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Abstract

We present a new approach to visualize directed graphs and their hier-
archies that departs from the classical four-phase framework of Sugiyama
and computes readable hierarchical visualizations that focus on the reach-
ability information of a directed acyclic graph. Additionally, our approach
has the feature that a few transitive edges are not drawn in the drawing,
thus reducing the visual complexity of the resulting drawing. Further-
more, the problems involved in our framework require only polynomial
time. The channel decomposition is a partition of the vertex set of the
graph into channels, where a channel is a relaxed path. Our framework
offers a suite of solutions depending upon the requirements, and it consists
of only two steps: (a) the cycle removal step (if the directed graph con-
tains cycles) and (b) the channel decomposition and hierarchical drawing
step. Our framework does not introduce any dummy vertices and it keeps
the vertices of a path/channel vertically aligned. The time complexity of
the main drawing algorithms of our framework is O(km), where k is the
number of paths/channels, typically much smaller than n (the number of
vertices).
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1 Introduction

Many applications in several areas of science and business require the visualiza-
tion of directed (often acyclic) graphs. This is the case because such graphs often
represent hierarchical relationships between objects in a structure (the graph).
In their seminal paper of 1981, Sugiyama, Tagawa, and Toda [29] proposed a
four-phase framework for producing hierarchical drawings of directed graphs.
This framework is known in the literature as the “Sugiyama” framework, or
algorithm. Most problems involved in the optimization of various phases of the
Sugiyama framework are NP-hard. In this paper we present a new approach to
visualize directed graphs and their hierarchies that departs from the classical
four-phase framework of Sugiyama and computes readable hierarchical visual-
izations that contain the complete reachability information of a graph. Our
framework reduces the visual complexity of the resulting drawing by (a) draw-
ing the vertices of the graph in some vertical lines, and (b) by removing the
transitive edges within each path and showing only the rest of the edges in the
output drawing. Furthermore, the problems involved in our framework require
polynomial time.

Figure 1 shows an example of two different hierarchical drawings: Part (a)
shows the drawing of a directed graph G computed by Tom Sawyer Perspec-
tives [1] (a tool of Tom Sawyer Software) that follows the Sugiyama framework;
part (b) shows a hierarchical drawing computed by our framework taking G as
input. Notice that in (b) the transitive edges within each vertical path are not
shown. Additionally notice that there are two edges that cross twice. This is
fixed in the next figures at the expense a few extra bends. The purpose of our
figures is not to make a direct comparison between the drawings based on the
Sugiyama Framework and the drawings based on our framework.

The Sugiyama framework for producing hierarchical drawings of directed
graphs consists of four main phases [29]: (a) Cycle Removal, (b) Layer Assign-
ment, (c) Crossing Reduction, and (d) Horizontal Coordinate Assignment. The
reader can find the details of each phase and several proposed algorithms to
solve various of their problems and subproblems in Chapter 9 of Di Battista et
al.’s Graph Drawing book [8]. Other books have also devoted significant por-
tions of their Hierarchical Drawing Algorithms chapters to the description of
this framework [20, 24].

The Sugiyama framework has been extensively used in practice, as man-
ifested by the fact that various systems have chosen it to implement hierar-
chical drawing techniques. Several systems such as AGD [26], da Vinci [12],
GraphViz [15], Graphlet [16], dot [14], OGDF [7], and others implement this
framework in order to hierarchically draw directed graphs. Even commercial
software such as the Tom Sawyer Software TS Perspectives [1] and yWorks [2]
essentially use this framework in order to offer automatic hierarchical visual-
izations of directed graphs. More recent information regarding the Sugiyama
framework and newer details about various algorithms that solve its problems
and subproblems can be found in [24].

Even though this framework is very popular, it has several limitations: As



JGAA, 23(3) 553–578 (2019) 555

(a) (b)

Figure 1: Two different hierarchical drawings: Part (a) shows the drawing of a
directed graph G computed by Tom Sawyer Perspectives (a tool of Tom Sawyer
Software) that follows the Sugiyama framework; part (b) shows a hierarchical
drawing computed by our framework taking G as input.
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discussed above, most problems and subproblems that are used to optimize the
results of each phase have turned out to be NP-hard. Several of the heuris-
tics employed to solve these problems give results that are not bounded by
any approximation. Additionally, the required manipulations of the graph of-
ten increase substantially the complexity of the graph itself. For example, let
G = (V,E) be a directed graph with n vertices and m edges. The number of
dummy vertices produced in phase (b) can be as high as O(nm). The overall
time complexity of this framework (depending upon implementation) can be as
high as O((nm)2), or even higher if one chooses algorithms that require expo-
nential time. Finally, the main limitation of this framework is the fact that the
heuristic solutions and decisions that are made during previous phases (e.g.,
crossing reduction) will influence severely the results obtained in later phases.
Nevertheless, previous decisions cannot be changed in order to obtain better
results.

A path and a channel are both ordered sets of vertices. In a path every
vertex is connected by a direct edge to its successor, while in a channel any
vertex is connected to its successor by a directed path. The concept of channel
can be considered as a generalization (or a relaxation) of the concept of path.
In the literature the channels are also called chains [18].

Here we propose a new framework that departs from the typical Sugiyama
framework and its four phases. Our framework is based on the idea of parti-
tioning the vertices of a graph G into paths or channels; we call this a path (or
channel) decomposition of G. We say that two graphs have the same reacha-
bility properties if their transitive closures are equivalent. After we partition
the vertices of G into paths/channels, we compute a new graph Q which is
closely related to G and has the same reachability properties as G. The new
graph consists of the vertices of G, path/channel edges that connect vertices
that are in the same path/channel, and cross edges that connect vertices that
belong to different paths/channels; the transitive edges within a path or channel
are omitted. Our framework draws either (a) graph G without the transitive
“path/channel edges” or (b) a condensed form of the transitive closure of G.
Additionally, since the vertices in each path/channel will be vertically aligned,
an important aspect of the new framework is that (some or all of) the paths
can be prescribed by the application or they can be user defined, at will. Our
idea is to compute a hierarchical drawing of Q and, since Q has the same reach-
ability properties as G, this drawing contains most edges of G and gives us all
the reachability information of G. The “missing” incident (transitive) edges of
a vertex can be drawn interactively on demand.

Our framework offers a suite of solutions depending upon the requirements
of the user. For example, notice that edge (8, 14) and edge (11, 16) are crossing
two times in Figure 1. This effect is unnecessary and it can be disturbing.
Figure 2 shows two different versions of the drawing shown in Figure 1: Part
(a) shows a drawing where a few bends are introduced to make the drawing
more readable and remove the unnecessary crossings by (1) incrementing the
angles between some edges incident to a same node and (2) bundling edges
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(a) (b)

Figure 2: Two variants of the drawing shown in Figure 1.

that are entering into the same node, which reduces the number of crossings
as well (edges that exit from the same node could be easily bundled as well);
part (b) shows a reduced version of the drawing in (a), where a selected set of
transitive edges is removed in order to make the drawing less cluttered. These
and other alternative solutions make our framework very flexible and they will
be presented in detail in the future.

Notice that in Figures 1 and 2 nodes 1, 2, 3, and 4 could be easily shifted up
in order to make the drawing more compact. This solution is not explored here,
since it is not necessary in order to prove the bounds obtained by our framework.
Clearly, a post-processing step based on simple compaction strategies will reduce
the height of the drawings significantly. This solution can be exploited in various
applications and it will be explored in future experimental works.
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Our framework consists of only two steps: (a) the cycle removal step (if the
graph contains cycles) and (b) the path/channel decomposition and hierarchical
drawing step. Our framework does not introduce any dummy vertices, keeps the
vertices of a path/channel vertically aligned and it offers answers to reachability
queries between vertices by traversing at most one cross edge. Let k be the
number of paths/channels and m′ be the number of cross edges in the graph Q.
We show that m′ = O(kn) (notice that Q could have fewer cross edges than G).
The number of bends we introduce is at most O(m′) and the required area is
at most O(kn). The total time complexity of the algorithms of our framework
is O(km) plus the time required to compute the path/channel decomposition of
G, which depends upon the type of decomposition required.

Our paper is organized as follows: The next section presents necessary pre-
liminaries including a brief description of the phases of the Sugiyama framework,
the time complexity of the phases, and a description of “bad” choices. In Sec-
tion 3 we present the concept of path decomposition of a Directed Acyclic Graph
(or simply DAG) and of path graph and we present a new algorithm for hier-
archical drawing which is based on any (computed) path decomposition of a
DAG. Section 4 presents the concepts of channel decomposition of a DAG and
of channel graph (where channels are not just paths) and a new algorithm for
hierarchical drawing which is based on any (computed) channel decomposition
of a DAG. Section 5 presents a variation of the previous algorithms where some
paths/channels are predefined by a user, and it discusses briefly an approach on
the global minimization of crossings. In Section 6 we present the properties of
the drawings obtained by our framework, we offer theoretical comparisons with
the drawings obtained by traditional techniques, and present our conclusions
and interesting open problems.

2 Sugiyama Framework

Given a directed graph G = (V,E) with n vertices and m edges, a hierarchical
drawing of G requires that all edges are drawn in the same direction upward
(downward, rightward, or leftward) monotonically. If G contains cycles this is
clearly not possible, since in any hierarchical drawing of the graph some edges
have to be oriented backwards. The Sugiyama framework contains the Cycle
Removal Phase in which a (small) subset of edges is selected and the direction
of these edges is reversed, so that no cycles remain in G. Since it is important
to maintain the character of the input graph, the number of the selected edges
has to be minimum. This is a well known NP-hard problem, called the Feedback
Arc Set problem. A well known approximation algorithm, called Greedy-Cycle-
Removal, runs in linear time and produces sets that contain at most m/2−n/6
edges. If the graph is sparse, the result is further reduced to m/3 edges [8].

Since the input graph G may contain cycles our framework also needs to
deal with them. One approach is to use a cycle removal algorithm (similar to
Sugiyama’s first step) but instead of reversing the edges, we could remove them,
since reversing them could lead to an altered transitivity of the original graph.
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A reversed edge will be a transitive edge in the new graph and hence it may
significantly affect the reachability of the graph and the resulting drawing. By
the way, this is another disadvantage of such techniques: Since the choice of
the edges to be reversed is done without any knowledge of the topology of the
graph, it might be the case that nodes that should be placed close to each other
(because they belong to a cycle) are finally placed very far from each other
because the reversed edge is typically a long transitive edge. Since the removal
and/or reversal of such edges will create a graph that will have a “different
character” than the original graph we prefer to use another approach that will
work well if the input graphs do not contain long cycles. It is easy to (a) find the
Strongly Connected Components (SCC) of the graph in linear time, (b) cluster
and collapse each SCC into a supernode, and then the resulting graph G′ will
be acyclic. This approach has been used in previous papers for various applica-
tions, see [13, 23]. Even if both techniques are acceptable, we believe that the
second one will be able to better preserve the character of the original input
graph (and its cycles). On the other hand, this technique may not be very use-
ful if most vertices of a graph are included in a very long cycle. From now on,
we assume that the given graph is acyclic after using either of the techniques
described above.

In the Layer Assignment Phase of the Sugiyama framework the vertices are
assigned to a layer and the layering is made proper, see [8, 24, 29]. In other
words, long edges (typically transitive edges) that span several layers are bro-
ken down into multiple edges by introducing dummy vertices, so that every
edge that starts at a layer terminates at the very next layer. Clearly, in a graph
that has a longest path of length O(n) and O(m) transitive edges, the number
of dummy vertices can be as high as O(nm). This fact impacts the running
time (and space) of all the subsequent phases, with heaviest impact on the next
phase, the Crossing Reduction Phase.

The Crossing Reduction Phase is perhaps the most difficult and most time-
consuming phase. It deals with various difficult problems that have attracted a
lot of attention both by mathematicians and computer scientists. It is outside
the scope of this paper to describe the various techniques for crossing reduc-
tion, however, the reader may see [8, 24] for further details. The most popular
technique for crossing reduction is the Layer-by-Layer Sweep [8, 24]. This tech-
nique solves multiple instances of the well-known Two-Layer-Crossing Problem
by considering the layers in pairs going up (or down). Of course, a solution for
a specific two layer crossing problem “fixes” the relative order of the vertices
(real and dummy) for the next two-layer crossing problem, and so on. There-
fore, “bad” choices will propagate. Please note that the Two-Layer Crossing
Minimization Problem is NP-complete [10]. The heuristics employed here tend
to reduce crossings by various techniques, but notice that the number of cross-
ings may be as high as O(LM2), where L is the number of layers and M is the
average number of edges between the vertices of two adjacent layers. In [11],
the authors present a heuristic that runs in O(n+m log(m)) time and O(n+m)
space.

Finally, in the last phase the exact x-coordinates of the vertices can be
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computed by quadratic-programming techniques [8, 24], which require consid-
erable computational resources. Faster approaches are described in [4, 19]. The
dummy vertices are replaced by bends. This implies that the number of bends
can be as high as the number of dummy vertices. Modern techniques can draw
edges with at most 2 bends per edge, avoiding the use of additional dummy
vertices [5].

3 Path Based Drawings

Let G = (V,E) be a DAG. In this paper we define a path decomposition of G
as a set of vertex-disjoint paths Sp = {P1, ..., Pk} such that V (P1), ..., V (Pk)
is a partition of V (G). A path Ph ∈ Sp is called a decomposition path. The
vertices in a decomposition path are clearly ordered in the path, and we denote
by vji the fact that v is the jth vertex of path Pi. The path decomposition graph,
or simply path graph, of G associated with path decomposition Sp is a graph
H = (V,A) such that e = (u, v) ∈ A if and only if e ∈ E and (a) u, v are
consecutive in a path of Sp (called path edges) or (b) u and v belong to different
paths (called cross edges). In other words, an edge of H is a path edge if it
connects two consecutive vertices of the same decomposition path, else it is a
cross edge. Notice that the edges belonging to G but not to H are transitive
edges between vertices of the same path of G.

A path based hierarchical drawing, or simply path based drawing, Γ based on
G given Sp is a hierarchical drawing of H such that two vertices are drawn on the
same vertical line (i.e., same x-coordinate) if and only if they belong to the same
decomposition path. In this section we propose an algorithm that computes
path based drawings assigning to each vertex the x-coordinate of the path it
belongs to and for y-coordinate we use its rank in a topological sorting. We use
this y-coordinate assignment in order to simplify our mathematical proofs. As
discussed in the Introduction, in practice a compaction strategy can be used in
order to reduce the height of the drawing. We prove that this assignment lets
us obtain good results in terms of both area and number of bends.

Next we present Algorithm PB-Draw that computes a path based drawing Γ
of G such that every edge of G bends at most once. We assume here that the
path decomposition is given, and discuss options for choosing it later. We de-
note by X(Ph) the x-coordinate of path Ph and by X(v), Y (v) the x-coordinate
and the y-coordinate of any vertex v. Let Pv be the path of Sp containing v.
By definition of path based drawing we have that X(v) = X(Pv). Let T be a
topological sorting of G and let T (v) be the position of v in this sorting. PB-
Draw associates to every path, and consequently to every vertex of the path,
an x-coordinate that is an even number and to every vertex a y-coordinate that
corresponds to its topological order, i.e., Y (v) = T (v) (Steps 1-4). The algo-
rithm draws every edge e = (u, v) as a straight line if the drawn edge does not
intersect a vertex w different from u and v in Γ (Steps 5-7). Otherwise it draws
edge e with one bend be such that: Its x-coordinate X(be) is equal to X(u)+1 if
X(u) < X(v), or X(u)− 1 if X(u) > X(v). The y-coordinate of bend be Y (be)
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is equal to Y (v)− 1 (Steps 8-14).

Algorithm PB-Draw(G = (V,E), Sp = {P1, P2, ..., Pk}, H = (V,A))
1. For i = 0 to k − 1 do
2. X(Pi) = 2i
3. For any v ∈ V
4. (X(v), Y (v)) = (X(Pv), T (v))
5. For any e = (u, v) ∈ A
6. If the straight line drawing of e does not intersect a vertex different

from u, v:
7. Draw e as a straight line
8. Else:
9. If X(u) < X(v):
10. X(be) = X(u) + 1
11. Else:
12. X(be) = X(u)− 1
13. Y (be) = Y (v)− 1
14. Draw e with one bend at point (X(be), Y (be))

Figure 3 shows an example of a drawing computed by Algorithm PB-Draw.
In (a) we show the drawing of a graph G as computed by Tom Sawyer Perspec-
tives which follows the Sugiyama framework. In (b) we show the drawing Γ of
H computed by Algorithm PB-Draw. The path decomposition that we used to
compute the drawing is Sp = {P1, P2, P3}, where: P1 = {0, 1, 4, 7, 12, 13, 15, 16,
17, 20, 22, 24, 25, 26, 29, 30}; P2 = {2, 5, 9, 11, 23, 27}; P3 = {3, 6, 8, 10, 14, 18, 19,
21, 28}. Edge e = (21, 25) is the only one bending. In grey we show edge e
drawn as straight line, intersecting vertex 23. Notice that edge (21, 25) and edge
(21, 30) are adjacent and crossing edges. This effect can be disturbing for the
user, but it can be simply avoided by incrementing the number of edges bend-
ing, i.e., in this case, we can simply add a bend to edge (21, 30). As discussed
before, the purpose of our figures is not to make a direct comparison between
the drawings based on the Sugiyama Framework and the drawings based on our
framework, but to show the output of our algorithms and the difference between
the graph that we draw and the original graph that is usually drawn. Hence, a
consistent scaling of the figures is not necessary for this and all other figures of
this paper.

Any drawing Γ computed by Algorithm PB-Draw has several interesting
properties. First, the area of Γ is typically less than O(n2). By construction,
Γ has height n − 1 and width of 2k − 1. Hence Area(Γ) = O(kn). Given Sp

and the topological order of the vertices of G, every vertex needs O(1) time to
be placed. Every edge e = (u, v) needs O(k) time to be placed, since before
drawing it we need to check if its straight line drawing would intersect a vertex
different from u, v (Step 6). Since the drawing of e must be monotone, it can
intersect at most one edge per path, so we have to check if the drawing of e
intersects some vertex in correspondence of every path placed between the path
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Figure 3: (a) Drawing of a DAG G computed by Tom Sawyer Perspectives (b)
path based drawing of H computed by Algorithm PB-Draw.

of u and v in Γ. To check whether e intersects the path P at x-coordinate lx, we
compute the y-coordinate ly where the straight-line drawing of e would intersect
the vertical line containing P . Then check whether ly is an integer, and if so,
whether the vertex w with T (w) = ly belongs to path P . This takes constant
time per path, presuming the inverse of T (·) is stored as array. Hence we have:

Theorem 1 Algorithm PB-Draw computes a drawing Γ of a graph H based on
the DAG G in O(km) time. Furthermore, Area(Γ) = O(kn).

Lemma 1 A cross edge e = (u, v) does not intersect a vertex different from u
and v in Γ.

Proof: If e is drawn as a straight line the lemma is true by the construction
of Algorithm PB-Draw. Otherwise, e is composed of two segments: (u, be) and
(be, v). Both segments are diagonals of the rectangles inside which there is no
vertices, so the two segments, and consequently e, cannot intersect any vertex
different from u, v. �
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Lemma 2 Let e = (u, v) and e′ = (u′, v′) be two cross edges drawn with a bend
in Γ. Their bends are placed in the same point if and only if u and u′ are in the
same decomposition path and v = v′.

Proof: We can observe that v = v′, since Y (be) = Y (be′) = Y (v)− 1 and since
there is no vertex w 6= v such that Y (w) = Y (v). Therefore, u and u′ are in
the same side. We have X(u) = X(u′), since X(be) = X(be′) = X(u) ± 1 =
X(u′)±1. In this case u and u′ are in the same path of the path decomposition.

�

In the case described by the above lemma, two edges have overlapping segments
(be, v) and (be′ , v). We consider this feature acceptable, or even desirable for two
edges that have the same endpoint. This typical merging of edges has been used
in the past, see for example [3, 21, 27]. However, in the case that this feature is
not desirable, we propose two alternative solutions that avoid this overlap. The
price to pay is either larger area, or fewer edges drawn:

1. Larger area option: We can shift horizontally by one unit the position of
bend be′ and all the vertices v and bends b such that X(v) > X(be) and
X(b) > X(be). In this case we have no overlaps, but the area of Γ can be as
large as O(knm).

2. Fewer edges option: We can define the path decomposition graph differently
by removing some transitive cross edges from H. For every vertex v we
remove the edge (u, v) if there exists an edge (u′, v) such that u′ and u are
in the same decomposition path P and u precedes u′ in the order of P . It
is easy to prove that H ′ is a subgraph of H and that A − A′ contains only
transitive edges of G. By definition of H ′, given a decomposition path P ,
for any vertex v there exists at most one cross edge e = (u, v) such that
u ∈ P . According to Lemma 2, there are no bends overlapping. The area of
a drawing Γ computed using H ′ is Area(Γ′) = O(kn). However, we pay for
the absence of overlapping bends by the exclusion from the drawing of some
transitive cross edges of G.

In Figure 4 we show an example of the edge overlap described above in a draw-
ing of H. Part (a) shows a simple drawing where two edges, e1 = (u, v) and
e2 = (u′, v), overlap. The edges in grey are alternative drawings of e1 and e2,
respectively, as straight lines. Please notice that both of them intersect a ver-
tex. In part (b) we shift horizontally the drawing, removing the overlap but, of
course, increasing the area. Part (c) shows the drawing of H ′, where edge (u, v)
is removed since u′ has a higher order than u in their path.

Alternatively we propose to draw every cross edge adjacent to two vertices
belonging to two different and not-consecutive channels with a bend. In this
case we can avoid Step 6, so we can obtain the drawing in O(n + m) time. Of
course, we pay for the reduced time complexity by having more bends in the
drawing.

Notice that graphs H and H ′ are computed from G by simply removing
some transitive edges. Hence we have the following:
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Figure 4: Examples of bend and edge overlaps in a drawing of H.

Theorem 2 The path decomposition graphs H and H ′ have the same reacha-
bility properties of G.

Theorem 2 is rather simple, but it is very important, since it tells us that in a
visualization of a hierarchical drawing of H or H ′ we can read and understand
correctly any reachability relation between the vertices of G.

Figure 5 shows a hierarchical drawing of a DAG G computed by Tom Sawyer
Perspectives following the Sugiyama Framework. Figure 6 shows a path based
drawing computed starting from G. This drawing represents one of the alter-
natives introduced in Figure 2 in a bigger scale: In this case the graph drawn
is the graph H ′ described above and all the cross edges adjacent to two ver-
tices belonging to two different and not-consecutive channels are drawn with
one bend.

Algorithm PB-Draw works for any path decomposition Sp of a DAG G, since
Sp is part of the input to the algorithm. Sp could be (a) the result of another
process of some application, (b) computed/designed manually by a user, or (c)
computed by an algorithm. However, a path decomposition Sp of a DAG G with
a small number of paths lets us compute a readable path based drawing of H,
since the number of decomposition paths influences the area of the drawing and
its number of bends. Since a cross edge can intersect at most one vertex of every
decomposition path, the number of decomposition paths influences the number
of bends of the drawing. Furthermore, the number of paths k influences the time
to find the minimum number of crossings between cross edges and paths, as it is
described at the end of Section 5. Several algorithms solve the problem of finding
a path decomposition of minimum size [17, 22, 25, 28]. The algorithm of [22] is
the fastest one for sparse and medium DAGs. In Section 4 we introduce a relaxed
definition of path, the channel, and a way to obtain hierarchical drawings based
on a channel decomposition. Since paths are constrained versions of channels,
we expect the minimum size of a channel decomposition to be lower than or in
the worst case equal to the minimum size of a path decomposition. Now we
turn our attention to the concept of channel decomposition.
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Figure 5: Hierarchical drawing computed by Tom Sawyer Perspectives following
the Sugiyama framework.
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Figure 6: Path based drawing computed starting from the graph represented in
Figure 5. This drawing represents one of the alternatives introduced in Figure 2
in a bigger scale: In this case the graph drawn is the graph H ′ described above
and all the cross edges adjacent to two vertices belonging to two different and
not-consecutive channels are drawn with one bend.



JGAA, 23(3) 553–578 (2019) 567

4 Channel Based Drawings

Let G = (V,E) be a DAG. A channel C is an ordered set of vertices such that
any vertex u ∈ C is connected by a directed path to each of its successors in C.
In other words, given any two vertices v, w ∈ C, v precedes w in the order of
channel C if and only if w is reachable from v in G. A channel can be seen as a
generalization of a path, since a path is always a channel, but a channel may not
be a path (see, for example, 0→ 1→ 2 in Figure 9, which allows 0 and 2 to be in
one channel even though 1 is not). A channel decomposition Sc = {C1, ..., Ck} is
a partition of the vertex set V of the graph into channels. We write vji if v is the
jth vertex of channel Ci. The channel decomposition graph H ′′ = (V,A′′) and
a channel based hierarchical drawing (channel based drawing) of G are defined
in a similar fashion as we defined the path decomposition graph H and the
path based drawing of H in the previous section. Notice that, since the channel
is a generalization of a path, the concepts of channel decomposition graph and
channel based drawing are generalizations of the concepts of path decomposition
graph and path based drawing.

A channel decomposition with a small number of channels lets us compute
readable channel based drawings. The width b of a DAG G is the maximum
cardinality of a subset of V of pairwise incomparable vertices of G, i.e., there
is no path between any two vertices in the subset. In [9] it is proved that the
minimum value of the cardinality of Sc, is b and in [18] an algorithm is given
to compute Sc with k = b in O(n3) time. The time complexity is improved to
O(bn2) in [6]. Clearly, since paths are a restricted type of channels, the minimum
size of Sc is less than or equal to the minimum size of a path decomposition Sp.

We can define Algorithm CB-Draw in a similar fashion as Algorithm PB-
Draw, and its pseudocode is similar to the pseudocode of Algorithm PB-Draw.
The only difference is that Algorithm CB-Draw takes as input a channel decom-
position instead of a path decomposition and that its output is a channel based
drawing instead of a path based drawing. Algorithm CB-Draw is clearly a gen-
eralization of Algorithm PB-Draw. Due to these similitudes we simply present
CB-Draw without describing in details all its steps, as we did for PB-Draw.

Algorithm CB-Draw(G = (V,E), Sc = {C1, C2, ..., Ck}, H ′′ = (V,A′′))
1. For i = 1 to k do
2. X(Ci) = 2i
3. For any v ∈ V
4. (X(v), Y (v)) = (X(Cv), T (v))
5. For any e = (u, v) ∈ A′′

6. If the straight line drawing of e does not intersect a vertex different
from u, v:

7. Draw e as a straight line
8. Else:
9. If X(u) < X(v):
10. X(be) = X(u) + 1
11. Else:
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12. X(be) = X(u)− 1
13. Y (be) = Y (v)− 1
14. Draw e with one bend at point (X(be), Y (be))

We define the jumping number of a path in a channel based drawing as the
number of times it “jumps” from a channel to another channel, or, in other
words, the number of cross edges it contains. Intuitively the lower the jumping
number is the higher is the readability of a path in the drawing. Figure 7 shows
two paths on the same channel based drawing connecting the same two vertices,
but having a different jumping number. The path in (a) has jumping number 3,
while the path in (b) has jumping number 1. Clearly, the path of Part (b) is
more readable.

(a) (b)

Figure 7: Two paths on the same channel based drawing connecting the same
two vertices, but having a different jumping number. In (a) the jumping number
is 3, in (b) the jumping number is 1.

In the rest of the section we introduce a “special” transitive closure, called
compressed transitive closure, which is based on the concept of channel decom-
position. This transitive closure is obtained from an ordinary transitive closure
by removing some (usually many) of its transitive edges. Then, we will define
a graph Q, based on the compressed transitive closure, that will let us obtain
more readable drawings. Two vertices are comparable if there is a path con-
necting them. An interesting property of Q and its channel based drawing is
that every pair of comparable vertices are connected by a (very readable) path
having jumping number either 1 or 0.

The Compressed Transitive Closure Graph

Fix one channel decomposition Sc = {C1, ..., Ck}; the concepts introduced in the
following will depend on it. Let Lv be a list of vertices associated with a vertex
v ∈ V so that the following two properties hold: Lv contains at most one vertex
of any decomposition channel; a vertex w is reached from v in G if and only
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if Lv contains a vertex w′ such that w and w′ are in the same decomposition
channel and w′ precedes w in the order of that decomposition channel. The
compressed transitive closure of G is the set of all the lists Lv. In [18] it is
shown how to compute the compressed transitive closure of a graph in O(km)
time. Next we show how we can store it in O(kn) space and that it contains
the complete reachability information of G. For a given channel decomposition
Sc = {C1, ..., Ck}, the compressed transitive closure of a DAG is unique.

We define the compressed transitive closure graph (CTC graph) Q = (V, I)
such that (u, v) ∈ I if and only if u is the highest vertex in the order of its
channel such that v ∈ Lu. Notice that an edge of Q may not exist in the
original graph G, as is the case in the ordinary transitive closure graph G∗ of G.
Furthermore, an edge of G may not be included in Q, while G∗ contains all the
edges of G. Please notice that Q has the same reachability properties (i.e., the
same transitive closure) as G, since it is computed directly from the compressed
transitive closure of G. We denote by channel edge an edge of Q connecting two
vertices of the same channel, else it is a cross edge, similar to the definition of
the previous section. Notice that the concepts introduced in this section depend
on the given channel decomposition Sp = {C1, ..., Ck} and that, given a channel
decomposition, the compressed transitive closure of a DAG is unique.

Figure 8 shows two examples pointing out the difference between G∗ and Q.
Part (a) shows a vertex u adjacent to two vertices of channel Ci in G∗, vji and

wj′

i . It is adjacent only to the vertex vji in the graph Q, since j < j′. Part (b)
shows a graph G∗ and the respective graph Q.

u

wj′

i

vji

Ci

G∗

u

wj′

i

vji

Ci

Q

(a)

C1 C2

G∗

C1 C2

Q

(b)

Figure 8: Two examples pointing out the difference between G∗ and Q.

Let uj
i be a vertex. The list Lu contains by definition the vertex vj+1

i , since it
is the lowest vertex in channel Ci reachable from u. Hence we have the following
property:

Lemma 3 (u, v) ∈ I for any uj
i , v

j+1
i .

Lemma 3 implies that the channel decomposition Sc of G is a path decompo-
sition of Q, so a channel based drawing of Q is essentially also a path drawing
and hence we can compute it using Algorithm CB-Draw or Algorithm PB-Draw
since in this case the two algorithms produce the same result.
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Figure 9 shows an example of a channel based drawing of G computed
by Algorithm CB-Draw using Q as an input is shown: Part (a) shows the
original graph G drawn as computed by Tom Sawyer Perspectives that uses
the Sugiyama framework. A channel decomposition of this graph is Sc =
{C1, C2, C3, C4}, where: C1 = {0, 2, 3, 7, 8, 12, 15, 16, 19}; C2 = {1, 4, 9, 17};
C3 = {5, 10, 13, 18}; C4 = {6, 11, 14}. Part (b) shows the drawing of Q as com-
puted by Algorithm CB-Draw. The dashed edges are edges that do not exist
in G. Some channel edges are dashed, since a channel may not be a path of G.

(a)

0

2

3

7

8

12

15

16

19

1

4

9

17

5

10

13

18

6

11

14

(b)

Figure 9: (a) Drawing of a DAG G computed by Tom Sawyer Perspectives
(b) channel based drawing of Q computed by Algorithm CB-Draw.

There is one list Lv for every vertex v and every list contains O(k) elements.
Since every element of a list Lv corresponds to (at most) one edge of Q we have
that Q contains O(kn) edges. Hence we have the following:

Theorem 3 Let Sc = {C1, ..., Ck} be a channel decomposition of a DAG G and
let Q be the corresponding transitive closure graph. Graph Q has O(kn) edges.
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The above theorem implies that the number of edges of Q is linear if k is a
constant. Also, it requires only O(kn) space to be stored.

Theorem 4 Let Sc = {C1, ..., Ck} be a channel decomposition of a DAG G
and let Q be the corresponding transitive closure graph. Two vertices of Q are
comparable if and only if there exists a path connecting them having jumping
number 0 or 1.

Proof: Let u and v be two vertices. We want to prove that u reaches v in
Q if and only if there exist a path connecting them having jumping number 0
or 1. Suppose that u and v are in the same channel Ci. In this case there exists
a path having jumping number 0 from u to v as a consequence of Lemma 3.
Suppose that u and v are in two different channels Ci and Cj . If u reaches v,
by definition of Q, there must be a vertex u′ ∈ Ci that is a successor of u in Ci

and a vertex v′ ∈ Cj which is predecessor of v in Cj , such that (u′, v′) ∈ I. Let
P1 and P2 be the paths having jumping number 0 from u to u′ and from v′ to v.
The path P = P1 + (u′, v′) +P2 is a path having jumping number 1 connecting
u to v. �

A channel based drawing of Q is a very useful instrument to visualize the reach-
ability properties of G. Indeed, if we want to check if a vertex reaches another
vertex in Q (and consequently in G) we just need to check if there exists a
path P having jumping number 0 or 1. Finding P in Γ is very easy since it
is drawn on a vertical line or in two vertical lines connected by a cross edge.
Moreover since Q has an almost-linear number of edges (O(kn)) by Theorem 3
it makes Q easier to visualize and so it gives us a clear way to visualize the
reachability properties of G. The price we have to pay is that we do not vi-
sualize many edges of the original graph G. These edges can be visualized on
demand by moving the mouse over a given query vertex. A full implementation
of this technique will be presented in the near future.

5 Constrained Minimum Size Channels Decom-
position

In this section we consider that a user may want to use specific “user-defined”
channels as part of the full channel decomposition. Let S∗ = {C1, ..., Ch} be
a set of (user-defined) disjoint channels of G. We will present an algorithm to
compute a channel decomposition S∗c with the minimum number of channels
among all the channel decompositions of G containing S∗.

First we present Algorithm Remove-Channel (RC) which takes as input a
graph G and a channel Ci and produces as output a graph G′ = (V ′, E′) such
that V ′ = V −Ci. We will prove that it computes E′ such that the reachability
relation between any pair of vertices of V ′ is the same in G and G′. Firstly G′

is initialized with G (Step 1). Then, for every vertex of the channel Ci, starting
from its source and proceeding in order, we add a transitive edge connecting
all its adjacent incoming vertices to all its adjacent outgoing vertices (Step 2-4)
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and then we remove it (Step 6).

Algorithm Remove-Channel(G, Ci):
1. G′ = (V ′, E′) = G:
2. For any j = 1, ..., |Ci|:
3. For any pair of edges (v, uj

i ) and (uj
i , w) of E′

4. E′.add((v, w))
5. G′.remove(uj

i )
6. output : G′

Lemma 4 Vertex w is reachable from v in G′ if and only if w is reachable from
v in G.

Proof: Let P = (VP , EP ) ∈ G be a path from v to w and q = |Ci ∩ VP |. We
proceed by induction on q. Base case: If q = 0 then P ∈ G′. Suppose q = 1.
Let x, y, z ∈ Vp be three vertices so that z ∈ Ci and (x, z), (z, y) ∈ EP . The
path P ′ = (VP − z, EP − (x, z) − (z, y) + (x, y)) is a path from v to w so that
P ′ ∈ G′. Inductive case: Suppose that the lemma is true for q = N and suppose
q = N + 1. Let PN ∈ P be a path from v to a vertex z ∈ Ci containing N
vertices of Ci and P1 = P − PN + z. Let G′N be the graph computed during
Algorithm Remove-Channel after the removal of the vertex precedent to z in
Ci. By the inductive hypothesis there exists P ′N ∈ G′N connecting v and z. The
path P ′N ∪ P1 connects v and w and contains on exactly 1 vertex of Ci, which
is z. We can prove as we proved the base case q = 1 that in this case exists
P ′ ∈ G′ connecting v and w. �

Let G = (V,E) be a DAG, let b be its width and let Minimum-Channels-
Selection (MCS) be an algorithm that, given a DAG G, computes a channel
decomposition of size b in O(t) time (where, t = n3 if we use the algorithm
described in [18] and t = bn2 if we use the algorithm described in [6]).

Now we define a constrained version of Algorithm MCS, called Constrained-
Minimum-Channels-Selection (CMCS). Algorithm CMCS computes a channel
partition S∗c with the minimum number of channels among all the channel par-
titions of G containing S∗. Firstly it removes all the channels of S∗ using
Algorithm RC (Steps 1-2). Then it computes the minimum size channel decom-
position S′ of the resulting graph using Algorithm MCS (Step 3) and finally it
computes S∗c merging S′ and S∗c (Step 4).

Algorithm Constrained-Minimum-Channels-Selection(G, S∗):
1. for any Ci ∈ S∗

2. G′ = Remove-Channel(G,Ci)
3. S′c = MCS(G′)
4. S∗c = S′c + S∗

5. output : S∗c

Figure 10 depicts an illustration of Algorithm CMCS. In this figure con-
secutive vertices of a same channel are connected by dotted edges for a better
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Figure 10: Illustration of Algorithm Constrained-Minimum-Channels-Selection.

visualization of the channels. Part (a) shows the input DAG G and user-defined
channels S∗ = {C1, C2}, where C1 = (1, 4, 5) (red) and C2 = (3) (blue). Chan-
nel C1 is not a path, since vertices 1 and 2 are not adjacent. Channel C2 is
composed by a single vertex. The three vertices of C1 and the vertex of C2

are removed by Algorithm RC during the Steps 1-2 of Algorithm CMCS. In
(b), (c), and (d) we show graph G′ as computed during the steps of Algorithm
Remove-Channels. The dashed edges are the edges added by Algorithm RC.
Part (e) shows graph G′ after the removal of S∗ is completed. A channel de-
composition of minimum size of G′ is S′ = {C3, C4} , where C3 = (2, 6, 8) and
C4 = (7, 9). S′ is computed by Step 3. Part (f) shows S∗c = {C1, C2, C3, C4},
the channel decomposition output of Algorithm CMCS, computed by Step 4.

Theorem 5 Let G be a DAG and S∗ be a set of vertex-disjoined channels of
G. S∗c = MCS(G,S∗) is a channel decomposition having the minimum number
of channels among all channel decompositions of G containing set S∗.

Proof: Suppose that there exists a channel decomposition Sx of G containing
S∗ and so that |Sx| < |Sc|. Let S′x = Sx − S∗. It is straightforward to see
that by Lemma 4 S′x is a channel decomposition of G′. Hence, we have |S′x| =
|Sx| − |S∗| < |S′c| = |Sc| − |S∗| which is a contradiction, since S′c is minimum
because it is computed using Algorithm MCS. �
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6 Comparisons and Conclusions

We presented a new framework for computing hierarchical drawings of digraphs.
Because of the different nature of our framework we would expect that it pro-
duces results that are superior to the results produced by the Sugiyama frame-
work with respect to the number of crossings, number of bends, area of the
drawing and visual clarity of the existing paths and reachability. The hierar-
chical drawings produced by the Sugiyama framework have (a) many crossings
(a bound is not possible to be computed), (b) the total number of bends can
be relatively large and it depends heavily on the number of dummy vertices
introduced, (c) the area is large because the width of the drawing is negatively
influenced by the number of dummy vertices, (d) the number of bends per edge
is also influenced by the number of dummy vertices on it (although the last phase
tries to straighten the edges by aligning its segments, at the expense of the area,
of course), (e) most problems and subproblems of each phase are NP-hard, and
many of the heuristics are very time consuming, and (f) the reachability infor-
mation in the graph is not easy to detect from the drawing.

We would expect the results produced by our framework to be superior to the
results produced by the Sugiyama framework, based on the following theoretical
observations: (a) the number of edge crossings is expected to be lower due to
the grouping of edges into paths/channels and the omission of the correspond-
ing transitive edges, (b) the total number of bends is low since we introduce at
most one bend for some (not all) cross edges, (c) the area is precisely bounded
by a rectangle of height n − 1 and width O(k), where k is typically a small
fraction of n, (d) the reachability and path information is easily visible in our
drawings since any path is deduced by following at most one cross edge (which
might have at most one bend), (e) the vertices in each channel are vertically
aligned and there is a path from each vertex in the channel to all other vertices
in the channel that are at higher y-coordinates, (f) all our algorithms run in
polynomial time, and finally, (g) the flexibility of our framework allows a user
to decide to have their specified paths/channels, thus allowing for user-defined
paths/channels to be drawn vertically aligned. The height of our drawings can
be further reduced by performing a one-dimensional compaction.

The only drawback of the drawings produced by our framework is the fact
that it does not draw all the edges of the graph, which might be important
for some applications. This might be considered a disadvantage by some users.
However, in medium to large graphs, the drawing of all edges significantly clut-
ters the drawing. Hence, the omission of some edges might be considered as an
advantage by some other users since it offers drawings that are not cluttered by
the edges. In any case, we offer the remedy to visualize all the edges incident
to a vertex interactively when the mouse is placed on top of a vertex.

We believe that the above theoretical comparison is convincing of the power
of the new framework. Additionally, as discussed before, the framework is not
a single precise algorithm and hence, it is not possible to present experimental
results here. However, in the future we plan to customize the framework in
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order to produce precise algorithms, according to different criteria, and perform
experiments. The flexibility of this framework is of paramount importance as il-
lustrated in the figures of the introduction. Namely, if we look at the alternative
hierarchical drawings presented in Figures 1 and 2, we realize that there is an
interesting interplay between the number of bends, crossings, clarity, reachabil-
ity comprehension, and edge bundling. We plan to investigate the interplay of
various options in the future. Furthermore, we plan to perform user studies in
order to verify that the users will benefit from the aforementioned properties by
showing higher understanding and ease of use of the new drawing framework.
Additionally, we need to comprehend human understanding issues related to
the removal of some transitive edges (removing clutter from the drawing) and
increasing reachability comprehension. It would be interesting to find specific
topological orderings and/or sophisticated layer assignment techniques that will
reduce the height, the number of crossings and the number of bends of the com-
puted drawing. Another direction could be the development of techniques to
compute the path decomposition that minimizes the number of cross edges or
the sum of the length of the cross edges. Finally, it would be interesting to
find various techniques for path/channel decomposition, whose aim would be to
reduce the number of crossings and bends.

Acknowledgement: The authors acknowledge the help of Panagiotis Lionakis
who provided some drawings that are produced by his preliminary implemen-
tation work.
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P. Mutzel. The open graph drawing framework (OGDF). In Handbook
on Graph Drawing and Visualization., pages 543–569. 2013.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[9] R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann.
Math. Ser., 251:161 – 166, 01 1950. doi:10.1007/978-0-8176-4842-8_10.

[10] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.

[11] M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. An efficient imple-
mentation of Sugiyama’s algorithm for layered graph drawing. In J. Pach,
editor, Graph Drawing, pages 155–166, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg. doi:10.1007/978-3-540-31843-9_17.
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