from Lemma 2 with y = n
and z = m, we have E[X] = e−1/αm−Θ(1) and Var[X] < E[X]. Let δ = 1

2m
2/3,

and let I = [E[X]− δ, E[X] + δ]. We have I ⊆ [e−1/αm−m2/3, e−1/αm+m2/3]
for large enough m. Therefore,

Pr
H

[E] =
∑
h

Pr
H

[
E
∣∣|S| = h

]
· Pr
H

[|S| = h]

=
∑
h

Pr
G′(m,h,t,n−t)

[E|X = h] · Pr
G′(m,h,t,n−t)

[X = h]

=
∑
h

Pr
G′(m,h,t,n−t)

[X = h|E] · Pr
G′(m,h,t,n−t)

[E]

≤ Pr[|X − E[X]| > δ] +
∑
h∈I

Pr
G′(m,h,t,n−t)

[X = h|E] · Pr
G′(m,h,t,n−t)

[E]

≤ Pr[|X − E[X]| > δ] +
∑
h∈I

Pr
G′(m,h,t,n−t)

[E].
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From Chebyshev’s inequality, we have

Pr
H

[E] ≤ Var[X]

δ2
+
∑
h∈I

Pr
G′(m,h,t,n−t)

[E]

≤ E[X]

δ2
+ 2δmax

h∈I
Pr

G′(m,h,t,n−t)
[E]

<
O(m)

m4/3
+m2/3O

(
1

n

)
= O(n−1/3)

as desired. �

4.2 Size of A2

Since our top-choice graph has two types of edges with different distributions,
we first want to bound the number of each type of edges. Note that the top-
choice graph has |A2| normal edges and |A1| last resort edges, so the problem
is equivalent to bounding the size of A2.

First, we will prove the next two lemmas, which will be used to bound the

ratio |A2|
n .

Lemma 6 In a random instance with strict and k-incomplete preference lists,

1− e−1/α − c1 <
|F |
m

< 1− e−1/α + c1

with probability 1− o(1) for any constant c1 > 0.

Proof: Let c1 > 0 be any constant. From Lemma 2 with y = n and z = m, we
have

E[|F |] = m− E[|S|] = (1− e−1/α)m+ Θ(1); (1)

Var(|F |) = Var(|S|) < E[|S|] ≤ e−1/α

1− e−1/α
E[|F |].

From Chebyshev’s inequality, we have

Pr
[∣∣|F | − E[|F |]

∣∣ ≥ c1 · E[|F |]
]
≤ Var[|F |]

(c1 · E[|F |])2

<
e−1/α

c21(1− e−1/α)E[|F |]
= O(1/n). (2)

Therefore, from (1) and (2) we can conclude that

1− e−1/α − c1 <
|F |
m

< 1− e−1/α + c1

with probability 1− o(1) for sufficiently large m. �
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Lemma 7 In a random instance with strict and k-incomplete preference lists,

1− (1− e−1/α)k−1 − c2 < Pr[a ∈ A2] < 1− (1− e−1/α)k−1 + c2

holds for any a ∈ A for sufficiently large m, given any constant c2 > 0.

Proof: If k = 1, then we have Pa ⊆ F for every a ∈ A, which means Pr[a ∈
A2] = 0 and thus the lemma holds. From now on, we will consider the case that
k ≥ 2.

Let c2 > 0 be any constant. We can select a sufficiently small c1 (e.g.
c1 = c2

(k−1)(c2+2) , where the proof is given in Appendix A) such that

(1− e−1/α − c1)k−1 > (1− e−1/α)k−1 − c2
2

; (3)

(1− e−1/α + c1)k−1 < (1− e−1/α)k−1 +
c2
2
, . (4)

Let I = [(1−e−1/α− c1)m, (1−e−1/α+ c1)m]. From Lemma 6, |F | ∈ I with
probability 1− o(1) for sufficiently large m.

Note that a ∈ A1 if and only if Pa − {f(a)} ⊆ F . Consider the process
that we first independently and uniformly select the first-choice item of every
person in A from the set B at random, creating the set F . Suppose that |F | = q
for some fixed integer q ∈ I. Then, for each a ∈ A, we uniformly select the
remaining k−1 items in a’s preference list one by one from the remaining m−1
items in B − {f(a)} at random. Among the (k − 1)!

(
m−1
k−1

)
possible ways of

selection, there are (k − 1)!
(
q−1
k−1
)

ways such that Pa − {f(a)} ⊆ F , so

Pr
[
a ∈ A1

∣∣|F | = q
]

= Pr
[
Pa − {f(a)} ⊆ F

∣∣|F | = q
]

=
(k − 1)!

(
q−1
k−1
)

(k − 1)!
(
m−1
k−1

)
=

(
q−1
k−1
)(

m−1
k−1

) .
Since

(
q−1
k−1
)
/
(
m−1
k−1

)
converges to

(
q
m

)k−1
when m increases to infinity for

every q ∈ I, it is sufficient to consider Pr
[
a ∈ A1

∣∣|F | = q
]

=
(
q
m

)k−1
.

Now consider

Pr[a ∈ A1] =
∑
q

Pr[|F | = q] · Pr
[
a ∈ A1

∣∣|F | = q
]

=
∑
q∈I

Pr[|F | = q] · Pr
[
a ∈ A1

∣∣|F | = q
]

+
∑
q/∈I

Pr[|F | = q] · Pr
[
a ∈ A1

∣∣|F | = q
]
.
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For the lower bound of Pr[a ∈ A1], we have

Pr[a ∈ A1] ≥
∑
q∈I

Pr[|F | = q] · Pr
[
a ∈ A1

∣∣|F | = q
]

=
∑
q∈I

Pr[|F | = q] ·
( q
m

)k−1
≥
∑
q∈I

Pr[|F | = q] · (1− e−1/α − c1)k−1

= Pr[|F | ∈ I] · (1− e−1/α − c1)k−1

> (1− o(1))
(

(1− e−1/α)k−1 − c2
2

)
,

where the last inequality follows from (3). Thus, we can conclude that Pr[a ∈
A1] > (1 − e−1/α)k−1 − c2 for sufficiently large m. On the other hand, for the
upper bound of Pr[a ∈ A1], we have

Pr[a ∈ A1] ≤
∑
q∈I

Pr[|F | = q] · Pr
[
a ∈ A1

∣∣|F | = q
]

+
∑
q/∈I

Pr[|F | = q]

=
∑
q∈I

Pr[|F | = q] ·
( q
m

)k−1
+ o(1)

≤
∑
q∈I

Pr[|F | = q] · (1− e−1/α + c1)k−1 + o(1)

= Pr[|F | ∈ I] · (1− e−1/α + c1)k−1 + o(1)

< (1− o(1))
(

(1− e−1/α)k−1 +
c2
2

)
+ o(1),

where the last inequality follows from (4). Thus, we can conclude that Pr[a ∈
A1] < (1− e−1/α)k−1 + c2 for sufficiently large m.

Therefore,

(1− e−1/α)k−1 − c2 < Pr[a ∈ A1] < (1− e−1/α)k−1 + c2,

which is equivalent to

1− (1− e−1/α)k−1 − c2 < Pr[a ∈ A2] < 1− (1− e−1/α)k−1 + c2.

�

Finally, the following lemma shows that the ratio |A2|
n lies around a constant

1− (1− e−1/α)k−1 with high probability.

Lemma 8 In a random instance with strict and k-incomplete preference lists,

1− (1− e−1/α)k−1 − c3 <
|A2|
n

< 1− (1− e−1/α)k−1 + c3

with probability 1− o(1) for any constant c3 > 0.
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Proof: If k = 1, then we have Pa ⊆ F for every a ∈ A, which means |A2| = 0
and thus the lemma holds. From now on, we will consider the case that k ≥ 2.

Let c3 > 0 be any constant. We can select a sufficiently small c2 such that
c2(1 + (1− e−1/α)k−1 + c2) < c3 and thus

(1− c2)
(

(1− e−1/α)k−1 − c2
)
> (1− e−1/α)k−1 − c3; (5)

(1 + c2)
(

(1− e−1/α)k−1 + c2

)
< (1− e−1/α)k−1 + c3; (6)

From Lemma 7, we have

1− (1− e−1/α)k−1 − c2 < Pr[a ∈ A2] < 1− (1− e−1/α)k−1 + c2 (7)

for sufficiently large m.
For each a ∈ A, define an indicator random variable Xa such that

Xa =

{
1, for a ∈ A2;

0, for a /∈ A2.

Note that |A2| =
∑
a∈AXa. From (7), we have

1− (1− e−1/α)k−1 − c2 < E[Xa] < 1− (1− e−1/α)k−1 + c2

for each a ∈ A, and from the linearity of expectation we also have(
1− (1− e−1/α)k−1 − c2

)
n < E[|A2|] <

(
1− (1− e−1/α)k−1 + c2

)
n. (8)

Since Xa and Xa′ are independent for any pair of distinct a, a′ ∈ A, we have

Var[|A2|] =
∑
a∈A

Var[Xa] =
∑
a∈A

(
E[X2

a ]− E[Xa]2
)

≤
∑
a∈A

E[X2
a ] =

∑
a∈A

E[Xa] = E[A2].

Then, from Chebyshev’s inequality and (8) we have

Pr
[∣∣|A2| − E[|A2|]

∣∣ ≥ c2 · E[|A2|]
]
≤ Var[|A2|]

(c2 · E[|A2|])2
≤ 1

c22 · E[|A2|]
= O(1/n).

This implies (1 − c2)E[|A2|] ≤ |A2| ≤ (1 + c2)E[|A2|] with probability 1 −
O(1/n) = 1− o(1). Therefore, from (5), (6), and (8) we can conclude that

1− (1− e−1/α)k−1 − c3 <
|A2|
n

< 1− (1− e−1/α)k−1 + c3

with probability 1− o(1) �
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5 Main Results

For each value of k, we want to find a phase transition point αk such that if
α > αk, then a popular matching exists with high probability; and if α < αk,
then a popular matching exists with low probability. We do so by proving the
upper bound and lower bound separately.

5.1 Upper Bound

Lemma 9 Suppose that α = m/n and 0 ≤ β < αe−1/2α. Then, G′(m,h, βn, (1−
β)n) contains a complex component with probability O(1/n) for every fixed in-
teger h ∈ [e−1/αm−m2/3, e−1/αm+m2/3].

Proof: By the definition of G′(m,h, βn, (1−β)n), each vertex in U ′ has degree
at most one, thus removing U ′ does not affect the existence of a complex com-
ponent. Moreover, the graph G′(m,h, βn, (1 − β)n) with part U ′ removed has
exactly the same distribution as G(m,h, βn) given in Definition 1. Therefore,
it is sufficient to consider the graph G(m,h, βn) instead.

Using the same technique as in Mahdian’s proof of [13, Lemma 4], define
a minimal bad graph to be two vertices joined by three vertex-disjoint paths,
or two vertex-disjoint cycles joined by a path which is also vertex-disjoint from
the two cycles except at both endpoints (the path can be degenerate, which is
the only exception that the two cycles share a vertex). Note that any proper
subgraph of a minimal bad graph does not contain a complex component, and
every graph that contains a complex component must contain a minimal bad
graph as a subgraph.

Let X and Y be subsets of vertices of G(m,h, βn) in V and U , respectively.
Define BADX,Y to be an event that X ∪ Y contains a minimal bad graph as a
spanning subgraph. Then, let p1 = |X|, p2 = |Y |, and p = p1 + p2. Observe
that BADX,Y can occur only when |p1 − p2| ≤ 1, so p1, p2 ≥ p−1

2 . Also, there
are at most 2p2 non-isomorphic minimal bad graphs with p1 vertices in V and
p2 vertices in U , with each of them having p1!p2! ways to arrange the vertices,

and there are at most (p + 1)!
(
βn
p+1

) (
1
mh

)p+1
probability that all p + 1 edges

of each graph are selected in our random procedure. By the union bound, the
probability of BADX,Y is at most

2p2p1!p2!(p+ 1)!

(
βn

p+ 1

)(
1

mh

)p+1

≤ 2p2p1!p2!

(
βn

mh

)p+1

.

Again, by the union bound, the probability that at least one BADX,Y occurs
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is at most

Pr

∨
X,Y

BADX,Y

 ≤ ∑
p1,p2

(
m

p1

)(
h

p2

)
2p2p1!p2!

(
βn

mh

)p+1

≤
∑
p1,p2

mp1

p1!
· h

p2

p2!
· 2p2p1!p2!

(
β

αh

)p+1

=
∑
p1,p2

2p2

h

(
β

α

)p+1 (m
h

)p1
≤
∞∑
p=1

O(p2)

n

(
β

α

)p (
e−1/α −m−1/3

)−p/2
=
O(1)

n

∞∑
p=1

p2
(
α2

β2

(
e−1/α −m−1/3

))−p/2
.

By the assumption, we have α2e−1/α > β2, so α2

β2 (e−1/α −m−1/3) > 1 for
sufficiently large m, hence the above sum converges. Therefore, the probability
that at least one BADX,Y happens is at most O(1/n). �

We can now prove the following theorem, which serves as an upper bound
of αk.

Theorem 3 In a random instance with strict and k-incomplete preference lists,
if αe−1/2α > 1− (1− e−1/α)k−1, then a popular matching exists with probability
1− o(1).

Proof: Since αe−1/2α > 1−(1−e−1/α)k−1, we can select a small enough δ1 > 0
such that αe−1/2α > 1− (1− e−1/α)k−1 + δ1. Let J1 = [(1− (1− e−1/α)k−1 −
δ1)n, (1 − (1 − e−1/α)k−1 + δ1)n]. From Lemma 8, |A2| ∈ J1 with probability
1− o(1). Moreover, we have β = t

n < αe−1/2α for any integer t ∈ J1.
Define E1 to be an event that a popular matching exists in a random in-

stance. First, consider the probability of E1 conditioned on |A2| = t for each
fixed integer t ∈ J1. By Lemmas 5 and 9, the top-choice graph contains a com-
plex component with probability O(n−1/3) = o(1). Therefore, from Lemmas 1
and 4 we can conclude that a popular matching exists with probability 1−o(1),
i.e. Pr

[
E1

∣∣|A2| = t
]

= 1− o(1) for every fixed integer t ∈ J1. So

Pr[E1] =
∑
t

Pr[|A2| = t] · Pr
[
E1

∣∣|A2| = t
]

≥
∑
t∈J1

Pr[|A2| = t] · Pr
[
E1

∣∣|A2| = t
]

≥ Pr[|A2| ∈ J1] · (1− o(1))

= (1− o(1))(1− o(1))

= 1− o(1).

Hence, a popular matching exists with probability 1− o(1). �
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5.2 Lower Bound

Lemma 10 Suppose that α = m/n and αe−1/2α < β ≤ 1. Then, G′(m,h, βn, (1−
β)n) does not contain a complex component with probability O(1/n) for every
fixed integer h ∈ [e−1/αm−m2/3, e−1/αm+m2/3].

Proof: Again, by the same reasoning as in the proof of Lemma 9, we can
consider the graph G(m,h, βn) instead of G′(m,h, βn, (1−β)n), but now we are
interested in an event that G(m,h, βn) does not contain a complex component.

Since αe−1/2α < β, for sufficiently small ε > 0, we still have αe−1/2α <
(1− ε)3/2β. Consider the random bipartite graph G(m,h, (1− ε)βn) with parts
V having m vertices and U having h vertices. For each vertex v, let a random
variable rv be the degree of v. Since there are (1 − ε)βn edges in the graph,

the expected value of rv for each v ∈ V is c1 = (1−ε)βn
m = (1−ε)β

α . Since

e−1/αm + m2/3 < e−1/αm
1−ε for sufficiently large m, the expected value of rv for

each v ∈ U is

c2 =
(1− ε)βn

h
>

(1− ε)βn
e−1/αm+m2/3

>
(1− ε)βn

e−1/αm/(1− ε)
=

(1− ε)2β
αe−1/α

for sufficiently large m. Furthermore, each rv has a binomial distribution, which
converges to Poisson distribution when m increases to infinity. The graph can
be viewed as a special case of an inhomogeneous random graph [6, 19]. With the

assumption that c1c2 >
(1−ε)3β2

α2e−1/α > 1, we can conclude that the graph contains
a giant component (a component containing a constant fraction of vertices of
the entire graph) with probability 1 − O(1/n), where the explanation is given
in Appendix B.

Finally, consider the construction of G(m,h, βn) by putting εβn more ran-
dom edges into G(m,h, (1 − ε)βn). If two of those edges land in the giant
component C, a complex component will be created. Since C has size of a con-
stant fraction of m, each edge has a constant probability to land in C, so the
probability that at most one edge will land in C is exponentially low. There-
fore, G(m,h, βn) does not contain a complex component with probability at
most O(1/n). �

We can now prove the following theorem, which serves as a lower bound of
αk.

Theorem 4 In a random instance with strict and k-incomplete preference lists,
if αe−1/2α < 1−(1−e−1/α)k−1, then a popular matching exists with probability o(1).

Proof: Like in the proof of Theorem 3, we can select a small enough δ2 > 0
such that αe−1/2α < 1− (1− e−1/α)k−1 − δ2. Let J2 = [(1− (1− e−1/α)k−1 −
δ2)n, (1 − (1 − e−1/α)k−1 + δ2)n]. We have |A2|

n ∈ J2 with probability 1 − o(1)

and β = t
n > αe−1/2α for any integer t ∈ J2.

Now we define E2 to be an event that a popular matching does not exist in
a random instance. By the same reasoning as in the proof of Theorem 3, we
can prove that Pr

[
E2

∣∣|A2| = t
]

= 1 − o(1) for every fixed t ∈ J2 and reach an
analogous conclusion that Pr[E2] = 1− o(1). �
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5.3 Phase Transition

Since f(x) = xe−1/2x − (1− (1− e−1/x)k−1) is a strictly increasing function in
[1,∞) for every k ≥ 1, f(x) = 0 can have at most one root in [1,∞). That root,
if exists, will serve as a phase transition point αk. In fact, for k ≥ 4, f(x) = 0
has a unique solution in [1,∞); for k ≤ 3, f(x) = 0 has no solution in [1,∞)
and αe−1/2α > 1−(1−e−1/α)k−1 for every α ≥ 1, so a popular matching always
exists with high probability without a phase transition regardless of value of α.
Therefore, from Theorems 3 and 4 we can conclude our main theorem below.

Theorem 5 In a random instance with strict and k-incomplete preference lists
with k ≥ 4, if α > αk, where αk ≥ 1 is the root of equation xe−1/2x = 1 −
(1− e−1/x)k−1, then a popular matching exists with probability 1− o(1); and if
α < αk, then a popular matching exists with probability o(1). In such a random
instance with k ≤ 3, a popular matching exists with probability 1− o(1) for any
value of α ≥ 1.

6 Conclusion and Future Work

For each value of k ≥ 4, the phase transition occurs at the root αk ≥ 1 of
equation xe−1/2x = 1 − (1 − e−1/x)k−1 as shown in Figure 1. Note that as k
increases, the right-hand side of the equation converges to 1, hence αk converges
to Mahdian’s value of α∗ ≈ 1.42 in the case with complete preference lists.

4 5 6 7 8 9 10
k

1.2

1.3

1.4

1.5

x

Figure 1: Solution in [1,∞) of the equation xe−1/2x = 1−(1−e−1/x)k−1

for each k ≥ 4, with the dashed line plotting x = α∗ ≈ 1.42

Remark. For each person a, as the length of Pa increases, the probability
that Pa * F and thus a ∈ A2 also increases, and so do the expected size of
A2 and the phase transition point. Therefore, in the case that the lengths of
people’s preference lists are fixed but not equal (e.g. half of the people have
preference lists with length k1, and another half have those with length k2), the
phase transition will occur between αkmin and αkmax , where kmin and kmax are
the shortest and longest lengths of people’s preference lists, respectively.

In many real-world situations, ties can and are likely to occur among people’s
preference lists. rpmp in the case with ties allowed was mentioned by Mahdian
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[13] and simulated by Abraham et al. [3] using a parameter t to denote the
probability that each entry in a preference list is tied with previous entry. Intu-
itively, and also confirmed by the experimental results of [3], when ties are very
likely to occur (t is very close to 1), a popular matching is likely to exist even
when α = 1. However, the transition point for each value of t has still not been
found yet. A possible future work is to study the transition point in this case
for each value of t, both with complete and incomplete preference lists. Another
interesting generalization of rpmp is the Capacitated House Allocation Prob-
lem, where each item can be matched with more than one person. A possible
future work is to find the transition point in the most basic case where every
item has the same capacity c.
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A Proof of Inequalities (3) and (4)

For k ≥ 2, we will prove that c1 = c2
(k−1)(c2+2) satisfies inequalities (3) and (4).

Let p = 1− e−1/α. We have 0 < p < 1 and 0 < c1 < 1. So,

(p− c1)k−1 = pk−1 −
(
k − 1

1

)
pk−2c1 +

(
k − 1

2

)
pk−3c21 − · · ·+ (−1)k−1

(
k − 1

k − 1

)
ck−11

≥ pk−1 −
[
(k − 1)c1 + (k − 1)2c21 + · · ·+ (k − 1)k−1ck−11

]
= pk−1 −

[
c2

c2 + 2
+

(
c2

c2 + 2

)2

+ · · ·+
(

c2
c2 + 2

)k−1]

> pk−1 −

[
c2

c2 + 2
+

(
c2

c2 + 2

)2

+ · · ·

]

= pk−1 −
c2
c2+2

1− c2
c2+2

= pk−1 − c2
2
.

Therefore (1− e−1/α − c1)k−1 > (1− e−1/α)k−1 − c2
2 . Also, we have

(p+ c1)k−1 = pk−1 +

(
k − 1

1

)
pk−2c1 +

(
k − 1

2

)
pk−3c21 + · · ·+

(
k − 1

k − 1

)
ck−11

≤ pk−1 + (k − 1)c1 + (k − 1)2c21 + · · ·+ (k − 1)k−1ck−11

= pk−1 +
c2

c2 + 2
+

(
c2

c2 + 2

)2

+ · · ·+
(

c2
c2 + 2

)k−1
< pk−1 +

c2
c2 + 2

+

(
c2

c2 + 2

)2

+ · · ·

= pk−1 +
c2
c2+2

1− c2
c2+2

= pk−1 +
c2
2
.

Therefore (1− e−1/α + c1)k−1 > (1− e−1/α)k−1 + c2
2 .

B Explanation of the Lower Bound

An inhomogeneous random graph is a generalization of an Erdős-Rényi graph,
where vertices of the graph are divided into several (finite or infinite) types.
Each vertex of type i has κij expected neighbors of type j.

The bipartite graph G(m,h, (1 − ε)βn) can be considered as a special case
of the inhomogeneous random graph where there are two types of vertices, with
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κ11 = 0, κ12 = c1, κ21 = c2, and κ22 = 0. It has an offspring matrix

Tκ = {κij}2i,j=1 =

[
0 c1
c2 0

]
,

which has the largest eigenvalue ||Tκ|| =
√
c1c2 > 1. This is a necessary and

sufficient condition to conclude that G(m,h, (1− ε)βn) contains a giant compo-
nent with 1− o(1) probability [6, 19]. In fact, by giving a precise bound in each
step of [6], it is possible to show that the probability is greater than 1−O(1/n)
as desired.

Alternatively, we hereby show a direct proof of the bipartite case by approx-
imating the construction of the graph with a Galton-Watson branching process
similar to that in the proof of existence of a giant component in the Erdős-Rényi
graph in [4, pp.182-192].

The Galton-Watson branching process is a process that generates a random
graph in a breadth-first search tree manner when given a starting vertex and a
distribution of the degree of each vertex. The process begins when the starting
vertex spawns a number of children which are put in the queue in some order.
Then, the first vertex in the queue also spawns children which are put at the
end of the queue by the same manner, and so on. The process may stop at some
point when the queue becomes empty, or otherwise continues indefinitely.

Consider the construction of G(m,h, (1− ε)βn) with parts V and U starting
at a vertex and discovering new vertices in a breadth-first search tree manner.
We approximate it with the Galton-Watson branching process. Let T be the
size of the process (T = ∞ if the process continues forever). Let z1 and z2 be
the probability that T <∞ when starting the process at a vertex in V and U ,
respectively. Also, let Z1 and Z2 be the number of children the root has when
starting the process at a vertex in V and U , respectively.

Given that the root has i children, in order for the branching process to be
finite, all of the i branches must be finite, so we get the equations.

z1 =

∞∑
i=0

Pr[Z1 = i]zi2;

z2 =

∞∑
i=0

Pr[Z2 = i]zi1.

Therefore,

z1 =

∞∑
i=0

ci1e
−c1

i!

 ∞∑
j=0

cj2e
−c2zj1
j!

i

=

∞∑
i=0

ci1e
−c1

i!
ec2(z1−1)i

= ec1(e
c2(z1−1)−1).
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Setting y = 1− z1 yields the equation

1− y = ec1(e
−c2y−1). (9)

Define g(y) = 1− y − ec1(e−c2y−1). We have g(0) = 1− 0− 1 = 0, g(1) < 0,
and g′(0) = c1c2 − 1. By the assumption that c1c2 > 1, we have g′(0) >
0, so there must be y ∈ (0, 1) such that g(y) = 0, thus being a solution of
(9). So, Pr[T = ∞] = y ∈ (0, 1), when y is a solution of (9), meaning that
there is a constant probability that the process continues indefinitely. Moreover,
from the property of Poisson distribution we can show that Pr[x < T < ∞] is
exponentially low in term of x. Therefore, we can select a constant k1 such that
Pr[k1 log n < T <∞] < O(1/n2).

Finally, when we perform the Galton-Watson branching process at a vertex in
G(m,h, (1− ε)βn), there is a constant probability that the process will continue
indefinitely, thus creating a giant component. Otherwise, with probability 1 −
O(1/n2) we will create a component with size smaller than k1 log n, so we can
remove that component from the graph and then repeatedly perform the process
starting at a new vertex. After repeatedly performing this process for some
logarithmic number of times, we only remove O(log2 n) vertices from the graph,
which does not affect the constant y = Pr[T = ∞], so the probability that we
never end up with a giant component in every time is at most O(1/n). Therefore,
G(m,h, (1− ε)βn) contains a giant component with probability 1−O(1/n).

Remark. In the complete preference lists setting with αe−1/2α < (1− ε)3/2,

we have c1 = 1−ε
α and c2 >

(1−ε)2
αe−1/α , which we still get c1c2 = (1−ε)3

α2e−1/α > 1, which
is a sufficient condition to reach the same conclusion.
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