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Abstract

A simultaneous embedding with fixed edges (Sefe) of two planar graphs
R and B is a pair of plane drawings of R and B that coincide when
restricted to the common vertices and edges of R and B. We show that
whenever R and B admit a Sefe, they also admit a Sefe in which every
edge is a polygonal curve with few bends and every pair of edges has few
crossings. Specifically:

(1) if R and B are trees then one bend per edge and four crossings per
edge pair suffice (and one bend per edge is sometimes necessary),

(2) if R is a planar graph and B is a tree then six bends per edge and
eight crossings per edge pair suffice, and

(3) if R and B are planar graphs then six bends per edge and sixteen
crossings per edge pair suffice.

Our results simultaneously improve on a paper by Grilli et al. (GD’14),
which proves that nine bends per edge suffice, and on a paper by Chan
et al. (JGAA ’15), which proves that twenty-four crossings per edge pair
suffice.
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Figure 1: (a-b) R and B with VC = {a, b, c, d, e} and EC =
{(a, b), (b, c), (a, c), (c, d)}. (c) Simultaneous embedding of R and B. (d) Sge of
R and B. (e) Sefe of R and B.

1 Introduction

Let R = (VR, ER) and B = (VB , EB) be two planar graphs sharing a common
graph C = (VR ∩VB , ER ∩EB). The vertices and edges of C are common, while
the other vertices and edges are exclusive. We refer to the edges in ER − EB ,
in EB − ER, and in ER ∩ EB as the red, blue, and black edges, respectively. A
simultaneous embedding of R and B is a pair of plane drawings of R and B,
respectively, that agree on the common vertices (see Figs. 1a–1c).

Simultaneous graph embeddings have been a central topic of investigation for
the graph drawing community in the last decade, because of their applicability
to the visualization of dynamic graphs and of multiple graphs on the same vertex
set [9, 15], and because of the depth and breadth of the theory they have been
found to be related to.

Brass et al. [9] initiated the research on this topic by investigating simul-
taneous geometric embeddings (or Sges), which are simultaneous embeddings
where all edges are represented by straight-line segments (see Figure 1d). This
setting proved to be fairly restrictive: there exist two trees [22] and even a tree
and a path [4] with no Sge. Furthermore, the problem of deciding whether two
graphs admit an Sge is NP-hard [16].

Two relaxations of Sge have been considered in the literature in which edges
are not forced to be straight-line segments. In the first setting, we look for a
simultaneous embedding of two given planar graphs R and B in which every edge
is drawn as a polygonal curve with few bends. Erten and Kobourov [14] proved
that three bends per edge always suffice, a bound which has been improved to
two bends per edge by Di Giacomo and Liotta [13]. If R and B are trees, then
one bend per edge is sufficient [14]. Note that black edges may be represented
by different curves in each drawing. The variant in which the edges of R and
B might only cross at right angles has also been considered [5]. In the second
setting, we look for a simultaneous embedding with fixed edges (or Sefe) of R
and B: a simultaneous embedding in which every common edge is represented
by the same simple curve in the plane (see Figure 1e). In other words, a Sefe is
a drawing Γ of the union graph (VR∪VB , ER∪EB) such that Γ restricted to the
vertices and edges of R is a plane drawing of R and Γ restricted to the vertices
and edges of B is a plane drawing of B. While not every two planar graphs admit
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a Sefe, this setting is substantially less restrictive than Sge: for example, every
tree and every planar graph admit a Sefe [18]. Determining the complexity of
deciding whether two given graphs admit a Sefe is a major open problem in the
field of graph drawing. Polynomial-time testing algorithms are known in many
restricted cases, such as when the common graph C is biconnected [3], when C
is a set of disjoint cycles [8], or when R is a planar graph and B is a graph with
at most one cycle [17]. We refer to an excellent survey by Bläsius et al. [7] for
many other results.

In this paper we present algorithms to construct Sefes in which edges are
represented by polygonal curves. For the purpose of guaranteeing the read-
ability of the representation, we aim at minimizing two natural aesthetic mea-
sures in the constructed Sefes: the number of bends per edge and the num-
ber of crossings per edge pair. Graph drawings with few bends per edge (see,
e.g., [11,21,27,29,30]) and with few crossings (see, e.g., [1,2,6,24,28]) have been
studied extensively in the past. Further, both measures have been recently and
separately considered in relation to the construction of a Sefe. Namely, Grilli
et al. [23] proved that every combinatorial Sefe can be realized as a Sefe with
at most nine bends per edge, a bound which improves to three bends per edge
when the common graph is biconnected. Further, Chan et al. [10] proved that
if R and B admit a Sefe, then they admit a Sefe in which every red-blue edge
pair crosses at most twenty-four times.

Contribution. In this paper we improve on the results of Grilli et al. [23] and
of Chan et al. [10] by proving the following results.

(1) If R and B are both trees, then they admit a Sefe with one bend per edge.
Consequently, every edge pair crosses at most four times. The number of
bends is the best possible, since there exist two trees that do no admit a
Sefe with no bends [22].

(2) If R is a planar graph and B is a tree, then they admit a Sefe with six
bends per edge in which every two exclusive edges cross at most eight times.

(3) If R and B are planar graphs that admit a Sefe, then they admit a Sefe
with six bends per edge in which every two exclusive edges cross at most
sixteen times.

In all results, the common edges are drawn as straight-line segments. Our
algorithms are constructive and can be implemented efficiently in the real-RAM
model.

The rest of the paper is organized as follows. In Section 2 we establish
some preliminaries. In Sections 3, 4, and 5, we present our results on tree–tree
pairs, on tree–planar pairs, and on planar–planar pairs, respectively. Finally, in
Section 6 we conclude and suggest some open problems.
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2 Preliminaries

A plane drawing of a (multi)graph G is a mapping of each vertex to a point in
the plane, and of each edge to a simple curve connecting its endvertices such
that no two edges cross. A plane drawing of G determines a circular ordering
of the edges incident to each vertex of G; the set of these orderings is called
a rotation system. Two plane drawings of G are equivalent if they have the
same rotation system, the same containment relationship between cycles, and
the same outer face (the second condition is redundant if G is connected). A
planar embedding is an equivalence class of plane drawings. With a slight abuse
of terminology, we say that a planar drawing Γ of a planar graph G is equivalent
to a planar embedding E of G, if the Γ is a member of E .

Analogously, a Sefe of two planar graphs R and B determines a circular
ordering of the edges incident to each vertex (comprising edges incident to both
R and B); the set of these orderings is the rotation system of the Sefe. Two
Sefes of R and B are equivalent if they have the same rotation system and if
their restriction to the vertices and edges of R (of B) determines two equivalent
plane drawings of R (of B). Finally, a combinatorial Sefe E for two planar
graphs R and B is an equivalence class of Sefes; we denote by E|R (by E|B)
the planar embedding of R (of B) obtained by restricting E to the vertices and
edges of R (of B). Again, with a slight abuse of terminology, we say that a
Sefe Γ of two planar graphs R and B is equivalent to a combinatorial Sefe E
of R and B if Γ is a member of E .

A subdivision of a multigraph G is a graph G′ obtained by replacing edges
of G with paths, whose internal vertices are called subdivision vertices. If G′ is
a subdivision of G, the operation of flattening subdivision vertices in G′ returns
G. The contraction of an edge (u, v) in a multigraph G leads to a multigraph G′

by replacing (u, v) with a vertex w incident to all the edges u and v are incident
to in G; k parallel edges (u, v) in G lead to k − 1 self-loops incident to w in G′

(the contracted edge itself is not in G′). If G has a planar embedding EG, then
G′ inherits a planar embedding EG′ as follows. Let a1, . . . , ak, v and b1, . . . , b`, u
be the clockwise orders of the neighbors of u and v in EG, respectively. Then the
clockwise order of the neighbors of w is a1, . . . , ak, b1, . . . , b`. The contraction
of a connected graph is the contraction of all its edges.

The straight-line segment between points p and q is denoted by pq. The
angle of pq is the angle between the ray from p in positive x-direction and the
ray from p through pq. A polygon P is strictly-convex if, for any two non-
consecutive vertices p and q of P , the open segment pq lies in the interior of P ;
also, P is star-shaped if a point p∗ exists such that, for any vertex p of P , the
open segment pp∗ lies in P ; the kernel of P is the set of all such points p∗.

Consider a straight-line drawing Γ of a graph G and a subgraph T of G
which is a tree. Suppose that the drawing of T in Γ is planar. A surrounding
curve γ for T in Γ is a closed curve drawn on top of Γ that contains T inside
and that is “close enough” to the drawing of T in Γ so that: (i) no vertex other
than those of T lies inside γ; (ii) no crossing of Γ lies inside γ; and (iii) every
edge e that is incident to a vertex of T and that is not an edge of T crosses γ a
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Figure 2: Embedding the children of v if (a) v′ 6= p or (b) v′ = p. Parts of the
embedding already constructed are in the dashed regions.

number of times equal to the number of endvertices of e in T .
A 1-page book embedding (1PBE) is a plane drawing where all vertices are

placed on an oriented line ` called spine and all edges are curves in the halfplane
to the left of `. A 2-page book embedding (2PBE) is a plane drawing where all
vertices are placed on ` and each edge is a curve in one of the two halfplanes
delimited by `.

The following lemma shows how to construct a constrained 1PBE of a tree.

Lemma 1 Let T be a tree with a planar embedding E. For every vertex v of T ,
let ev be a designated edge incident to v. There is a 1PBE for T equivalent to
E such that for every vertex v of T , the spine passes through v right before ev
in clockwise order around v.

Proof: We construct the embedding recursively. Arbitrarily choose a vertex s
as the root of T and place s on the spine `. Place the other endvertex of es after
s on ` and all remaining neighbors of s, if any, in between in the order given
by E . Then process every child v of s (and the subtree below v) recursively as
follows (and ensure that all subtrees stay in pairwise disjoint parts of the spine,
for instance, by assigning a specific region to each).

Note that both v and the parent p of v are already embedded. Assume that
p lies before v on the spine, the case in which p lies after v is analogous. Let v′

be the endvertex of ev different from v. If v′ 6= p, then we place it right before v.
Both if v′ 6= p (see Figure 2a) and if v′ = p (see Figure 2b), we place the other
children of v, if any, according to E , in the parts of the spine between p and v′,
and after v. If v is not a leaf, then all its children are processed recursively in
the same fashion. It is easily checked that the resulting embedding is a 1PBE
that satisfies the stated properties. �

The following lemma shows how to make a planar multigraph Hamiltonian
by subdividing each edge a few times.

Lemma 2 Let G be a connected planar multigraph with a planar embedding E.
For every vertex v of G, let ev be a designated edge incident to v. There exists
a simple planar graph G′ such that:

• Two-subdivision: G′ is obtained by subdividing each edge of G either
zero or two times and by adding dummy vertices and edges to the resulting
graph;
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(a) (b)

Figure 3: Illustration for Lemma 2. (a) The graph G with its planar embedding
E has black disks as vertices and red curves as edges. The curve γ is orange.
Subdivision vertices for the edges of G are white squares and dummy vertices
are black squares. (b) The graph G′ with its planar embedding E ′. Both the
red and the orange curves represent edges of G′.

• Embedding: G′ has a planar embedding E ′ from which E is obtained by
removing dummy vertices and edges and flattening subdivision vertices;

• Hamiltonian cycle: G′ contains a Hamiltonian cycle C, which we orient
counter-clockwise in E ′, none of whose edges is (part of) an edge of G;

• Starting edge: for every vertex v of G, the edge of C entering v comes
immediately before ev in the clockwise order of edges incident to v in E ′;
and

• Start inside: all the edges of G′ that are incident to a vertex of G and
that are part of an edge of G lie inside C in E ′.

Proof: Let T be a spanning tree of G, which exists since G is connected. Let
γ be a surrounding curve for T in E . Insert subdivision vertices for the edges
of G not in T at these crossings; also, for every two subdivision vertices that
are consecutive along γ and that subdivide the same edge of G, insert a dummy
vertex on γ between them. Orient γ counter-clockwise. See Figure 3.a.

We now modify γ in a small neighborhood of each vertex v of G, so that it
passes through v. If ev is in T , as in Figure 4.a, then while traversing γ counter-
clockwise stop at a point in which γ follows ev towards v; insert a dummy
vertex at that point, then let γ take a detour from the dummy vertex to v and
then back to its previous route, where another dummy vertex is inserted. If
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Figure 4: Illustration for Lemma 2. Modifying γ so that it passes through a
vertex v.

ev is not in T , as in Figure 4.b, then while traversing γ counter-clockwise stop
immediately after the crossing between γ and ev that is “closer” to v; insert a
dummy vertex on γ at that point, then let γ take a detour from the dummy
vertex to v and then back to its previous route, where another dummy vertex
is inserted. Finally, we consider γ as a cycle, that is, each curve that is part of
γ and that connects two consecutive vertices on γ is an edge. Denote by G′ the
resulting graph and by E ′ its planar embedding; see Figure 3.b.

It is easy to verify that G′ and E ′ satisfy all the required properties. In
particular, the Hamiltonian cycle C required by the statement is the cycle cor-
responding to γ: By construction, C passes through every vertex of G and it
does so immediately before ev in clockwise order around v. Also, every edge of
G has been subdivided twice (if it is not in T ) or never (if it is in T ). Further,
all the edges of T lie inside γ and hence inside C, while all the edges of G not
in T start inside C, move outside it, and then end again inside it; this implies
Properties Hamiltonian cycle and Start inside. Finally, G′ is simple, due
to the introduction of dummy vertices along γ. �

3 Two Trees

In this section we describe an algorithm that computes a Sefe of any two trees
R and B with one bend per edge. Let C be the common graph of R and B.

The outline of the algorithm is as follows. In Step 1, we compute a com-
binatorial Sefe of R and B with the property that at every common vertex
v, all the black edges are consecutive in the circular order of edges incident to
v. In Step 2, we contract each component of C to a single vertex, obtaining
trees R′ from R and B′ from B. In Step 3, we independently augment R′ and
B′ to Hamiltonian planar graphs, so as to satisfy topological constraints that
are necessary for the subsequent drawing algorithms. In Step 4, we use the
Hamiltonian augmentations to construct a simultaneous embedding of R′ and
B′ with one bend per edge; this step is reminiscent of an algorithm of Erten and
Kobourov [14]. Finally, in Step 5, we expand the components of C. This consists
of modifying the simultaneous embedding of R′ and B′ in a small neighborhood
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Figure 5: (a) A connected component S of C, together with its incident exclusive
edges. (b) Vertex v resulting from the contraction of S.

of each vertex to make room for the components of C. We now describe these
steps in detail.

Step 1: Combinatorial Sefe. Fix the clockwise order of the edges incident
to each vertex as follows: all the black edges in any order, then all the red edges
in any order, and then all the blue edges in any order (each sequence might be
empty). As any rotation system for a tree determines a planar embedding for
it, this results in a combinatorial Sefe E of R and B. See Figure 5a. We may
assume that every component S of C is incident to at least one red and one
blue edge: If S is not incident to any, say, blue edge, then B = S = C, since B
is connected; hence, any plane straight-line drawing of R is a Sefe of R and B.

For every component S of C we pick two incident edges r(S) and b(S) as
follows. Consider any Sefe ΓE ofR andB equivalent to E ; let γ be a surrounding
curve for S in E . Note that γ intersects all the exclusive edges incident to S
in some clockwise order; further, in this order all the exclusive edges incident
to a single vertex of S appear consecutively. Let r(S) be any red edge not
preceded by a red edge in this order and let b(S) be the first blue edge after
r(S). We define a total ordering %S of the vertices of S, as the order in which
their exclusive edges intersect γ (a curve is added incident to every vertex of S
with no incident exclusive edge for this purpose), where the first vertex of %S is
the endvertex of r(S). We have the following.

Lemma 3 The straight-line drawing of S obtained by placing its vertices on a
strictly-convex curve λ in the order defined by %S is plane.

Proof: Consider the plane drawing of S in ΓE . For every vertex v of S, shrink
γ along an exclusive edge incident to v so that γ passes through v and still every
edge of S lies in its interior. Eventually γ passes through all the vertices of S in
the order %S . The planarity of the drawing of S in ΓE implies that there are no
two edges (u1, u2) and (w1, w2) whose endvertices appear along γ in the circular
order u1, w1, u2, and w2. Then placing the vertices of S on λ in the order %S
leads to a plane straight-line drawing of S. �

Step 2: Contractions. Contract each component S of C to a single vertex
v. The resulting trees R′=(V ′R, E

′
R) and B′=(V ′B , E

′
B) have planar embeddings
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ER′ and EB′ inherited from ER and EB , respectively. The vertex v is common to
R′ and B′; let r(v) and b(v) be the edges corresponding to r(S) and b(S) after
the contraction. See Figure 5b.

Step 3: Hamiltonian augmentations. We describe this step for R′ only;
the treatment of B′ is analogous and independent. The goal is to find a vertex
order corresponding to a 1PBE of R′. All edges between consecutive vertices
along the spine `, as well as the edge between the first and last vertex along `, can
be added to a 1PBE while maintaining planarity, hence the 1PBE determines
a Hamiltonian planar augmentation of R′. We need such an augmentation to
respect the planar embedding ER′ of R′ and, for every common vertex v, to place
r(v) right after the spine in clockwise order around v. This is possible due to
Lemma 1. Indeed, by means of Lemma 1 we construct a 1PBE for R′ equivalent
to ER′ such that for every common vertex v, the spine passes through v right
before r(v) in clockwise order around v. Note that, in order to apply Lemma 1,
we also need to designate, for each exclusive vertex v, an edge incident to v;
this can be done arbitrarily.

Step 4: Simultaneous embedding. We now construct a simultaneous em-
bedding of R′ and B′. In such an embedding let σv denote the linear order of
the edges around each vertex v obtained by sweeping a ray clockwise around v,
starting in direction of the negative x-axis. Our algorithm is very similar to algo-
rithms due to Brass et al. [9] and Erten and Kobourov [14]. These algorithms,
however, do not guarantee the construction of a simultaneous embedding in
which the order of the edges incident to each vertex is as stated in the following
lemma. This order is essential for the upcoming expansion step.

Lemma 4 For every ε > 0, the trees R′ and B′ admit a simultaneous embedding
with one bend per edge in which:

• all edges of ER′ (EB′) incident to a vertex v in V ′R (V ′B) exit v within an
angle of [−ε,+ε] with respect to the positive y-direction (x-direction);

• the drawing restricted to R′ (to B′) is equivalent to ER′ (to EB′); and

• for every common vertex v, the first red (blue) edge in σv is r(v) (b(v)).

Proof: Refer to Fig. 6. We assign the x-coordinates 1, . . . , |VR′ | (and the y-
coordinates |VB′ |, . . . , 1) to the vertices of R′ (of B′) according to the order in
which they occur on the spine in the 1PBE of R′ (of B′) computed in Lemma 1.
This determines the placement of every vertex in VR′ ∩ VB′ . Set any not-yet-
assigned coordinate to 0.

We draw the edges of R′ as follows; the construction for B′ is analogous. The
idea is to realize the 1PBE of R′ with its vertices placed as above and its edges
drawn as x-monotone polygonal curves with one bend. We proceed as follows.
The 1PBE of R′ defines a partial order of the edges corresponding to the way
they nest. For example, denoting the vertices by their order along the spine,
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(0, 0)

Figure 6: A simultaneous embedding of the trees R′ and B′. The gray cones
indicate the angles within [−ε,+ε] of the positive x- and y-directions.

edge (3, 4) precedes (3, 5) and (2, 5), while (1, 2) and (6, 7) are incomparable.
We draw the edges of R′ in any linear extension of this partial order. Suppose
we have drawn some edges and let (u, v) be the next edge to be drawn. Assume
w.l.o.g. that the x-coordinate of u is smaller than the one of v. For some εuv > 0,
consider the ray %u emanating from u with an angle of π/2− εuv (with respect
to the positive x-axis). Similarly, let %v be the ray emanating from v with an
angle of π/2 + εuv. We choose εuv < ε sufficiently small so that:

(1) no vertex in VR′ \ {u} lies in the region to the left of the underlying
(oriented) line of %u and to the right of the vertical line through u;

(2) no vertex in VR′ \ {v} lies in the region to the right of the underlying
(oriented) line of %v and to the left of the vertical line through v; and

(3) neither %u nor %v intersects any previously drawn edge.

Since no two vertices ofR′ have the same x-coordinate and since the edges are
drawn in the described order, we can choose εuv as claimed. The corresponding
rays %u and %v intersect in some point: this is where we place the bend-point of
(u, v). The resulting drawing is equivalent to the 1PBE of R′ and therefore to
ER′ . The remaining claimed properties are preserved from the 1PBE. �

Step 5: Expansion. We now expand the components of C in the drawing
produced by Lemma 4 one by one in any order. Let Γ be the current drawing,
v be a vertex corresponding to a not-yet-expanded component S of C, and p
be the point on which v is placed in Γ. Note that the red and blue edges
incident to v may be incident to different vertices in S. Let σv = (e1, . . . , e`),
where e1, . . . , ek are red and ek+1, . . . , e` are blue. By Lemma 4, r(v) = e1 and
b(v) = ek+1. Each edge incident to v is drawn as a polygonal curve with one
bend. Let bi be the bend-point of ei. The plan is to delete the segments pbi
in Γ to obtain a drawing Γ′. Then, for some small value of ε, draw S in Γ′

inside a small disk Dε with radius ε centered at p and draw segments from S
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e1 ekek+1

e`S
Dε

· · ·

...

Dε p

e1 ek· · ·

ek+1

e`

...

Figure 7: Expanding a component S in a small disk Dε around p.

to b1, . . . , b`. See Figure 7. Let ΓR (Γ′R) be the restriction of Γ (Γ′) to the red
and black edges.

We first deal with possible crossings involving a segment from S to b1, . . . , b`
and a segment of Γ′R not incident to any vertex of S (see Proposition 1 below);
we then deal with possible crossings involving two segments from S to b1, . . . , b`
(see Proposition 2 below). We state Propositions 1 and 2 only for the red graph;
the propositions for the blue graph are analogous. By continuity, v can be moved
around slightly in ΓR while maintaining a plane drawing for the red graph. This
implies the following.

Proposition 1 There exists a δR > 0 with the following property. For every δ
such that 0 < δ ≤ δR and for every drawing Γ∗R obtained from Γ′R by drawing S
in Dδ, the red segments from S to b1, . . . , bk do not cross any segment already
present in Γ′R.

The following proposition deals with crossings between red edges incident to S.

Proposition 2 There exists an εR > 0 with the following property. For every ε
such that 0 < ε ≤ εR and for every k (not necessarily distinct) points q1, . . . , qk
in clockwise order on the upper semicircle of Dε, the segments q1b1, . . . , qkbk do
not intersect each other, except at common endpoints.

Proof: The angles of pb1, . . . , pbk are distinct and strictly decreasing, by Lemma 4
and by the way e1, . . . , ek are labeled. We claim that εR can be chosen suffi-
ciently small so that the angles of q1b1, . . . , qkbk are also distinct and strictly
decreasing. For a certain ε, let Ii(ε) be the interval of all angles α such that
the ray with angle α from bi intersects Dε. Since the angles of pb1, . . . , pbk are
distinct, it follows that the intervals I1(0), . . . , Ik(0) are disjoint. By continuity,
there exists an εR > 0 for which I1(εR), . . . , Ik(εR) are also disjoint, and the
claim follows for this εR. Finally, two segments qibi and qjbj with i < j and
qi 6= qj can intersect only if the angle of qibi is smaller than the angle of qjbj ,
which does not happen by the claim. �

We get the following main lemma.

Lemma 5 There exists an ε > 0 with the following property. We can expand S
to obtain a simultaneous embedding Γ∗ from Γ′ by drawing the vertices of S on
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the boundary of Dε, the edges of S as straight-line segments, and by connecting
S to b1, . . . , b` with straight-line segments.

Proof: Let δR, δB , εR, and εB be the constants satisfying Propositions 1 and 2
and their analogous formulations for B. Let ε := min{δR, δB , εR, εB}. Place
the vertices of S as distinct points on the boundary of the upper-right quadrant
of Dε in the total order %S of the vertices of S defined earlier. By Lemma 3,
this placement determines a straight-line plane drawing of S. Draw straight-line
segments from the vertices of S to b1, . . . , b`, thus completing the drawing of the
exclusive edges incident to S. We prove that the red segments incident to S do
not cross any red or black edge; the proof for the blue segments is analogous.
By Proposition 1, the red segments incident to S do not cross the red and black
segments not incident to vertices in S. Also, they do not cross the edges of S,
which are internal to Dε. Further, Proposition 2 ensures that these segments
do not cross each other. Namely, the linear order of the vertices of S defined
by the sequence of the red edges e1, . . . , ek is a subsequence of %S , given that
the embedding ER′ of R′ is the one inherited from ER, given that Lemma 4
produces a drawing of R′ respecting ER′ and in which e1 = r(v), and given that
the endvertex of r(S) in S is the first vertex of %S . �

We are now ready to state the main theorem of this section.

Theorem 1 Let R and B be two trees. There exists a Sefe of R and B in
which every exclusive edge is a polygonal curve with one bend, every common
edge is a straight-line segment, and every two exclusive edges cross at most four
times.

Proof: By Lemma 4, the trees R′ and B′ admit a simultaneous embedding with
one bend per edge. By repeated applications of Lemma 5, the simultaneous
embedding of R′ and B′ can be turned into a Sefe of R and B in which every
exclusive edge has one bend and every common edge is a straight-line segment.
Finally, any two exclusive edges cross at most four times, given that each of
them consists of two straight-line segments. �

4 A Planar Graph and a Tree

In this section we give an algorithm which computes a Sefe of any planar graph
R = (VR, ER) and any tree B = (VB , EB) in which every edge of R has at most
six bends and every edge of B has one bend.

Without loss of generality, we can assume that VR = VB and that R and B
are connected. These two conditions can be guaranteed as follows. First, add
to VR (to VB) the vertices in VB −VR (in VR−VB) as isolated vertices. Second,
if R is not connected, then pick a vertex v ∈ VR and add to ER edges from
v to a vertex of each connected component of R not containing v; now R is
connected. Finally, perform a similar augmentation for B. The common graph
C = (VR = VB , ER ∩ EB) of R and B is a forest, as it is a subgraph of B.
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(a) (b)

Figure 8: (a) A planar graph R and a tree B. (b) The planar graph R′ and the
tree B′ obtained after Step 1.

Our algorithm has strong similarities with the one for trees (Section 3);
however, it encounters some of the complications one needs to handle when
dealing with pairs of general planar graphs (Section 5). Its outline is as follows.

In Step 1 we modify R and B to obtain a planar graph R′ and a tree B′ with
a common graph C ′ (whose vertex set coincides with the ones of R′ and B′)
by introducing antennas, which are edges of C ′ replacing parts of the exclusive
edges of R. While this costs two extra bends per edge of R in the final Sefe
of R and B, it establishes the property that, for every exclusive edge e of R′,
every endvertex of e is incident to two edges only, namely e and an edge of C ′.

In Step 2 we construct a combinatorial Sefe of the planar graph R′ and the
tree B′ such that, at every vertex v, all the edges of C ′ are consecutive in the
circular order of the edges incident to v. The existence of such a combinatorial
Sefe is guaranteed by the fact that the exclusive edges of R′ satisfy the property
mentioned above.

In order to construct a Sefe of R′ and B′, in Steps 3–6 we perform a
(a) contraction (b) simultaneous embedding (c) expansion process similar to the
one in Section 3. This again relies on an independent Hamiltonian augmentation
of the graphs, which is done in Step 4. The augmentation of the tree B′ is done
by Lemma 1; in order to augment the planar graph R′ we need to subdivide
some of its edges; this results in the use of four bends per edge in the Sefe of
R′ and B′. Finally, we obtain a Sefe of R and B by removing the antennas.
Next we describe these steps in detail.

Step 1: Antennas. We replace every exclusive edge e = (u, v) ∈ ER by
a path (u, ue, ve, v), with two new common vertices ue and ve, black edges
(u, ue), (ve, v), and a red edge (ue, ve). See Figure 8. The resulting planar
graph R′ and tree B′ satisfy the following property.

Property 1 For every exclusive edge e of R′, every endvertex of e is incident
to two edges only, namely e and an edge of the common graph C ′.

We also get the following:
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Lemma 6 Suppose that a Sefe Γ′ of R′ and B′ exists in which: (i) every edge
of R′ (of B′) is a polygonal curve with at most x bends (y bends); (ii) every
common edge is a straight-line segment; and (iii) any two exclusive edges cross
at most z times.

Then there exists a Sefe Γ of R and B in which: (i) every edge of R (of
B) is a polygonal curve with at most x+ 2 bends (y bends); (ii) every common
edge is a straight-line segment; and (iii) any two exclusive edges cross at most
z times.

Proof: We obtain Γ from Γ′ by removing all the edges (u, ue) and (ve, v) from
the drawing of the tree B, and by interpreting all the vertices ue and ve as
bend-points in the drawing of R.

First, we have that Γ is a Sefe of the planar graph R and of the tree B.
In particular, every two edges of B are also edges of B′ and since they do not
cross in Γ′, they do not cross in Γ either. Further, each edge of R corresponds
to a path in R′, hence no two edges of R cross in Γ as the corresponding paths
do not cross in Γ′.

Second, every edge of C is also an edge of C ′, hence it is a straight-line
segment in Γ, as it is in Γ′.

Third, every edge of B is also an edge of B′, hence it is a polygonal curve
with at most y bends in Γ, as it is in Γ′.

Fourth, every edge e in R corresponds to a path in R′ composed of at most
two edges of C ′, which are straight-line segments, and of one exclusive edge of
R′, which has at most x bends. Hence, e has at most x+ 2 bends in Γ (the two
extra bends correspond to the points where ue and ve are).

Finally, any exclusive edge of R or B corresponds to at most two edges of
C ′ and of one exclusive edge of R′ or B′. Since common edges are crossing-free,
any two exclusive edges of R and B cross the same number of times as the
corresponding exclusive edges of R′ and B′, which is z by assumption. �

Step 2: Combinatorial Sefe. Start with any plane drawing of the planar
graph R′. This determines the planar embeddings ER′ of R′ and EC′ of C ′. The
planar embedding EB′ of the tree B′ is defined by setting the clockwise order
of the edges incident to each vertex v in EB′ to be: all the black edges incident
to v first (in the order defined by ER′) and then all the blue edges incident to
v in any order. In the resulting combinatorial Sefe E of R′ and B′ we have, in
clockwise order around each vertex, either: (i) a sequence of black edges followed
by a sequence of blue edges (where one of the sequences might be empty); or
(ii) a single black edge followed by a single red edge. This is a consequence of
Property 1 and of the embedding choices for B′. As in Section 3, we can assume
that every connected component of C ′ is incident to at least one red and one
blue edge. We choose the edges r(S) and b(S) for every component S of C ′ and
we define an ordering %S of the vertices of S as in Section 3.

Step 3: Contractions. Contract each component of C ′ to a vertex in R′ and
in B′, determining graphs R′′ = (VR′′ , ER′′) and B′′ = (VB′′ , EB′′), respectively,
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where VR′′ = VB′′ . Note that R′′ is a planar multigraph, i.e., it might have
parallel edges and self-loops, while B′′ is a tree. In this way R′′ inherits a planar
embedding ER′′ from ER′ and B′′ inherits a planar embedding EB′′ from EB′ .
For each vertex v of R′′ and B′′, let r(v) and b(v) be the edges corresponding
to r(S) and b(S) after the contraction.

Step 4: Hamiltonian augmentations. A Hamiltonian planar augmenta-
tion of the tree B′′ is constructed as described in the proof of Lemma 1 (where,
for each vertex v, the edge b(v) plays the role of the designated edge ev).

A Hamiltonian planar augmentation of the planar multigraph R′′ might not
exist, hence before performing any augmentation we need to subdivide some
edges ofR′′. This is done by means of Lemma 2, applied withG = R′′, ev = r(v),
and E = ER′′ . The lemma allows us the construction of a (simple) Hamiltonian
planar graph R′′′ = G′ and of a planar embedding ER′′′ = E ′ satisfying Proper-
ties Two-subdivision, Embedding, Hamiltonian cycle, Starting edge,
and Start inside. Denote by VR′′′ and ER′′′ the vertex and edge set of R′′′,
respectively.

Step 5: Simultaneous embedding. Ideally, in order to construct a simul-
taneous embedding of R′′ and B′′, we would like to use known algorithms that
construct simultaneous embeddings with two bends per edge of every two planar
graphs [12, 13, 26]. However, the existence of self-loops in R′′ prevents us from
doing that. In the following lemma we show how to modify those algorithms
to deal with non-simple graphs. Figure 9 shows an example of the resulting
drawing. Let σv be defined as in Section 3.

Lemma 7 For every ε > 0, the graph R′′ and the tree B′′ admit a simultaneous
embedding in which:

• every edge of R′′ (of B′′) is a polygonal curve with at most four bends
(with one bend);

• every two edges cross at most eight times (counting an adjacency as one
crossing);

• all edges of ER′′ (EB′′) incident to a vertex v in VR′′ (VB′′) exit v within
an angle of [−ε,+ε] with respect to the positive y-direction (x-direction);

• the drawing restricted to R′′ (to B′′) is equivalent to ER′′ (to EB′′); and

• for every vertex v, the first red (blue) edge in σv is r(v) (b(v)).

Proof: We first construct a simultaneous embedding of R′′ and B′′; we will
later prove that it satisfies the required properties.

We start by placing the vertices of R′′′ and B′′ in the plane. Similarly to
Lemma 4, we assign x-coordinates 1, . . . , |VR′′′ | to the vertices of R′′′ according
to the order in which they occur along the Hamiltonian cycle of R′′′, starting at
any vertex u∗. Further, we assign y-coordinates |VB′′ |, . . . , 1 to the vertices of
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v
r(v)

b(v)

u

w

(0, 0)

Figure 9: A simultaneous embedding of a planar graph R′′ and a tree B′′. The
gray cones indicate the angles within [−ε,+ε] of the positive x- and y-directions.
The self-loop at u in R′′, represented as a path of length three in R′′′, crosses
the edge (v, w) eight times. Some angles in the drawing were modified slightly
to reduce the height of the figure.

B′′ according to the order in which they occur on the spine in the Hamiltonian
augmentation of B′′ that is computed by Lemma 1. This determines the place-
ment of every vertex in VR′′ = VB′′ . It remains to assign y-coordinates to the
vertices in VR′′′ \VR′′ (note that none of these vertices belongs to B′′). A subset
Vs of the vertices in VR′′′ \ VR′′ consists of subdivision vertices for the edges in
ER′′ ; we assign y-coordinates to the vertices in Vs so that they lie on the curve
y = −x2. We set the y-coordinate of every vertex in VR′′′ \ {VR′′ ∪ Vs} to 0.

We continue by drawing the edges of R′′ and B′′. The edges of B′′ are
drawn exactly as in Lemma 4. We draw the edges of R′′ as follows. Note that
the Hamiltonian augmentation of R′′ corresponds to a 2PBE of R′′′ along a spine
`, where u∗ can be assumed w.l.o.g. to be the first vertex along `. This 2PBE
defines a partition of the edges of R′′′ into those embedded in the half-plane
Hl to the left of ` and those embedded in the half-plane Hr to the right of `.
By Property Start inside, each edge of R′′′ in Hr connects two vertices in Vs,
which are subdivision vertices for an edge in ER′′ ; thus the edges of R′′′ in Hr
form a perfect matching on Vs. We draw these edges as straight-line segments.
In order to draw the edges of R′′′ in Hl, we define a partial order on these
edges, corresponding to the way they nest. We draw these edges one by one,
in any linear extension of this partial order. The procedure to draw an edge
(u, v) as a 1-bend edge is the same as in Lemma 4. That is, assuming w.l.o.g.
that u has a smaller x-coordinate than v, the bend-point is the intersection
point between two rays %u and %v emanating from u and v with an angle of
π/2 − εuv and π/2 + εuv, for some suitably small 0 < εuv < ε. The vertices in
VR′′′ \ {VR′′ ∪ Vs} are removed from the drawing, together with their incident
edges, while the vertices in Vs are interpreted as bend-points. This determines
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a drawing ΓR′′ of R′′.

We prove that ΓR′′ and the constructed drawing ΓB′′ of B′′ constitute a
simultaneous embedding of R′′ and B′′ as required by the lemma. First, observe
that ΓB′′ satisfies all the required properties, as in Lemma 4. We now deal with
ΓR′′ .

• Angle at v: All the edges of R′′ incident to a vertex v in VR′′ exit v within
an angle of [−ε,+ε] with respect to the positive y-direction; this is true
by Property Start inside of Lemma 2, by the fact that edges of R′′′

inside the Hamiltonian cycle of R′′′ are in Hl in the 2PBE, and by the
construction just described for the edges of R′′′ in Hl.

• Equivalence to ER′′ : ΓR′′ is equivalent to ER′′ by Property Embedding of
Lemma 2 and since ER′′′ determines the 2PBE which the construction of
the drawing of R′′ relies upon.

• First edge in σv: For every common vertex v, the first red edge, if any, in
σv is r(v), by Property Starting edge in Lemma 2.

• Number of bends: Each edge of R′′ either coincides with an edge of R′′′ or
consists of three edges of R′′′, depending on whether it is subdivided zero
or two times in the proof of Lemma 2. If an edge of R′′ coincides with
an edge of R′′′, then it has one bend in ΓR′′ . If it is composed of three
edges of R′′′, then it has four bends in ΓR′′ , namely one, zero, and one
bend on the three edges of R′′′ composing it and lying in Hl, Hr, and Hl
in the 2PBE, respectively, plus two bends corresponding to its subdivision
vertices.

• Planarity: The vertices in Vs are placed along the curve y = −x2 in ΓR′′ ,
in the same order as they occur along `. Hence, the edges lying in Hr
in the 2PBE do not cross each other in ΓR′′ . That no two edges lying in
Hl in the 2PBE cross each other in ΓR′′ can be argued as in Lemma 4.
Finally, any edge lying in Hl in the 2PBE has no intersection with the
interior of the convex hull of the vertices in Vs (provided that ε is small
enough). Hence, it has no intersection in ΓR′′ with any edge lying in Hr
in the 2PBE.

It remains to bound the number of crossings between any edges er of R′′

and eb of B′′. Note that eb is composed of two straight-line segments in ΓB′′ . If
er is also composed of two straight-line segments, then er and eb cross at most
four times. Otherwise, er is composed of five straight-line segments, from which
an upper bound of ten on the number of crossings between er and eb directly
follows. This bound is improved to eight by observing that the third segment
of er (corresponding to the edge of R′′′ lying in Hr) does not cross the two
segments composing eb, as the former lies in the open half-plane y < 0, while
the latter lie in the closed half-plane y ≥ 0. �
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Step 6: Expansion. Next, we expand the components of C ′ in the simul-
taneous embedding of R′′ and B′′ obtained by Lemma 7. This expansion is
performed by means of Lemma 5, exactly as in Section 3. That is, the com-
ponents of C ′ are expanded one by one; when a component S is expanded, its
vertices are placed in the order %S on the upper-right quadrant of the boundary
of a suitably small disk Dε centered at the vertex S was contracted to. This
results in a Sefe of R′ and B′. Finally, the vertices and edges not in R and B
are removed, in order to get a Sefe of R and B.

Note that the expansion described above is only possible because the edges
of C ′ incident to each vertex v are consecutive in circular order around v in
the planar embeddings ER′ of R′ and EB′ of B′. While this property could be
guaranteed even for the tree B, the planar graph R might not admit any planar
embedding satisfying it. This is the reason for the introduction of the antennas,
which guarantee Property 1 and hence that the edges of C ′ incident to v are
consecutive in circular order around v in any planar embedding ER′ of R′.

Theorem 2 Let R be a planar graph and let B be a tree. There exists a Sefe
of R and B in which every exclusive edge of R is a polygonal curve with at most
six bends, every exclusive edge of B is a polygonal curve with one bend, every
common edge is a straight-line segment, and every two exclusive edges cross at
most eight times.

Proof: By Lemma 7, R′′ and B′′ admit a simultaneous embedding Γ′′ in which
every edge of R′′ (of B′′) is a polygonal curve with at most four bends (with
one bend). By repeated application of Lemma 5, the simultaneous embedding
Γ′′ can be turned into a Sefe Γ′ of R′ and B′ in which every exclusive edge
of R′ (of B′) has at most four bends (one bend) and every common edge is a
straight-line segment. By Lemma 6, there exists a Sefe Γ of R and B in which
every exclusive edge of R (of B) has at most six bends (one bend) and every
common edge is a straight-line segment. Concerning the number of crossings,
by Lemma 7 every two edges cross at most eight times in Γ′′, also counting their
adjacencies. While the expansions performed in Lemma 5 in order to construct
Γ′ starting from Γ′′ might introduce new proper crossings for a pair of exclusive
edges of R′ and B′, they only do so at the cost of removing the adjacency
between the corresponding edges of R′′ and B′′. Hence, the maximum number
of crossings per pair of edges is eight in Γ′ and, by Lemma 6, is eight also in Γ.

�

5 Two Planar Graphs

In this section we give an algorithm to compute a Sefe of any two planar
graphs R and B in which every edge has at most six bends, provided that a
combinatorial Sefe E of R and B exists and is given to us as part of the input.
This assumption is necessary, since testing the existence of a Sefe of two planar
graphs is a problem of unknown complexity [7].
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Let C be the common graph of R and B. We assume that no exclusive
vertex or edge lies in the outer face of C in E , and that R and B are connected.
These two conditions are indeed met after the following augmentation. First,
introduce a 3-cycle δ∗ in C (whose vertices and edges did not belong to R and
B before) and embed it in E so that it surrounds the rest of R and B. Then,
introduce a red (blue) vertex inside each face f of R (of B) in E different from
the outer face, and connect it to all the vertices incident to f .

We outline our algorithm. First, R and B are modified into planar graphs
R′ and B′ with a common graph C ′ by introducing antennas, as in Step 1 of
the algorithm in Section 4; however, here the modification is performed for both
graphs. Similarly to Sections 3 and 4, we would like to contract each component
S of C ′ to a vertex, construct a simultaneous embedding of the resulting graphs,
and finally expand the components of C ′. However, S is here not just a tree,
but rather a planar graph containing in its internal faces other components of
C ′ (and exclusive vertices and edges of R′ and B′). Hence, the (a) contraction
(b) simultaneous embedding (c) expansion process does not happen just once,
but rather we proceed from the outside to the inside of C ′ iteratively, each time
applying that process to draw certain subgraphs of R′ and B′, until R′ and B′

have been entirely drawn. We now describe this algorithm in more detail.
First, we introduce antennas in R and B, that is, we replace each exclusive

edge e = (u, v) of R (of B) with u and v in C by a path (u, ue, ve, v) such that
ue, ve, (u, ue), and (ve, v) are in C, while (ue, ve) is exclusive to R (to B). We
also replace each exclusive edge e = (u, v) of R (of B) with u in C and v not in C
by a path (u, ue, v) such that ue and (u, ue) are in C, while (ue, v) is exclusive to
R (to B). The resulting planar graphs R′ and B′ satisfy the following property.

Property 2 For every exclusive edge e, every endvertex of e in the common
graph C ′ of R′ and B′ is incident to two edges only, namely e and an edge of
C ′.

We also get the following lemma, whose proof is analogous to the one of
Lemma 6 and hence is omitted here.

Lemma 8 Suppose that a Sefe Γ′ of R′ and B′ exists in which: (i) every edge
of R′ (of B′) is a polygonal curve with at most x bends (y bends); (ii) every
common edge is a straight-line segment; and (iii) any two exclusive edges cross
at most z times.

Then there exists a Sefe Γ of R and B in which: (i) every edge of R (of B)
is a polygonal curve with at most x+ 2 bends (y + 2 bends); (ii) every common
edge is a straight-line segment; and (iii) any two exclusive edges cross at most
z times.

Note that a Sefe of R′ and B′ is naturally derived from a Sefe of R and B
by drawing the antennas as “very small” curves on top of the edges they partially
replace. Applying such a modification to any Sefe of R and B equivalent to
E results in a Sefe of R′ and B′ equivalent to a combinatorial Sefe E ′ of R′

and B′. By Property 2, in E ′ we have, in clockwise order around each vertex of
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C ′, either: (i) a sequence of black edges; or (ii) a single black edge followed by
a single red edge; or (iii) a single black edge followed by a single blue edge. Let
EC′ be the restriction of E ′ to C ′.

We now iteratively construct a Sefe of R′ and B′. We start by representing
the cycle δ∗ of C ′ as a strictly-convex polygon ∆∗. Next, assume that a Sefe
Γ′′ of two subgraphs R′′ of R′ and B′′ of B′ with a common graph C ′′ has been
constructed; initially, this assumption is verified with Γ′′ = ∆∗ and R′′ = B′′ =
C ′′ = δ∗. Let ER′′ , EB′′ , and EC′′ be the planar embeddings of R′′, B′′, and C ′′

in E ′, respectively. We assume that Γ′′ satisfies the following invariants.

• Bends and crossings: every edge of R′′ or B′′ is a polygonal curve with
at most four bends, every edge of C ′′ is a straight-line segment, and every
exclusive edge of R′′ crosses every exclusive edge of B′′ at most sixteen
times;

• Embedding: the restrictions of Γ′′ to the vertices and edges of R′′, B′′,
and C ′′ are equivalent to ER′′ , EB′′ , and EC′′ , respectively; and

• Polygons: every simple cycle δf of C ′′ that delimits a face f of EC′′
from the outside and that contains vertices of R′ or B′ in its interior in
E ′ is represented in Γ′′ by a star-shaped empty polygon ∆f ; further, if an
edge exists in C ′ that lies inside δf in E ′ and that belongs to the same
2-connected component of C ′ as δf , then ∆f is a strictly-convex polygon.

These invariants are indeed satisfied when R′′ = B′′ = C ′′ = δ∗ and Γ′′ =
∆∗. In particular, all the vertices and edges of R′ and B′ that are not part of
δ∗ lie inside δ∗ in E ′, because of the initial augmentation; further, the interior
of ∆∗ in Γ′′ is empty. It remains to describe how to insert in Γ′′ some vertices
and edges of R′ and B′ that are not yet in Γ′′, while maintaining the above
invariants. Since R′ and B′ are finite graphs, this will eventually lead to a sefe
of R′ and B′.

In the following we distinguish two cases. In Case 1 we plug into Γ′′ a drawing
of a 2-connected subgraph Sf of C ′ such that a cycle δf of Sf is already drawn
in Γ′′. In Case 2 such a subgraph Sf does not exist and then we plug into the
drawing Γ′′ a drawing of all the vertices and edges of C ′ incident to a face f
of EC′′ , as well as a drawing of all the vertices and edges of R′ and B′ that lie
inside f in E ′. We now provide details for these two cases.

Case 1: There exists a simple cycle δf in C ′′ that delimits a face f of EC′′
from the outside and there exists an edge ef in C ′ that lies inside δf in E ′ and
that belongs to the same 2-connected component of C ′ as δf .

By Property Polygons, δf is represented by a strictly-convex empty poly-
gon ∆f in Γ′′, as in Figure 10a. Consider the maximal 2-connected subgraph
Sf of C ′ whose outer face in E ′ is delimited by δf ; note that ef is an edge of
Sf . As observed in [25], a straight-line plane drawing Γf of Sf exists in which
the outer face of Sf is delimited by ∆f and every internal face is delimited by a
star-shaped polygon. Plug Γf in Γ′′, so that they coincide along ∆f , obtaining
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Figure 10: (a) The strictly-convex polygon ∆f representing δf in Γ′′. (b) Plug-
ging Γf into Γ′′. The kernels of the star-shaped (non-convex) polygons delimit-
ing internal faces of Sf in Γf are gray. (c) Graphs C ′f , R′f , and B′f ; δf is drawn
by thick lines and f is dashed.

a drawing Γ′′′, as in Figure 10b. Let C ′′′ be the subgraph of C ′ that is drawn
in Γ′′′ (that is, C ′′′ consists of C ′′ and of Sf , which share δf ); further, let EC′′′
be the planar embedding of C ′′′ in E ′.

Properties Bends and crossings and Embedding are clearly satisfied by
Γ′′′. Concerning Property Polygons, it suffices to consider any simple cycle
δf,i of C ′′′ that delimits a face of EC′′′ from the outside, that lies inside δf in
E ′, and that contains vertices of R′ or B′ in its interior in E ′. The polygon ∆f,i

representing δf,i in Γ′′′ is star-shaped, by construction. Further, ∆f,i is empty
in Γ′′′, because ∆f is empty in Γ′′. Finally, no edge exists in C ′ lying inside δf,i
in E ′ and belonging to the same 2-connected component of C ′ as δf,i, as any
such an edge would belong to Sf .

Case 2: If Case 1 does not apply, then every simple cycle δf in C ′′ that
delimits a face of EC′′ from the outside also delimits a face f of EC′ from the
outside; other vertices and edges of C ′ might be incident to f , although no path
exists in C ′ that connects two vertices of δf and that lies inside δf . By Property
Polygons, assuming that Γ′′ is not yet a Sefe of R′ and B′, there exists a
simple cycle δf in C ′′ that delimits a face f of EC′′ from the outside and that
contains vertices of R′ or B′ in its interior in E ′; further, δf is represented in
Γ′′ by a star-shaped empty polygon ∆f , as in Figure 10c. Let C ′(f) be the
subgraph of C ′ composed of the vertices and edges incident to f in EC′ ; note
that C ′(f) is a cactus graph, which is a graph whose vertices and edges are all
incident to a common face, in this case f . Also, let R′(f) be the subgraph of
R′ composed of C ′(f) and of the red vertices and edges lying in f in E ′; graph
B′(f) is defined analogously. Let ER′(f), EB′(f), and EC′(f) be the restrictions of
E ′ to R′(f), B′(f), and C ′(f), respectively. We have the following main lemma:

Lemma 9 There exists a sefe Γ′f of R′(f) and B′(f) with the following prop-
erties:
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• every edge is a polygonal curve with at most four bends, every common
edge is a straight-line segment, and every two exclusive edges cross at most
sixteen times;

• Γ′f restricted to R′(f), B′(f), and C ′(f) is equivalent to ER′(f), EB′(f),
and EC′(f), respectively;

• the cycle δf is represented by ∆f ; and

• every simple cycle of C ′(f) different from δf is represented by a strictly-
convex empty polygon in Γ′f .

In order to prove Lemma 9, we present an algorithm consisting of four steps,
that resemble Steps 3–6 of the algorithm in Section 4. Note that R′(f) and
B′(f) are both connected, since R′ and B′ are connected. We can hence assume
that every component S of C ′(f) is incident to at least one red and one blue
edge, we can choose edges r(S) and b(S), and we can define an ordering %S of
the vertices of S as in Section 3.

Step 1: Contraction. Contract each component S of C ′(f) to a single vertex
v. The resulting planar multigraphs R′′(f) and B′′(f) have planar embeddings
ER′′(f) and EB′′(f) inherited from ER′(f) and EB′(f). Vertex v is common toR′′(f)
and B′′(f). Let r(v) and b(v) be the edges corresponding to r(S) and b(S) after
the contraction. We stress the fact that a component S∗ of C ′(f) contains cycle
δf . While S∗ is contracted to a vertex u∗ as every other component of C ′(f), it
will later play a special role. We also remark that, unlike the other components,
the order of the edges incident to S∗ is reversed after the contraction. That
is, consider ER′(f) and EB′(f), draw a simple closed curve γ in the interior of f
arbitrarily close to S∗, and consider the counter-clockwise order in which the
edges of R′(f) and B′(f) intersect γ; then this is also the clockwise order in
which the same edges are incident to u∗ in ER′′(f) and EB′′(f).

Step 2: Hamiltonian augmentations. We compute Hamiltonian augmen-
tations R′′′(f) of R′′(f) and B′′′(f) of B′′(f). This is done independently for
R′′(f) andB′′(f) by means of Lemma 2, applied first withG = R′′(f), ev = r(v),
and E = ER′′(f), and then with G = B′′(f), ev = b(v), and E = EB′′(f).

Step 3: Simultaneous embedding. A simultaneous embedding of R′′(f)
and B′′(f) is constructed by means of an algorithm very similar to the one in
the proof of Lemma 7. Let σv be defined as in Section 3. We have the following.

Lemma 10 For every ε > 0, the graphs R′′(f) and B′′(f) admit a simultaneous
embedding Γ′′f in which:

• every edge of R′′(f) and B′′(f) is a polygonal curve with at most four
bends;
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• every two edges cross at most sixteen times (counting an adjacency as one
crossing);

• all edges of R′′(f) (B′′(f)) incident to a vertex v in R′′(f) (B′′(f)) exit
v within an angle of [−ε,+ε] with respect to the positive y-direction (x-
direction);

• Γ′′f restricted to R′′(f) (B′′(f)) is equivalent to ER′′(f) (EB′′(f));

• for every common vertex v of R′′(f) and B′′(f), the first red (blue) edge
in σv is r(v) (b(v)); and

• the vertex u∗ is at the point (1, |V (B′′′(f))|); the straight-line segments
incident to u∗ in the drawing of R′′(f) (of B′′(f)) have their endpoints
different from u∗ on the straight line x = 1.5 (y = |V (B′′′(f))| − 0.5);
every other vertex or bend of an edge of R′′(f) (of B′′(f)) is to the right
of (below) that line.

Proof: The algorithm to draw R′′(f) and B′′(f) is similar to one presented in
the proof of Lemma 7 to draw R′′. Assign the vertices of R′′′(f) (of B′′′(f)) with
distinct x-coordinates 1, . . . , R′′′(f) (with distinct y-coordinates 1, . . . , B′′′(f))
according to their order in the Hamiltonian cycle of R′′′(f) (according to the
reverse order in the Hamiltonian cycle of B′′′(f)). It is important here that u∗ is
the vertex of R′′′(f) (of B′′′(f)) that gets the smallest x-coordinate (the largest
y-coordinate). Place the subdivision vertices for the edges of R′′(f) (of B′′(f))
on the curve y = −x2 (x = −y2); finally, set any non-assigned coordinate to 0.
The edges of R′′′(f) and B′′′(f) are drawn as the edges of R′′′ in the proof of
Lemma 7, except for the edges incident to u∗. Namely, the bend-point of an
edge (u∗, v) of R′′′(f) (of B′′′(f)) is placed at the intersection point between the
line x = 1.5 (y = |V (B′′′(f))| − 0.5) and the ray %v emanating from v with an
angle of π/2 + εu∗v (εu∗v), for some suitably small 0 < εu∗v < ε.

Remove from the drawing the vertices of R′′′(f) and B′′′(f) that are neither
vertices of R′′(f) or B′′(f), nor subdivision vertices for the edges of R′′(f) or
B′′(f), and interpret the subdivision vertices for the edges of R′′(f) and B′′(f)
as bend-points. This results in a Sefe Γ′′f of R′′(f) and B′′(f), which can be
proved to satisfy the required properties exactly as in the proof of Lemma 7.
In particular, if edges er of R′′(f) and eb of B′′(f) have four bends each, then
they cross at most twenty-five times. This bound can be improved to sixteen,
since the third segment of er does not cross any of the five segments composing
eb (given that the former lies in the open half-plane y < 0, while the latter lie
in the closed half-plane y ≥ 0), and vice versa. �

Step 4: Expansion. This step is more involved than in Sections 3 and 4,
because when expanding the component S∗, we need to ensure that the cycle
δf is drawn as ∆f .

We first expand the components S 6= S∗ of C ′(f) in Γ′′f . Differently from the
previous sections, S is a cactus graph, rather than a tree. However, Lemma 3
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∆f

uk

u2

u1
%∗

P

(a)

H∗

(b) (c)

Figure 11: (a) Geometry inside ∆f : p∗ is purple, H∗ is green, the kernel of ∆f

is gray, and points p1, . . . , pk are empty squares. (b) Drawing Γ∗; vertices of S∗

not in δf are white disks. (c) Reconnecting Γ′′f to Γ∗; drawing Γ′′f is represented
by a red and a blue rectangle. Red and blue squares represent bendpoints of
R′′′(f) and B′′′(f) adjacent to u∗.

holds true (with the same proof) even if S is a cactus graph. Hence, we expand
the components S 6= S∗ one by one in Γ′′f . When a component S is expanded, its
vertices are placed in the order %S on the upper-right quadrant of the boundary
of a suitably small disk Dε centered at the vertex S was contracted to. Denote
again by Γ′′f the resulting Sefe in which every component S 6= S∗ of C ′(f)
has been expanded. Note that every simple cycle of each component S 6= S∗

is a strictly-convex empty polygon in Γ′′f , since its incident vertices lie on a
strictly-convex curve, namely the boundary of Dε.

In order to complete the construction of a Sefe Γ′f of R′(f) and B′(f) as
requested by Lemma 9, it remains to deal with the cactus graph S∗ containing
δf . We sketch the plan: we define an open region H∗ inside ∆f (Figure 11a);
we construct a drawing Γ∗ of S∗ such that δf is represented as ∆f and all the
other vertices and edges of S∗ are inside ∆f but outside or on the boundary of
H∗ (Figure 11b); we rotate and scale Γ′′f and place it in H∗; finally, we connect
Γ∗ with Γ′′f via straight-line segments, thus obtaining Γ′f (Figure 11c).

We begin by defining H∗. Denote by u1, . . . , uk the counter-clockwise order
of the vertices along δf . Removing the edges of δf disconnects S∗ into k cactus
graphs; w.l.o.g. assume that u1 is in the one of these cactus graphs that is
incident to r(S∗). By Property Polygons, ∆f is star-shaped, hence it has a
non-empty kernel. Let p∗ be any point in this kernel and %∗ be a ray emanating
from p∗ through u1. Rotate %∗ clockwise around p∗ by a sufficiently small angle
so that no vertex of ∆f is encountered during the rotation. For sake of simplicity
of description, assume that the origin of the Cartesian axes is at p∗, with %∗

being the positive y-axis. Draw a parabola P with equation y = ax2 − b, with
a, b > 0; a is large enough and b is small enough so that P intersects all of
p∗u1, . . . , p∗uk at points p1, . . . , pk, and so that a wedge W∗ with angle π/2,
centered at a point on %∗, and bisected by a ray in the negative y-direction
exists containing all of p1, . . . , pk in its interior and having an intersection H∗
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with the region y > ax2 − b entirely lying in the kernel of ∆f . Let P∗ denote
the part of P in W∗.

Next, we construct a drawing Γ∗ of S∗ (see Figure 11b).

Lemma 11 There exists a straight-line plane drawing Γ∗ of S∗ such that:

(i) Γ∗ is equivalent to the restriction of EC′(f) to S∗;

(ii) δf is represented by ∆f ;

(iii) every simple cycle of S∗ different from δf is a strictly-convex empty polygon
in Γ∗;

(iv) all the vertices of S∗ incident to exclusive edges of R′(f) and B′(f) are on
P∗ and in the interior of W∗; and

(v) Γ∗ has no intersection with H∗.

Proof: We construct Γ∗ by iteratively drawing 2-connected components of S∗.
Every such component is either a simple cycle or an edge, given that S∗ is a
cactus graph. Recall that, by Property 2, every vertex of S∗ incident to an
exclusive edge of R′(f) or B′(f) has degree one in S∗.

Initialize Γ∗ by drawing straight-line segments from u1, . . . , uk to points on
P∗. For each 1 ≤ i ≤ k, the number of drawn straight-line segments incident
to ui is equal to the number of 2-connected components of S∗ containing ui
and different from δf ; by choosing the endpoints of the segments incident to ui
sufficiently close to pi on P∗, it can be ensured that all these segments do not
cross each other and have empty intersection with H∗. Some drawn segments
are real, that is, they represent edges of S∗. Some other segments are dummy,
that is, they represent subgraphs of S∗ that still need to be drawn. Straight-line
segments appear around each vertex ui in the order in which the corresponding
subgraphs of S∗ appear around ui according to EC′(f).

Now assume to have a plane straight-line drawing Γ∗ of a subgraph D∗ of
S∗ such that the following invariant is satisfied (in addition to the properties in
the statement of the lemma).

Consider the cactus graphs that result from the removal of the edges
of D∗ from S∗. Each of these graphs that is not a single vertex is
represented in Γ∗ by a dummy straight-line segment from its only
vertex in Γ∗ to a point on P∗; further, all these dummy straight-line
segments do not cross each other, do not cross any other segment in
Γ∗, and have empty intersection with H∗.

Note that the invariant is satisfied by Γ∗ after the initialization. Then it suf-
fices to show how the invariant is maintained after drawing in Γ∗ a 2-connected
component D of S∗, where just one vertex w of D is already in Γ∗, and where
a dummy straight-line segment wpw with pw ∈ P∗ represents D in Γ∗, as in
Figure 12a. Observe that D is a simple cycle, as if it were an edge, it would
be represented by a real straight-line segment and not a dummy straight-line
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Figure 12: (a) A dummy straight-line segment wpw representing a component
D in Γ∗. (b) Point w′ and curve γw. (c) Drawing component D in Γ∗.

segment. Consider a point w′ arbitrarily close to the midpoint of wpw. Draw a
strictly-convex curve γw inside triangle ∆w = (w,w′, pw) connecting w and w′,
as in Figure 12b. Place the vertices of D on γw, in the order they occur along
D according to EC′(f); also, draw the edges of D as straight-line segments, as
in Figure 12c. Remove wpw from Γ∗. The polygon representing D is empty,
provided that w′ is sufficiently close to wpw, and strictly-convex, since its ver-
tices lie on a strictly-convex curve. Further, the straight-line segments from the
vertices of D to pw do not cross each other, do not cross any other segment in
Γ∗, and have empty intersection with H∗, provided that w′ is sufficiently close
to wpw. Hence, a suitable number of points on P∗ can be chosen, all suffi-
ciently close to pw so that the straight-line segments between these points and
the vertices of D do not cross each other, do not cross any other segment in Γ∗,
and have empty intersection with H∗; thus, the invariant is satisfied by the new
drawing Γ∗, which concludes the proof. �

The construction of Γ′f is completed as follows (see Figure 11c). First, we
delete u∗ and its incident straight-line segments from Γ′′f . Second, we rotate Γ′′f
counter-clockwise by an angle of 3π/4. Third, we scale Γ′′f down so that it fits
inside a disk Dε with a suitably small radius ε > 0. Fourth, we place Γ′′f in Γ∗

so that Dε is inside H∗ and is tangent to the half-lines delimiting W∗. Finally,
we complete the drawing of the exclusive edges of R′(f) and B′(f) by drawing
straight-line segments from their bend-points previously adjacent to u∗ to the
suitable vertices of S∗ on P∗. We have the following.

Lemma 12 Γ′f is a Sefe of R′(f) and B′(f) with the properties required by
Lemma 9, provided that ε is sufficiently small.

Proof: We first prove that Γ′f is a Sefe of R′(f) and B′(f). First, vertices
and edges of C ′(f) have a unique representation in Γ′f , hence it suffices to prove
that the drawings of R′(f) and B′f in Γ′f are planar; we will argue about the
planarity of the drawing of R′(f), as the one of B′f can be proved analogously.
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By Lemma 10, the drawing of R′′(f) in Γ′′f is plane. By Lemma 3, Γ′′f
stays plane after all the components different from S∗ have been expanded. By
Lemma 11, the drawing Γ∗ of S∗ is plane, as well. Further, Γ′′f and Γ∗ do not
cross each other, as the former lies in a disk Dε which is inside H∗, provided that
ε is sufficiently small, while the latter does not intersect H∗, by Lemma 11. It
remains to argue that the straight-line segments drawn to restore the exclusive
edges of R′(f) do not cause crossings.

• First, these segments lie in H∗ if ε is small enough, hence they do not
intersect Γ∗.

• Second, they do not intersect red edges in Γ′′f ; namely, by Lemma 10
and assuming that the components of C ′(f) different from S∗ have been
expanded in sufficiently small disks, we have that all the red edges in Γ′′f
lie to the right of the line `v with equation x = 1.5. After the rotation of
Γ′′f by 3π/4 counter-clockwise, Γ′′f is above the rotated line `v. Thus, it
suffices to prove that all the straight-line segments drawn to reconnect the
exclusive edges of R′(f) are below or on `v. Indeed, by Lemmata 10 and 11
each of these segments has one endpoint on `v and the other endpoint in
the interior of W∗; further, `v is arbitrarily close, depending on the value
of ε, to the line delimiting W∗ with slope 5π/4. Hence, each straight-line
segment drawn to reconnect an exclusive edge of R′(f) has one end-point
on `v and one end-point below it, provided that ε is sufficiently small.

• Third, the straight-line segments drawn to reconnect the exclusive edges
of R′(f) do not cross each other, since the clockwise order in which the
edges of R′(f) are incident to u∗ (which by Lemma 10 is also the left-to-
right order in which the endpoints of the deleted red straight-line segments
appear on `v after the rotation) coincides with the counter-clockwise order
in which they are incident to vertices in S∗ (which is also the left-to-right
order in which these vertices appear along P∗).

The bound on the number of bends in Γ′f follows from the corresponding
bound for Γ′′f in Lemma 10 and from the fact that, when a component of C ′(f)
is expanded, no new bends are introduced on the exclusive edges. In particular,
the exclusive edges incident to one or two vertices in S∗ have respectively one or
two straight-line segments in Γ′f they did not have in Γ′′f . However, in turn, they
lost one or two straight-line segments in Γ′f they used to have in Γ′′f , namely
those incident to u∗.

The bound on the number of crossings is established as in Theorem 2. Con-
sider any two exclusive edges e′r of R′(f) and e′b of B′(f). By Lemma 10, the
corresponding edges e′′r in R′′(f) and e′′b in B′′(f) cross at most sixteen times
in Γ′′f , also counting adjacencies. While the expansions might introduce proper
crossings between e′r and e′b, they only do so in correspondence of an adjacency
between e′′r and e′′b ; hence e′r and e′b cross at most sixteen times in Γ′f .

Finally, the properties that the edges of C ′(f) are straight, that Γ′f re-
stricted to R′(f), B′(f), and C ′(f) is equivalent to ER′(f), EB′(f), and EC′(f),
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respectively, that δf is represented by ∆f , and that every simple cycle of C ′(f)
different from δf is represented in Γ′f by a strictly-convex empty polygon have
been explicitly ensured while performing the construction. �

Lemma 12 concludes the proof of Lemma 9. Next, plug Γ′f in Γ′′, so that
they coincide along ∆f , obtaining a drawing Γ′′′. As in Case 1 and relying on
Lemma 9, it is easily shown that Properties Bends and crossings, Embed-
ding, and Polygons are satisfied by Γ′′′, thus completing the discussion of
Case 2. We get the following.

Theorem 3 Let R and B be two planar graphs. If there exists a Sefe of R
and B, then there also exists a Sefe in which every edge is a polygonal curve
with at most six bends, every common edge is a straight-line segment, and every
two exclusive edges cross at most sixteen times.

Proof: By Property Bends and crossings, every drawing Γ′′ constructed by
initializing R′′ = B′′ = C ′′ = δ∗ and Γ′′ = ∆∗, and by then repeatedly applying
Case 1 or Case 2 described above is such that every exclusive edge is a polygonal
curve with at most four bends, every common edge is a straight-line segment,
and every two exclusive edges cross at most sixteen times. Eventually Γ′′ = Γ′ is
a Sefe of R′ and B′. By Lemma 8, the drawing obtained from Γ′ by removing
vertices and edges not in R and B is a Sefe of R and B satisfying the required
properties. �

6 Conclusions

In this paper we proved upper bounds for the number of bends per edge and
the number of crossings required to realize a Sefe with polygonal curves as
edges. While the bound on the number of bends per edge we presented for tree-
tree pairs is tight, there is room for improvement for pairs of planar graphs, as
the best known lower bound [9] only states that one bend per edge might be
needed. We suspect that our upper bound could be improved by designing an
algorithm that constructs simultaneous embeddings of two planar multigraphs
with fixed planar embedding with less than four bends per edge. A related
interesting problem is to determine how many bends per edge are needed to
construct a simultaneous embedding (without fixed edges) of pairs of (simple)
planar graphs. The best known upper bound is two [12, 13, 26] and the best
known lower bound is one [20]. As a final research direction, we mention the
problem of constructing Sefes of pairs of planar graphs in polynomial area,
while matching our bounds for the number of bends and crossings.
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