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Abstract

This paper addresses the following basic question: given two layouts
of the same graph, which one is more aesthetically pleasing? We propose
a neural network-based discriminator model trained on a labeled dataset
that decides which of two layouts has a higher aesthetic quality. The
feature vectors used as inputs to the model are based on known graph
drawing quality metrics, classical statistics, information-theoretical quan-
tities, and two-point statistics inspired by methods of condensed matter
physics. The large corpus of layout pairs used for training and testing is
constructed using force-directed drawing algorithms and the layouts that
naturally stem from the process of graph generation. It is further ex-
tended using data augmentation techniques. Our model demonstrates a
mean prediction accuracy of 97.58 %, outperforming discriminators based
on stress and on the linear combination of popular quality metrics by a
margin of 2 to 3%.

The present paper extends our contribution to the Proceedings of the
26th International Symposium on Graph Drawing and Network Visualiza-
tion (GD 2018) and is based on a significantly larger dataset.
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1 Introduction

What makes a drawing of a graph aesthetically pleasing? This admittedly vague
question is central to the field of Graph Drawing which has over its history
suggested numerous answers. Borrowing ideas from Mathematics, Physics, Arts,
etc., many researchers have tried to formalize the elusive concept of aesthetics.

In particular, dozens of formulas collectively known as drawing aesthetics
(or, more precisely, quality metrics [11]) have been proposed that attempt to
capture in a single number how beautiful, readable and clear a drawing of an
abstract graph is. Of those, simple metrics such as the number of edge crossings,
minimum crossing angle, vertex distribution or angular resolution parameters
are obviously incapable per se of providing the ultimate aesthetic statement.
Advanced metrics may represent, for example, the energy of a corresponding
system of physical bodies [10, 14]. This approach underlies many popular graph
drawing algorithms [48] and often leads to pleasing results in practice. However,
it is known that low values of energy or stress do not always correspond to the
highest degree of symmetry [54] which is an important aesthetic criterion [40].

Another direction of research aims to narrow the scope of the original ques-
tion to specific application domains, focusing on the purpose of a drawing or
possible user actions it may facilitate (tasks). The target parameters – read-
ability and the clarity of representation – may be assessed via user performance
studies. However, even in this case such aesthetic notions as symmetry still
remain important [40]. In general, aesthetically pleasing designs are known to
positively affect the apparent and the actual usability [33, 50] of interfaces and
induce positive mental states of users, enhancing their problem-solving abili-
ties [13].

In this work, we offer an alternative perspective on the aesthetics of graph
drawings. First, we address a slightly modified question: “Of two given draw-
ings of the same graph, which one is more aesthetically pleasing?”. With that,
we implicitly admit that “the ultimate” quality metric may not exist and one
can hope for at most a (partial) ordering of layouts with respect to their aes-
thetic value. Instead of a metric, we therefore search for a binary discriminator
function of graph drawings. As limited as it is, it could be useful for practi-
cal applications such as picking the best answer out of the outputs of several
drawing algorithms or resolving local minima in layout optimization.

Second, similarly to several known works [7, 19] we believe that by combining
multiple metrics computed for each drawing one has a better chance of capturing
complex aesthetic properties. We thus also consider a “meta-algorithm” that
aggregates several “input” metrics into a single value. However, unlike the
recipes in the above papers, we do not specify the form of this combination
a priori but let an artificial neural network “learn” it based on a sample of
labeled training data. In the recent years, machine learning techniques have
proven useful in such aesthetics-related tasks as assessing the appeal of 3D
shapes [8] or cropping photos [32]. Our network architecture is based on a so-
called Siamese neural network [4] – a generic model specifically designed for
binary functions of same-kind inputs.
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Finally, we acknowledge that any simple or complex input metric may be-
come crucial to the answer in some cases that are hard to predict a priori. We
therefore implement as many input metrics as we can and relegate their ranking
to the model. In addition to those known from the literature, we implement a
few novel metrics inspired by statistical tools used in Condensed Matter Physics
and Crystallography, which we expect to be helpful in capturing the symmetry,
balance, and salient structures in larger graphs. These metrics are based on
so-called syndromes – variable-size multi-sets of numbers computed for a graph
or its drawing (e.g. vertex coordinates or pairwise distances). In order to reduce
these heterogeneous multi-sets to a fixed-size feature vector (input to the dis-
criminator model), we perform a feature extraction process which may involve
steps such as creating histograms or performing regressions.

Due to the lack of human-labeled data and the practical complexities of
conducting a large-scale user study to collect subjective aesthetic preferences,
we have performed our experiments based on artificially labelled data. First,
we have compiled a large corpus of publicly available and generated graphs.
Second, in order to produce layout pairs with known aesthetical ordering, we
have exploited several strong assumptions. In particular, we postulate that
layouts produced by force-directed algorithms and those naturally stemming
from the generation process are aesthetically pleasing to a high degree, and that
random disturbances introduced to such layouts always reduce their aesthetic
quality. These assumptions are indirectly supported by user studies stating that
people prefer layouts with fewer crossings [21, 39], and generally value medium
levels of complexity [2] and high level of symmetry [51].

In our experiments, our discriminator model outperforms the known (metric-
based) algorithms and achieves an average accuracy of 97.58 % when identifying
the “better” graph drawing out of a pair. The project source code including the
data generation procedure is available online [27].

The remainder of this paper is structured as follows. In section 2 we briefly
overview the state-of-the-art in quantifying graph layout aesthetics. Section 4
discusses the used syndromes of aesthetic quality, section 5 – the feature ex-
traction, and section 6 – the discriminator model. The dataset used in our
experiments is described in section 7. The results and the comparisons with the
known metrics are presented in section 8. Section 9 summarises the paper and
provides an outlook for the future work.

2 Related Work

According to empirical studies, graph drawings that maximize one or several
quality metrics are more aethetically pleasing and easier to read [18, 19, 36, 41,
53]. For instance, in their seminal work, Purchase et al. have established [40]
that higher numbers of edge crossings and bends as well as lower levels of sym-
metry negatively influence user performance in graph reading tasks.

Many graph drawing algorithms attempt to optimize multiple quality metrics
at once. As one way to combine them, Coleman and Parker [7] have used a
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weighted sum of “simple” metrics. Huang et al. [19] have additionally considered
the effects of the interactions between “simple” metrics (see [37] and [22]), and
extra terms accounting for possible measurement errors.

In another work, Huang et al. [23] have empirically demonstrated that their
“aggregate” metric is sensitive to quality changes and is correlated with the
human performance in graph comprehension tasks. They have also noticed that
the dependence of aesthetic quality on input quality metrics can be non-linear
(e.g. a quadratic relationship better describes the interplay between crossing
angles and drawing quality [20]). Our work extends this idea as we allow for
arbitrary non-linear dependencies implemented by an artificial neural network.

Purchase et al. [39] have studied subjective preferences of users for UML
diagrams. One of the conclusions of that study was that users prefer diagrams
with fewer crossings. Huang et al. have collected subjective usability ratings of
sociograms [21] and established that drawings with fewer crossings are favored.
Purchase et al. [41] have asked users to select the most “liked” drawing out of
drawings with straight-line and circular edges, with the results indicating the
preference for circular drawings. Carbon et al. [5] have altered the outlines of
graph visualization and asked for beauty ratings. The drawings that looked
“curvier” were preferred by the users. Further, in cognitive psychology it is
generally known that a medium level of complexity gains the highest aesthetic
value (see, e.g., [2]). It is also known that high levels of symmetry ease the way
we perceive objects [51] and information visualizations [52].

In evolutionary graph drawing approaches, several techniques have been sug-
gested to “train” a fitness function∗ from the user’s responses as a composition
of several known quality metrics. Masui [31] modeled the fitness function as a
linear combination in which the weights are obtained via genetic programming
from the pairs of “good” and “bad” layouts provided by users. The so-called
co-evolution was used by Barbosa and Barreto [1] to evolve the weights of the
fitness function in parallel with a drawing population in order to match the
ranking made by users. Spönemann and others [46] suggested two alternative
techniques. In the first one, the user directly chooses the weights with a slider.
In the second, they select good layouts from the current population and the
weights are adjusted according to the selection. Rosete-Suarez [42] determined
the relative importance of individual quality metrics based on user inputs. Sev-
eral machine learning-based approaches to graph drawing are described by dos
Santos Vieira et al. [9]. Recently, Kwon et al. [30] presented a novel work on
topological similarity of graphs. Their goal was to avoid expensive computations
of graph layouts and their quality measures. The resulting system was able to
sketch a graph in different layouts and estimate corresponding quality metrics.

In most cases above, the evaluated layout is represented as an abstract 2D ob-
ject with precisely known parameters such as vertex coordinates (this paradigm
is also assumed in the current paper). All involved aesthetically-related met-
rics and syndromes are therefore related to the graph structure and geometrical
relations such as distances and angles. In an alternative approach recently sug-

∗Objective function in genetic algorithms that summarizes optimization goals.
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gested by Haleem et al. [17], quality metrics are predicted by an artificial neural
network given a rasterized image of a graph layout over some fixed-resolution
pixel grid. On the one hand, using raw pixel values allows one to avoid (some-
times costly) “true” computations of edge crossing, node spread, node overlap,
etc and simplifies the feature extraction. On the other hand, any chosen reso-
lution is obviously sub-optimal for too large or too small graphs, or for graph
layouts that lead to “inconvenient” rasterizations. It is, however, possible, that
some hybrid approach that exploits both the abstract layout geometry as well
as its images (possibly with adaptive or multi-scale resolution) may eventually
lead to solid improvements over “pure” methods.

3 Definitions

In this paper we consider general simple graphs G = (V,E) where V = V (G)
and E = E(G) are the vertex and edge sets of G with |V | = n and |E| = m. A
drawing or layout of a graph is its graphical representation where vertices are
drawn as points or small circles, and the edges as straight line segments. Vertex
positions in a drawing are denoted by ~p k = (pk1 , p

k
2)T for k = 1, . . . , n and their

set P = {~p k}nk=1. Further, we use distG(u, v) to denote the graph-theoretical
distance – the length of the shortest path between vertices u and v in G – and
distΓ(u, v) for the Euclidean distance between u and v in the drawing Γ(G).

4 Quality Syndromes of Graph Layouts

A quality syndrome of a layout Γ is a multi-set of numbers that share a common
interpretation, and that are known or suspected to correlate with the aesthetic
quality (e.g., all pairwise angles between incident edges in Γ). In this section
we describe several syndromes that are implemented in our code and that have
been inspired by popular quality metrics and common statistical tools.

When developing these definitions, we assumed that respective algorithms
must remain practical for graphs containing up to a few thousand of nodes. At
this scale, it is often still possible for humans to evaluate graphs visually and
many popular layout algorithms converge relatively fast. On the other hand,
such objects may already be studied using statistical distributions. Of course, if
a given application typically requires much larger or much smaller graphs, the
syndromes should be respectively adjusted.

The following list is by no means exhaustive, nor do we claim syndromes
below to be necessary or independent. Our subsequent discriminator model
accepts any combination of syndromes; their choices remain to be systematically
investigated.

PRINVEC1 and PRINVEC2 The two principal axes of the set P . If we define
a covariance matrix C = {cij}, cij = 1

n

∑n
k=1 (pki − pi)(pkj − pj), i, j ∈

{1, 2}, where pi = 1
n

∑n
k=1 p

k
i are the mean values over each dimension,

then PRINVEC1 and PRINVEC2 will be its eigenvectors.
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Figure 1: Illustration of the syndromes RDF GLOBAL and ANGULAR. Upper row,
from left to right: proper, distorted layouts of a regular grid, and a force-
directed layout of an irregular graph (“power grid”). Central row: smoothed
relative frequency distributions for the RDF GLOBAL syndromes computed for
the respective layouts in the upper row. The isolated peaks in the leftmost
distribution correspond to characteristic distances in the lattice. In the central
plot, these peaks are widened due to random distortion. In the rightmost plot,
no regular structure can be identified. Lower row: smoothed relative frequency
distributions for the ANGULAR syndromes. The leftmost plot clearly shows the
dominance of angles proportional to π/2. In the rightmost plot, the distinctive
peak at φ = 2π corresponds to the large number of degree one vertices.
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PRINCOMP1 and PRINCOMP2 Projections of vertex positions onto ~v1 = PRINVEC1

and ~v2 = PRINVEC2, that is, {〈
(
~pj − ~p

)
, ~vi〉}nj=1 for i ∈ {1, 2} where 〈·, ·〉

denotes the scalar product.

ANGULAR Let A(v) denote the sequence of edges incident to a vertex v, appearing
in a clockwise order around it in Γ. Let α(ei, ej) denote the clockwise an-
gle between edges ei and ej incident to the same vertex. This syndrome is
then defined as

⋃
v∈V (G){α(ei, ej) : ei, ej are consecutive in A(v)}. Fig. 1

shows histograms of ANGULAR for some graphs and layouts. Note that
more regular drawings feature better-isolated peaks in the respective his-
tograms.

EDGE LENGTH
⋃

(u,v)∈E(G){distΓ(u, v)} is the set of edge lengths in Γ.

RDF GLOBAL
⋃
u6=v∈V (G){distΓ(u, v)} contains distances between all vertices in

the drawing. The concept of a radial distribution function (RDF) [12]
(the distribution of RDF GLOBAL) is borrowed from Statistical Physics and
Crystallography and characterizes the regularity of molecular structures.
In large graph layouts it captures regular, periodic and symmetric patterns
in the vertex positions. Fig. 1 illustrates histograms of RDF GLOBAL. Again,
more regular drawings result in better-isolated peaks in the histograms.

RDF LOCAL(d)
⋃
u6=v∈V (G){distΓ(u, v) : dist(u, v) ≤ d} is the set of distances

between vertices such that the graph-theoretical distance between them
is bounded by d ∈ N. In our implementation, we compute RDF LOCAL(2i)
for i ∈ {0, . . . , dlog2(D)e} where D is the diameter of G. RDF LOCAL(d)
in a sense interpolates between EDGE LENGTH (d = 1) and RDF GLOBAL

(d→∞).

TENSION
⋃
u 6=v∈V (G){distΓ(u, v)/distG(u, v)} are the ratios of Euclidean and

graph-theoretical distances computed for all vertex pairs. TENSION is mo-
tivated by and is related to the well-known stress function [24].

Note that before computing the quality syndromes, we normalize all layouts so
that the center of gravity of V is at the origin and the mean edge length is fixed
in order to remove the effects of scaling and translation (but not rotation).

5 Feature Vectors

The sizes of quality syndromes are in general graph- and layout-dependent. A
neural network, however, requires a fixed-size input. A collection of syndromes
is condensed to this feature vector via feature extraction. Our approach to this
step relies on several auxiliary definitions. Let S = {xi}pi=1 be a syndrome with
p entries. By Sµ we denote the arithmetic mean and by Sρ the root mean
square of S. We also define a histogram sequence Sβ = 1

p (S1, . . . , Sβ) – a vector
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of normalized counts in a histogram built over S with β bins. The entropy [45]
of Sβ is defined as

E (Sβ) = −
p∑
i=1

log2(Si)Si . (1)

We expect the entropy, as a measure of disorder, to be related to the aesthetic
quality of a layout and convey important information to the discriminator.

The entropy E (Sβ) is sensitive to the number of bins β (cf. Fig. 2). In order
to avoid biases due to arbitrary choices of β, we compute the entropy for β =
8, 16, . . . , 512. After that, we perform a linear regression of E (Sβ) as a function
of log2(β). Specifically, we find Sη and Sσ such that

∑
β(Sσ log2 β+Sη−E (Sβ))2

is minimized. The parameters (intercept Sη and slope Sσ) of this regression
no longer depend on the histogram size and may be used as feature vector
components. Fig. 2 illustrates that the dependence of E (Sβ) on log2(β) is
indeed often close to linear and the regression provides a decent approximation.

A histogram over S can be generalized to a continuous sliding average

SF (x) =

∑p
i=1 F (x, xi)∫ +∞

−∞ dy
∑p
i=1 F (y, xi)

. (2)

A natural choice for the kernel F (x, y) is the Gaussian Fσ(x, y) = exp
(
− (x−y)2

2σ2

)
.

By analogy to Eq. 1, we may now define the differential entropy [45] as

D(SFσ ) = −
∫ +∞

−∞
dx log2(SFσ (x)) SFσ (x) . (3)

This entropy via kernel function still depends on the filter width σ. Computing
D(SFσ ) for multiple values of σ as we do for E (Sβ) is too expensive. Instead,
we have found that using Scott’s Normal Reference Rule [44] as a heuristic to
fix σ yields satisfactory results, and allows us to define Sε = D(SFσ ).

Using these definitions, for the most complex syndrome RDF LOCAL(d) we
introduce RDF LOCAL – a 30-tuple containing the arithmetic mean, root mean
square and the differential entropy of RDF LOCAL(2i) for i ∈ (0, . . . , 9). With

that†, RDF LOCAL =
(
RDF LOCAL(2i)µ, RDF LOCAL(2i)ρ, RDF LOCAL(2i)ε

)9
i=0

.

Finally, we assemble the 57-dimensional‡ feature vector for a layout Γ as

Flayout(Γ) = PRINVEC1 ∪ PRINVEC2 ∪ RDF LOCAL ∪
⋃
S

(Sµ, Sρ, Sη, Sσ) ,

where S ranges over PRINCOMP1, PRINCOMP2, ANGULAR, EDGE LENGTH, RDF GLOBAL

and TENSION.
In addition, the discriminator model receives the trivial properties of the un-

derlying graph as the second 2-dimensional vector Fgraph(G) = (log(n), log(m)).

†Values i < 10 are sufficient as no graph in our dataset has a diameter exceeding 29.
‡The size is one less than expected from the explanation above because we do not in-

clude the arithmetic mean for EDGE LENGTH as it is constant (due to the layout normalization
mentioned earlier) and therefore is non-informative.
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6 Discriminator Model

Feature extractors such as those introduced in the previous section reduce an
arbitrary graph G and its arbitrary layout Γ to fixed-size vectors Fgraph(G) and
Flayout(Γ). Given a graph G and a pair of its alternative layouts Γa and Γb,
the discriminator function DM receives the feature vectors ~va = Flayout(Γa),
~vb = Flayout(Γb) and ~vG = Fgraph(G) and outputs a scalar value

t = DM(~vG, ~va, ~vb) ∈ [−1, 1] . (4)

The interpretation is as follows: if t < 0, then the model believes that Γa is
“prettier” than Γb; if t > 0, then it prefers Γb. Its magnitude |t| encodes the
confidence level of the decision (the higher |t|, the more solid the answer).

For the implementation of the function DM we have chosen a practically
convenient and flexible model structure known as Siamese neural networks, orig-
inally proposed by Bromley and others [4] that is defined as

DM(~vG, ~va, ~vb) = GM(~σa − ~σb, ~vG) (5)

where ~σa = SM(~va) and ~σb = SM(~vb). The shared model SM and the global
model GM are implemented as multi-layer neural networks with a simple struc-
ture shown in Fig. 3. The network was implemented using the Keras [25] frame-
work with the TensorFlow [49] library as the back-end.

The SM network (Fig. 3(a)) consists of two “dense” (fully-connected) layers,
each preceded by a “dropout” layer (discarding 50 % and 25 % of the signals,
respectively). Dropout is a stochastic regularization technique intended to avoid
overfitting that was first proposed by Srivastava and others [47].

In the GM network (Fig. 3(b)), the graph-related feature vector ~vG is passed
through an auxiliary dense layer, and concatenated with the difference signal
(~σa−~σb) obtained from the output vectors of SM for the two layouts. The final
dense layer produces the scalar output value. The first and the auxiliary layers
use linear activation functions, the hidden layer uses ReLU [16] and the final
layer hyperbolic tangent activation. Following standard practice, the inputs
to the network are normalized by subtracting the mean and dividing by the
standard deviation of the feature computed over the complete dataset.

As in the case of the syndrome selection, the choices above are not claimed
to be optimal. The network structure was developed to provide the maximum
flexibility (offered by hidden layers with the full connectivity to the input and
the output layers), and, at the same time, to maintain the number of train-
able parameters significantly below the number of the available training data
entries (to avoid overfitting). Activation function choices roughly represent our
assumptions about the variation of the respective signals: feature vector com-
ponents are generally assumed to be unbounded, while the output value has a
well-defined limited range. Similarly, ReLU-activation in the hidden layers is a
popular and efficient way to introduce non-linearity in the model. Overall, the
present network is a typical and straightforward solution for a situation when
the training dataset is small. Should the data availability improve, larger and
more complex networks could be considered.
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ROME NORTH RANDDAG

BCSPWR GRENOBLE

PSADMIT SMTAPE

Figure 4: Examples of imported graphs. The BCSPWR, GRENOBLE, PSADMIT and
SMTAPE graphs come from the respective datasets in the Harwell-Boeing collec-
tion in NIST’s “Matrix Market” [3]. All graphs are visualized using the FM3

algorithm.
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In total, the DM model has 1 066 free parameters, trained via stochastic
gradient descent-based optimization of the mean squared error (MSE) loss func-
tion.

7 Training and Testing Data

For training, all machine learning methods require datasets representing the
variability of possible inputs. Our DM model needs a dataset containing graphs,
their layouts, and known aesthetic orderings of layout pairs. We have assembled
such a dataset using two types of sources. First, we used the collections of the
well-known graph archives ROME, NORTH and RANDDAG which are published on
graphdrawing.org as well as the NIST’s “Matrix Market” [3]. See Fig. 4 for
examples.

Second, we have generated random graphs using the algorithms listed below.
As a by-product, some of them produce layouts that stem naturally from the
generation logic. We refer to these as native layouts (see [26] for details). Sample
graphs with native layouts (where available) are shown in Fig. 5. In experiments,
we have limited the graph sizes by 1000 nodes.

GRID Regular n×m grids. Native layouts: regular rectangular grids.

TORUS1 Same as GRID, but the first and the last “rows” are connected to form
a 1-torus (a cylinder). No native layouts.

TORUS2 Same as TORUS1, but also the first and the last “columns” are connected
to form a 2-torus (a doughnut). No native layouts.

LINDENMAYER Uses a stochastic L-system [35] to derive increasingly complex
graphs by performing random replacements of individual vertices with
more complicated substructures such as an n-ring or an n-clique. Fig. 6
shows all the implemented replacement rules. Produces a planar native
layout.

QUASI〈n〉D for n ∈ {3, . . . , 6} Projection of a primitive cubic lattice in an n-di-
mensional space onto a 2-dimensional plane intersecting that space at a
random angle. The native layout follows from the construction.

MOSAIC1 Starts with a regular polygon and randomly divides faces according
to a set of simple rules until the desired graph size is reached. The rules
include adding a vertex connected to all vertices of the face; subdividing
each edge and adding a vertex that connects to each subdivision vertex;
subdividing each edge and connecting them to a cycle. These operations
are visualized in Fig. 7. The native layout follows from the construction.

MOSAIC2 Applies a randomly chosen rule of MOSAIC1 to every face, with the goal
of obtaining more symmetric graphs.

graphdrawing.org
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BOTTLE Constructs a graph as a three-dimensional mesh over a random solid of
revolution. The native layout is the axonometric projection of the mesh.

For each graph, we have computed force-directed layouts using the FM3 [15]
and stress-minimization [24] algorithms, implemented in the OGDF library [6].
We assume these and native layouts to be generally aesthetically pleasing and
call them all proper layouts of a graph.

Furthermore, we have generated a priori un-pleasing (garbage) layouts as
follows. Given a graph G = (V,E), we generate a random graph G′ = (V ′, E′)
with |V ′| = |V | and |E′| = |E| and compute a force-directed layout for G′. The
coordinates found for the vertices V ′ are then assigned to V . We call these
“phantom” layouts due to the use of a “phantom” graph G′. We find that
phantom layouts look less artificial than purely random layouts when vertex
positions are sampled from a uniform or a normal distribution. This might be
due to the fact that G and G′ have the same density and share some beneficial
aspects of the force-directed method (such as mutual repelling of nodes). See
Fig. 8 for the examples of regular and garbage layouts.

For training and testing of the discriminator model we need a corpus of
labeled pairs – triplets (Γa,Γb, t) where Γa and Γa are two different layouts
for the same graph and t ∈ [−1, 1] is a value indicating the relative aesthetic
quality of Γa and Γb. A negative (positive) value for t expresses that the quality
of Γa is superior (inferior) compared to Γb and the magnitude of t expresses the
confidence of this prediction. We only use pairs with |t| > 0.05.

As manually-labelled data were unavailable, we have fixed the values of t
as follows. First, we paired a proper and a garbage layout of a graph. The
assumption is that the former is always more pleasing (i.e. t = ±1). Second, in
order to obtain more nuanced layout pairs and to increase the amount of data,
we have employed the well-known technique of data augmentation as follows.

Layout Worsening: Given a proper layout Γ, we apply a transformation
designed to gradually reduce its aesthetic quality that is modulated by some
parameter r ∈ [0, 1], resulting in a transformed layout Γ′r. By varying the
degree r of the distortion, we may generate a sequence of layouts ordered by
their anticipated aesthetic value: a layout with less distortion is expected to be
more pleasing than a layout with more distortion when starting from a presum-
ably decent layout. We have implemented the following worsening techniques.
Illustrations of these worsening algorithms can be found in Fig. 9.

PERTURB adds Gaussian noise to each node’s coordinates.

FLIP NODES swaps coordinates of randomly selected node pairs.

FLIP EDGES same as FLIP NODES but restricted to connected node pairs.

MOVLSQ applies an affine deformation based on moving least squares suggested
(although for a different purpose) by Schaefer et al. [43]. In essence,
all vertices are shifted according to some smoothly varying coordinate
mapping.
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GRID TORUS1 TORUS2 BOTTLE

QUASI3D QUASI4D QUASI5D QUASI6D

LINDENMAYER MOSAIC1 MOSAIC2

Figure 5: Examples of generated graphs labeled by the respective generators.
GRID, LINDENMAYER, QUASI〈n〉D, MOSAIC1, MOSAIC2 and BOTTLE layouts are na-
tive. TORUS1 and TORUS2 are visualized with the stress-minimization algorithm.
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Figure 6: Illustration of the LINDENMAYER generator operations. A degree four
vertex may be replaced by any of the above subgraphs, except for the bottom
right subgraph which replaces a degree zero vertex.
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M/STAR M/FLOWER M/SHAPE

Figure 7: Operations of the MOSAIC generator on a pentagonal facet {u1, . . . , u5}.

NATIVE FMMM STRESS

RANDOM UNIFORM RANDOM NORMAL PHANTOM

Figure 8: Examples of different layouts for the same graph. RANDOM UNIFORM,
RANDOM NORMAL are random layouts where vertex positions are sampled from the
uniform and the normal distributions, respectively.
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Figure 9: Examples of applying different layout worsening techniques at different
rates.
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r = 0 % r = 25 % r = 75 % r = 100 %

Figure 10: Example of linear interpolation between a proper and a garbage
layout.

Layout Interpolation: As the second data augmentation technique, we lin-
early interpolated the positions of corresponding vertices between the proper
and garbage layouts of the same graph. The resulting label t is then propor-
tional to the difference in the interpolation parameter. Fig. 10 shows an example
of linear interpolation between two layouts.

In total, using all the methods described above, we have been able to collect a
database of about 76 000 labeled layout pairs.

8 Evaluation

The performance of the discriminator model was evaluated using cross-validation
with 10-fold random subsampling [29]. In each round, 20 % of graphs (with all
their layouts) were chosen randomly and were set aside for testing, and the
model was trained using the remaining layout pairs. Of N labeled pairs used
for testing, in each round we computed the number Ncorrect of pairs for which
the model properly predicted the aesthetic preference, and derived the accuracy
(success rate) A = Ncorrect/N . The standard deviation of A over the 10 runs
was taken as the uncertainty of the results. With the average number of test
samples of N = 15554, the eventual success rate was A = (97.58 ± 0.41)%.

8.1 Comparison With Other Metrics

In order to assess the relative standing of the suggested method, we have imple-
mented two known aesthetic metrics (stress and the combined metric by Huang
et al. [23]) and evaluated them over the same dataset. The metric values were
trivially converted to the respective discriminator function outputs.

Stress T of a layout Γ of a simple connected graph G = (V,E) was defined
by Kamada and Kawai [24] as

T (Γ) =

n−1∑
i=1

n∑
j=i+1

kij (distΓ(vi, vj)− LdistG(vi, vj))
2
, (6)
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where L denotes the desirable edge length and kij = K/distG(vi, vj)
2 is the

strength of a “spring” attached to vi and vj . The constant K is irrelevant in
the context of discriminator functions and can be set to any value.

As observed by Welch and Kobourov [54], the numeric value of stress de-
pends on the layout scale via the constant L in the Eq. 6 which complicates
comparisons. Their suggested solution was for each layout to find L that mini-
mizes T (e.g. using binary search). In our implementation, we applied a similar
technique based on fitting and minimizing a quadratic function to the stress
computed at three scales. We refer to this quantity as STRESS.

The combined metric proposed by Huang et al. [23] (referred to as COMB) is a
weighted average of four simpler quality metrics: the number of edge crossings
(CC), the minimum crossing angle between any two edges in the drawing (CR),
the minimum angle between two adjacent edges (AR), and the standard deviation
computed over all edge lengths (EL).

The average is computed over the so-called z-scores of the above metrics.
Each z-score is found by subtracting the mean and dividing by the standard
deviation of the metric for all layouts of a given graph to be compared with
each other. More formally, let G be a graph and Γ1, . . . ,Γk be its k layouts to
be compared pairwise. Let M(Γi) be the value of metric M for Γi and µM and
σM be the mean and the standard deviation of M(Γi) for i ∈ {1, . . . , k}. Then

z
(i)
M =

M(Γi)− µM
σM

(7)

is the z-score for metric M and layout Γi. The combined metric then is

COMB(Γj) =
∑
M

wM z
(j)
M . (8)

The weights wM were found via Nelder-Mead maximization [34] of the prediction
accuracy over the training dataset§.

The accuracy of the stress-based and the combined model-based discrimina-
tors is shown in Tab. 1. In most cases, our model outperforms these algorithms
by a comfortable margin of 2−3%. Fig. 11 provides examples of mis-predictions.
By inspecting such cases, we notice that STRESS often fails to guess the aesthet-
ics of (almost) planar layouts that contain both very short and very long edges
(such behavior may also be inferred from the definition of STRESS). It is known
that for some planar graphs, such as nested triangulations, this property is un-
avoidable in planar drawings. The mis-predictions of COMB seem to be due to
the high weight of the edge length metric EL. Both STRESS and COMB are weaker
than our model in capturing the absolute symmetry and regularity of layouts.

8.2 Significance of Individual Syndromes

In order to estimate the influence of individual syndromes on the final result,
we have tested several modifications of our model. For each syndrome, we

§The obtained weights are: wCC = +0.6929 ± 0.2521, wEL = +0.2803 ± 0.2263, wCR =
−0.0216 ± 0.0210, wAR = −0.0051 ± 0.0049.
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DISC MODEL 3
STRESS 7
COMB 3

DISC MODEL 3
STRESS 7
COMB 7

DISC MODEL 3
STRESS 3
COMB 7

Figure 11: Examples where our discriminator model (DISC MODEL) succeeds (3)
and the competing metrics fail (7) to predict the answer correctly. In each row,
the layout on the left is expected to be superior compared to the one on the
right.
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Metric Success Rate Advantage

COMB ( 95.42 ± 1.15 ) % ( 2.16 ± 1.11 ) %
STRESS ( 94.97 ± 0.37 ) % ( 2.61 ± 0.44 ) %

Table 1: Accuracy scores for the COMB and STRESS model. The standard devia-
tion in each column is estimated based on the 5-fold cross-validation (using 20 %
of data for testing each time). The “Advantage” column shows the improvement
in the accuracy of our model with respect to the alternative metric.

considered the case when the feature vector contained only that syndrome. In
the second case, that syndrome was removed from the original feature vector.
The entries for the omitted features were set to zero. The results are shown in
Tab. 2.

Property Sole Exclusion Sole Inclusion

PRINCOMP1 ( 97.29 ± 0.57 ) % ( 54.75 ± 1.88 ) %
PRINCOMP2 ( 97.24 ± 0.32 ) % ( 59.93 ± 3.63 ) %
ANGULAR ( 97.11 ± 0.43 ) % ( 73.28 ± 9.28 ) %
EDGE LENGTH ( 97.62 ± 0.35 ) % ( 73.77 ± 6.90 ) %
RDF GLOBAL ( 97.47 ± 0.48 ) % ( 83.43 ± 3.84 ) %
TENSION ( 97.44 ± 0.53 ) % ( 88.48 ± 1.61 ) %
RDF LOCAL ( 83.60 ± 4.67 ) % ( 96.22 ± 1.29 ) %

Baseline Using All Properties ( 97.58 ± 0.41 ) %

Table 2: Success rates of our discriminator when a syndrome is excluded from
the feature vector, and when the feature vector contains only that a syndrome.
Note that RDF LOCAL is a family of syndromes that are all included or excluded
together. The apparent paradox of higher success rates when some syndromes
are excluded can be explained by a statistical fluctuation; the respective “im-
provements” are well within the estimated uncertainty.

As can be observed, the dominant contribution to the accuracy of the model
is due to the RDF-based properties RDF LOCAL and RDF GLOBAL. The exclusion
of other syndromes does not significantly change the results (they agree within
the estimated uncertainty). However, the sole inclusion of these syndromes
still performs better than random choice (50 % success rate). This suggests
that there is a considerable overlap between the aesthetic aspects captured by
various syndromes. Further analysis is needed to identify the nature and the
magnitude of these correlations. Superficially, Table 2 may imply that all the
features except for RDF LOCAL can be neglected. However, since RDF LOCAL is
the most computationally expensive feature, this would not significantly affect
the runtime.
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9 Conclusion

In this paper we propose a machine learning-based discriminator model that se-
lects the more aesthetically pleasing drawing from a pair of graph layouts. Our
model picks the “better” layout in more than 97 % cases and outperforms known
stress-based and linear combination-based models. To the best of our knowl-
edge, this is the first application of machine learning methods to this question.
Previously, such techniques have proven successful in a range of complex issues
involving aesthetics, prior knowledge, and unstated rules in object recognition,
industrial design, and digital arts. As our model uses a simple network archi-
tecture, investigating the performance of more complex networks is warranted.

Previous efforts were focused on determining the aesthetic quality of a layout
as a weighted average of individual quality metrics. We extend these ideas and
findings in the sense that we do not assume any particular form of dependency
between the overall aesthetic quality and the individual quality metrics.

Moving beyond simple quality metrics, we define quality syndromes that cap-
ture arrays of information about graphs and layouts. In particular, we borrow
the notion of RDF from Statistical Physics and Crystallography; RDF-based
features demonstrate the strongest potential in extracting the aesthetic quality
of a layout. We expect RDFs (describing the microscopic structure of materials)
to be the most relevant for large graphs. It is tempting to investigate whether
further tools from physics can be useful in capturing drawing aesthetics.

From multiple syndromes, we construct fixed-size feature vectors using com-
mon statistical tools. Note that our feature vectors do not contain any explicit
information about crossings or crossing angles. Nevertheless, the resulting per-
formance is superior with respect to the weighted averages-based model which
accounts for both. Further, incorporating symmetry measures recently sug-
gested by Purchase [38] and Klapaukh [28] could be an interesting option.

In order to train and evaluate the model, we have assembled a relatively large
corpus of labeled pairs of layouts, using available and generated graphs and ex-
ploiting the assumption that layouts produced by force-directed algorithms and
native graph layouts are aesthetically pleasing and that random disturbances
reduce their aesthetic quality.

Of course, to achieve a higher practical relevance, this study should ideally
be repeated with human-labeled data. However, this requires that a dataset
be collected with a size similar to ours, which is a challenging task. Building
infrastructure to attract people, collect responses, and process the results, as
well as data collection campaigns per se may require considerable resources
and efforts. Nevertheless, we believe that creating such a dataset would be a
critically important accomplishment in the graph drawing field.

Another open question is how to efficiently incorporate explicit and implicit
domain-specific rules and expert knowledge into models (domain adaptation).
A fully representative collection of graph drawings related to some domain by
definition encodes all field-specific conventions and preferences. Therefore, a
sufficiently flexible model trained on this dataset automatically adapts to the do-
main. Often, however, available datasets are not representative, have unknown
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biases, and contain too few samples illustrating some important rules. Differ-
ent machine learning approaches admit various ways of correcting these biases
and artificially increasing the importance of such “prior knowledge”. Studying
these methods and developing convenient field-specific solutions would be an
interesting extension of the present work.
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