
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 4, pp. 653–682 (2019)
DOI: 10.7155/jgaa.00506

How to Draw a Planarization

Thomas Bläsius 1 Marcel Radermacher 2 Ignaz Rutter 3

1Research Group Algorithm Engineering, Hasso Plattner Institute, Germany
2Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Germany
3Department of Computer Science and Mathematics, University of Passau,

Germany

Abstract

We study the problem of computing straight-line drawings of non-
planar graphs with few crossings. We assume that a crossing-minimiza-
tion algorithm is applied first, yielding a planarization, i.e., a planar graph
with a dummy vertex for each crossing, that fixes the topology of the
resulting drawing. We present and evaluate two different approaches for
drawing a planarization in such a way that the edges of the input graph
are as straight as possible. The first approach is based on the planarity-
preserving force-directed algorithm ImPrEd [28], the second approach,
which we call Geometric Planarization Drawing, iteratively moves vertices
to their locally optimal positions in the given initial drawing.

Our evaluation shows that both approaches significantly improve the
initial drawing and that our geometric approach outperforms the force-
directed approach. To the best of our knowledge, this is the first paper
concerned with the generation of a straight-line drawing that respects an
arbitrary planarization.

Submitted:
January 2019

Reviewed:
March 2019

Revised:
May 2019

Accepted:
July 2019

Final:
July 2019

Published:
September 2019

Article type:
Regular paper

Communicated by:
G. Liotta

This work was initiated within the FYS Heuristische Verfahren zur Visualisierung von dy-

namischen Netzwerken, financially supported by the “Concept for the Future” of KIT within

the framework of the German Excellence Initiative. The work was partially supported by grant

RU 1903/3-1 and WA 654/21-1 of the German Research Foundation (DFG). A preliminary

version of the paper was published at SOFSEM’17 [2]

E-mail addresses: thomas.blaesius@hpi.de (Thomas Bläsius) radermacher@kit.edu (Marcel Ra-

dermacher) rutter@fim.uni-passau.de (Ignaz Rutter)

http://dx.doi.org/10.7155/jgaa.00506
mailto:thomas.blaesius@hpi.de
mailto:radermacher@kit.edu
mailto:rutter@fim.uni-passau.de

654 Bläsius et al. How to Draw a Planarization

1 Introduction

In his seminal paper “How to Draw a Graph” [31], Tutte showed that every pla-
nar graph admits a planar straight-line drawing. His result has been strength-
ened in various ways, e.g., by improving the running time, the required area [5]
or to restrict the position of some vertices to points on a line [8, 21]. In prac-
tice, however, many graphs are non-planar and we are interested in finding
straight-line drawings with few crossings. Unfortunately, crossing minimization
for straight-line drawings is ∃R-complete, i.e., as hard as the existential theory
of the reals [26]. We thus need to relax either the condition of minimizing the
number of crossings or the requirement of straight edges. Approximating the
rectilinear crossing number seems difficult, and for complete graphs Kn, it is
only known for n ≤ 27 [3]. Radermacher et al. [24] require straight-line edges
and heuristically minimize the number of crossings. In this paper, we follow the
second approach, i.e., we insist on a small (though not necessarily minimum)
number of crossings and optimize the straightness of the edges in the drawing.

In contrast to the geometric setting, the crossing number for topological
drawings has received considerable attention and there is a plethora of results
on crossing minimization; see [4] for a survey. The output of these algorithms
typically is a planarization Gp of the input graph G together with a planar
embedding. To profit from the results in this area, we focus on the problem of
drawing Gp such that for each edge of G the corresponding planarization path
in the drawing of Gp is as straight as possible.

This type of problem is prototypical for several fundamental problems in
graph drawing that ask for a geometric realization of a given combinatorial de-
scription of a drawing. The most prominent examples are the topology-shape-
metrics framework for orthogonal graph drawing [29] and the fundamental (∃R-
complete) problem Stretchability, which asks whether a given arrangement
of pseudolines can be realized by geometric lines [22]. There have been sev-
eral other works that consider the problem of realizing a given combinatorial
description of a drawing geometrically.

Thomassen [30] gives a characterization for 1-planar graphs that admit a
straight-line drawing. Moreover, he shows that there is no finite number of
forbidden configurations that characterize the straight-line drawable 2-planar
graphs. Di Giacomo et al. show that if the set of edges without crossings of a
non-planar graph form a connected subgraph then there is a drawing of the same
graph with at most three bends per edge that respects prescribed topological
constraints [13]. Otherwise, the number of bends is in Ω(

√
n)), where n is the

number of vertices of G. Eades et al. study when a (maximal) planar graph
with an additional edge has straight-line drawing [12]. Radermacher and Rutter
consider the problem of computing such a realizable embedding of a planar graph
with an additional edge with a minimal number of crossings for restricted planar
graph classes [25].

Chan et al. [6] prove that a linear number of bends per edges is sufficient
to extend a given straight-line drawing of a planar graph. Given a fixed convex
drawing of a face f of a planar graph, Mchedlidze et al. [20] introduce a linear-

JGAA, 23(4) 653–682 (2019) 655

time algorithm to test whether there is a straight-line drawing of a planar graph
that extends the drawing of f . Grilli et al. [14] study the problem of realizing a
given simultaneous planar embedding of two (or more) graphs with few bends
per edge. For a survey on graph drawing beyond planarity see [9].

The algorithm of Dwyer et al. [11] minimizes the stress of a layout while
preserving the topology of the drawing. Didimo et al. [10] present an algorithm
that is able to preserve the topology unless changing the topology improves
the number of crossings. Bertault [1] presents PrEd, a force-directed layout
algorithm for planar graphs that preserves the combinatorial embedding of the
input drawing; the approach was later improved by Simonetto et al. [28]. To
the best of our knowledge the problem of producing a drawing of an arbitrary
planarization such that the planarization paths are drawn as straight as possible
has not been investigated prior to this work.

Contribution and Outline. We study the problem of finding a drawing of
a given planarization Gp of a graph G such that the planarization paths corre-
sponding to the edges of G are drawn as straight as possible. We present two
approaches, one is based on an adaption of ImPrEd that includes additional
forces to facilitate straightening the planarization paths (Sec. 3). The second
is a geometric framework that iteratively moves the vertices of a given drawing
one by one to locally optimal positions such that (i) the planarization and its
planar embedding are preserved and (ii) the angles on planarization paths influ-
enced by that vertex are optimized (Sec. 4). This framework has several degrees
of freedom, such as the vertex processing order and the exact placement strat-
egy for vertices. We experimentally evaluate the modified ImPrEd algorithm
(ImPrEd++) and several configurations of the Geometric Planarization Draw-
ing approach in a quantitative study (Sec. 5). We show that all our methods
significantly increase the straightness compared to the initial drawing and that
the geometric algorithms typically outperform ImPrEd++ in terms of quality.
Statistical tests are used to show that these results are significant with 95%
confidence.

2 Preliminaries

Intuitively, a planarization of a graph G is the graph resulting from placing
dummy vertices at the intersections of edges in a drawing of G. More formally,
let G = (V,E) be a graph and let Gp = (V ∪̇Vp, E′∪̇Ep) be a planar graph such
that every edge in Ep is incident to at least one vertex in Vp. The vertices in
Vp are called dummy vertices. Then Gp is a planarization of G if the following
conditions hold. (i) Dummy vertices have degree 4, (ii) E′ ⊆ E, (iii) for every
edge e = uw ∈ E \ E′, Gp contains a planarization path from u to w whose
edges are in Ep and whose internal vertices are in Vp, (iv) for any two distinct
edges e, e′ ∈ E \ E′ the paths pe and pe′ are edge-disjoint, and (v) the paths
pe, e ∈ E \ E′ cover all edges in Ep. We call the planarization Gp k-planar if

656 Bläsius et al. How to Draw a Planarization

6 (u, v, w)

v α

u w
(a)

u v

w
x

z

(b) (c)

Figure 1: (a) The deviation angle sd-α(u, v, w) = α of the dissected pair
(u, v, w). (b) Vertex u and w are tail vertices of the dissected pair (u, v, w).
Since w is a dummy vertex of the dissected pair (v, w, x), w is a hybrid vertex.
z is an independent vertex. (c) A (grey) straight skeleton of a (black) polygon
and a set of (blue) shrinked polygons. The geometric center is depicted in red.

the longest planarization path has k dummy vertices, i.e., there are at most k
crossings per edge.

A dissected pair (u, v, w) is a pair uv, vw ∈ Ep of edges that belong to the
same planarization path; see Fig. 1a. Note that formally (u, v, w) and (w, v, u)
do not coincide but we for the purpose of this paper we consider the two dissected
pairs to be the same. The straight-line-deviation angle sd-α(u, v, w) of (u, v, w)
is the angle sd-α(u, v, w) = π − ∠(u, v, w). We simply refer to a straight-line-
deviation angle as deviation angle. A deviation angle is active with respect to v
(also called v-active) if moving v can alter that angle. This notation allows us
to formalize our problem of drawing the planarization paths of Gp as straight
as possible as follows: Given an embedded planarization Gp of G and an angle
α, is there a planar straight-line drawing of Gp with the given embedding such
that all deviations angles are smaller than α, i.e., sd-α(u, v, w) ≤ α for every
dissected pair (u, v, w) of Gp? The respective optimization problem asks for the
minimum angle α.

For a dissected pair (u, v, w), v is a dummy vertex and u and w are tail
vertices; see Fig. 1b. A dummy that is not a tail is called pure dummy and a
tail that is not a dummy is called pure tail. Vertices that are both, tail and
dummy, are called hybrid. A vertex that is neither a dummy nor a tail vertex
is called independent.

Let P be a polygon and let v be a vertex of P . A point p in the interior of
P is visible from v if the straight line connecting p with v does not intersect an
edge of P . The visibility region of v in P is the set of all points in P that are
visible from v. The size of a polygon P is the number of its vertices.

A shrinked polygon P ′ of a polygon P is the result of moving the vertices
towards the interior of a polygon P with constant speed along the straight
skeleton of P [16]; see Fig. 1c. A geometric center of a polygon P is obtained
by shrinking P to a single point. In case that the shrinking process yields
disconnected polygons, we consider the center of the polygon with the largest

JGAA, 23(4) 653–682 (2019) 657

1

4
6

7
8

3

2
v

5

(a)

vvp

u

w

hv
hu = hw

(b)

v

u

w = vp

hv

hu = hw

(c)

Figure 2: (a) Radial zones (blue and green) used by ImPrEd. Forces (light
red) are cropped at the boundary of the zones (dark red) (b,c) Construction
of the half-planes Lx in case (b) that the projection of v lies on uv or (c) the
projection does not lie on uv.

area as the center of P .

3 Force-Directed Planarization Drawing

We present a force-directed approach ImPrEd++ for straightening the pla-
narization paths in a given drawing based on ImPrEd [28], a spring embedder
that is able to preserve the planar embedding of a given drawing. ImPrEd
preserves the combinatorial embedding of a planar straight-line drawing as fol-
lows. Let Z1, . . . , Z8 be a partition of the unit disk around a vertex v into eight
octants, refer to Fig. 2a. The radius of each octant Zi is scaled by a value
Ri such that any movement of v by a direction lying inside Zi preserves the
combinatorial embedding. In order to allow a more flexible movement of each
vertex, we substitute the radial zones with a convex polygon Pv. The polygon
corresponds to the construction given in the correctness proof of ImPrEd [28].

For each vertex v, let Lv be a set of half-planes constructed as follows; see
Fig. 2b and Fig. 2c. For each edge uw of G and let vuwp be the projection onto the
line through uw. If the projection vuwp does not lie on the segment uw, set vuwp
to the closest point on uw. Let lv be the line perpendicular to the segment vvuwp
through the middle point of the segment vvuwp . For each vertex x ∈ {u, v, w} we
add the half-plane hx of lv that contains x to the set Lx. Finally, the polygon
Pv is the intersection of all half-planes in the set Lv.

To reduce the deviation angles, we introduce the new forces F d for dummy
vertices and F t for tail vertices. Hybrid vertices are affected by both forces. For
independent vertices, we apply the same forces as ImPrEd.

658 Bläsius et al. How to Draw a Planarization

u

w

v

colin
bisect

(a)

v
w

u

orth
(b)

Figure 3: Our new forces. If v is a dummy vertex (a), move it along the bisector
of the adjacent segments. If v is a tail vertex (b), move it gradually along an
arc.

Let v be a dummy vertex and let (u, v, w) be a dissected pair containing v.
To encourage placing v collinearly between u and w, we apply a force in the
direction of the unit length bisector bisect(u, v, w) of the vectors u−v and w−v;
see Fig. 3a. Let colin(u, v, w) denote the point on the bisector that is collinear
with u and w. We use the dummy force F d(v, (u,w)) = λ(colin(u, v, w) − v),
where 0 < λ < 1 is a damping factor. To form the dummy force F d(v) for v,
we sum over the two dissected pairs where v is the dummy vertex.

For a tail vertex v and a dissected pair (u,w, v), we want to place v on
the extension of the segment uw; see Fig. 3b. To accomplish this, we try to
perform a radial movement of v around w over several iterations of the spring
embedder. Hence, we introduce a force in the normalized direction orth(u,w, v)
of the tangent at v with the circle centered at w and passing through v. The
direction of orth(u,w, v) is chosen such that it points away from the segment uw.
The strength of the force is proportional to dist(v, w) with a damping factor of
0 < κ < 1, i.e., F t(v, (u,w)) = κdist(w, v) orth(u, v, w). To obtain the resulting
force for a tail vertex v, we sum over all dissected pairs where v is a tail vertex.

4 Geometric Planarization Drawing

The spring embedder described in Sec. 3 restricts the movement of each vertex
in a very conservative manner, i.e., the restrictions ensure a preservation of the
given planar embedding. This may waste a lot of potential; see Fig. 4a and
Fig. 4b. The approach presented in this section aims to tap the full potential
by making each movement locally optimal. As the simultaneous movement of
multiple vertices leads to non-trivial and non-local dependencies, we move only
a single vertex in each step.

To make this precise, we need to answer two questions. First, to which points
can a vertex v be moved such that the planar embedding is preserved? Second,
which of these points is the best position for v? Concerning the first question,
we call the set of points satisfying this property the planarity region of v and
denote it by PR(v). We show in Sec. 4.1 how to compute PR(v) efficiently.
Concerning the second question, we define the cost of a point p ∈ PR(v) to be
the maximum of all v-active deviation angles when placing v at p. A point in
PR(v) is a locally optimal position for v if PR(v) contains no other point with

JGAA, 23(4) 653–682 (2019) 659

v

(a)

v

(b)

v

u
w

(c)

v

(d)

Figure 4: An initial drawing (a) that is difficult to repair using the force-directed
algorithm although v could be moved to an optimal position without violating
planarity (b). (c) The closer v lies to the edge uw, the better are the v-active
angles. (d) The (green) planarity region of v.

strictly smaller cost. In Sec. 4.2, we show how to compute an arbitrarily exact
approximation of the locally optimal position.

The overall algorithm can be described as follows. We iterate over all vertices
of the graph. In each step, the current vertex is moved to its locally optimal
position. We repeat until we reach a drawing that is stable or a given number
of iterations is exceeded.

One important degree of freedom in this algorithm is the order in which we
iterate over the vertices. Another choice we have not fixed so far is the placement
of independent vertices. As an independent vertex has no active angle, each
point in its planarity region is equally good. We propose and evaluate different
ways of filling these degrees of freedom in Sec. 5.

For a tail or dummy vertex v, it can happen that there exists no locally
optimal position due to the fact that PR(v) is an open set. The cost may for
example go down, the closer we place v to an edge connecting two other vertices;
see Fig. 4c. We therefore shrink PR(v) slightly and consider it to be a closed
set. On one hand, this ensures that a locally optimal position always exists.
On the other hand, it (partially) prevents that vertices are placed too close to
edges, which is usually not desirable in a drawing. The offset by which we shrink
PR(v) is discussed in Sec. 5, where we describe our exact evaluation setup.

4.1 Planarity Region

In case that a dummy vertex v is a cut-vertex of Gp, we can reduce the number
of crossings in G; see Fig. 9.

Let Gp be a planarization with a given drawing and let v be a vertex of Gp.
Let fv be the face of Gp− v that contains the current position of v. Assume for
now that fv is bounded by a polygon surr(v), which we call the surrounding of
v. Consider a point p in the interior of fv and assume that we use p as the new
position for v. Clearly, the resulting drawing is planar if and only if p is visible
from each of v’s neighbors; see Fig. 4d.

Thus, the planarity region PR(v) is the intersection of all visibility regions
in surr(v) with respect to the neighbors of v. It follows that the planarity region

660 Bläsius et al. How to Draw a Planarization

can be obtained by first computing the visibility polygons of v’s neighbors in
surr(v), and then intersecting these visibility polygons. Let nv be the number
of vertices of the surrounding polygon surr(v) and let dv be the degree of v.
Observe that if v is not a cut-vertex then surr(v) does not have holes and
computing the dv visibility polygons takes O(dvnv) time [18]. To intersect
these dv visibility polygons (each having size O(nv)), one can use a sweep-line
algorithm [23] consuming O((k + dvnv) log nv) time, where k is the number of
intersections between segments of the visibility polygons. As there are at most
dvnv segments, k ∈ O(d2vn

2
v) holds, yielding the running time O(d2vn

2
v log nv) for

computing the planarity region. We first show that we can improve this running
time in case that v is not a cut-vertex. Subsequently, we show how to modify
surr(v) so that we are able to apply the following lemma.

Lemma 1 If v is not a cut-vertex, then the planarity region PR(v) of v has
size O(nv) and can be computed in O(dvnv log nv) time.

Proof: Let Pu be the visibility polygon of u in surr(v). A segment w on the
boundary of Pu that is not part of a segment of surr(v) is called window. We
say that the window w is generated by u; compare Fig. 5. Instead of intersect-
ing the visibility polygons of all neighbors, we compute the planar subdivision
induced by the segments of surr(v) and all windows generated by neighbors of
v. As there are only O(dvnv) windows, this can be done (again using a sim-
ple sweep-line algorithm) in O((k + dvnv) log nv) time, where k is the number
of intersections between segments, i.e., the number of vertices of the resulting
planar subdivision H. We show the following three claims.

Claim 1 The planarity region of v is a face of the subdivision H.

Claim 2 Every window intersects with O(dv) segments.

Claim 3 It suffices to consider O(nv) windows.

The first claim implies that we can compute the planarity region in linear time
in the size of H as we only need to find the face of H containing the previous
position of v (which is clearly contained in the planarity region). Each vertex
of H is either a vertex of surr(v) or an intersection of a window with a segment
(which is either also a window or a segment of surr(v)). Thus, the second and
third claim show that k ∈ O(dvnv) holds. It is moreover not hard to see that no
two different edges on the boundary of a face of H belong to the same segment of
surr(v) or to the same window. Thus, each face (and in particular the planarity
region) is bounded by only O(nv) edges, which concludes the proof.

To prove Claim 1, first note that surr(v) is the outer face of H, as every
window lies completely inside surr(v). Let f be the face of H containing the
previous position of v. We step by step remove subgraphs of H that eliminate
only faces that cannot be part of the planarity region PR(v). In the end, only
the face f remains, which shows PR(v) = f . For this purpose consider an edge
e incident to f . If e is not on the outer face of H, then e is part of a window w.

JGAA, 23(4) 653–682 (2019) 661

u2

w1
2

w2
2

w3
2

(a)

w1

w2

x

u2

u1

(b)

e

e′

e′′
f

(c)

Figure 5: (a) Three windows generated by the neighbor u2. (b) The window
w2 (generated by u2) is dominated by w1 (generated by u1). (c) The edges e′

and e′′ extend e to a path π that correspond to a window of the neighbor u1
(blue). Removing the blue region that does not contain f , reduces the size of
H (squared vertices).

We can extend e to a path π between vertices on the outer face such that the
edges on π are all part of w. Then π separates H into two parts. Faces in the
part not containing f clearly cannot be part of the planarity region due to the
window w. Thus, we can remove this part, which has the effect that e now lies
on the outer face. Once all edges incident to f lie on the outer face, the claim
follows.

For Claim 2, observe that every window has two intersections with segments
of surr(v). Thus, all remaining intersections are with other windows. Let w1

be a window generated by the neighbor u1 of v and let u2 be another neighbor
of v. We show that w1 intersects at most two windows generated by u2, which
directly implies the claim. To this end, consider three windows w1

2, w2
2, and

w3
2 generated by u2; see Fig. 5a. Since the lines through w2

i intersect in u2,
the planar subdivision of surr(v) with these three windows has four inner faces;
one face incident to all three windows (and to edges of surr(v)), and one face
for each window wi

2 (for i ∈ {1, 2, 3}) that is only incident to wi
2 and edges of

surr(v). A window w1 intersecting all three windows w1
2, w2

2, and w3
2 would

need to cross the boundary of each of the latter three faces exactly once, which
is clearly impossible. Thus, w1 can intersect at most two windows generated by
u2.

To show Claim 3, note that at least one endpoint of every window is a
concave corner in surr(v), i.e., a vertex of surr(v) with an interior angle that
is grater than 180◦. Consider one concave corner x and let w1 and w2 be two
windows with endpoint x. The window w1 separates surr(v) into two parts, one
of which cannot be part of the planarity region. If w2 lies in this part, then w2

yields no real restriction compared to w1; see Fig. 5b. Thus, we say that w2

is dominated by w1. Clearly, removing all dominated windows does not alter
the result of the algorithm. Moreover, it is not hard to see that there can be at
most two non-dominated windows sharing an endpoint. Thus, Claim 3 follows,
which concludes the proof. �

662 Bläsius et al. How to Draw a Planarization

v u2

u0 u1

u3

s2

t2

t1

t3

s1

s3

R3

R2

R1

Figure 6: The blue segments are added as edges to G to ensure that v is not a
cut-vertex.

Theorem 1 The planarity region can be computed in O(d2vnv log nv) time.

Proof: If v is not a cut-vertex, we can apply Lemma 1. Hence, consider the
case that v is a cut-vertex. Then the surrounding polygon surr(v) has holes. In
the following, we show how to locally modify G such that v is not a cut-vertex
anymore and such that the planarity region of v in the new graph coincides with
the planarity region of v in G. Let P0, P1, . . . , Pk be the poygons that describe
the boundary of surr(v), i.e., P0 is the outer polygon and P1, . . . , Pk the holes
in the interior of P0; see Fig. 6. Moreover, let ui be a neighbor of v that lies on
the boundary of Pi. Consider the ray Ri starting in ui in the direction from u0
towards ui. Let siti ∈ Ri be the segment of minimal length such that si lies on
Pi and ti on Pj , j 6= i. We subdivide the corresponding edges in G and add siti
as an edge to G.

Clearly the planarity region of v in the modified graph and the original
graph coincide and v is not a cut-vertex anymore. To finish the proof of the
theorem we have to prove the claimed running time. First, the polygonal chains
P0, . . . , Pk and the neighbors ui can be computed in O(

∑k
i=0 |Pi|) = O(nv) time.

Each segment siti can be computed in O(
∑k

i=0 |Pi|) = O(nv) time. Overall this
yields a running time of O(dvnv). Observe that the size if the surr(v) in the
new graph is in O(dvnv). Thus, we can compute the planarity region of v by
Lemma 1 in O(d2vnv log nv) time. �

4.2 Finding a Locally Optimal Position

In this section, we are given a vertex v together with its planarity region PR(v)
and we want to compute a locally optimal position. We consider the two cases
where v is a pure tail-vertex and the one where v is a pure dummy-vertex. These
two cases can be combined to also handle hybrid vertices. For both cases, our
approach is the following. For a given angle α, we show how to test whether
PR(v) contains a point with cost less or equal to α. For any ε > 0 we can then
apply O(log(1/ε)) steps of a binary search over the domain α ∈ [0, 2π) to find
a position in PR(v) whose cost is at most ε larger than the cost of a locally
optimal position.

JGAA, 23(4) 653–682 (2019) 663

v

+α
−α

qdq

wq

`(t)

(a)

wq3q3

wq2

wq1

q1

q2

v

(b)

Figure 7: (a) A cone with respect to one neighbor q of v. (b) The intersection of
all cones with the planarity region (dashed) includes possible positions for the
vertex v.

4.2.1 Placing a Pure Tail Vertex.

Let v be a pure tail vertex and let D(v) ⊆ N(v) be the set of dummy neighbors
of v, where N(v) is the neighborhood of v; see Fig. 7. For each dummy neighbor
q ∈ D(v) there is a dissected pair (wq, q, v) whose angle is active. Note that
these are the only active angles of a pure tail vertex. Consider the (oriented)
line `(t) = q + t · dq with the direction vector dq = q − wq. Clearly, placing v
onto `(t) (for t > 0) results in the deviation angle sd-α(wq, q, v) = 0. Moreover,
all points in the plane that yield sd-α(wq, q, v) ≤ α lie in a cone, i.e., in the
intersection (union if α ≥ π/2) of two appropriately chosen half-planes.

It follows, that v can be moved to a position with cost α if and only if the
intersection of all cones has a non-empty intersection with the planarity region
PR(v); see for example Fig. 7. As v has at most dv dummy neighbors (recall
that dv is the degree of v), the intersections of all cones can be computed in
O(d2v log dv) time using a sweep-line algorithm [23]. Let C be the resulting inter-
section of the cones. Testing whether C and PR(v) have non-empty intersection
can be done in O((pv + d2v) log pv) time, where pv is the size of PR(v).

Lemma 2 Let v be a pure tail vertex and assume PR(v) has already been com-
puted. For any ε > 0, an absolute ε-approximation of the locally optimal position
can be computed in time O(log(1/ε)(pv + d2v) log pv).

4.2.2 Placing a Pure Dummy Vertex.

A pure dummy vertex v has only two active deviation angles. Let N(v) =
{a, p, b, q} be the neighbors of v so that (a, v, b) and (p, v, q) are dissected pairs.
Consider the angle β = ∠avb. By a generalization of Thales’ Theorem, β does
not change when moving v on a circular arc with endpoints a and b. Thus, to
make sure that β is at least π−α (i.e., to ensure that sd-α(a, v, b) ≤ α), one has
to place v in the intersection of two discs (union if α > π/2); see Fig. 8. These
two disks must have a and b on their boundaries and basic geometry shows that
their radii have to be |ab|/(2 sin(π−α)) (which uniquely defines the two disks).

664 Bläsius et al. How to Draw a Planarization

β

a

b

v β

b

v
a

Figure 8: The angle ∠avb is at least β for β > 90◦ (β < 90◦) if and only if v lies
in the intersection (union) of two discs (including its boundary, but excluding
a and b).

The same applies for ∠pvq. Thus, requiring both active deviation angles
sd-α(a, v, b) and sd-α(p, v, q) to be at most α restricts the possible positions of
the dummy vertex v either to the intersection of four disks, or to the intersection
of the union of two disks with the union of two other disks. The check whether
this intersection is empty requires time linear in the size pv of the planarity
region.

Lemma 3 Let v be a pure dummy vertex and assume PR(v) has already been
computed. For any ε > 0, an absolute ε-approximation of the locally optimal
position can be computed in time O(log(1/ε)pv).

4.2.3 Placing a Hybrid Vertex.

Let v be a dummy vertex with at least one dummy neighbor. Combining the
techniques from the two previous sections, we have to check whether PR(v) has
a non-empty intersection with the intersection of up to four cones and up to
four disks. This can again be done in time linear in the size pv of the planarity
region. We can thus conclude (for all three types of vertices) with the following
theorem.

Theorem 2 Let v be a vertex and assume PR(v) has already been computed.
For any ε > 0, an absolute ε-approximation of the locally optimal position can
be computed in time O(log(1/ε)(pv + d2v) log pv).

Overall Running Time. We have seen that the planarity region for a vertex
v can be computed in O(d2vnv log nv) time (Theorem 1) and that a locally opti-
mal position can be approximated in O(log(1/ε)(nv+d2v) log pv) time. Note that
if v is not a cut-vertex pv ∈ O(nv) otherwise it is in O(dvnv). In the following,
we assume that ε is a small constant and omit it from the running time.

As the degree dv of a vertex v is a lower bound for the size nv of its sur-
rounding, the running time of computing the planarity region dominates the
time for computing the locally optimal position. Each iteration thus needs
O(

∑
v∈V d

2
vnv log nv) time. In the worst case, this yields the running time stated

in the following theorem.

Theorem 3 One iteration of the Geometric Planarization Drawing approach
takes O(n4 log n) time.

JGAA, 23(4) 653–682 (2019) 665

A

C

BD

A

C B

D

(a)

A

C

BD

A

C B

D

(b)

A

C

BD

A

C

BD

(c)

A

C

BD

A

C

BD

(d)

Figure 9: Removing a crossing in case that Gp is not biconnected and a dummy
vertex is a cut-vertex.

Observe that since we assume that G has a small number of crossings, a
cut-vertex v can not be a dummy vertex; compare Fig. 9. Thus if consider only
biconnected graphs the running time reduces to O(n3 log n). The running time
improves further to O(n2 log n) if the face degrees are bounded by a constant
and even to O(n) if additionally the vertex degrees dv are bounded.

Corollary 1 If G is biconnected, one iteration of the Geometric Planarization
Drawing approach takes O(n3 log n) time.

5 Evaluation

We present an empirical evaluation of our planarization drawing methods. We
first discuss the remaining degrees of freedom in our Geometric Planarization
Drawing framework. Afterwards, we describe our experimental setup and the
statistical tests we use for the evaluation. The first part of our evaluation
focuses on the quality of different configurations of our Geometric Planarization
Drawing approach. The second set of experiments focuses on the running time.
We evaluate three benchmark sets. We give an extensive evaluation of the rome
graphs. Based on the insights obtained from these graphs, we report the results
for the north and community graphs for a limited number of configurations. We
conclude the section with a presentation of a few sample drawings.

5.1 Degrees of Freedom in the Geometric Framework

As pointed out above, our algorithmic framework offers quite a number of de-
grees of freedom and possibilities for tweaking the outcome of the algorithm.

666 Bläsius et al. How to Draw a Planarization

Dv

µDB

v

Figure 10: Moving the square dummy vertex towards the boundary of the pla-
narity region decreased the deviation angle of the red dissected pair.

Initial Drawing We consider two sets of initial drawings ImPrEd and Gc,
are both obtained from a planar straight-line drawing computed by Planar-
StraightLayout [19] computed with OGDF [7]. For the first set of initial
drawings we applied 100 iterations of ImPrEd, without the forces to optimize
the planarization, to the drawings obtained by the PlanarStraightLayout
algorithm. For the second set, we iteratively select a vertex and move the
vertex to the geometric center of its planarity region, i.e., the planarity region
is shrunken to a single point. As before, we repeated this process 100 times.

Vertex Orders We propose different orders for processing the vertices. An
Outer Shell is obtained by iteratively removing the vertices of the outer face.
An Inner Shell order is the reverse of an Outer Shell, and an Alternating
Shell order is obtained by alternating between the two orders. Path Repair is
a sequence of vertices where every vertex occurs dv times. Each edge of the graph
G, corresponds to a sequence of vertices of the planarization Gp, namely the
vertices on the corresponding planarization path (or an edge) ordered according
to their appearance on that path (or the sequence of the two end-vertices if the
edge has no crossings). To obtain the Path Repair order, we concatenate these
sequences in an order based on a breadth-first search.

Placement of Independent Vertices For an independent vertex v, every
position in the planarity region PR(v) is equally good since all deviation angles
are inactive. To reduce the restrictions imposed by independent vertices on their
neighbors, we place v in the geometric center of PR(v).

Shrinking the Planarity Region As mentioned before, a locally optimal
position for a vertex v might not exists as PR(v) is an open set; see Fig. 10.
Moreover, it is visually unpleasant when vertices are placed too close to non-
incident edges. We thus shrink PR(v) as follows. Let DB be the length of
the smallest side of the planarity region’s bounding box and let µ > 0 be a
parameter. Let Dv be the smallest distance from v to a point on the boundary
of PR(v). On one hand, the polygon obtained from shrinking PR(v) by µDB

may not contain v and therefore can yield a worse deviation angle. On the other
hand, if v lies close to the geometric center of PR(v), shrinking PR(v) by Dv

restricts the movement of v to a small region around v. Hence, we choose to

JGAA, 23(4) 653–682 (2019) 667

Table 1: Configurations for our Geometric Graph Drawing approach.

Configuration Vertex Order Angle Relax. Weight
Alternating Shell Alternating-Shell 0.0
Shell Outer-Shell 0.0
Path-Repair Path-Repair 0.0
Relax-x Alternating-Shell x · 10−1

x ∈ {1, 2, 4, 6, 8}

shrink PR(v) by the minimum of the values µDB and Dv. In our experiments
we used µ = 0.1.

Angle Relaxation While the placement of the tail and hybrid vertices in-
troduced in Sec. 4.2 works independently from the vertex order, it is natural to
require that unplaced vertices (i.e., vertices that will be moved later in the same
iteration) should have a smaller influence on positioning decisions. Hence, we
alter the binary search in the cone construction: we replace the opening angle α
of the cones of unplaced vertices by (1− γ)α+ γπ, where γ ∈ [0, 1] is the angle
relaxation weight, thus widening their cone depending on the value of γ.

Drawing Region The drawing region is always limited by an axis-aligned
rectangle whose side-length is twice as large as the corresponding side-length of
the smallest axis-aligned rectangle that entirely contains the initial drawing.

Termination We consider two possibilities to terminate the execution of our
algorithm, (i) after a fixed number of iterations, and (ii) after a fixed period of
time. In order to allow a fair comparison between all algorithms in Sec. 5.3, each
algorithm gets exactly 5n seconds to optimize the drawings. For experiments
regarding the running time in Sec. 5.4, we measure the time until convergence
limited by 100 iterations.

Configurations The presented degrees of freedom allow for many different
configurations of our algorithm. Table 1 lists a set of configurations of our
heuristic that we consider in our evaluation. Moreover, we compare these con-
figurations with the baseline algorithm Initial, which simply outputs the initial
drawing, and with our modification ImPrEd++ of the force-directed algorithm
ImPrEd. The node-node repulsion force and the edge-attraction force used in
ImPrEd are parametrized by a value δ. The node-edge repulsion force has a
parameter γ. We set both values to (log n)−1

√
A/n, where A is area of the

drawing region and n the number of vertices of the graph. We set the damping
factor λ to of the dummy force to 0.1 and the damping factor κ of the force for
tail vertices to 0.05.

668 Bläsius et al. How to Draw a Planarization

0

5

10

15

20

0 200 400 600
size

co
un

t

Figure 11: The distribution of the size of the selected Rome graphs, i.e., the
sum of the number of vertices the sum of the number of vertices and edges of a
graph.

D1

D2

0 10 20 30 40 50 60 70

Figure 12: Two sets of deviations angles D1 and D2. The number on the bottom
denotes the deviation angle of one point, i.e., the red point in D2 corresponds
to a deviation angle of 2. The edges indicate pairings of values in D1 and D2,
i.e, each dissected pair has a deviation angle in D1 and in D2. For example the
red edge corresponds to a dissected pair with a deviation angle of 20 in D1 and
a deviation angle of 10 in D2.

5.2 Experimental Setup and Methodology

We ran the algorithms on 100 randomly selected non-planar Rome graphs1. For
each of them, we used the largest non-planar biconnected component, Fig. 11
shows the size distribution of these graphs. To take the lengths of the planariza-
tion paths into account, we a priori define three classes of instances: Low (L),
Medium (M) and High (H). The partitioning is chosen such that the difference
between the minimum and maximum length of the planarization is (roughly)
equal for all classes. A planarization belongs to L and to H if it is at most 4-
and at least 9-planar, respectively. Instances in the class M are k-planar with
4 < k < 9. There are 68 graphs with in total 604 dummy vertices in L, 26
graphs with in total 959 dummy vertices in M, and 6 graphs with in total 443
dummy vertices in H. Thus, there are in total 4012 dissected-pairs D (twice the
number of dummy vertices).

In general, we are interested in whether the deviation angles sd-α1 computed
by one algorithm A1 are smaller than the deviation angles sd-α2 computed by

1 graphdrawing.org/data.html

http://www.graphdrawing.org/data.html

JGAA, 23(4) 653–682 (2019) 669

another algorithm A2, e.g., we ask whether the configuration Shell computes
smaller deviation angles than ImPrEd++. Denote by Di = {sd-αi(u, v, w) |
(u, v, w) ∈ D} the set of deviation angles of the dissected pairs D in the drawings
computed by Ai. One possibility to compare D1 to D2 is to compare the mean,
median or the quantiles of D1 and D2 to each other. Since the underlying
distribution of the angles is unknown and not likely to be, e.g., normal, this
comparison can be misleading. Consider the two sets D1 and D2 depicted in
Fig. 12. The median and mean value of the set D1 is each 30. The median
and mean of D2 is 40. Thus, this two statistics (as well as the min, max and
quantiles) indicate that the set D1 contains smaller deviation angles than D2.
On the other hand, each dissected pair corresponds to a deviation angle in
D1 and in D2, indicated by the edges in Fig. 12. Considering the dependence
between D1 and D2, we see that there are five pairs that have a smaller deviation
angle in D2 than in D1 and that there are only two pairs that have a smaller
angle in D1 than in D2. Thus, the conclusion drawn from the statistics can
depend on whether the dependence between D1 and D2 is considered.

This motivates the following approach to compare the deviation angles of
D1 to D2. Let ∆ > 0 and D1 + ∆ = {sd-α1(u, v, w) + ∆ | (u, v, w) ∈ D}.
We say D1 has an advantage of ∆ over D2 if the binomial sign test for two
dependent samples [27] with probability 0.5 indicates that there are a significant
number of values in D1 + ∆ that are smaller than the corresponding values in
D2, i.e., sd-α1(u, v, w) + ∆ < sd-α2(u, v, w), at a significance level of α = 0.05.
Note that this binomial sign test is independent of the underlying distribution.
Further, we are interested in the smallest angle δ ≥ 0 such that the angles in our
drawings of a graph Gp are smaller than δ. We define a hypothetical drawing
called δ-drawing where each deviation angle is δ. For each algorithm, we seek
the smallest angle δ such that the resulting drawing has an advantage over the
δ-drawing.

In order to further increase the reliability of our results we partitioned the
set of samples D into a training set T , containing 20% of the samples, and a
verification set V containing the remaining 80%. We compute the maximum
∆ such that T1 has an advantage of ∆ over T2. We use the value 3/4 · ∆ as
the conjectured advantage of V1 over V2, i.e., we use the binomial sign test to
evaluate whether V1 has an advantage of 3/4∆ over V2. In case of the comparison
of D1 to a set of δ-drawings, we compute the smallest δ such that T1 has an
advantage (∆ = 0). We compare V1 to δ′-drawings, with δ′ = (4/3 · δ).

Implementation Details We use OGDF2 to planarize the graphs [15] and
to compute the initial drawing [19]. We use the libraries CGAL3 to compute
line arrangements, STALGO [16,17] to shrink polygons, and GMP4 to represent
coordinates.

2 ogdf.net 3 cgal.org 4 gmplib.org

http://www.ogdf.net
http://www.cgal.org
http://www.gmplib.org

670 Bläsius et al. How to Draw a Planarization

5.3 Quality of the Drawings

In this Section we discuss the quality of our drawings. The evaluation is guided
by the following hypotheses.

I) Gc as an initial drawings yields smaller deviation angles compared to
ImPrEd (since the deviation angles of the initial drawings are smaller).

II) The Geometric Planarization Drawing approach and ImPrEd++ each
have an advantage over the initial drawing.

III) Geometric Planarization Drawing has an advantage over ImPrEd++.
IV) Relax-1 has an advantage over Relax-2, Relax-4, Relax-6 and Relax-8,

respectively.
V) In class H, Relax-1 has an advantage over Alternating-Shell (due to

the weakened influence of unplaced vertices).
VI) In the presence of long planarization paths, the Path Repair order has

an advantage over other vertex orderings (due to its ability to process all
vertices of a planarization path consecutively).

We use Fig. 13 and Fig. 14 to show whether or not the binomial test supports
our hypotheses. The figures are supplemented with the statistics in Tab. 2. A
value ∆ in a cell in Fig. 14 is the conjectured advantage of the algorithm over the
algorithm on the y-axis computed on the training set. Note that the respective
maximum advantage on the training set is 4/3 ·∆. A green cell means that we
can accept the hypothesis with a confidence of 95%, i.e., also has an advantage
of ∆ on our verification set. On the contrary, with a red cell we have to reject
the hypothesis. An empty cell, indicates that the algorithm did not have an
advantage on the training set. We rounded the values ∆ to the largest integer
∆′ such that ∆′ < ∆. Therefore, a green cell that contains a 0 means that
the algorithm on the x-axis has advantage of ∆ < 1 over the algorithm on the
y-axis.

For example, in the class H (see Fig. 14d), we conjecture, based on the
observation in the training set, that the drawings of the Shell configuration
have an advantage of 7◦ over the drawings of ImPrEd++. Recall, that having
an advantage means that 50% of the deviation angles, plus an additional buffer
of 7◦, of the first drawings are smaller than the deviation angles of the second.
Since the cell is green, the binomial test on the verification set says that we can
accept the hypothesis with a confidence of 95%.

By Fig. 13a, for class L we can say with 95% confidence that there are
significant number of the deviation angles computed by the Shell configuration
that are smaller than 2◦. This is not necessarily true for δ = 1◦. We now discuss
our hypotheses.

Hypothesis I) Good initial drawing For each configuration, we compared
the deviation angles of the final layouts computed by the configuration applied
to both sets of initial drawings (Gc and ImPrEd). For each configuration, our
test indicated that Gc does not have an advantage over the ImPrEd drawings.
In the contrary, the test indicates that ImPrEd has, for each configuration,
an advantage 0.2◦ over Gc. The binomial test confirmed these advantages at

JGAA, 23(4) 653–682 (2019) 671

71 2 2 6 2 16

55 16 14 12 16 44

60 28 24 22 27 47

L

M

H

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(a) Selection

71 6 11 14 12 15

55 12 18 19 20 22

60 22 23 23 20 26

L

M

H

In
itia

l
Rel

ax
−1

Rel
ax

−2
Rel

ax
−4

Rel
ax

−6
Rel

ax
−8

(b) Relax-x

Figure 13: The minimum δ for each configuration (x-axis) such that it has an
advantage over a δ-drawing, factored by the classes L, M, and H (y-axis).

20 21 20 20 9

0

0

0

6 6 6 5

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(a) L + M + H

27 28 24 28 16

0

0 0 0

0

2 2 1 2

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+
(b) L

15 18 18 18 4

0 0

0 0

6 7 7 6

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(c) M

9 10 13 11 3

0 0

0

6 7 9 6

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(d) H

Figure 14: Advantage of each configuration (x-axis) compared to each configu-
ration (y-axis), factored by the classes L, M, and H.

672 Bläsius et al. How to Draw a Planarization

Table 2: Median and mean values of the deviation angle for the different algo-
rithms applied to ImPrEd as initial drawing.

L + M + H L M H
med mean med mean med mean med mean

Initial 39.6 44.3 46.2 49.8 36.6 42.1 35.8 41.6
A-Shell 6.15 9.73 0.18 2.98 9.62 10.8 17.0 16.5
Shell 4.92 8.71 0.08 2.47 7.73 9.51 16.5 15.5
Relax-1 7.12 9.45 2.46 6.11 8.06 10 11.4 12.8
Relax-2 9.02 12.4 4.45 10.1 10.3 13.2 11.4 13.6
Relax-4 11.6 15.9 7.63 15.2 12.7 16.3 12.5 16.0
Relax-6 11.6 17.2 7.03 16.0 13.2 18.1 12.4 17.0
Relax-8 12.1 17.5 9.60 18.1 12.7 17.5 13.9 16.9
Path Repair 6.76 10.4 0.29 4.17 9.49 11.1 18.2 17.2
ImPrEd++ 19.5 32.2 4.47 21.5 25.2 35.3 30.3 40.3

significance level of α = 0.05. Hence, in the following we only consider ImPrEd
for the initial drawings.

Hypothesis II) Advantage over the Initial drawing For each configu-
ration, the binomial test supports this hypothesis, i.e., the advantage over the
initial drawing, independent of the configuration, is at least 20◦; see Fig. 14a.
Note that the advantage over the Initial drawing decreases with the length of
the longest planarization path in a drawing; refer to Fig 14b-14d. Moreover,
Fig. 14d shows that for class H we were not able to verify that ImPrEd++
does have an advantage over the Initial drawing.

Hypothesis III) Advantage over ImPrEd++ Fig. 14a shows that for ∆ =
5 we can accept the hypothesis with high confidence for each configuration. Note
that the advantage depends on the class, i.e, for class L the advantage decreases
to 2◦. For the configuration Relax-1 the advantage decreases even further to
only 1◦. Fig. 13a shows that ImPrEd has an advantage over 16◦-drawings, i.e.,
a δ-drawing with δ = 16◦, but has no advantage over 15◦-drawings. On the
other hand, for example, Shell has an advantage over 2◦-drawings.

Hypothesis IV) Relax-1 has an advantage over Relax-x. Fig. 15 con-
firms this hypothesis. Note that with respect to class H, Relax-6 has an ad-
vantage over 20◦-drawings, where as Relax-1 only has an advantage over 22◦-
drawings. The δ-values for the classM suggest that Relax-4 computes drawings
with smaller angles than Relax-6, and Relax-6 drawings with smaller angle than
Relax-8. Observe that this conclusion can not be drawn from the statistics listed
in Tab. 2.

Hypothesis V) Angle relaxation helps with long planarization paths
Fig. 14d shows for instances of the class H that the Relax-1 configuration has

JGAA, 23(4) 653–682 (2019) 673

20 18 17 16 15

0

2 0

1 0

2 0

Initial

Relax−1

Relax−2

Relax−4

Relax−6

Relax−8

In
itia

l
Rel

ax
−1

Rel
ax

−2
Rel

ax
−4

Rel
ax

−6
Rel

ax
−8

Figure 15: Advantages of the Relax-x configurations.

●

●

●

10

20

0 20 40 60
Time [min]

δ ●

Altr−Shell

Relax−1

Shell

Figure 16: Time until convergence versus the δ-value. Symbol sizes indicate the
classes L, M, and H. Note: the δ-values of both figures are not coincident due
to different experimental setups. The setup for the quality assessment does not
allow a running time analysis.

a (small) advantage over the Alternating Shell. Further, Fig. 13a shows
that this configuration tends to produce smaller deviation angle in instances
of M and H in comparison to the remaining configurations, i.e., Relax-1 has
an advantage over a 12◦-drawing and 22◦-drawing, respectively. The remaining
configuration we were only able to show that they have an advantage over δ-
drawings for larger values of δ.

Hypothesis VI) Path Repair helps with long planarization paths Fig-
ure 14d shows that the test on the training set does not conjecture a significant
advantage of the Path Repair order over the remaining configurations. Hence,
we have to reject this hypothesis.

5.4 Running Time

Force-directed methods have been engineered over the past decades. Hence, it is
reasonable that the running time of ImPrEd++ is much faster in comparison

674 Bläsius et al. How to Draw a Planarization

Table 3: Mean running time measurements for each configuration.

Configuration
Time per Iteration Total Time
L M H L M H

A-Shell 8.3s 15.0s 24.8s 2.9min 20.6min 39.6min
Shell 8.1s 18.0s 25.1s 0.7min 6.4min 28.4min
Relax-1 8.2s 20.3s 33.5s 9.5min 33.6.min 55.3min

Table 4: Number of graphs and dummies vertices per class for the north and
community graphs.

north community
n. of graphs n. of dummies n. of graphs n.of dummies

L 87 1696 37 1062
M 8 1128 25 1103
H 5 2904 38 2041

to our approach that heavily relies on geometric operations. On the other hand,
the quality of the drawings obtained by our approach is significantly better
than the quality of the drawings obtained by ImPrEd++. Therefore, we only
evaluate the running time of our Geometric Planarization Drawing approach;
see Table 3.
Running Time vs. Quality. We use the δ-values to compare the quality of the
drawings with respect to the running time. Each point in Fig. 16 represents
final drawings of a different configuration, divided into the introduced classes.
The figure compares the average running time required to compute the final
drawing against the smallest δ computed with the introduced methodology; all
δ-values can be accepted with high confidence. For class L the configuration
the (Alternating) Shell configurations achieves small angles and require
only few minutes to finish. With increasing complexity of the drawings the
relevance of the angle relaxation increases. For class M the Alternating
Shell configuration has the smallest δ-value but is slower than the Shell
configuration. For drawings of class H, there is no clear dominance. In class H
the Relax-1 configuration yields the best results but the Shell configuration
requires less time. We suggest to use the Shell configuration for less complex
drawings and when computing time is relevant and for drawings with increasing
complexity the Relax-1 configuration.

5.5 North and Community Graphs

In this section we augment our evaluation with a short analysis of two further
benchmark datasets. The first dataset contains 100 randomly selected north
graphs5, and the second set contains 100 randomly generated community graphs,
i.e., a set of graphs that resemble community structure. The community graphs

5 graphdrawing.org/data.html

http://www.graphdrawing.org/data.html

JGAA, 23(4) 653–682 (2019) 675

0

10

20

0 1000 2000
size

co
un

t

(a) North

0

10

20

30

40

200 300 400 500 600
size

co
un

t

(b) Community

Figure 17: Size distribution of the north and community graphs.

Table 5: Median and mean values of the deviation angle for the different algo-
rithms applied to ImPrEd as initial drawing.

L + M + H L M H
med mean med mean med mean med mean

north
Initial 20.1 29.5 25.2 34.7 20.9 30.9 17.4 26.0
A-Shell 20.4 21.8 15.6 18.4 22.1 24.4 21.9 22.7
Shell 19.8 21.4 14.4 16.5 23.0 24.4 21.7 23.0
Relax-1 14.4 18.2 12.8 17.2 18.7 22.3 14.0 17.1
Path Repair 21.0 26.5 21.0 30.3 20.9 30.9 21.1 22.6
ImPrEd++ 24.7 32.3 24.3 31.1 24.8 33.2 24.8 32.6
community
Initial 27.3 37.6 30.1 40.4 25.6 36.7 26.3 36.6
A-Shell 13.5 17.6 8.31 13.6 13.8 17.9 16.2 19.5
Shell 10.3 15.2 5.32 11.1 9.65 15.0 13.7 17.4
Relax-1 12.3 16.3 8.80 12.8 12.6 16.6 14.2 18.0
Path Repair 17.3 23.7 12.9 17.2 16.0 21.4 20.5 28.4
ImPrEd++ 28.8 35.6 30.3 36.3 28.0 34.9 28.4 35.5

676 Bläsius et al. How to Draw a Planarization

39 26 23 22 34 39

34 32 35 30 34 38

26 31 32 20 31 38

L

M

H

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(a) North

44 14 10 16 20 47

40 20 14 19 24 42

39 23 20 22 31 42

L

M

H

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(b) Community

Figure 18: The minimum δ for each configuration (x-axis) such that it has an
advantage over a δ-drawing, factored by the classes L, M, and H (y-axis).

have been used in the evaluation for heuristics to minimize crossings in straight-
line drawings of graphs [24]. Fig. 17 shows the size distribution of the north and
community graphs. The north graphs are at most 32-planar and the community
graphs are at most 9-planar. For the north graphs the class L contains graphs
with k ≤ 10, H contains the graphs with k > 20, the remaining graphs belong
to M. In case of the community graphs the parameters are selected as follows,
L and H contains graphs with k < 6 and k ≥ 7, respectively, and M contains
the remaining graphs. Tab. 4 lists the number of graphs and dummy vertices
for each of the graph classes. The analysis of the rome graphs showed that using
ImPrEd as an initial drawing resulted overall in drawings with smaller deviation
angles compared to Gc. Therefore, we use ImPrEd to compute the initial
layout of the north and community graphs as well. Moreover, Relax-1 computes
drawings with significantly smaller deviation angles than the remaining Relax-x
configurations on the rome graphs. Therefore, we abstain from evaluating the
Relax-x configurations in this section for x 6= 1. Tab. 5 lists the mean and
median values for the north and community graphs.

For the community graphs, we can confirm that all heuristics, except Im-
PrEd++, improve the deviation angles; see Fig. 20. Notice that this statement
is only true for the class L of the north graphs but not for the classes M and
H; refer to Fig. 19. Recall that in case of the north graphs M contains graphs
that are at least 11-planar and all community and rome graphs at most 13-
planar. This confirms the observation that the deviation angle in drawings with
many crossing per edge are difficult to optimize. The analysis of the rome graph
already indicated that the Relax-1 configuration improves the deviation angle
in graphs with long planarization graphs. Fig. 18a and Fig. 19 shows that the
Relax-1 observation is the only configuration that is able to significantly improve
the deviation angle compared to the initial drawing.

JGAA, 23(4) 653–682 (2019) 677

0 0 3

0 2

1

0 0 3

0 3 3 6 0

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(a) L + M + H

5 6 6 20 0

0 0

3 4 3

3 4 4

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(b) L

1

0

0

1

0 0 3

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(c) M

2

3

0 3

3

2 1 2 6 3

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(d) H

Figure 19: North: Advantage of each configuration (x-axis) compared to each
configuration (y-axis), factored by the classes L, M, and H.

5.6 Sample Drawings

For three graphs Fig. 21 shows the initial drawing and the drawing after the
application of the Shell configuration of our Geometric Planarization Drawing
approach. Observe that the optimization of the tail and dummy vertices in our
Geometric Planarization Drawing approach can force a vertex v to be close to
an edge which is not incident to v. To increase the readability of the drawings
ImPrEd can help resolve this issue, i.e., to increase the vertex-edge distances.
In case that we want to guarantee, that the deviation angles in the drawings
do not change, we apply forces only to independent vertices. We observed
that this strategy can be too restrictive, i.e., the vertex-edge distance remains
small, since tail and dummy vertices restrict the movement of the independent
vertices. Thus, we propose the following post-processing strategy, that relies
on the assumption that ImPrEd, with additional planarization forces, does not
alter the deviation angles too much. (i) Replace all planarization paths with
an edge from the source to the target vertex if this edge crosses exactly the
same edges as the path does. (ii) Apply ImPrEd with planarization forces on
remaining dummy and tail vertices on the new drawing. The third column in

678 Bläsius et al. How to Draw a Planarization

9 9 9 8 0

0 0

0

1 3 2

9 11 9 4

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(a) L + M + H

12 13 11 10

0

0

0 1 0

12 12 12 9

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(b) L

7 8 8 6 0

0 0

0

0 1 0

6 9 8 3

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(c) M

7 7 6 3 0

0 0

3 3 3

8 9 8 0

Initial

A−Shell

Shell

Relax−1

Path−Repair

ImPrEd++

In
itia

l
A−S

he
ll

She
ll

Rel
ax

−1
Pa

th
−R

ep
ai

r
Im

PrE
d+

+

(d) H

Figure 20: Community: Advantage of each configuration (x-axis) compared to
each configuration (y-axis), factored by the classes L, M, and H.

Fig. 21 shows examples of drawings that are obtained by this post-processing
strategy.

6 Conclusion

We presented two approaches for drawing planarizations such that the edges
of the original (non-planar) graph are as straight as possible. Our experiments
show that the Geometric Planarization Drawing approach has an significant
advantage over our adaptation of the force-directed algorithm ImPrEd. For
instances with short planarization paths, we get very good deviation angles.
Even though the deviation angles are worse for instances with longer planariza-
tion paths, our Geometric Planarization Drawing approach still significantly
improves the angles of the initial drawing. Concerning future research, it would
be interesting to investigate the effect of different initial drawings and to see
how our geometric approach in Sec. 4 performs when additional optimization
criteria such as the angular resolution are incorporated.

JGAA, 23(4) 653–682 (2019) 679

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 21: (a,d,g) Initial drawings, (b,e,h) Final drawing computed with the
Shell configuration, (c,f,i) Drawing with the post processing step. Planariza-
tion paths are indicated by colors. (a,b,c) A rome graph. (d,e,f) A north graph.
(g,h,j) A community graph.

680 Bläsius et al. How to Draw a Planarization

References

[1] F. Bertault. A Force-Directed Algorithm that Preserves Edge-Crossing
Properties. Information Processing Letters, 74(1–2):7–13, 2000. doi:10.

1016/S0020-0190(00)00042-9.

[2] T. Bläsius, M. Radermacher, and I. Rutter. How to Draw a Planariza-
tion. In B. Steffen, C. Baier, M. van den Brand, J. Eder, M. Hinchey,
and T. Margaria, editors, Proceedings of the 43rd Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM’17),
pages 295–308. Springer International Publishing, 2017. doi:10.1007/

978-3-319-51963-0_23.

[3] B. M. Ábrego, S. Fernández–Merchant, J. Leaños, and G. Salazar. The
Maximum Number of Halving Lines and the Rectilinear Crossing Number
of Kn for n ≤ 27. Electronic Notes in Discrete Mathematics, 30:261 – 266,
2008. doi:10.1016/j.endm.2008.01.045.

[4] C. Buchheim, M. Chimani, C. Gutwenger, M. Jünger, and P. Mutzel. Cross-
ings and Planarization. In R. Tamassia, editor, Handbook of Graph Drawing
and Visualization, pages 43–85. Chapman and Hall/CRC, 2013.

[5] E. W. Chambers, D. Eppstein, M. T. Goodrich, and M. Löffler. Drawing
Graphs in the Plane with a Prescribed Outer Face and Polynomial Area.
Journal of Graph Algorithms and Applications, 16(2):243–259, 2012. doi:

10.7155/jgaa.00257.

[6] T. M. Chan, F. Frati, C. Gutwenger, A. Lubiw, P. Mutzel, and M. Schaefer.
Drawing Partially Embedded and Simultaneously Planar Graphs. Journal
of Graph Algorithms and Applications, 19(2):681–706, 2015. doi:10.7155/
jgaa.00375.

[7] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The open graph drawing framework (ogdf). In R. Tamas-
sia, editor, Handbook of Graph Drawing and Visualization, pages 543–569.
Chapman and Hall/CRC, 2013.

[8] G. Da Lozzo, V. Dujmovic, F. Frati, T. Mchedlidze, and V. Roselli. Drawing
Planar Graphs with Many Collinear Vertices. Journal of Computational
Geometry, 9(1):94–130, 2018. doi:10.20382/jocg.v9i1a4.

[9] W. Didimo, G. Liotta, and F. Montecchiani. A Survey on Graph Drawing
Beyond Planarity. ACM Computating Surveys, 52(1):4:1–4:37, 2019. doi:
10.1145/3301281.

[10] W. Didimo, G. Liotta, and S. A. Romeo. Topology-Driven Force-Directed
Algorithms. In U. Brandes and S. Cornelsen, editors, Proceedings of the
18th International Symposium on Graph Drawing (GD’10), volume 6502 of
Lecture Notes in Computer Science, pages 165–176. Springer, 2011. doi:

10.1007/978-3-642-18469-7_15.

http://dx.doi.org/10.1016/S0020-0190(00)00042-9
http://dx.doi.org/10.1016/S0020-0190(00)00042-9
http://dx.doi.org/10.1007/978-3-319-51963-0_23
http://dx.doi.org/10.1007/978-3-319-51963-0_23
http://dx.doi.org/10.1016/j.endm.2008.01.045
http://dx.doi.org/10.7155/jgaa.00257
http://dx.doi.org/10.7155/jgaa.00257
http://dx.doi.org/10.7155/jgaa.00375
http://dx.doi.org/10.7155/jgaa.00375
http://dx.doi.org/10.20382/jocg.v9i1a4
http://dx.doi.org/10.1145/3301281
http://dx.doi.org/10.1145/3301281
http://dx.doi.org/10.1007/978-3-642-18469-7_15
http://dx.doi.org/10.1007/978-3-642-18469-7_15

JGAA, 23(4) 653–682 (2019) 681

[11] T. Dwyer, K. Marriott, and M. Wybrow. Topology Preserving Constrained
Graph Layout. In I. G. Tollis and M. Patrignani, editors, Proceedings
of the 16th International Symposium on Graph Drawing (GD’08), vol-
ume 5417 of Lecture Notes in Computer Science, pages 230–241. Springer
Berlin/Heidelberg, 2009. doi:10.1007/978-3-642-00219-9_22.

[12] P. Eades, S.-H. Hong, G. Liotta, N. Katoh, and S.-H. Poon. Straight-Line
Drawability of a Planar Graph Plus an Edge. In F. Dehne, J.-R. Sack,
and U. Stege, editors, Proceedings of the 14th International Symposium on
Algorithms and Data Structures (WADS’15), volume 9214 of Lecture Notes
in Computer Science, pages 301–313. Springer International Publishing,
2015. doi:0.1007/978-3-319-21840-3_25.

[13] E. D. Giacomo, P. Eades, G. Liotta, H. Meijer, and F. Montecchiani.
Polyline Drawings with Topological Constraints. In W.-L. Hsu, D.-T.
Lee, and C.-S. Liao, editors, Proceedings of the 29th International Sym-
posium on Algorithms and Computation (ISAAC’18), volume 123 of Leib-
niz International Proceedings in Informatics, pages 39:1–39:13. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.

ISAAC.2018.39.

[14] L. Grilli, S.-H. Hong, J. Kratochv́ıl, and I. Rutter. Drawing Simultaneously
Embedded Graphs with Few Bends. In C. Duncan and A. Symvonis, edi-
tors, Proceedings of the 22nd International Symposium on Graph Drawing
(GD’14), volume 8871 of Lecture Notes in Computer Science, pages 40–51.
Springer Berlin/Heidelberg, 2014. doi:10.1007/978-3-662-45803-7_4.

[15] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an Edge Into
a Planar Graph. Algorithmica, 41(4):289–308, 2005. doi:10.1007/

s00453-004-1128-8.

[16] S. Huber and M. Held. Motorcycle graphs: Stochastic Properties Motivate
an Efficient yet Simple Implementation. Journal of Experimental Algorith-
mics, 16:1–3, 2011. doi:10.1145/1963190.2019578.

[17] S. Huber and M. Held. A Fast Straight-Skeleton Algorithm Based
on Generalized Motorcycle Graphs. International Journal of Computa-
tional Geometry & Applications, 22(05):471–498, 2012. doi:10.1142/

S0218195912500124.

[18] B. Joe and R. B. Simpson. Corrections to Lee’s Visibility Polygon Algo-
rithm. BIT Numerical Mathematics, 27(4):458–473, 1987.

[19] G. Kant. Drawing Planar Graphs Using the Canonical Ordering. Algorith-
mica, 16(1):4–32, 1996. doi:10.1007/BF02086606.

[20] T. Mchedlidze, M. Nöllenburg, and I. Rutter. Extending Convex Par-
tial Drawings of Graphs. Algorithmica, 76(1):47–67, 2016. doi:10.1007/

s00453-015-0018-6.

http://dx.doi.org/10.1007/978-3-642-00219-9_22
http://dx.doi.org/0.1007/978-3-319-21840-3_25
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.39
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.39
http://dx.doi.org/10.1007/978-3-662-45803-7_4
http://dx.doi.org/10.1007/s00453-004-1128-8
http://dx.doi.org/10.1007/s00453-004-1128-8
http://dx.doi.org/10.1145/1963190.2019578
http://dx.doi.org/10.1142/S0218195912500124
http://dx.doi.org/10.1142/S0218195912500124
http://dx.doi.org/10.1007/BF02086606
http://dx.doi.org/10.1007/s00453-015-0018-6
http://dx.doi.org/10.1007/s00453-015-0018-6

682 Bläsius et al. How to Draw a Planarization

[21] T. Mchedlidze, M. Radermacher, and I. Rutter. Aligned Drawings of Planar
Graphs. Journal of Graph Algorithms and Applications, 22(3):401–429,
2018. doi:10.7155/jgaa.00475.

[22] N. E. Mnëv. The Universality Theorems on the Classification Problem
of Configuration Varieties and Convex Polytopes Varieties. In O. Y. Viro
and A. M. Vershik, editors, Topology and Geometry — Rohlin Seminar,
volume 1346 of Lecture Notes in Mathematics, pages 527–543. Springer
Berlin/Heidelberg, 1988. doi:10.1007/BFb0082792.

[23] J. Nievergelt and F. P. Preparata. Plane-Sweep Algorithms for Intersecting
Geometric Figures. Communications of the ACM, 25(10):739–747, 1982.
doi:10.1145/358656.358681.

[24] M. Radermacher, K. Reichard, I. Rutter, and D. Wagner. Geometric
Heuristics for Rectilinear Crossing Minimization. Journal of Experimen-
tal Algorithmics, 24(1):1.12:1–1.12:21, 2019. doi:10.1145/3325861.

[25] M. Radermacher and I. Rutter. Inserting an Edge into a Geometric Em-
bedding. In T. C. Biedl and A. Kerren, editors, Proceedings of the 26th
International Symposium on Graph Drawing (GD’18), volume 11282 of
Lecture Notes in Computer Science, pages 402–415. Springer International
Publishing, 2018. doi:10.1007/978-3-030-04414-5_29.

[26] M. Schaefer. Complexity of Some Geometric and Topological Problems.
In D. Eppstein and E. R. Gansner, editors, Proceedings of the 17th Inter-
national Symposium on Graph Drawing (GD’09), volume 5849 of Lecture
Notes in Computer Science, pages 334–344. Springer Berlin/Heidelberg,
2010. doi:10.1007/978-3-642-11805-0_32.

[27] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Pro-
cedures. Chapman and Hall/CRC, 2003.

[28] P. Simonetto, D. Archambault, D. Auber, and R. Bourqui. ImPrEd: An
Improved Force-Directed Algorithm that Prevents Nodes from Crossing
Edges. Computer Graphics Forum, 30(3):1071–1080, 2011. doi:10.1111/

j.1467-8659.2011.01956.x.

[29] R. Tamassia. On Embedding a Graph in the Grid with the Minimum
Number of Bends. SIAM Journal on Computing, 16(3):421–444, 1987.
doi:10.1137/0216030.

[30] C. Thomassen. Rectilinear Drawings of Graphs. Journal of Graph Theory,
12(3):335–341, 1988. doi:10.1002/jgt.3190120306.

[31] W. T. Tutte. How to Draw a Graph. Proceedings of the London Mathe-
matical Society, s3-13(1):743–767, 1963.

http://dx.doi.org/10.7155/jgaa.00475
http://dx.doi.org/10.1007/BFb0082792
http://dx.doi.org/10.1145/358656.358681
http://dx.doi.org/10.1145/3325861
http://dx.doi.org/10.1007/978-3-030-04414-5_29
http://dx.doi.org/10.1007/978-3-642-11805-0_32
http://dx.doi.org/10.1111/j.1467-8659.2011.01956.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01956.x
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1002/jgt.3190120306

	Introduction
	Preliminaries
	Force-Directed Planarization Drawing
	Geometric Planarization Drawing
	Planarity Region
	Finding a Locally Optimal Position
	Placing a Pure Tail Vertex.
	Placing a Pure Dummy Vertex.
	Placing a Hybrid Vertex.

	Evaluation
	Degrees of Freedom in the Geometric Framework
	Experimental Setup and Methodology
	Quality of the Drawings
	Running Time
	North and Community Graphs
	Sample Drawings

	Conclusion

