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Abstract

The Bounded Degree Deletion problem (BDD) is that of com-
puting a minimum vertex set in a graph G = (V,E) with degree bound
b : V → Z+, such that, when it is removed from G, the degree of any
remaining vertex v is no larger than b(v). It is a classic problem in graph
theory and various results have been obtained including an approximation
ratio of 2 + ln bmax [31], where bmax is the maximum degree bound.

This paper considers BDD on directed graphs containing unbounded
vertices, which we call Partially Bounded Degree Deletion
(PBDD). Despite such a natural generalization of standard BDD, it
appears that PBDD has never been studied and no algorithmic results
are known, approximation or parameterized. It will be shown that
1) in case all the possible degrees are bounded, in-degrees by b− and
out-degrees by b+, BDD on directed graphs can be approximated
within 2 + maxv∈V ln(b−(v) + b+(v)), 2) it becomes NP-hard to ap-
proximate PBDD better than bmax (even on undirected graphs) once
unbounded vertices are allowed, and 3) PBDD can be approximated
within max{2, bmax + 1} when only in-degrees are partially bounded by b
(and the out-degrees of all the vertices are unbounded).
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1 Introduction

The Bounded Degree Deletion problem is a well-known basic problem in
graph theory. It has an application in various areas such as computational
biology [15] and property testing [30], whereas its “dual problem” of finding
maximum s-plexes, introduced in 1978 [33], has applications in social network
analysis [1, 29]. With degree bound of b ∈ Z+, b-Bounded Degree Deletion
(or b-BDD for short) is the problem of computing a minimum weight vertex set
X in a given graph G = (V,E) with weight w : V → R+ such that the degree of
any remaining vertex v is bounded by b when all the vertices in X are removed
from G.

Clearly, b-BDD is a generalization of the Vertex Cover (VC) problem,
and another generalization of VC has been recently introduced and actively
studied. The k-Path Vertex Cover (k-PVC) problem [25, 5, 23, 4, 6], also
known as Vertex Cover Pk [38, 37, 36, 35], Pk-Hitting Set [7], and k-Path
Transversal [28], is the problem of computing a minimum vertex set C such
that when all the vertices in C are removed from G, there remains no path on
k vertices. A subset of vertices in a graph G is called a dissociation set if it
induces a subgraph with maximum degree at most 1. The maximum cardinality
of a dissociation set in G is called the dissociation number of G. The problem
of computing the dissociation number was introduced by Yannakakis [41], who
also proved it to be NP-hard in the class of bipartite graphs. See [32] for a
survey on the dissociation number problem. Clearly, VC ≡ 0-BDD ≡ 2-PVC,
1-BDD ≡ 3-PVC (but b-BDD 6≡ (b+ 2)-PVC for b ≥ 2), and a dissociation set
is the complement of a 3-PVC (i.e., 1-BDD) solution.

We now summarize below algorithmic results known for b-BDD and related
problems.

VC It is known approximable within 2−Θ(1/
√

log n) [24], whereas VC has been
shown hard to approximate within 10

√
5 − 21 ≈ 1.36 unless P=NP [13]

(or within 2− ε assuming the unique games conjecture [26]).

b-BDD The first improvement over the simple (b + 2)-approximation based
on the hitting set formulation was attained in [17] by using the local
ratio method and b-BDD was shown approximable within max{2, b + 1}.
Okun and Barak considered more general b-BDD where b : V → Z+ is an
arbitrary function, and obtained an approximation bound of 2+ln bmax by
combination of the local ratio method and the greedy multicovering [31],
where bmax = maxv∈V b(v). Recently, a new approximation bound of
max{2, bmax/2 + 1} was obtained [19].

b-BDD has been extensively studied in parameterized complexity. It has
been shown that, when parameterized by the size k of the deletion set,
the problem is W [2]-hard for unbounded b and FPT for each fixed b ≥
0 [15], whereas, when parameterized by treewidth tw, it is FPT with
parameters k and tw, and W [2]-hard with only parameter tw [3]. A linear
vertex kernel of b-BDD has been developed by generalizing the Nemhauser-
Trotter theorem for VC to b-BDD [15, 10, 40].
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Besides, 2-BDD has been recently highlighted under the name of Co-
Path/ Cycle Packing [9, 10, 16], mostly from the viewpoint of param-
eterized complexity, due to its important applications in bioinformatics.

3-PVC It was shown approximable within 2 [38, 37] (or within an expected
approximation ratio of 23/11 by a randomized algorithm [25]) in general,
and within 1.57 on cubic graphs [36].

1.1 Our Work and Contributions

We generalize BDD in two directions; in one to the problem of directed degree
bounds, and in the other to the problem where some vertices are allowed to be
of unbounded degree. Partially b-Bounded Degree Deletion (b-PBDD)
is, given a directed graph G = (V ∪ V0, E) and a degree bound b : V → Z+,
to compute a minimum weight vertex subset X ⊆ V ∪ V0 such that the in-
degree of any vertex v ∈ V remaining after all the vertices in X are deleted
from G is at most b(v). Notice that the degree bound b is defined only on V
and no bound is imposed on V0. To the best of our knowledge, neither version,
directed BDD nor partial BDD, has been previously studied, in either aspect of
approximation complexity or parameterized one, except for the case of 1-BDD
on directed graphs, which was shown approximated within 2 [17]. Certainly,
0-PBDD≡ 0-BDD ≡ VC when V0 = ∅, but b-PBDD 6≡ b-BDD even for b = 1.

Directed graphs provide more general computational models than undirected
graphs, but problems tend to be harder to deal with on the former than the lat-
ter. Another type of generalization, in the setting of BDD, is to allow for “don’t
care” nodes. In fact the notion of “covering” or “domination” has been general-
ized to partial “covering/domination” and a significant amount of research work
has been devoted to such extensions [34, 2, 21, 14, 22, 27, 8, 11], where, instead
of complete coverage or domination, only a prescribed fraction of covering or
domination is required. Here we consider PBDD having unbounded vertices as
defined above to be a natural extension of BDD to the partial version. The cur-
rent work is partially motivated by the fact that the (logarithmically) bounded
performance of the best algorithm for the standard BDD, however, becomes
unbounded when applied to the partial version as will be explained in Sect. 4.1.

This paper presents that 1) in case all the possible degrees are bounded,
in-degrees by b− and out-degrees by b+ (and V0 = ∅), BDD on directed graphs
can be approximated within 2 + maxv∈V ln(b−(v) + b+(v)) by generalizing the
algorithm of Okun and Barak [31], 2) it becomes NP-hard to approximate b-
PBDD better than bmax (even on undirected graphs) once unbounded degrees
are allowed, and 3) b-PBDD can be approximated within max{2, bmax +1} when
only the in-degrees are partially bounded by b (and the out-degrees of all the
vertices are unbounded).
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1.2 Notations and Definitions

For a vertex set X in a digraph G = (V,E), let E(X) = {(u, v) ∈ E | {u, v} ⊆
X}. Let δ−(X) denote the set of arcs entering from outside of X to a vertex
in X, i.e., δ−(X) = {(u, v) ∈ E | u 6∈ X, v ∈ X} and δ(X) be the set of arcs
incident to a vertex in X, i.e., δ(X) = {(u, v) ∈ E | {u, v} ∩X 6= ∅}. Let δ−(v)
(δ(v), resp.) denote δ−({v}) (δ({v}), resp.). The in-degree and out-degree of v
is denoted by d−(v) (= |δ−(v)|) and d+(v), respectively. To restrict arcs under
consideration within a certain arc set F , we use δ−F (X) and d−F (v) to denote
δ−(X)∩F and |δ−(v)∩F |, respectively, and d−E(X)(v) abbreviated to d−X(v) for

X ⊆ V . For the set of neighboring vertices of u ∈ V , let N+(u) and N−(u)
denote {v ∈ V | (u, v) ∈ E} and {v ∈ V | (v, u) ∈ E}, respectively.

We also use shorthand notations for functions b, d−, and w̄ (to be defined
in Sect. 3) defined on V and Z ⊆ V such as b(Z) =

∑
v∈Z b(v), d−(Z) =∑

v∈Z d
−(v), and w̄(Z) =

∑
v∈Z w̄(v).

2 Approximating PBDD via Submodular Opti-
mization

Assume that b(v) ≤ d−(v),∀v ∈ V , for the rest of paper as one can always reset
b(v) to d−(v), without loss of generality, if b(v) > d−(v). A vertex v ∈ V is
called a tight node in what follows if d−(v) = b(v) (and it is untight if d−(v) >
b(v)).

For a directed graph G = (V ∪ V0, E) and b : V → Z+, define the rank
r : 2E → Z+ of F ⊆ E such that

r(F ) =
∑
v∈V

min{d−F (v), b(v)}+
∑
v∈V0

d−F (v).

Then (E, r) is a matroid, a direct sum of partition matroids and free matroids,
and an arc set F ⊆ E is independent iff d−F (v) ≤ b(v), ∀v ∈ V . Thus, PBDD
is the problem of computing X ⊆ V of minimum weight such that the arc set
induced by V −X is independent in (E, r).

Definition 1 For a matroid (E, r) let rd : 2E → Z+ be such that

rd(S) = |S| − (r(E)− r(E − S))

for S ⊆ E. Then, rd is a matroid rank function and (E, rd) is called the dual
of (E, r).

Proposition 1 Let (E, r) be the matroid defined by (G, b) as above.

• r(E) = b(V ) + d−(V0) (assuming that b(v) ≤ d−(v), ∀v ∈ V ).

• In the dual matroid (E, rd),
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– rd(F ) = |F | − (r(E)− r(E − F ))

=
∑
v∈V

(
d−F (v)−min{b(v), d−(v)}+ min{b(v), d−E−F (v)}

)
+
∑
v∈V0

(
d−F (v)− d−(v) + d−E−F (v)

)
=
∑
v∈V

(
min{b(v) + d−F (v), d−(v)} −min{b(v), d−(v)}

)
=
∑
v∈V

min{d−F (v), d−(v)− b(v)}.

– rd(E) = |E| − r(E) = |E| − b(V )− d−(V0) = d−(V )− b(V ).

– rd(δ(v)) =
∑
u∈V

min{d−δ(v)(u), d−(u)− b(u)}

=

{
d−(v)− b(v) + (# of untight nodes in N+(v) ∩ V ) if v ∈ V
(# of untight nodes in N+(v) ∩ V ) if v ∈ V0

Let X ⊆ V ∪ V0 be partitioned to X̃,Xt, and X0 s.t. X0 = X ∩ V0, Xt = {v ∈
X −X0 | v is tight}, and X̃ = X − (Xt ∪X0). Likewise, for Y = (V ∪ V0)−X
let Y = Ỹ ∪ Yt ∪ Y0 s.t. Y0 = Y ∩ V0, Yt = {v ∈ Y − Y0 | v is tight}, and
Ỹ = Y − (Yt ∪ Y0). Then, since∑
v∈X

rd(δ(v)) =
∑
v∈X̃

rd(δ(v)) +
∑
v∈Xt

rd(δ(v)) +
∑
v∈X0

rd(δ(v))

=
∑
v∈X̃

(d−(v)− b(v)) +
∑
v∈X

(# of untight nodes in N+(v) ∩ V ),

we have

Proposition 2∑
v∈X

rd(δ(v)) = d−(X̃)− b(X̃) +
∑
v∈X

∣∣∣N+(v) ∩ (X̃ ∪ Ỹ )
∣∣∣ .

Note: Propositions 1 and 2 will be useful in the proof of Lemma 1.
In general a subset F ⊆ E is independent in a matroid iff F is spanning in

its dual matroid. Thus, X ⊆ V is a b-PBDD solution in G = (V ∪V0, E) iff δ(X)
is spanning in (E, rd). Therefore, b-PBDD on G = (V,E) can be reduced to the
problem of computing X ⊆ V of minimum weight such that δ(X) is spanning
in (E, rd). More formally,

Proposition 3 Define f : 2V → Z+ such that f(W ) = rd(δ(W )). b-PBDD on
G = (V,E) can be formulated as the problem of computing X ⊆ V of minimum
weight such that f(X) = f(V ).

It is known that f as defined above is nondecreasing and submodular, and the
problem of computing minimum X ⊆ V satisfying f(X) = f(V ) for such a
function f is known as the submodular set cover problem.
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Definition 2 Let f be a nondecreasing submodular set function defined on the
subsets of a finite ground set N , and wj be a nonnegative weight associated
with each element j ∈ N . The Submodular Set Cover problem ( SSC) is to
compute:

min
S⊆N

∑
j∈S

wj | f(S) = f(N)

 .

The greedy algorithm, together with its performance analysis, is perhaps the
most well-known heuristic for general SSC [39], but the primal-dual algorithm
based on the following LP relaxation of SSC and its dual LP is also known to
deliver better solutions for some of more specific SSC problems (See [18] for
more details).

(P) min
∑
j∈N

wjxj (D) max
∑
S⊆N

fS(N − S)yS

subject to: subject to:∑
j∈N−S

fS(j)xj ≥ fS(N − S),∀S ⊆ N
∑
S:j 6∈S

fS(j)yS ≤ wj ,∀j ∈ N

xj ≥ 0, ∀j ∈ N yS ≥ 0, ∀S ⊆ N

Here and in the algorithm called PD, the contraction of f onto N −S is the
function fS defined on 2N−S such that fS(X) = f(X∪S)−f(S) for any S ⊆ N .
If f is nondecreasing and submodular on N , so is fS on N−S, and thus, another
submodular set cover instance (N − S, fS) can be derived for any S ⊆ N . The
performance of PD for general SSC can be estimated by the following theorem:

Theorem 1 ([18]) The performance ratio of the primal-dual algorithm PD for
an SSC instance (N, f) is bounded by

max

{∑
j∈X fS(j)

fS(N − S)

}
where max is taken over any S ⊆ N and any minimal solution X in (N−S, fS).

It is more convenient, when applying Theorem 1 to an instance (G, b) of b-
PBDD, to use it in the following form:

Corollary 1 The performance ratio of PD, when applied to an instance (G =
(V,E), b) of b-PBDD, is bounded by

max

{∑
v∈X r

d(δ(v))

rd(E)

}

where (E, r) is the matroid defined by an instance (G, b) and max is taken over
any graph G and any minimal solution X in G.
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Proof: Consider the graph Ḡ = G−S obtained from G by removing all the ver-
tices in S, and reformulate b-PBDD on Ḡ = (V̄ , Ē), where V̄ = (V ∪V0)−S, Ē =
E−δ(S), as an SSC instance (Ē, f̄). To do so, let r̄ : 2Ē → Z+ be the rank func-
tion of the matroid defined by (Ē, b̄), such that r̄(F ) =

∑
v∈V̄ min{d̄−F (v), b̄(v)}

for F ⊆ Ē, r̄d be the dual of r̄, and f̄(T ) = r̄d(δ̄(T )) for T ⊆ V̄ (Note: Here,
δ̄(T ) = δĒ(T ), d̄(v) = dĒ(v), b̄(v) = min{b(v), d̄−(v)} for all T ⊆ V̄ and v ∈ V̄ ).
It can be shown then that fS(T ) = f̄(T ) for any S ⊆ V ∪V0 and T ⊆ (V ∪V0)−S,
and in particular, f̄(v) = fS(v),∀v ∈ V̄ , and f̄(V̄ ) = fS((V ∪ V0)− S). Hence,
we have

max
S⊆V ∪V0

{ ∑
v∈X fS(v)

fS((V ∪ V0)− S)

}
= max

{∑
v∈X f̃(v)

f̃(Ṽ )

}
(1)

where max in RHS is taken over any subgraph Ḡ of G induced by V̄ ⊆ V ∪ V0

and any minimal b-PBDD solution X in Ḡ. It thus follows from Theorem 1
and eq. (1) that the performance ratio of PD, when applied to b-PBDD, can be
estimated by bounding ∑

v∈X f(v)

f(V ∪ V0)
=

∑
v∈X r

d(δ(v))

rd(E)

for any graph G = (V ∪ V0, E) and any minimal solution X in G. �

3 Fully Bounded Degree Deletion

It can be observed, modifying the undirected instance to be used in Sect. 4.1
to a directed one, that the greedy set cover approximation is embeddable even
if all the in-degrees are bounded in directed graphs. On the other hand, BDD
on directed graphs where both in-degree and out-degree are bounded at every
vertex can be approximated in much the same way as in the case of undirected
graphs. To explain this, let us define the following version of Bounded Degree
Deletion: The (b−, b+)-BDD problem is, given a directed graph G = (V,E)
with weight w : V → R+, in-degree bound b− : V → Z+ and out-degree
bound b+ : V → Z+, to compute a vertex set X ⊆ V of minimum weight
such that the in-degree and the out-degree of v are respectively bounded by
b−(v) and b+(v) within G − X = G[V − X] for any v ∈ V − X. Construct
GD from G by replacing each vertex v by two, v1 and v2, connecting all the
incoming arcs of v to v1 while outgoing arcs to v2, where the weight w(v) of v is
inherited by both v1 and v2. When arc orientations are ignored, GD becomes an
undirected bipartite graph. An approximate solution for G can be computed by
applying an existing algorithm A to GD, and taking v into a solution iff either
v1 or v2 (or both) in GD is chosen by A. This way of reducing directed BDD to
undirected one yields a 2ρ-approximation when A is a ρ-approximation because
the optimum with respect to GD is bounded by twice the optimum with respect
to G. So, (b−, b+)-BDD is approximable within 4 + 2 ln maxv∈V {b−(v), b+(v)}
by running the Okun-Barak algorithm as A.
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The reduction based approach above can be further refined by rebuilding
the Okun-Barak approach within the current framework of submodular opti-
mization. Consider the partition matroids (E, r−) and (E, r+), defined both
on E, based on b− and b+, respectively. Here, X ⊆ V is a solution iff δ(X)
is spanning in both (E, rd−) and (E, rd+), where rd− and rd+ are the dual rank
functions of r− and r+, respectively. Define f : 2V → Z+ such that f(X) =
rd−(δ(X))+rd+(δ(X)). Then, f is nondecreasing and submodular, and X ⊆ V is
a solution iff f(X) = rd−(δ(X))+rd+(δ(X)) = rd−(E)+rd+(E) = f(V ). Therefore,
the problem can be reduced to SSC (V, f, w).

Let us adopt the following strategy of two stage approximation from [31];
first apply the local ratio method and then the greedy method for SSC.

1st stage. Suppose d−(v) > b−(v) for some v ∈ V . Let S− = {v}∪N−(v) and
consider the subgraph G[S−] of G induced by S−. Since any solution for
G including an optimal one must contain v or otherwise, at least (d−(v)−
b−(v)) from N−(v), we have a valid inequality

(d−(v)− b−(v))xv +
∑

u∈N−(v)

xu ≥ d−(v)− b−(v)

for any v with d−(v) > b−(v), where x ∈ {0, 1}V denotes an incidence
vector of a vertex subset. We may thus apply the local ratio reduction to
the weighted graph (G,w) as follows. Define the vertex weight w̄ on V
such that w̄(v) = d−(v)− b−(v) and

w̄(u) =

{
1 ∀u ∈ N−(v)

0 ∀u ∈ V − S−

Let ρ = min{w(u)/w̄(u) | u ∈ S−} and S−0 = {u ∈ S− | w(u) = ρw̄(u)}
so that S−0 6= ∅ and w(u)− ρw̄(u) > 0, ∀u ∈ S− − S−0 .

Suppose a solution C is computed for G − S−0 = G[V − S−0 ] under the
weight w − ρw̄ defined on V − S−0 . Then, C ∪ S−0 is a solution for G and
our algorithm returns it.

Let opt, opt1, and opt2 denote optimal solutions for (G,w), (G[S−], ρw̄),
and (G[V − S−0 ], w − ρw̄), respectively. If C ∪ S−0 is a p′-approximation
for (G[S−], ρw̄) and a p-approximation for (G[V − S−0 ], w − ρw̄) then we
have

w(C ∪ S−0 ) = ρw̄(C ∪ S−0 ) + (w − ρw̄)(C ∪ S−0 )

≤ p′ρw̄(opt1) + p(w − ρw̄)(opt2)

≤ p′ρw̄(opt) + p(w − ρw̄)(opt)

≤ max{p′, p}w(opt)

The ratio p′ of this solution C ∪S−0 to the optimum, local to (G[S−], ρw̄),
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is bounded by

w̄(S− ∩ (C ∪ S−0 ))

d−(v)− b−(v)
≤ w̄(S−)

d−(v)− b−(v)

=
2d−(v)− b−(v)

d−(v)− b−(v)

= 2 +
1

d−(v)/b−(v)− 1
.

So, if C is a p-approximation for (G − S−0 , w − ρw̄), the approximation
ratio of C ∪ S−0 for (G,w) can be estimated by the following bound

max

{
p, 2 +

1

d−(v)/b−(v)− 1

}
. (2)

Thus, we apply the local ratio approximation to G[S−] and reduce to the
problem on G− S−0 when such a vertex is found whose in-degree is large
enough relative to its degree bound. Likewise, we may apply the local
ratio reduction to out-degrees, and for v ∈ V with d+(v) > b+(v) we have
the approximation ratio of C ∪ S+

0 for (G,w) bounded by

max

{
p, 2 +

1

d+(v)/b+(v)− 1

}
(3)

when C ⊆ V −S+
0 is a p-approximation for the reduced problem on G−S+

0 .

We apply these local ratio reductions as long as there remains a vertex
v with high degree/degree-bound ratio; i.e., any v with d−(v)/b−(v) or
d+(v)/b+(v) exceeding the threshold β.

2nd stage. We switch to the greedy algorithm for SSC (V, f, w) when ver-
tices with high degree/degree-bound ratio are exhausted in the 1st stage.
Here in the greedy mode, a vertex v with minimum w(v)/fC({v}) among
the remaining vertices is repeatedly added to a solution set C as long as
f(C) < f(V ).

The entire algorithm is described in Algorithm 1.

3.1 Analysis

Set threshold value of β to 1 + 1/ ln(b−(v) + b+(v)). Then, each of (2) and (3)
reduces to

max{p, 2 + max
v∈V
{ln(b−(v) + b+(v))}} (4)

since each of 2 + 1/(d−(v)/b−(v)− 1) and 2 + 1/(d+(v)/b+(v)− 1) is less than
ln(b−(v) + b+(v)) when d−(v)/b−(v) > β and d+(v)/b+(v) > β, respectively.

It remains to evaluate p in (4), which is the greedy approximation ratio. The
performance of the greedy algorithm for general SSC was analyzed by Wolsey:
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Algorithm 1 Hybrid algorithm for (b−, b+)-BDD

Initialize C = ∅
/* 1st Stage: Local Ratio Reduction */
while ∃v ∈ V with either d−(v)/b−(v) > β or d+(v)/b+(v) > β do

if d−(v)/b−(v) > β then
C ← C ∪ S−0 ; G← G− S−0 ; w ← w − ρw̄

else
C ← C ∪ S+

0 ; G← G− S+
0 ; w ← w − ρw̄

end if
end while
/* 2nd Stage: Greedy */
while f(C) < f(V ) do

Add argmin
v∈V−C

{w(v)/fC({v})} to C

end while
Output C.

Proposition 4 ([39]) For an SSC instance (N, f, w) the weight of a greedy
solution is at most H(maxj∈N f({j})) times the minimum weight when f is

integer-valued with f(∅) = 0, where H(k) =
∑k
i=1 1/i is the kth harmonic

number.

Recall from Proposition 1 that

rd−(δ(v)) = d−(v)− b−(v) + (# of untight nodes in N+(v)))

= d(v)− b−(v)− (d+(v)− (# of untight nodes in N+(v)))

= d(v)− (b−(v) + (# of in-tight nodes in N+(v)))

since V0 = ∅ here, and rd+(δ(v)) = d(v)−(b+(v)+(# of out-tight nodes in N−(v))),
where v ∈ V is in-tight (out-tight, resp.) if d−(v) = b−(v) (d+(v) = b+(v),
respectively). We thus have

f({v}) = 2d(v)− (b−(v) + b+(v) + (# of in-tight nodes in N+(v))

+ (# of out-tight nodes in N−(v)))

≤ (2d−(v)− b−(v)) + (2d+(v)− b+(v)),

and Theorem 4 asserts that its performance is bounded by

H(max
v∈V

f({v})) ≤ 1 + ln max
v∈V

f({v})

≤ 1 + max
v∈V

ln{(2d−(v)− b−(v)) + (2d+(v)− b+(v))}.

Since d−(v) ≤ b−(v)(1 + 1/ ln(b−(v) + b+(v))) and d+(v) ≤ b+(v)(1 +
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1/ ln(b−(v) + b+(v))),

H(max
v∈V

f({v})) ≤ 1 + max
v∈V

ln{b−(v)(1 + 2/ ln(b−(v) + b+(v)))

+ b+(v)(1 + 2/ ln(b−(v) + b+(v)))}
= 1 + max

v∈V
{ln(b−(v) + b+(v)) + ln(1 + 2/ ln(b−(v) + b+(v)))}.

When b−(v) + b+(v) ≥ 4, ∀v ∈ V ,

ln(1 + 2/ ln(b−(v) + b+(v))) ≤ ln(1 + 2/ ln 4) ≤ 1,

and hence,
H(max

v∈V
f({v})) ≤ 2 + max

v∈V
ln(b−(v) + b+(v)). (5)

It follows from (4) and (5), when the approximation bounds of stages 1 and 2
are combined, that

Theorem 2 The (b−, b+)-BDD problem can be approximated within a factor of
2 + maxv∈V ln(b−(v) + b+(v)).

4 Partially Bounded Degree Deletion

Recall that Partially b-Bounded Degree Deletion (b-PBDD) is, given a
directed graph G = (V ∪ V0, E) and only an in-degree bound b : V → Z+ (no
out-degree bound), to compute a minimum weight vertex subset X ⊆ V ∪ V0

such that the in-degree of any vertex v ∈ V remaining after all the vertices in
X are deleted from G is at most b(v).

4.1 Approximation Hardness

As was seen in the previous section, the Okun-Barak algorithm or its extension
to directed graphs yields an O(log bmax)-approximation. We observe here that
such performance is possible only when all the degrees, both in-degrees and
out-degrees, are bounded, and if not, even at a single vertex, the performance
becomes unbounded even if bmax is a fixed constant.

As already seen, the algorithm of Okun and Barak attains the best approx-
imation bound of 2 + ln bmax for general b, by first applying the local ratio
reduction to any v and its neighbors having high d(v) to b(v) ratio, and then by
running the greedy approximation after d(v)/b(v) becomes small enough for all
the remaining vertices v. This approach is possible only when all the degrees
are bounded since, if d(v) is not bounded for some v ∈ V , there is no way of
doing the local reduction at or around v with a reasonable ratio. Consider the
following instance, for example: Let Gb = (Vb, Eb) be a (b− 1)-regular graph on
n vertices, and V cb be a copy of Vb. Construct a graph G = {Vb ∪ V cb ∪ {s}, E}
from Gb by, besides having Eb entirely, connecting each vertex of Vb and its copy
in V cb by an edge, and by having one more vertex s connected with every vertex



770 Fujito et al. Approximating Partially Bounded Degree Deletion

in Vb by an edge. Since d(v) = b+ 1 if v ∈ Vb, = 1 if v ∈ V cb , and = n if v = s,
when the degree bound is set s.t. b(v) = b, ∀v ∈ Vb and b(v) = 1, ∀v ∈ V cb (and
the degree of s is unbounded), the d(v)/b(v) ratio can be made arbitrarily close
to 1 at every v ∈ Vb ∪ V cb , that there is nowhere to apply the local ratio reduc-
tion. So the algorithm simply runs the standard greedy approximation to G.
Suppose that all the vertices in Vb are of heavy weight while the vertices in V cb
are respectively assigned with weights of 1, 1/2, 1/3, · · · , 1/n and s is assigned
with 1+ε. Then, the greedy algorithm outputs V cb as a solution of which weight
is Θ(log n) times that of the optimal solution {s}.

A more general approximation hardness of PBDD can be derived from that
of Ek-Vertex Cover (EkVC). This is the Vertex Cover problem on k-
uniform hypergraphs, and it is known to be NP-hard to approximate EkVC
within a factor of k − 1 − ε for any ε > 0 and k ≥ 3 [12]. Let H = (V,EH)
denote an instance of EkVC, i.e., a k-uniform hypergraph. Construct a bipartite
instance G = (V ∪EH , E) of undirected PBDD from H s.t. {v, eH} ∈ E, where
v ∈ V and eH ∈ EH , iff v ∈ eH in H. Set the weight of each vertex in EH heavy
enough that forces choice of vertices only from V and not from EH . Notice that
d(eH) = k, ∀eH ∈ EH , and EkVC is reduced to undirected PBDD by setting
the degree bound of k − 1 on each of them while leaving all the others (in V )
unbounded. It follows from the approximation hardness of EkVC that

Theorem 3 It is NP-hard to approximate b-PBDD, directed or undirected,
within a factor of bmax − ε for any ε > 0 and bmax ≥ 2.

4.2 Approximation Algorithm

Let us turn to an upper bound in approximation of b-PBDD, and next is a key
lemma here:

Lemma 1 For any minimal b-PBDD solution X ⊆ V ∪ V0 in G = (V ∪ V0, E)∑
v∈X

rd(δ(v)) ≤ αrd(E)

for α ≥ max{2, bmax + 1}.

Therefore, we may conclude from Corollary 1 and Lemma 1 that

Theorem 4 The b-PBDD problem can be approximated within max{2, bmax +
1}.

Before proving Lemma 1, let us verify that the bound of max{2, bmax + 1}
given in Lemma 1 or Theorem 4 is tight even if V0 = ∅. Suppose a graph G
consists of the vertex set X ∪ Y ∪ {z} and the edge set E = X × (Y ∪ {z}) s.t.
b(v) = 0, ∀v ∈ X ∪{z} and b(v) = bmax, ∀v ∈ Y for some integer bmax. Clearly,
X here is a minimal solution for b-PBDD.

We have

rd(E) = |E| − b(V ) = |X|(|Y |+ 1)− bmax|Y | = (|X| − bmax)|Y |+ |X|
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and

∑
v∈X

rd(δ(v)) = |X|(|Y |+ 1) = (|X| − bmax)|Y |+ |X|+ bmax|Y |

since rd(δ(v)) = |Y |+ 1, ∀v ∈ X. Set |X| = bmax + 1. Then,

∑
v∈X r

d(δ(v))

rd(E)
=
|X|+ |Y |+ bmax|Y |

|X|+ |Y |
= 1 +

bmax|Y |
|Y |+ bmax + 1

and
∑
v∈X r

d(δ(v))/rd(E) becomes arbitrarily close to 1 + bmax as |Y | → ∞.

Suppose now that each vertex of G is weighted s.t. w(v) = rd(δ(v)). The
algorithm PD may return X as an approximate solution, whose weight is (bmax+
1)(|Y | + 1), whereas {v, z} is an optimal solution for any v ∈ X when |Y | is
large enough, whose weight is d(v) + d(z) = |Y |+ bmax + 2. Therefore, the ratio
of weight of X to the optimal weight is

(bmax + 1)(|Y |+ 1)

|Y |+ bmax + 2
= 1 + bmax −

b2max + 2bmax + 1

|Y |+ bmax + 2

and it approaches arbitrarily close to 1 + bmax as |Y | becomes larger.

4.3 Proof of Lemma 1

For disjoint vertex sets X and Y in a digraph G = (V,E), let E(X) = {(u, v) ∈
E | {u, v} ⊆ X},

−→
E (X,Y ) = {(u, v) ∈ E | u ∈ X, v ∈ Y },

←−
E (X,Y ) =

{(u, v) ∈ E | u ∈ Y, v ∈ X} and E(X,Y ) =
−→
E (X,Y ) ∪

←−
E (X,Y ). We also

use shorthand notations of e(X) = |E(X)|,−→e (X,Y ) = |
−→
E (X,Y )|,←−e (X,Y ) =

|
←−
E (X,Y )| and e(X,Y ) = |E(X,Y )|.

Recall from Propositions 1 and 2 that rd(E) = d−(V )− b(V ) and

∑
v∈X

rd(δ(v)) = d−(X̃)− b(X̃) +
∑
v∈X

∣∣∣N+(v) ∩ (X̃ ∪ Ỹ )
∣∣∣

for Y = (V ∪ V0) − X. It can be seen that the existence of arcs entering V0

has no effect on the value of rd(E) nor
∑
v∈X r

d(δ(v)). So, their values remain
unchanged even if all the arcs in δ−(V0) are removed and we may eliminate all
the nodes of unbounded in-degree by setting b(v) to zero for all v ∈ V0. We thus
assume in what follows that V0 = ∅.
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Let α > 0. We have

αrd(E)−
∑
x∈X

rd(δ(x))

= α (|E| − b(V ))−

(
2e(X) + e(X,Y )− b(X)−

∑
x∈X

(# of tight nodes in N+(x))

)
= (α− 2)e(X) + (α− 1)e(X,Y ) + αe(Y )

−

(
(α− 1)b(X) + αb(Y )−

∑
x∈X

(# of tight nodes in N+(x))

)
= (α− 2)e(X) + (α− 1)e(X,Y )

−

(
α(b(Y )− e(Y ))−

∑
x∈X

(# of tight nodes in N+(x) ∩ Y )

)

−

(
(α− 1)b(X)−

∑
x∈X

(# of tight nodes in N+(x) ∩X)

)

Let Y = Y= ∪ Y< s.t.

Y= = {y ∈ Y | d−Y (y) = b(y)} and Y< = {y ∈ Y | d−Y (y) < b(y)}.

Divide Y< further into the set Y t< of tight nodes and the set Y u< of untight nodes;
that is, Y< = Y t< ∪ Y u< s.t.

Y t< = {y ∈ Y< | d−(y) = b(y)} and Y u< = {y ∈ Y< | d−(y) > b(y)}.

Likewise, divide X into tight and untight sets, X = Xt ∪Xu, s.t.

Xt = {x ∈ X | d−(x) = b(x)} and Xu = {x ∈ X | d−(x) > b(x)}.

Lemma 2

1.

(α− 1)−→e (X,Y t<)

= α

b(Y t<)−
∑
y∈Y t

<

d−Y (y)

−∑
x∈X

(# of tight nodes in N+(x) ∩ Y )

2.

(α− 1)−→e (X,Y u< ) ≥ α

b(Y u< )−
∑
y∈Y u

<

d−Y (y)


for α ≥ bmax + 1.
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3.

(α− 2)
∑
x∈Xt

d−X(x) + (α− 1)←−e (Xt, Y )

= (α− 1)b(Xt)−
∑
x∈X

(# of tight nodes in N+(x) ∩X)

4. If X is a minimal solution for b-PBDD,

(α− 2)
∑
x∈Xu

d−X(x) + (α− 1)←−e (Xu, Y ) + (α− 1)−→e (Xu, Y=) ≥ (α− 1)b(Xu)

for α ≥ max{2, (bmax + 3)/2}.

Proof:

1. Observe that ⋃
x∈X
{tight nodes in N+(x) ∩ Y } = Y t<

and ∑
x∈X

(# of tight nodes in N+(x) ∩ Y ) = −→e (X,Y t<)

since no node in N+(x) ∩ Y= can be tight. Also notice that

b(Y t<)−
∑
y∈Y t

<

d−Y (y) =
∑
y∈Y t

<

(b(y)− d−Y (y)) = −→e (X,Y t<)

since exactly (b(y) − d−Y (y)) many arcs of
−→
E (X,Y t<) enter to y for each

y ∈ Y t<. Thus,

α

b(Y t<)−
∑
y∈Y t

<

d−Y (y)

−∑
x∈X

(# of tight nodes in N+(x) ∩ Y )

= (α− 1)−→e (X,Y t<).

2. Because in-degree of untight y ∈ Y u< is at least b(y) + 1,

−→e (X,Y u< ) =
∑
y∈Y u

<

(d−(y)− d−Y (y))

≥
∑
y∈Y u

<

(b(y) + 1− d−Y (y)).

Since

(α− 1)(b(y) + 1− d−Y (y)) = α(b(y)− d−Y (y)) + ((α− 1)− (b(y)− d−Y (y)))

≥ α(b(y)− d−Y (y))
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when α− 1 ≥ bmax as

(α− 1)− (b(y)− d−Y (y)) ≥ 0,

we have

(α− 1)−→e (X,Y u< ) ≥ (α− 1)
∑
y∈Y u

<

(b(y) + 1− d−Y (y))

≥ α
∑
y∈Y u

<

(b(y)− d−Y (y))

= α

b(Y u< )−
∑
y∈Y u

<

d−Y (y)


if α ≥ bmax + 1.

3. Since ∑
x∈X

(# of tight nodes in N+(x) ∩X) =
∑
x∈Xt

d−X(x)

and

b(x) = d−(x) = d−X(x) +←−e ({x}, Y )

for tight x ∈ Xt, we have

(α− 1)b(Xt)−
∑
x∈X

(# of tight nodes in N+(x) ∩X)

=
∑
x∈Xt

(
(α− 1)b(x)− d−X(x)

)
=
∑
x∈Xt

(
(α− 2)d−X(x) + (α− 1)←−e ({x}, Y )

)
= (α− 2)

∑
x∈Xt

d−X(x) + (α− 1)←−e (Xt, Y ).

4. Since X is a minimal solution for b-PBDD, the edge set induced by {x}∪Y
is not independent in (E, r) which implies that either −→e ({x}, Y=) ≥ 1, or

otherwise, ∃ at least (b(x) + 1) many arcs in
←−
E ({x}, Y ) for x ∈ Xu.

Besides,

d−(x) = d−X(x) +←−e ({x}, Y ) ≥ b(x) + 1

for untight x ∈ Xu. Therefore,

(α− 2)d−X(x) + (α− 1) (←−e ({x}, Y ) +−→e ({x}, Y=))

= (α− 2)
(
d−X(x) +←−e ({x}, Y )

)
+←−e ({x}, Y ) + (α− 1)−→e ({x}, Y=)
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(assuming α ≥ 2)

≥ (α− 2)(b(x) + 1) +

{
α− 1 if −→e ({x}, Y=) ≥ 1

b(x) + 1 otherwise

=

{
(α− 1)b(x) + (2α− 3− b(x)) if −→e ({x}, Y=) ≥ 1

(α− 1)(b(x) + 1) otherwise

≥ (α− 1)b(x) if 2α− 3− b(x) ≥ 0.

It follows that

(α− 2)
∑
x∈Xu

d−X(x) + (α− 1) (←−e (Xu, Y ) +−→e (Xu, Y=))

≥ (α− 1)b(Xu)

for α ≥ max{2, (bmax + 3)/2}.

�

The sum of LHS’s of the (in)equalities listed in Lemma 2 is:

(α− 1)−→e (X,Y t<) + (α− 1)−→e (X,Y u< ) + (α− 2)
∑
x∈Xt

d−X(x)

+ (α− 1)←−e (Xt, Y ) + (α− 2)
∑
x∈Xu

d−X(x) + (α− 1)←−e (Xu, Y )

+ (α− 1)−→e (Xu, Y=)

= (α− 2)
∑
x∈X

d−X(x) + (α− 1)e(X,Y )

= (α− 2)e(X) + (α− 1)e(X,Y )

and the sum of RHS’s is:

α

b(Y t<)−
∑
y∈Y t

<

d−Y (y)

−∑
x∈X

(# of tight nodes in N+(x) ∩ Y )

+ α

b(Y u< )−
∑
y∈Y u

<

d−Y (y)

+ (α− 1)b(Xt)

−
∑
x∈X

(# of tight nodes in N+(x) ∩X) + (α− 1)b(Xu)
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= (α− 1)(b(Xt) + b(Xu)) + α

b(Y t<) + b(Y u< )−
∑
y∈Y t

<

d−Y (y)−
∑
y∈Y u

<

d−Y (y)


−

(∑
x∈X

(# of tight nodes in N+(x) ∩ Y )

+
∑
x∈X

(# of tight nodes in N+(x) ∩X)

)

since b(Y=)−
∑
y∈Y=

d−Y (y) = 0

= (α− 1)b(X) + α

b(Y )−
∑
y∈Y

d−Y (y)

−∑
x∈X

(# of tight nodes in N+(x))

= (α− 1)b(X) + α (b(Y )− e(Y ))−
∑
x∈X

(# of tight nodes in N+(x)).

Therefore, Lemma 1 follows immediately from Lemma 2.
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