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Abstract

We study the question whether a crossing-free 3D morph between two
straight-line drawings of an n-vertex tree T can be constructed consisting
of a small number of linear morphing steps. We look both at the case
in which the two given drawings are two-dimensional and at the one in
which they are three-dimensional. In the former setting we prove that a
crossing-free 3D morph always exists with O(rpw(T )) ⊆ O(logn) steps,
where rpw(T ) is the rooted pathwidth or Strahler number of T , while for
the latter setting Θ(n) steps are always sufficient and sometimes necessary.
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1 Introduction

A morph between two drawings of the same graph is a continuous transfor-
mation from one drawing to the other. Thus, any time instant of the morph
defines a different drawing of the graph. Ideally, the morph should preserve
the properties of the initial and final drawings throughout. As the most no-
table example, a morph between two planar graph drawings should guarantee
that every intermediate drawing is also planar; in this case the morph is called
planar.

Planar morphs have been studied for decades and nowadays find applica-
tions in animation, modeling, and computer graphics; see, e.g., [16, 17]. A
planar morph between any two topologically-equivalent† planar straight-line‡

drawings of the same planar graph always exists; this was proved for maximal
planar graphs by Cairns [10] back in 1944, and then for all planar graphs by
Thomassen [25] almost forty years later. Note that a planar morph between two
planar graph drawings that are not topologically equivalent does not exist.

Several research efforts have been spent lately to study the question whether
a planar morph between any two topologically-equivalent planar straight-line
drawings of the same planar graph always exists such that the vertex trajectories
have low complexity. This is usually formalized as follows. Let Γ and Γ′ be
two topologically-equivalent planar straight-line drawings of the same planar
graph G. Then a morphM is a sequence 〈Γ1,Γ2, . . . ,Γk〉 of planar straight-line
drawings of G such that Γ1 = Γ, Γk = Γ′, and 〈Γi,Γi+1〉 is a planar linear
morph, for each i = 1, . . . , k − 1. A linear morph 〈Γi,Γi+1〉 is such that each
vertex moves along a straight-line segment at constant speed; that is, assuming
that the morph happens between time t = 0 and time t = 1, the position of a
vertex v at any time t ∈ [0, 1] is (1 − t)Γi(v) + tΓi+1(v). The complexity of a
morph M is then measured by the number of its morphing steps, i.e., by the
number of linear morphs it consists of. In the following, a morphing step is
sometimes simply called a step.

A recent sequence of papers [3, 4, 5, 6] culminated in a proof [2] that a planar
morph between any two topologically-equivalent planar straight-line drawings
of the same n-vertex planar graph can always be constructed consisting of Θ(n)
steps. This bound is asymptotically optimal in the worst case, even for paths.

The question we study in this paper is whether morphs with sub-linear com-
plexity can be constructed if a third dimension is allowed to be used. That
is: Let Γ and Γ′ be two topologically-equivalent planar straight-line drawings
of the same n-vertex planar graph G (throughout the paper, whenever we talk
about planar drawings, we always mean crossing-free 2D drawings in the xy-
plane). Does a morph M = 〈Γ = Γ1,Γ2, . . . ,Γk = Γ′〉 exist such that: (i) for

†Two planar drawings of a connected graph are topologically equivalent if they define the
same clockwise order of the edges around each vertex and their outer faces are delimited by
the same walk.
‡A straight-line drawing Γ of a graph G maps vertices to points in a Euclidean space and

edges to open straight-line segments between the images of their end-vertices. We denote by
Γ(v) the image of a vertex v and by Γ(G′) the image of a subgraph G′ of G.
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i = 1, . . . , k, the drawing Γi is a crossing-free straight-line 3D drawing of G,
i.e., a straight-line drawing of G in R3 such that no two edges cross; (ii) for
i = 1, . . . , k − 1, the step 〈Γi,Γi+1〉 is a crossing-free linear morph, i.e., no two
edges cross throughout the transformation; and (iii) k = o(n)? A morph M
satisfying properties (i) and (ii) is a crossing-free 3D morph.

Our main result is a positive answer to the above question for trees. Namely,
we prove that, for any two planar straight-line drawings Γ and Γ′ of an n-vertex
tree T , there is a crossing-free 3D morph with O(rpw(T )) steps between Γ and
Γ′, where rpw(T ) is the rooted pathwidth or Strahler number of T (a definition
of this parameter will be given later); this provides a sub-linear bound with
respect to the number of vertices of T , indeed rpw(T ) ∈ O(log n) [8]. Notably,
our morphing algorithm works even if Γ and Γ′ are not topologically equivalent,
hence the use of a third dimension overcomes another important limitation of
planar two-dimensional morphs. Our algorithm morphs both Γ and Γ′ to an
intermediate suitably-defined canonical 3D drawing; in order to do that, a root-
to-leaf path H of T is moved to a vertical line and then the subtrees of T rooted
at the children of the vertices in H are moved around that vertical line, thus
resembling a pole dance, which inspires the title of our paper.

We also look at whether our result can be generalized to morphs of crossing-
free straight-line 3D drawings of trees. That is, the drawings Γ and Γ′ now live
in R3, and the question is again whether a crossing-free 3D morph between Γ
and Γ′ exists with o(n) steps. We prove that this is not the case: Two crossing-
free straight-line 3D drawings of a path might require Ω(n) steps to be morphed
one into the other. The matching upper bound can always be achieved: For any
two crossing-free straight-line 3D drawings Γ and Γ′ of the same n-vertex tree
T there is a crossing-free 3D morph between Γ and Γ′ with O(n) steps.

Finally, we consider morphs of tree drawings in Euclidean spaces with more
than three dimensions. In particular, we show that, for any integer d ≥ 2, a
(d+ 2)-dimensional morph with a constant number of steps exists between any
two crossing-free straight-line tree drawings in the same d-dimensional space.

The rest of the paper is organized as follows. In Section 2 we deal with
crossing-free 3D morphs of 3D tree drawings. In Section 3 we show how to
construct 2-step crossing-free 3D morphs between planar straight-line drawings
of a path. In Section 4 we present our main result about crossing-free 3D morphs
of planar tree drawings. In Section 5 we deal with morphs in Rd, with d ≥ 4.
Finally, in Section 6 we conclude and present some open problems.

Throughout the rest of the paper, whenever we talk about a vertical straight
line in R3, we always mean a line parallel to the z-axis; further, whenever we
talk about a horizontal plane, we always mean a plane parallel to the xy-plane.

We remark that morphs of crossing-free straight-line drawings have also been
studied under additional restrictions, such as keeping the edge lengths constant,
especially for paths and trees. See, e.g., [13] for results in 2D, [9] for results in
3D, and [12] for results in 4D.
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2 Morphs of 3D drawings of trees

In this section we give a tight Θ(n) bound on the number of steps in a crossing-
free 3D morph between two crossing-free straight-line 3D tree drawings.

We start with the upper bound.

Theorem 1 For any two crossing-free straight-line 3D drawings Γ and Γ′ of an
n-vertex tree T , there exists a crossing-free 3D morph from Γ to Γ′ that consists
of O(n) steps.

Proof: We prove, by induction on n, that a crossing-free 3D morphM between
Γ and Γ′ exists with 3n− 2 steps. The base case, in which n = 1, is trivial.

For the inductive case, in which n > 1, consider any leaf v and let u be its
only neighbor in T . Remove v and the edge uv from T , Γ, and Γ′, obtaining
an (n − 1)-vertex tree T ′ and two crossing-free straight-line 3D drawings ∆
and ∆′ of it. By induction, there is a crossing-free 3D morph M′ = 〈∆ =
∆0,∆1, . . . ,∆3n−5 = ∆′〉 with 3n − 5 steps between ∆ and ∆′. Let ε > 0 be
the smallest distance from u to any vertex or any non-incident edge throughout
the morph M′.

We show how to construct M starting from M′. In particular, we will
determine a placement for v in each of ∆0,∆1, . . . ,∆3n−5, thus constructing
a sequence Γ0,Γ1, . . . ,Γ3n−5 of straight-line 3D drawings of T . In particular,
we will place v at distance less than ε from u in each of Γ0,Γ1, . . . ,Γ3n−5.
This implies that v is at distance less than ε from u throughout the morph
〈Γ0,Γ1, . . . ,Γ3n−5〉. As a consequence, any crossing in 〈Γ0,Γ1, . . . ,Γ3n−5〉 in-
volves uv and a different edge incident to u.

We start from Γ0, in which we place v at a point Γ0(v) along the straight-line
segment Γ(u)Γ(v) at distance less than ε from Γ0(u). The linear morph 〈Γ,Γ0〉
is crossing-free; in particular, only v moves during such a morph. We define the
last step 〈Γ∗,Γ′〉 of our 3D morph analogously: Only v moves and Γ∗(v) lies
along the straight-line segment Γ′(u)Γ′(v) at distance less than ε from Γ∗(u).

Suppose that a crossing-free straight-line 3D drawing Γi of T has been de-
fined, for some integer i ∈ {0, . . . , 3n − 6}. Since the existence of a crossing in
a linear morph 〈∆i,∆i+1〉 is invariant under a translation of ∆i+1 of any vec-
tor, we can assume without loss of generality that ∆i(u) = ∆i+1(u). Then the
motion of each edge incident to u in 〈∆i,∆i+1〉 defines a triangle with one end-
vertex in u. Since the number of such triangles is finite, there is a point Γi+1(v)
at distance less than ε from u such that the straight-line segment Γi(v)Γi+1(v)
does not pass through u and has no intersection with any of such triangles
(which implies that the edge uv does not intersect any other edge incident to
u during 〈∆i,∆i+1〉), except possibly at Γi(v). However, by assumption, Γi is
crossing-free; hence 〈Γi,Γi+1〉 is a crossing-free 3D morph.

During the linear morph 〈Γ3n−5,Γ
∗〉 the vertex v might overlap with u, or the

edge uv might overlap with another edge incident to u. However, only v moves
during such a morph, hence a sufficiently small perturbation of Γ3n−5(v) makes
〈Γ3n−5,Γ

∗〉 crossing-free without introducing any crossings in 〈Γ3n−6,Γ3n−5〉.
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Hence, M = 〈Γ,Γ0,Γ1, . . . ,Γ3n−5,Γ
∗,Γ′〉 is the desired crossing-free 3D morph

with 3n− 2 steps. This concludes the induction and the proof of the theorem.
�

The following lemma will be useful in order to prove the lower bound.

Lemma 1 During a linear morph between two straight-line 3D drawings of a
graph G, any two edges of G intersect O(1) times.

Proof: At any time instant t of the morph, the segments representing two
non-adjacent edges of G define a tetrahedron. If the segments intersect, then
the tetrahedron degenerates and its volume is 0. This volume can be expressed
as the Cayley-Menger determinant [21], and since each coordinate forming this
determinant depends linearly on t, the moments of time when the volume is
0 are zeros of a univariate polynomial of degree 6, hence there are O(1) of
them. Analogously, at any time instant of the morph, the segments representing
two adjacent edges of G define a triangle. If the segments intersect, then the
triangle degenerates and its area is 0. This area can be expressed as a univariate
polynomial of degree 4, hence there are O(1) moments of time when it is 0. �

The following lower bound matches the upper bound of Theorem 1.

Theorem 2 There exist two crossing-free straight-line 3D drawings Γ and Γ′ of
an n-vertex path P such that any crossing-free 3D morph from Γ to Γ′ consists
of Ω(n) steps.

Before proving Theorem 2, we review some definitions and facts from knot
theory; refer, e.g., to the book by Adams [1]. A knot is an embedding of a
circle S1 in R3. A link is a collection of knots which do not intersect each other.
Note that different knots of a link may be linked together. For links of two
knots, the (absolute value of the) linking number is an invariant that classifies
links with respect to ambient isotopies. Intuitively, the linking number is the
number of times that each knot winds around the other. The linking number is
known to be invariant with respect to different projections of the same link [1].
Given a projection of a link K consisting of two knots, the linking number of
K can be determined as follows: first, orient the two knots of K arbitrarily;
then, for every crossing between the two knots in the projection, add +1 or −1
if rotating the understrand respectively clockwise or counterclockwise lines it
up with the overstrand (taking into account the direction); finally, divide the
obtained number by 2.

Proof: [of Theorem 2] The drawing Γ of P is defined as follows. Embed the first
bn/2c edges of P in 3D as a spiral of monotonically-decreasing height. Embed
the rest of P as a spiral of the same type affinely transformed so that it goes
around one of the sides of the former spiral. See Figure 1(a). The drawing Γ′

places the vertices of P in order along the unit parabola in the plane y = 0.
Cut the edge joining the two spirals (the bold edge in Figure 1(a)). Removing

an edge makes morphing easier so any lower bound would still apply. Now close
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(a) (b)

Figure 1: Illustration for the proof of Theorem 2. (a) The drawing Γ of P , with
n = 26. (b) The link K obtained from Γ; the invisible edges are dashed.

the two open curves using two invisible edges to obtain a link K of two knots;
see Figure 1(b). It is easy to verify that the (absolute value of the) linking
number of K is Ω(n2): indeed, determining it by the above procedure for the
projection given by Figure 1(b) results in the linking number being equal to
the number of crossings between the two links in this projection. On the other
hand, in the drawing Γ′, the two knots of K are separated by a plane and so the
linking number of K in Γ′ is 0.

In any linear morph of K, the edges of P cannot cross each other, but they
can cross invisible edges. However, by Lemma 1, during a linear morph between
two straight-line 3D drawings of K any two edges of K intersect O(1) times.
Thus each invisible edge can only be crossed O(n) times during a linear morph.
A single crossing can only change the linking number by 1. Therefore the linking
number can only decrease by O(n) in a linear morph of K. It follows that the
morph from Γ to Γ′ consists of Ω(n) linear morphs. �

3 Morphing two planar drawings of a path in 3D

In this section we show how to morph two planar straight-line drawings Γ and
Γ′ of an n-vertex path P := (v0, . . . vn−1) into each other in two steps.

The canonical 3D drawing of P , denoted by C(P ), is the crossing-
free straight-line 3D drawing of P that maps each vertex vi to the point
(0, 0, i) ∈ R3, as shown in Figure 2. We now prove the following.

Theorem 3 For any two planar straight-line drawings Γ and Γ′ of an n-vertex
path P , there exists a crossing-free 3D morph M = 〈Γ, C(P ),Γ′〉 with 2 steps.

Proof: It suffices to prove that the linear morph 〈Γ, C(P )〉 is crossing-free, since
the morph 〈C(P ),Γ′〉 is just the morph 〈Γ′, C(P )〉 played backwards.

Since 〈Γ, C(P )〉 is linear, the speed at which the vertices of P move is constant
(though it might be different for different vertices). Thus the speed at which
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Figure 2: (a) A straight-line planar drawing Γ of an n-vertex path P and (b) a
morph from Γ to C(P ). The vertex trajectories are represented by dotted lines.

their projections on the z-axis move is constant as well. For each i = 0, . . . , n−1,
the vertex vi moves at constant speed from its position (xi, yi, 0) in Γ to its
position (0, 0, i) in C(P ); it follows that at any time during the motion (except
at the initial time t = 0) we have z(v0) < z(v1) < . . . < z(vn−1). Therefore,
in any intermediate drawing of 〈Γ, C(P )〉 any edge vivi+1 is separated from any
other edge by the horizontal plane through one of its end-points. Hence, no
crossing happens during 〈Γ, C(P )〉. �

4 Morphing two planar drawings of a tree in 3D

Let T be a tree with n vertices, arbitrarily rooted at any vertex. In this section
we show that any two planar straight-line drawings of T can be morphed into
one another by means of a crossing-free 3D morph whose number of steps is
linear in the rooted pathwidth of T ; this number is hence in O(log n) [8].

Similarly to Section 3, we first define a canonical 3D drawing C(T ) of T (see
Section 4.1), and then show how to construct a crossing-free 3D morph from
any planar straight-line drawing of T to C(T ) (see Section 4.2).

Before proceeding, we introduce some necessary definitions and notation.
By a cylinder we always mean a right cylinder having a horizontal circle as a
base. By a cone we always mean a straight circular cone generated by a ray
rotated around a fixed vertical line (the axis) while keeping its origin fixed at
a point (the apex) on this line. The slope φ(C) of a cone C is the slope of the
generating ray as determined in the vertical plane containing the ray.

Let C in and Cout be two cones with the same apex and with φ(C in) >
φ(Cout) > 0; further, let P∗ be a horizontal plane that is higher than the apex
of C in and Cout. Then the funnel F determined by C in, Cout, and P∗ is the
closed bounded region of R3 that is delimited by P∗ from above, by C in from
the inside, and by Cout from the outside; see Figure 3.
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Cout

C in

P∗

Figure 3: The funnel F determined by the cones C in and Cout, and by the
plane P∗.
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Figure 4: The illustration (a) shows, for each vertex v of a tree T , the number
rpw(T (v)). In particular, rpw(T ) = 3. The illustration (b) shows with bold
lines the heavy edges of T forming the heavy paths H,H0, . . . ,H4, and the
labeling of the vertices in H and of their light children. The illustration (c)
shows the path tree of T .

For a tree T , let T (v) denote the subtree of T rooted at a vertex v. Also, let
|T | denote the number of vertices in T and let r(T ) denote the root of T .

The Strahler number or Horton-Strahler number of a tree is a parameter
which was introduced by Horton and Strahler [19, 23, 24]. The same parameter
was recently rediscovered by Biedl [8] with the name of rooted pathwidth when
addressing the problem of computing upward tree drawings with optimal width.
The rooted pathwidth of a tree T , which we denote by rpw(T ), is defined as
follows. If |T | = 1, then rpw(T ) = 1. Otherwise, let k be the maximum rooted
pathwidth of any subtree rooted at a child of r(T ). Then rpw(T ) = k if exactly
one subtree rooted at a child of r(T ) has rooted pathwidth equal to k, and
rpw(T ) = k + 1 if more than one subtree rooted at a child of r(T ) has rooted
pathwidth equal to k; see Figure 4(a).

The heavy-rooted-pathwidth decomposition of a tree T is defined as follows;
refer to Figure 4(b). For each non-leaf vertex v of T , let c∗ be the child of v in
T such that rpw(T (c∗)) is maximum (ties are broken arbitrarily). Then (v, c∗)
is a heavy edge; further, each child c 6= c∗ of v is a light child of v, and the
edge (v, c) is a light edge. Connected components of heavy edges form paths,
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Figure 5: The canonical 3D drawing C(T ) for the tree T in Figure 4.

called heavy paths, which may have many incident light edges. Each path has
a vertex, called the head, that is the closest vertex to r(T ). The path tree of T
is a tree whose vertices correspond to heavy paths in T ; see Figure 4(c). The
parent of a heavy path P in the path tree is the heavy path that contains the
parent of the head of P . The root of the path tree is the heavy path containing
r(T ). We denote by H the root of the path tree of T ; let v0, . . . , vk−1 be the
ordered sequence of the vertices of H, where v0 = r(T ). For i = 0, . . . , k− 1, we
let v0i , . . . , v

ti
i be the light children of vi in any order. Let L = u0, u1, . . . , ul−1

be the sequence of the light children of H ordered so that: (i) any light child
of a vertex vj precedes any light child of a vertex vi, if i < j; and (ii) the light

child vj+1
i of a vertex vi precedes the light child vji of vi. For a vertex ui ∈ L,

we denote by p(ui) its parent; note that p(ui) ∈ H.
It is known [8] that the height of the path tree of an n-vertex tree T is at

most rpw(T ) ∈ O(log n). Note that the heavy-rooted-pathwidth decomposition
is slightly different from the well-known heavy-path decomposition [22] which
we used in an earlier version of this paper.

4.1 Canonical 3D drawing of a tree

Given a tree T and a heavy-rooted-pathwidth decomposition of T , we define the
canonical 3D drawing C(T ) of T as the crossing-free straight-line 3D drawing
of T that maps each vertex v of T to its canonical position C(v) defined as
follows; refer to Figure 5. Note that our canonical drawing is equivalent to the
“standard” straight-line upward drawing of a tree [8, 11, 14].

• First, we set C(v0) = (0, 0, 0) for the root v0 of T .

• Second, for each i = 1, . . . , k − 1, we set C(vi) = (0, 0, zi−1 + |T (vi−1)| −
|T (vi)|), where zi−1 is the z-coordinate of C(vi−1).

• Third, for each i = 1, . . . , k − 1 and for each j = 0, . . . , ti, we determine
C(vji ) as follows. If j = 0, then we set C(vji ) = (1, 0, 1 +zi), where zi is the



588 E. Arseneva et al. Pole Dancing: 3D Morphs for Tree Drawings

z-coordinate of C(vi); otherwise, we set C(vji ) = (1, 0, zj−1i + |T (vj−1i )|),
where zj−1i is the z-coordinate of C(vj−1i ).

• Finally, in order to determine the canonical positions of the vertices in
T (vji )\{vji }, for each i = 0, . . . , k−2 and each j = 0, . . . , ti, we recursively

construct the canonical 3D drawing C(T (vji )) of T (vji ), and translate all

the vertices by the same vector so that vji is sent to C(vji ).

Remark 1 The canonical position C(v) of any vertex v of T is (dpt(v), 0, dfs(v)).
Here dpt(v) is the depth, in the path tree of T , of the vertex that corresponds to
the heavy path of T that contains v, and dfs(v) is the position of v in a depth-
first search on T in which the children of any vertex are visited as follows: first
visit the light children in reverse order with respect to L, and then visit the
child incident to the heavy edge.

Remark 2 The canonical 3D drawing C(T ) of T lies on a rectangular grid with
height n and width rpw(T ) in the plane y = 0.

4.2 The procedure Canonize(Γ)

Let Γ be a planar straight-line drawing of T . Below we give a recursive procedure
Canonize(Γ) that constructs an O(rpw(T ))-step crossing-free 3D morph from Γ
to the canonical 3D drawing C(T ) of T . This is enough to prove that, for any
two planar straight-line drawings Γ and Γ′ of T , there exists a crossing-free 3D
morph from Γ to Γ′ with O(rpw(T )) steps, since a morph from C(T ) to Γ′ can
be obtained by playing the morph from Γ′ to C(T ) backwards.

The procedure Canonize(Γ) consists of seven phases. Some of these phases,
namely Phase 1, Phase 2, Phase 3, Phase 6, and Phase 7 are single linear morphs;
Phase 5 consists of a constant number of morphing steps; finally, Phase 4 per-
forms some (simultaneous) recursive calls to the procedure Canonize(), hence it
consists of a number of morphing steps which is linear in the rooted pathwidth
of some subtree on which the procedure is recursively invoked.

We assume that the root v0 of T is placed at (0, 0, 0) in Γ. This is not a
loss of generality, up to a suitable modification of the reference system. We
fix a constant k∗ ∈ R with k∗ > 1, which we consider global to the procedure
Canonize(Γ) and its recursive calls. The global constant k∗ will help us to realize
Phase 5 of Canonize(Γ) in O(1) morphing steps.

The procedure Canonize(Γ) maintains the following “steady-low-root” in-
variant: The root v0 of T never moves and is on the lower base of the smallest
cylinder that bounds the volume used by the morph Canonize(Γ).

Phase 1 (set the pole). The first phase of the procedure Canonize(Γ) aims
to construct a linear morph 〈Γ,Γ1〉, where Γ1 is such that the heavy path
(v0, . . . , vk−1) of T lies on the vertical line x = y = 0 and the subtrees of
T rooted at the light children of each vertex vi lie on the horizontal plane
through vi.
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More precisely, the vertices of T are placed in Γ1 as follows. For i =
0, . . . , k − 1, place vi at the point C(vi). Every vertex that belongs to a sub-
tree rooted at a light child of vi is placed at a point such that its trajectory in
the morph defines the same vector as the trajectory of vi.

∗ Below we refer to
Γ1(H) as the pole. The pole will remain stationary throughout the rest of the
procedure Canonize(Γ). We have the following.

Lemma 2 Phase 1 of the procedure Canonize(Γ) is a crossing-free linear
morph.

Proof: For each vertex vi ∈ H, all the vertices in T (vi) \ T (vi+1), i.e., vi and
all the vertices in the subtrees rooted at the light children of vi, are translated
by the same vector during the morph. Since Γ is planar, there is no collision
between distinct vertices and edges of T (vi) \ T (vi+1) during the morph.

Further, for distinct i and j, the drawings of T (vi) \ T (vi+1) and T (vj) \
T (vj+1) lie on horizontal planes at different heights throughout the morph,
except at the initial time instant, hence they do not collide with each other.

Finally, as in the proof of Theorem 3, we have that each edge (vi, vi+1) of
H is separated from each T (vj) \ T (vj+1) by the horizontal plane through vi or
vi+1, depending on whether j ≤ i or j > i, respectively. The lemma follows. �

Phase 2 (displace). The second phase of the procedure Canonize(Γ) aims to
construct a linear morph 〈Γ1,Γ2〉 which moves each subtree T (vji ) to a different

horizontal plane. The movement is small enough so that each vertex vji is still
below the vertex vi+1.

More precisely, let 0 < εl−1 < εl−2 < · · · < ε1 < ε0 < 1 be real numbers to
be determined later, where l is the number of right children of H. We define
Γ2 as follows. For each i = 0, . . . , k − 1, let Γ2(vi) = Γ1(vi); further, for each
i = 0, . . . , l−1 and for each vertex v in T (ui), let Γ2(v) have the same x- and y-
coordinates as Γ1(v) and let Γ2(v) have a z-coordinate equal to the z-coordinate
of Γ1(v) plus εi. We have the following.

Lemma 3 Phase 2 of the procedure Canonize(Γ) is a crossing-free linear
morph, provided that the numbers ε0, ε1, . . . , εl−1 are sufficiently small.

Proof: The lemma directly follows from a standard continuity argument, like
the one used in the proof of Fáry’s theorem [15]: Any sufficiently small pertur-
bation of the vertex positions in a crossing-free drawing maintains the drawing
crossing-free. Now, for any drawing of the morph 〈Γ1,Γ2〉, the distance between
the position of any vertex v and Γ1(v) is at most ε0, hence the morph 〈Γ1,Γ2〉
is crossing-free, provided that ε0 is sufficiently small. �

∗Since the morph 〈Γ,Γ1〉 is linear, the trajectory of any vertex v is simply the vector
whose initial and terminal points are Γ(v) and Γ1(v), respectively.
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Cout

C in

Ii

P∗i

C in
i+1

>rpw(T )

p(ui+1)

Si
Oi

p(ui)

Figure 6: Illustration for the Properties (F1)–(F6). The fat small drawing is
Γ2(T (ui)), while the lighter larger drawing is Γ3(T (ui)). The intersection of the
cone C in

i+1 with the plane P∗i is dashed.

Phase 3 (lift). The aim of the third phase of the procedure Canonize(Γ) is to
construct a linear morph 〈Γ2,Γ3〉, where Γ3 is such that the drawings of any two
subtrees T (ui) and T (uj) rooted at different light children ui and uj of vertices
in H are vertically and horizontally separated. In particular, the vertical sepa-
ration between Γ3(T (ui)) and Γ3(T (uj)) needs to be large enough so that the
recursively computed morphs Canonize(Γ3(T (ui))) and Canonize(Γ3(T (uj))),
which are going to be performed in the next phase of the procedure, do not
interfere with each other.

We describe how to construct Γ3. While doing so, we also determine the
values ε0, ε1, . . . , εl−1 from Phase 2. As anticipated, Γ3(vi) = Γ2(vi), for each
vertex vi in H. For i = 0, . . . , l − 1, we construct Γ3(T (ui)) together with:

• a cylinder Si that bounds the volume used by the recursively constructed
morph Canonize(Γ3(T (ui))) – this morph will be part of Phase 4; and

• a funnel Fi determined by two cones C in
i and Cout

i with their apexes at
p(ui) and by a horizontal plane P∗i with equation z = z∗i .

Denote by Ii and Oi the circles obtained as the intersections of C in
i and

Cout
i with P∗i . Further, denote by Ai the annulus delimited by Ii and Oi on
P∗i . Our construction ensures that the following properties are satisfied for each
i = 0, 1, . . . , l − 1 (refer to Figs. 6 and 7):

(F1) the ratio between the radii of Oi and Ii is greater than the global
constant k∗;

(F2) if i > 0, then φ(Cout
i−1) > φ(C in

i ), where φ(C) denotes the slope of a cone
C; moreover, the distance between any point of Oi−1 and any point of the
circle obtained as the intersection of C in

i with P∗i−1 is larger than rpw(T );

(F3) the funnel Fi contains Γ2(T (ui)) and Γ3(T (ui)); in particular, Γ3(T (ui))
lies on Ai;
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p(ui)

Fi

Si

p(ui+1)=p(ui+2)

Fi+1

Si+1

Si+2

Fi+2

Figure 7: Cross section of three funnels and cylinders with the xz-plane.

(F4) the plane P∗i is higher than every vertex in H and than every cylinder
S0,S1, . . . ,Si−1;

(F5) the cylinder Si has its lower base on the plane P∗i ; and

(F6) the cylinders S0,S1, . . . ,Si−1 are above the cone C in
i .

Before describing how to construct Γ3(T (ui)) and its associated cylinder
Si and funnel Fi, we comment on Properties (F1)–(F6); these properties are
exploited in Phases 3–7 to guarantee that the constructed morphs are crossing-
free. Property (F1) ensures that the annulus Ai is “sufficiently thick”; during
Phase 5, the vertex ui needs to move across Ai, and the thickness of Ai ensures
that this movement can be realized in O(1) morphing steps. Property (F2) en-
sures that any two funnels Fi and Fj are disjoint except, possibly, for the apexes
of their cones, which might coincide; moreover, the second part of the property
provides a lower bound on the minimum distance between the intersections of
the funnels Fi−1 and Fi with the plane P∗i−1. Property (F3) is used to prove
that the lift of each subtree T (ui) which is performed in Phase 3 of the pro-
cedure Canonize() happens inside the corresponding funnel Fi; this, together
with the disjointness of the funnels, ensures that the lifts of distinct subtrees
do not interfere with each other. Properties (F4) and (F5) guarantee a verti-
cal separation between the cylinders S0,S1, . . . ,Sl−1; this ensures that, in the
upcoming Phase 4, the recursively constructed morphs Canonize(Γ3(T (u0))),
Canonize(Γ3(T (u1))), . . . , Canonize(Γ3(T (ul−1))) can be executed simultane-
ously while guaranteeing the absence of crossings between the edges of any two
distinct subtrees T (ui) and T (uj). Finally, Property (F6) provides a separation
between cylinders and funnels, which is used to guarantee that the edge p(ui)ui
does not cross any edge of a tree T (uj) with j < i during Phase 4.

Assume that, for some i ∈ {0, . . . , l−1}, the drawings Γ3(T (u0)), Γ3(T (u1)),
. . . , Γ3(T (ui−1)) have been constructed already, together with the cylinders
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S0,S1, . . . ,Si−1 and the funnels F0,F1, . . . ,Fi−1; assume also that the numbers
ε0, ε1, . . . , εi−1 have been determined. We show how to construct the drawing
Γ3(T (ui)), the cylinder Si, and the funnel Fi, and how to determine the number
εi, so that Properties (F1)–(F6) are satisfied. Clearly, when i = 0, no drawing,
cylinder, or funnel has been constructed yet. We proceed as follows.

1. If i = 0, then we let z∗i be equal to one plus the z-coordinate of vk−1
(recall that the plane P∗i has equation z = z∗i ); in this case Property (F4)
is trivially satisfied, as every vertex of H has a z-coordinate smaller than
or equal to the one of vk−1. If i > 0, then we let z∗i = 1 + zTi−1, where
z = zTi−1 is the horizontal plane containing the upper base of Si−1; this
ensures that Property (F4) is satisfied. Namely, the plane P∗i is higher
than Si−1, by construction, and is higher than the plane P∗i−1 containing
the lower base of Si−1, which in turn is higher than every vertex in H and
than every cylinder S0,S1, . . . ,Si−2.

2. Next, we define a cone C in
i with apex at p(ui) so that the cylinders

S0,S1, . . . ,Si−1 are all above C in
i . This is trivial if i = 0. Otherwise,

note that all such cylinders are above the horizontal plane through p(ui),
given that they satisfy Properties (F4) and (F5); further, C in

i coincides
with this plane in the limit as φ(C in

i ) goes to 0. By continuity, it suffices
to choose φ(C in

i ) > 0 small enough to ensure that C in
i has all the cylinders

S0,S1, . . . ,Si−1 above, hence Property (F6) is satisfied; the slope φ(C in
i )

is also chosen so that it is smaller than φ(Cout
i−1) and so that the distance

between any point of Oi−1 and any point of the circle obtained as the
intersection of C in

i with P∗i−1 is larger than rpw(T ). This ensures that
Property (F2) is satisfied.

3. We now choose εi to be sufficiently small so that Γ2(T (ui)) is below C in
i .

Observe that, as εi goes to 0, the horizontal plane containing Γ2(T (ui))
approaches the horizontal plane containing p(ui); by continuity, it suffices
to choose εi small enough to ensure that Γ2(T (ui)) is below C in

i . The value
of εi is also chosen small enough so that the morph 〈Γ1,Γ2〉 is crossing-free,
as in Lemma 3.

4. We now define a cone Cout
i with apex at p(ui); again by continuity, it suf-

fices to choose φ(Cout
i ) > 0 small enough to ensure that Cout

i has Γ2(T (ui))
above, that φ(Cout

i ) < φ(C in
i ), and that the ratio between the radii of Oi

and Ii is greater than k∗. It follows that Property (F1) is satisfied and
that Γ2(T (ui)) is inside Fi.

5. Next, for any vertex v ∈ T (ui), we define Γ3(v) as the intersection point
between the horizontal plane P∗i and the ray from p(ui) through Γ2(v);
note that such a ray is inside Fi, given that p(ui) is the apex of Fi and
that Γ2(v) is inside Fi. Hence, Property (F3) is satisfied. This completes
the construction of Γ3(T (ui)).
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6. Finally, we recursively compute the morph Canonize(Γ3(T (ui))) and we
let Si be the smallest cylinder enclosing such a morph. Note that the
steady-low-root invariant on Canonize(Γ3(T (ui))) ensures that ui is on
the lower base of Si. Then place Si in the space so that the position
of ui on the lower base of Si coincides with Γ3(ui). This implies that
Property (F5) is satisfied.

This concludes the description of the construction of Γ3. Observe that,
although such a construction is defined by looking at the subtrees T (ui) one at
a time, Phase 3 actually consists of a single morphing step 〈Γ2,Γ3〉, which we
now prove to be crossing-free.

Lemma 4 Phase 3 of the procedure Canonize(Γ) is a crossing-free linear
morph.

Proof: First, for any vertex ui ∈ L, any two elements (vertices and edges) of
T (ui) do not cross each other during the morph 〈Γ2,Γ3〉, because the horizon-
tal component of their motion is a scaling around the pole, and the vertical
component is a lift up to the same height.

Second, consider any two vertices ui, uj ∈ L with i 6= j. By Property (F3),
any element (vertex or edge) of the tree T (ui) lies inside the funnel Fi through-
out the morph 〈Γ2,Γ3〉 and any element of T (uj) lies inside Fj throughout
〈Γ2,Γ3〉. By Property (F2), we have that Fi and Fj are disjoint, except possibly
at their apexes. Hence, no crossing occurs during the morph 〈Γ2,Γ3〉 between
the elements of T (ui) and T (uj). Analogously, no two edges p(ui)ui and p(uj)uj
with i 6= j cross each other, and no edge p(ui)ui crosses the elements of a tree
T (uj) if i 6= j. �

Phase 4 (recurse). For each i = 0, . . . , l − 1, we make a recursive call
Canonize(Γ3(T (ui))). The resulting morphs are combined into a unique morph
〈Γ3, . . . ,Γ4〉, whose number of steps is equal to the maximum number of steps
in any of the recursively computed morphs. Indeed, the first step of 〈Γ3, . . . ,Γ4〉
consists of the first steps of all the recursively computed morphs that have at
least one step; the second step of 〈Γ3, . . . ,Γ4〉 consists of the second steps of all
the recursively computed morphs that have at least two steps; and so on.

Lemma 5 Phase 4 of the procedure Canonize(Γ) is a crossing-free morph.

Proof: First, no two elements (vertices or edges) of the same tree T (ui) cross
each other during 〈Γ3, . . . ,Γ4〉, as such a morph is recursively computed.

Second, by construction, the cylinder Si bounds the volume used by the
morph Canonize(Γ3(T (ui))). Further, by Properties (F4) and (F5) the cylinders
S0,S1, . . . ,Sl−1 are pairwise disjoint, hence no element of a tree T (ui) crosses an
element of a distinct tree T (uj) during 〈Γ3, . . . ,Γ4〉. Properties (F4) and (F5)
and the steady-low-root invariant also imply that no element of a tree T (ui)
crosses an edge of H or an edge p(uj)uj with j ≤ i during 〈Γ3, . . . ,Γ4〉.
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Third, an edge p(uj)uj does not cross an element of a tree T (ui) with j > i
during 〈Γ3, . . . ,Γ4〉, since by Property (F6) the cylinder Si is above C in

j , while

by Property (F3) the edge p(uj)uj is below C in
j in Γ3 and it does not move

during 〈Γ3, . . . ,Γ4〉 by the steady-low-root invariant.
Finally, no two edges p(ui)ui, p(uj)uj , or vhvh+1 cross each other during

〈Γ3, . . . ,Γ4〉, as none of such edges moves during this morph. �

Phase 5 (rotate). The next morph transforms Γ4 into a drawing Γ5 such
that each vertex ui ∈ L is mapped to the point p∗i which is the intersection of Ii
with the plane y = 0 in the half-space x > 0 (recall that Ii is the circle obtained
as the intersection of C in

i with P∗i ). Hence, after Phase 5, the whole drawing
lies on the plane y = 0. Going from Γ4 to Γ5 in one crossing-free linear morph
is not always possible, however we show how to accomplish such a morph in
O(k∗) ⊆ O(1) steps.

Refer to Figure 8. The morph performed in Phase 5 consists of a sequence of
linear morphs; in each of these morphs all the vertices of T (ui) are translated by
the same vector. This is done so that ui stays inside Ai throughout the morph.
Thus, the trajectory of ui during Phase 5 defines a polygonal chain inside Ai.
By Property (F1), the ratio between the outer and the inner radius of Ai is at
least the global constant k∗, hence we can inscribe a regular O(k∗) ⊆ O(1)-gon
P in Ai, and the trajectory of ui can be defined so that it follows P plus at
most two extra line segments, one from Γ4(ui) to a vertex of P , and one from
a vertex of P to p∗i . We get the following.

Lemma 6 Phase 5 of the procedure Canonize(Γ) is a crossing-free morph with
O(1) steps.

Proof: First, since in each linear morph of Phase 5 all the vertices of T (ui) are
translated by the same vector, it follows that at any time instant the drawing
of T (ui) is a translation of the canonical 3D drawing C(T (ui)), hence there are
no crossings between two elements of T (ui) during Phase 5.

Second, by Property (F5), the tree T (ui) lies in the closed half-space z ≥ z∗i
in Γ4 and hence throughout Phase 5, as no vertex changes its z-coordinate
during Phase 5. By Property (F4), the edges of H, the edges p(uj)uj with
j < i, and the elements of the trees T (uj) with j < i lie in the open half-space
z < z∗i in Γ4 and hence throughout Phase 5, thus they do not cross any element
of T (ui). Analogously, the edge p(ui)ui does not cross any element of T (ui)
during Phase 5, since by Property (F4) and by the steady-low-root invariant it
lies in the open half-space z < z∗i , except for the vertex ui which is shared with
T (ui).

Third, we prove that the elements of each tree T (ui) do not cross with
any edge p(uj)uj with j > i. Since T (ui) lies in the closed half-space z ≥ z∗i
throughout Phase 5, any crossing between an element of T (ui) and p(uj)uj can
only occur in the closed half-space z ≥ z∗i . By construction, the vertex ui lies
inside Ai and the drawing of T (ui) is a canonical drawing throughout Phase
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Figure 8: Illustration for Phase 5 of the procedure Canonize(Γ). The poly-
gon with dashed boundary is the regular O(1)-gon P inscribed in Oi. The
arrows with white heads represent the movements of ui in the morphing steps
of Phase 5. The part of the disk delimited by the intersection of C in

j with P∗i
outside Oi is light green.

5. Since the width of a canonical drawing is at most rpw(T ), it follows that,
during Phase 5, any point of the projection of the drawing of T (ui) on the plane
P∗i is at distance at most rpw(T ) from Oi. Hence, by Property (F2), the disk
δj delimited by the intersection of C in

j with P∗i contains the projection of the
drawing of T (ui) on P∗i in its interior. On the other hand, since the edge p(uj)uj
lies inside Fj and hence below C in

j , we have that the projection of the part of
the edge p(uj)uj in the closed half-space z ≥ z∗i on P∗i lies outside δj . It follows
that the edge p(uj)uj does not cross any element of T (ui) throughout Phase 5.

Finally, no two edges p(ui)ui and p(uj)uj with i 6= j cross each other during
Phase 5, since such edges lie inside Fi and Fj , respectively, and such funnels
are disjoint except, possibly, at their apexes, by Property (F2). �

The last two phases of the procedure Canonize(Γ) are unidirectional morphs,
where a unidirectional morph is a linear 2D morph in which all the vertices move
along parallel lines; see [2, 4, 6]. The following property of unidirectional morphs
is going to be useful.

Corollary 1 [2] Let 〈ΓA,ΓB〉 be a unidirectional morph between two planar
straight-line drawings ΓA and ΓB of a graph G. Let u be a vertex of G, let vw
be an edge of G and, for any drawing of G, let lvw be the line through the edge
vw oriented from v to w. Suppose that u is to the left of lvw both in ΓA and in
ΓB. Then v is to the left of lvw throughout 〈ΓA,ΓB〉.

Phase 6 (go down). This phase consists of a unidirectional morph 〈Γ5,Γ6〉,
where Γ6 is defined as follows. For every vertex vi in H, Γ6(vi) = Γ5(vi);
further, for each i = 0, . . . , l − 1, and for each vertex v in T (ui), let Γ6(v) have
the same x- and y-coordinates as Γ5(v) and let Γ6(v) have a z-coordinate equal
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to the z-coordinate of the canonical position C(v). Note that the morph 〈Γ5,Γ6〉
happens on the plane y = 0. We have the following.

Lemma 7 Phase 6 of the procedure Canonize(Γ) is a crossing-free linear
morph.

Proof: During the morph 〈Γ5,Γ6〉 all the vertices v0, v1, . . . , vk−1 of H remain
stationary, while all the other vertices move vertically downwards; indeed, by
Properties (F4) and (F5), all the vertices in the subtrees T (ui) are higher than
vk−1 in Γ4 (and hence in Γ5), while they are lower than vk−1 in Γ6.

First, for i = 0, . . . , l − 1, all the vertices in the tree T (ui) are translated
downwards by the same vector, hence no two elements (vertices or edges) in the
same tree T (ui) cross each other.

Second, we prove that, for any i, j ∈ {0, 1, . . . , l − 1} with i < j, all the
vertices of T (uj) have x-coordinates greater than every vertex of T (ui) through-
out 〈Γ5,Γ6〉. Similarly to the proof of Lemma 6, the width of Γ5(T (ui)) is at
most rpw(T ), hence, by Property (F2), the intersection point p of C in

j with the
planes P∗i and y = 0 in the half-space x > 0 has x-coordinate greater than the
x-coordinate of every point of Γ5(T (ui)). Since Γ5(uj) coincides with p∗j , whose
x-coordinate is greater than the one of p, and since every point of Γ5(T (uj))
has x-coordinate greater than or equal to the one of Γ5(uj), it follows that all
the vertices of T (uj) have x-coordinates greater than every vertex of T (ui) in
Γ5, and hence throughout Phase 6. It follows that no element of T (uj) crosses
an element of T (ui) or an edge p(ui)ui if i < j.

Third, an edge p(ui)ui does not cross any element of T (ui) as they are
separated by the horizontal plane through ui throughout Phase 6.

Finally, consider any edge p(uj)uj . Any tree T (ui) with i < j is entirely
above the line through p(uj)uj both in Γ5 and in Γ6, which implies that it is
entirely above the line through p(uj)uj throughout Phase 6, by Corollary 1;
hence p(uj)uj does not cross any element of T (ui). The same argument also
proves that p(uj)uj does not cross any edge p(ui)ui with i < j (where possibly
p(ui) and p(uj) are the same vertex). �

Phase 7 (go left). The final phase of our morphing procedure consists of a
unidirectional morph 〈Γ6,Γ7〉, where Γ7 is the canonical 3D drawing C(T ) of T .
Note that this linear morph only moves the vertices horizontally; indeed, all the
vertices lie on the plane y = 0 (already after Phase 5) and they have the same
z-coordinate as in C(T ) (as a result of Phase 6). We have the following.

Lemma 8 Phase 7 of the procedure Canonize(Γ) is a crossing-free linear
morph.

Proof: During this morph all the vertices of H remain stationary, while all the
other vertices move leftwards. Similarly to the proof of Lemma 7, we have that
no two elements (vertices or edges) in the same tree T (ui) cross each other, as
such elements are translated by the same vector; further, no element of a tree
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T (ui) crosses an element of a distinct tree T (uj), as these trees are vertically
separated throughout Phase 7. Any edge p(ui)ui is vertically separated from all
the trees T (uj) with j ≤ i, and horizontally separated from all the trees T (uj)
with j ≥ i, hence p(ui)ui does not cross any element of a tree T (uj) throughout
Phase 7. Finally, no two edges p(ui)ui and p(uj)uj with i < j (where possibly
p(ui) and p(uj) are the same vertex) cross, as p(ui)ui is above the line through
p(uj)uj both in Γ6 and in Γ7, and hence throughout Phase 7 by Corollary 1. �

We finally get the following.

Theorem 4 For any two plane straight-line drawings Γ and Γ′ of an n-vertex
tree T , there exists a crossing-free 3D morph from Γ to Γ′ with O(rpw(T )) ⊆
O(log n) steps.

Proof: A 3D morph from Γ to Γ′ can be constructed as the concatenation
of Canonize(Γ) with the reverse of Canonize(Γ′). Hence, it suffices to prove
that Canonize(Γ) is a crossing-free 3D morph with O(rpw(T )) steps. That
rpw(T ) ∈ O(log n) has been proved by Biedl [8].

Lemmas 2–8 ensure that Canonize(Γ) is a crossing-free 3D morph and that
each of Phases 1, 2, 3, 5, 6, and 7 has O(1) steps. Since the number of morphing
steps of Phase 4 is equal to the maximum number of steps of any recursively
computed morph and since, by definition of heavy path, each tree T (ui) for
which a recursive call Canonize(Γ3(T (ui))) is made has rpw(T (ui)) ≤ rpw(T )−
1, it follows that Canonize(Γ) requires O(rpw(T )) steps. �

5 Morphs in Higher-Dimensional Spaces

In this section we show that any two straight-line crossing-free drawings of a
tree can be morphed into one another in two steps if the morph is allowed to
use two dimensions more than the space where the input drawings lie.

We start by formally defining, for any d ≥ 2, a d-dimensional crossing-free
morph between two crossing-free straight-line d-dimensional drawings Γ and Γ′

of the same tree T as a sequence M = 〈Γ = Γ1,Γ2, . . . ,Γk = Γ′〉 such that:
(i) for i = 1, . . . , k, the drawing Γi is a crossing-free straight-line d-dimensional
drawing of T ; and (ii) for i = 1, . . . , k − 1, the step 〈Γi,Γi+1〉 is a crossing-free
linear morph, i.e., no two edges cross throughout the transformation. We have
the following.

Theorem 5 Let d ≥ 2 be an integer. For any two crossing-free straight-line
d-dimensional drawings Γ and Γ′ of a tree T , there exists a crossing-free (d+2)-
dimensional morph from Γ to Γ′ with 2 steps.

Proof: We define the canonical (d + 2)-dimensional drawing of T , denoted by
Cd+2(T ), as the crossing-free straight-line (d+2)-dimensional drawing of T that
maps each vertex v to its canonical position Cd+2(v) defined as follows. For any
i ∈ {1, 2, . . . , d + 2}, let Cd+2

i (v) denote the i-th coordinate of a vertex v in its
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canonical position. We use the same notation and terminology as in Section 4.
In particular, let (v0, . . . , vk−1) be a heavy path of T , where v0 is the root of T ;
further, for i = 0, . . . , k−1, let v0i , . . . , v

ti
i be the light children of vi in any order.

First, we set Cd+2(v0) = (0, . . . , 0). Second, for i = 1, . . . , k − 1, we set
Cd+2(vi) = (0, . . . , 0, Cd+2

d+2(vi−1)+ |T (vi−1)|−|T (vi)|). Third, for i = 1, . . . , k−1

and for each light child vji of vi, we determine Cd+2(vji ) as follows. We set

Cd+2(v0i ) = (0, . . . , 0, 1, 1 + Cd+2
d+2(vi)) and, for i = 1, . . . , ti, we set Cd+2(vji ) =

(0, . . . , 0, 1, Cd+2
d+2(vj−1i )+|T (vj−1i )|). Finally, in order to determine the canonical

positions of the vertices in T (vji ) \ {vji }, we recursively construct the canonical

(d + 2)-dimensional drawing Cd+2(T (vji )) of T (vji ), and we translate all the

vertices by the same vector so that vji is sent to Cd+2(vji ).

We prove that 〈Γ, Cd+2(T ),Γ′〉 is a d-dimensional crossing-free morph. It
suffices to prove that the linear morph 〈Γ, Cd+2(T )〉 is crossing-free, since the
morph 〈Cd+2(T ),Γ′〉 is just the morph 〈Γ′, Cd+2(T )〉 played backwards.

Label the vertices of T as w0, . . . , wn−1 in such a way that Cd+2
d+2(wi) = i.

Recall that Γ(wj) denotes the position of wj in Γ and let Γi(wj) denote the
i-th coordinate of wj in Γ. Then Γ(wj) = (Γ1(wj),Γ2(wj), . . . ,Γd(wj), 0, 0).
At any time t ∈ [0, 1] of the morph 〈Γ, Cd+2(T )〉, the position of wj is hence
wj(t) = (Γ1(wj) · (1− t),Γ2(wj) · (1− t), . . . ,Γd(wj) · (1− t), Cd+2

d+1(wj) · t, j · t).
Consider any two edges (wi, wj) and (wk, wl). It comes directly from the

definition of (d+2)-dimensional canonical drawing that (wi, wj) and (wk, wl) do
not cross in Cd+2(T ). Now suppose, for a contradiction, that at some time t ∈
[0, 1) of the morph 〈Γ, Cd+2(T )〉 the edges (wi, wj) and (wk, wl) cross, possibly
at their end-vertices. This implies that there exist values λ, γ ∈ [0, 1] such that
wi(t) · λ + wj(t) · (1 − λ) = wk(t) · γ + wl(t) · (1 − γ). Hence, for x = 1, . . . , d,
we have that

Γx(wi) · (1− t) · λ+ Γx(wj) · (1− t) · (1− λ) =

Γx(wk) · (1− t) · γ + Γx(wl) · (1− t) · (1− γ),

and thus, since t < 1, we have that Γx(wi) · λ+ Γx(wj) · (1− λ) = Γx(wk) · γ +
Γx(wl) · (1− γ). However, this implies that the two edges (wi, wj) and (wk, wl)
cross at time t = 0 as well, a contradiction to the fact that Γ has no crossings.
This concludes the proof of the theorem. �

We also believe that a generalization of Theorems 3 and 4 to higher dimen-
sion is possible, that is, that for any integer d ≥ 2 and for any two crossing-free
straight-line d-dimensional drawings Γ and Γ′ of an n-vertex path P (of an n-
vertex tree T ), there exists a crossing-free (d + 1)-dimensional morph M with
2 steps (resp. with O(log n) steps) from Γ to Γ′. While it is straightforward to
extend the proof of Theorem 3 to prove the above statement for paths, it is not
obvious how to modify the morphing algorithm for tree drawings presented in
Section 4 to work in higher-dimensional spaces.
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6 Conclusions and Open Problems

In this paper we studied crossing-free 3D morphs of tree drawings. We proved
that, for any two planar straight-line drawings of the same n-vertex tree, there
is a crossing-free 3D morph between them with a number of steps which is
linear in the rooted pathwidth or Strahler number of T , hence it is in O(log n).
While there exist n-vertex trees (e.g. the complete binary trees) whose rooted
pathwidth is Ω(log n), our bound is sub-logarithmic for several notable classes
of trees, for example it is constant for paths and caterpillars.

This result gives rise to two natural questions. First, is it possible to bring
our logarithmic upper bound down to constant? Second, does a crossing-free
3D morph exist with o(n) steps for any two planar straight-line drawings of the
same n-vertex planar graph? The latter question is interesting to us even for
subclasses of planar graphs, like outerplanar graphs and planar 3-trees.

A major question in the topic of graph drawing morphs is whether, for any
two planar straight-line drawings of a graph, a planar morph between them
can always be constructed that guarantees bounded resolution and small area
throughout the transformation; see, e.g., [7]. It would be interesting to under-
stand whether the use of a third dimension simplifies this otherwise elusive prob-
lem. That is, given two planar straight-line drawings of a graph with bounded
resolution and small area, does a crossing-free 3D morph always exists between
them with bounded resolution and small volume? The morphing algorithms
for tree drawings we presented in Sections 2 and 4 do not guarantee bounded
resolution and small volume throughout the transformation, hence the above
question is interesting even for trees.

We also proved that every two crossing-free straight-line 3D drawings of an
n-vertex tree can be morphed into each other in O(n) steps; such a bound is
asymptotically optimal in the worst case. An easy extension of our results to
graphs containing cycles seems unlikely. Indeed, the existence of a deterministic
algorithm to construct a crossing-free 3D morph with a polynomial number
of steps between two crossing-free straight-line 3D drawings of a cycle would
imply that the unknot recognition problem is polynomial-time solvable. The
unknot recognition problem asks whether a given knot is equivalent to a circle
in the plane under an ambient isotopy. This problem has been the subject of
investigation for decades; it is known to be in NP [18] and in co-NP [20], however
determining whether it is in P has been an elusive goal so far.

Finally, we considered morphs in higher-dimensional spaces. In particular,
we proved that, for any integer d ≥ 2, a constant number of linear morphing
steps are sufficient to construct a crossing-free (d + 2)-dimensional morph be-
tween any two crossing-free straight-line d-dimensional drawings of a tree. It
would be interesting to understand whether similar results can be obtained for
graph classes richer than trees.
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