
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 2, pp. 111–134 (2019)
DOI: 10.7155/jgaa.00486

How Bad is the Freedom to Flood-It?
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Abstract

Fixed-Flood-It and Free-Flood-It are combinatorial problems on
graphs that generalize a very popular puzzle called Flood-It. Both prob-
lems consist of recoloring moves whose goal is to produce a monochromatic
(“flooded”) graph as quickly as possible. Their difference is that in Free-
Flood-It the player has the additional freedom of choosing the vertex
to play in each move. In this paper, we investigate how this freedom
affects the complexity of the problem. It turns out that the freedom is
bad in some sense. We show that some cases trivially solvable for Fixed-
Flood-It become intractable for Free-Flood-It. We also show that
some tractable cases for Fixed-Flood-It are still tractable for Free-
Flood-It but need considerably more involved arguments. We finally
present some combinatorial properties connecting or separating the two
problems. In particular, we show that the length of an optimal solution
for Fixed-Flood-It is always at most twice that of Free-Flood-It, and
this is tight.

Submitted:
July 2018

Reviewed:
October 2018

Revised:
December 2018

Accepted:
December 2018

Final:
January 2019

Published:
January 2019

Article type:
Regular Paper

Communicated by:
G. Liotta

This work is partially supported by JSPS and MAEDI under the Japan-France Integrated Ac-

tion Program (SAKURA) Project GRAPA 38593YJ, and by JSPS KAKENHI Grant Num-

bers JP18K11157, JP18K11168, JP18K11169, JP18H04091. A preliminary version of this

paper appeared in the proceedings of the 9th International Conference on Fun with Algo-

rithms (FUN 2018), Leibniz International Proceedings in Informatics 100 (2018) 5:1–5:13,

doi:10.4230/LIPIcs.FUN.2018.5.

E-mail addresses: remy.belmonte@uec.ac.jp (Rémy Belmonte) mehdi.khosravian-
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1 Introduction

Flood-It is a popular puzzle, originally released as a computer game in 2006
by LabPixies (see [2]). In this game, the player is presented with (what can
be thought of as) a vertex-colored grid graph, with a designated special pivot
vertex, usually the top-left corner of the grid. In each move, the player has the
right to change the color of all vertices contained in the same monochromatic
(connected) component as the pivot to a different color of her choosing. Doing
this judiciously gradually increases the size of the pivot’s monochromatic com-
ponent, until the whole graph is flooded with one color. The goal is to achieve
this flooding with the minimum number of moves. See Figure 1 for an example.
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Figure 1: A flooding sequence on a 3 × 3 grid. Each move in this example
changes the color of the top-left monochromatic (connected) component. Under
such a restriction, the depicted sequence is shortest.

Following the description above, Flood-It immediately gives rise to a natural
optimization problem: given a vertex-colored graph, determine the shortest se-
quence of flooding moves that wins the game. This problem has been extensively
studied in the last few years (e.g. [14, 17, 19, 18, 11, 6, 22, 7, 20, 13, 8]; a more
detailed summary of known results is given below), both because of the game’s
popularity (and addictiveness!), but also because the computational complexity
questions associated with this problem have turned out to be surprisingly deep,
and the problem has turned out to be surprisingly intractable.

The goal of this paper is to add some insights to our understanding of this
interesting, puzzle-inspired, optimization problem, by taking a closer look at
the importance of the pivot vertex. As explained above, the classical version of
the game only allows the player to change the color of a special vertex and its
component and has been studied under the name Fixed-Flood-It [17, 19, 18]
(or Flood-It in some papers [2, 22, 6, 7, 13]). However, it is extremely natural
to also consider a version where the player is also allowed to play a different
vertex of her choosing in each turn. This has also been well-studied under the
name Free-Flood-It [2, 14, 17, 19, 18, 6, 22]. See, e.g., Figure 2.
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Figure 2: A flooding sequence with no restriction on selected monochromatic
components, which is shorter than the one in Figure 1.
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Since both versions of this problem have been studied before, the question of
the impact of the pivot vertex on the problem’s structure has (at least implic-
itly) been considered. Intuitively, one would expect Free-Flood-It to be a
harder problem; after all, the player has to choose a color to play and a vertex to
play it on, and is hence presented with a larger set of possible moves. The state
of the art seems to confirm this intuition, as only some of the positive algorith-
mic results known for Fixed-Flood-It are known also for Free-Flood-It,
while there do exist some isolated cases where Fixed-Flood-It is tractable
and Free-Flood-It is hard, for example co-comparability graphs [9, 11] and
grids of height 2 [2, 18]. Nevertheless, these results do not completely pinpoint
the added complexity brought by the task of selecting a vertex to play, as the
mentioned algorithms for Fixed-Flood-It are already non-trivial, and hence
the jump in complexity is likely to be the result of the combination of the tasks
of picking a color and a vertex. More broadly, [6] presented a generic reduction
from Fixed-Flood-It to Free-Flood-It that preserves a number of crucial
parameters (number of colors, optimal value, etc.) and gives convincing evi-
dence that Free-Flood-It is always at least as hard as Fixed-Flood-It, but
not necessarily harder.

Our Results We investigate the complexity of Free-Flood-It, mostly
from the point of view of parameterized complexity,1 as well as the impact on
the combinatorics of the game of allowing moves outside the pivot.

Our first result is to show that Free-Flood-It is W[2]-hard parameterized
by the number of moves in an optimal solution. We recall that for Fixed-
Flood-It this parameterization is trivially fixed-parameter tractable: when a
player has only k moves available, then we can safely assume that the graph uses
at most (roughly) k colors, hence one can easily consider all possible solutions in
FPT time. The interest of our result is, therefore, to demonstrate that the task
of deciding which vertex to play next is sufficient to make Free-Flood-It sig-
nificantly harder than Fixed-Flood-It. Indeed, the W[2]-hardness reduction
we give, implies also that Free-Flood-It is not solvable in no(k) time under the
ETH (Exponential Time Hypothesis). This tightly matches the complexity of
a trivial algorithm which considers all possible vertices and colors to be played.
This is the first concrete example showing a case where Fixed-Flood-It is
essentially trivial, but Free-Flood-It is intractable.

Motivated by this negative result we consider several other parameterizations
of the problem. We show that Free-Flood-It is fixed-parameter tractable
when parameterized by the number of possible moves and the clique-width.
This result is tight in the sense that the problem is hard when parameterized
by only one of these parameters. It also implies the fixed-parameter tractability
of the problem parameterized by the number of colors and the modular-width.
In a similar vein, we present a polynomial kernel when Free-Flood-It is pa-
rameterized by the input graph’s neighborhood diversity and number of colors.

1For readers unfamiliar with the basic notions of this field, we refer to standard textbooks
[4, 10].
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An analogous result was shown for Fixed-Flood-It in [7], but because of the
freedom to select vertices, several of the tricks used there do not apply to Free-
Flood-It, and our proofs are slightly more involved. Our previously mentioned
reduction also implies that Free-Flood-It does not admit a polynomial ker-
nel parameterized by vertex cover, under standard assumptions. This result was
also shown for Fixed-Flood-It in [7], but it does not follow immediately for
Free-Flood-It, as the reduction of [6] does not preserve the graph’s vertex
cover.

Motivated by the above results, which indicate that the complexity of the
problem can be seriously affected if one allows non-pivot moves, we also study
some more purely combinatorial questions with algorithmic applications. The
main question we pose here is the following. It is obvious that for all instances
the optimal number of moves for Free-Flood-It is upper-bounded by the
optimal number of moves for Fixed-Flood-It (since the player has strictly
more choices), and it is not hard to construct instances where Fixed-Flood-It
needs strictly more moves. Can we bound the optimal number of Fixed-Flood-
It moves needed as a function of the optimal number of Free-Flood-It moves?
Somewhat surprisingly, this extremely natural question does not seem to have
been explicitly considered in the literature before. Here, we completely resolve it
by showing that the two optimal values cannot be more than a factor of 2 apart,
and constructing a family of simple instances where they are exactly a factor of
2 apart. As an immediate application, this gives a 2-approximation for Free-
Flood-It for every case where Fixed-Flood-It is known to be tractable.

We also consider the problem’s monotonicity: Fixed-Flood-It has the
nice property that even an adversary that selects a single bad move cannot
increase the optimal (that is, in the worst case a bad move is a wasted move).
We construct minimal examples which show that Free-Flood-It does not
have this nice monotonicity property, even for extremely simple graphs, that
is, making a bad move may not only waste a move but also make the instance
strictly worse. Such a difference was not explicitly stated in the literature,
while the monotonicity of Fixed-Flood-It was seem to be known or at least
assumed. The only result we are aware of is the monotonicity of Free-Flood-
It on paths shown by Meeks and Scott [17].

Known results In 2009, the NP-hardness of Fixed-Flood-It with six col-
ors was sketched by Elad Verbin as a comment to a blog post by Sariel Har-
Peled [24]. Independently to the blog comment, Clifford et al. [2] and Fleischer
and Woeginger [9] started investigations of the complexity of the problem, and
published the conference versions of their papers at FUN 2010. Here we mostly
summarize some of the known results on Free-Flood-It. For more complete
lists of previous result, see e.g. [11, 14, 7].

Free-Flood-It is NP-hard if the number of colors is at least 3 [2] even for
trees with only one vertex of degree more than 2 [14, 6], while it is polynomial-
time solvable for general graphs if the number of colors is at most 2 [2, 17, 14].
Moreover, it is NP-hard even for height-3 grids with four colors [17]. Note
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that this result implies that Free-Flood-It with a constant number of colors
is NP-hard even for graphs of bounded bandwidth. If the number of colors
is unbounded, then it is NP-hard for height-2 grids [18], trees of radius 2 [6],
proper interval graphs and caterpillars [11]. Also, it is known that there is no
constant-factor approximation with a factor independent of the number of colors
unless P = NP [2].

There are a few positive results on Free-Flood-It. Meeks and Scott [19]
showed that every colored graph has a spanning tree with the same coloring such
that the minimum number of moves coincides in the graph and the spanning
tree. Using this property, they showed that if a graph has only a polynomial
number of vertex subsets that induce connected subgraphs, then Free-Flood-
It (and Fixed-Flood-It) on the graph can be solved in polynomial time. This
in particular implies the polynomial-time solvability on subdivisions of a fixed
graph. It is also known that Free-Flood-It for interval graphs and split graphs
is fixed-parameter tractable when parameterized by the number of colors [11].

We refer the interested readers to the recent survey on Food-It by Fellows
et al. [8] for further details of known results and possible applications in bioin-
fomatics.

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, . . . , k}. Given a graph
G = (V,E), a coloring function col : V → [cmax], where cmax is a positive
integer, and u ∈ V , we denote by Comp(col, u) the maximal set of vertices
S such that for all v ∈ S, col(u) = col(v) and there exists a path from u to
v such that for all its internal vertices w we have col(w) = col(u). In other
words, Comp(col, u) is the monochromatic connected component that contains
u under the coloring function col.

Given G, col, a move is defined as a pair (u, i) where u ∈ V , i ∈ [cmax].
The result of the move (u, c) is a new coloring function col′ defined as follows:
col′(v) = c for all v ∈ Comp(col, u); col′(v) = col(v) for all other vertices.
In words, a move consists of changing the color of u, and of all vertices in the
same monochromatic component as u, to c. Given the above definition we can
also define the result of a sequence of moves (u1, c1), (u2, c2), . . . , (uk, ck) on a
colored graph with initial coloring function col0 in the natural way, that is, for
each i ∈ [k], coli is the result of move (ui, ci) on coli−1.

The Free-Flood-It problem is defined as follows: given a graph G =
(V,E), an integer k, and an initial coloring function col0, decide if there exists
a sequence of k moves (u1, c1), (u2, c2), . . . , (uk, ck) such that the result colk
obtained by applying this sequence of moves on col0 is a constant function
(that is, ∀u, v ∈ V we have colk(u) = colk(v)).

In the Fixed-Flood-It problem we are given the same input as in the
Free-Flood-It problem, as well as a designated vertex p ∈ V (the pivot).
The question is again if there exists a sequence of moves such that colk is
monochromatic, with the added constraint that we must have ui = p for all
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i ∈ [k].

We denote by OPTFree(G, col) the minimum k such that for the input
(G, col) the Free-Flood-It problem admits a solution of k moves. We de-
fine OPTFixed(G, col, p) in the same way for the Fixed-Flood-It problem.

2.1 Graph parameters

Let G = (V,E) be a graph. For each vertex v ∈ V , we denote the (open)
neighborhood of v by NG(v). That is, NG(v) = {u ∈ V | {u, v} ∈ E}. The
closed neighborhood of v is the set NG[v] := {v}∪NG(v). For S ⊆ V , we denote
by NG(S) its (open) neighborhood

⋃
v∈S NG(v) \ S. We omit the subscript G

when the underlying graph is clear from the context.

Vertex cover number: A set S ⊆ V is a vertex cover of a graph G = (V,E)
if each edge in E has at least one end point in S. The minimum size of a vertex
cover of a graph is its vertex cover number. By vc(G), we denote the vertex
cover number of G.

Neighborhood diversity: Two vertices u, v ∈ V are true twins in G if
N [u] = N [v] and are false twins in G if N(u) = N(v). Two vertices are twins if
they are true twins or false twins. Note that true twins are adjacent and false
twins are not. The neighborhood diversity of G, denoted nd(G), is the minimum
number k such that V can be partitioned into k sets of twin vertices. It is
known that nd(G) ≤ 2vc(G) + vc(G) for every graph G [15]. Given a graph, its
neighborhood diversity and the corresponding partition into sets of twins can
be computed in polynomial time [15]; in fact, using fast modular decomposition
algorithms, the neighborhood diversity of a graph can be computed in linear
time [16, 23].

Modular-width: Let H be a graph with k ≥ 2 vertices v1, . . . , vk, and let
H1, . . . ,Hk be k graphs. The substitution H(H1, . . . ,Hk) of the vertices of H
by H1, . . . ,Hk is the graph with the vertex set

⋃
1≤i≤k V (Hi) and the edge set⋃

1≤i≤k E(Hi) ∪ {{u,w} | u ∈ V (Hi), w ∈ V (Hj), {vi, vj} ∈ E(H)}. For each i,
the set V (Hi) is called a module of H(H1, . . . ,Hk). The modular-width of G,
denoted mw(G), is defined recursively as follows:

• If G has only one vertex, then mw(G) = 1.

• If G is the disjoint union of graphs G1, . . . , Gh, then

mw(G) = max
1≤i≤h

mw(Gi).

• If G is a connected graph with two or more vertices, then

mw(G) = min
H,H1,...,H|V (H)|

max{|V (H)|,mw(H1), . . . ,mw(H|V (H)|)},

where the minimum is taken over all tuples of graphs (H,H1, . . . ,Hk) such
that G = H(H1, . . . ,H|V (H)|).
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A recursive substitution structure giving the modular-width can be computed
in linear-time [16, 23]. It is known that mw(G) ≤ nd(G) for every graph G [12].

Clique-width: A k-expression is a rooted binary tree such that

• each leaf has label ◦i for some i ∈ {1, . . . , k},
• each non-leaf node with two children has label ∪, and

• each non-leaf node with only one child has label ρi,j or ηi,j
(i, j ∈ {1, . . . , k}, i 6= j).

Each node in a k-expression represents a vertex-labeled graph as follows:

• a ◦i-node represents a graph with one i-vertex;

• a ∪-node represents the disjoint union of the labeled graphs represented
by its children;

• a ρi,j-node represents the labeled graph obtained from the one represented
by its child by replacing the labels of the i-vertices with j;

• an ηi,j-node represents the labeled graph obtained from the one repre-
sented by its child by adding all possible edges between the i-vertices and
the j-vertices.

A k-expression represents the graph represented by its root. The clique-width
of a graph G, denoted by cw(G), is the minimum integer k such that there is
a k-expression representing a graph isomorphic to G. From their definitions,
cw(G) ≤ mw(G) holds for every graph G.

Figure 3 shows relationships among the graph parameters introduced above
together with the well-known treewidth and pathwidth (see [4] for definitions of
these two parameters).

clique-width

treewidth

pathwidth

modular-width

neighborhood diversity

vertex cover number

Figure 3: Graph parameters. Each segment implies that the one above is
more general than the one below. For example, bounded modular-width im-
plies bounded clique-width but not vice versa.

3 W[2]-hardness of Free-Flood-It

The main result of this section is that Free-Flood-It is W[2]-hard when pa-
rameterized by the minimum length of any valid solution (the natural param-
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eter). The proof consists of a reduction from Set Cover, a canonical W[2]-
complete problem.

Before presenting the construction, we recall two basic observations by Meeks
and Vu [20], both of which rest on the fact that any single move can (at most)
eliminate a single color from the graph, and this can only happen if a color
induces a single component.

Lemma 3.1 ([20]) For any graph G = (V,E), and coloring function col that
uses cmax distinct colors, we have OPTFree(G, col) ≥ cmax − 1.

Lemma 3.2 ([20]) For any graph G = (V,E), and coloring function col that
uses cmax distinct colors, such that for all c ∈ [cmax], G[col−1(c)] is a discon-
nected graph, we have OPTFree(G, col) ≥ cmax.

The proof of Theorem 3.6 relies on a reduction from a special form of
Set Cover, which we call Multi-Colored Set Cover (MCSC for short).
MCSC is defined as follows:

Definition 3.3 In Multi-Colored Set Cover (MCSC) we are given as
input a set of elements R and k collections S1, . . . ,Sk of subsets of R. We are
asked if there exist k sets S1, . . . , Sk such that for all i ∈ [k], Si ∈ Si, and⋃

i∈[k] Si = R.

Observe that MCSC is just a version of Set Cover where the collection of
sets is given to us pre-partitioned into k parts and we are asked to select one set
from each part to form a set cover of the universe. It is not hard to see that any
Set Cover instance (S, R) where we are asked if there exists a set cover of size
k can easily be transformed to an equivalent MCSC instance simply by setting
Si = S for all i ∈ [k], since the definition of MCSC does not require that the
sub-collections Si be disjoint. We conclude that known hardness results for Set
Cover immediately transfer to MCSC, and in particular MCSC is W[2]-hard
when parameterized by k.

Construction

We are now ready to describe our reduction which, given an MCSC instance
with universe R and k collections Si (i ∈ [k]) of subsets of R, produces an
equivalent instance of Free-Flood-It, that is, a graph G = (V,E) and a
coloring function col on V . We construct this graph as follows:

• for every set S ∈ Si, construct a vertex in V . The set of vertices in V
corresponding to sets of Si is denoted by Ii and col(v) = i for each v ∈ Ii.
I1 ∪ ... ∪ Ik induces an independent set colored {1, ..., k}.

• for each i ∈ [k], construct 3k new vertices, denoted by Li and connect all
of them to all vertices of Ii such that Li ∪ Ii induces a complete bipartite
graph of size 3k × |Ii|. Then set col(v) = k + 1 for each v ∈ Li, for all
i ∈ [k].
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Figure 4: The graph G = (V,E) of Free-Flood-It constructed from the given
MCSC instance. All the vertices in each Ii have color i and all black vertices
have color k+ 1. Boxes containing black vertices have size 3k. Also each vertex
in Li has k neighbors with degree 1 colored 1, ..., k.

• for each vertex v ∈ Li for 1 ≤ i ≤ k, construct k new leaf vertices con-
nected to v with distinct colors 1, ..., k.

• for each element r ∈ R, construct a vertex r with col(u) = k+1. For each
S ∈ Si such that r ∈ S we connect r to the vertex of Ii that represents S.

• add a special vertex u with col(u) = k + 1 which is connected it to all
vertices in Ii for i ∈ [k].

An illustration of G is shown in Figure 4. In the following we will show that
(G, col) as an instance of Free-Flood-It is solvable with at most 2k moves if
and only if the given MCSC instance has a set cover of size k which contains
one set of each Si.

Lemma 3.4 If (S1, . . . ,Sk, R) is a YES instance of MCSC, then it holds that
OPTFree(G, col) ≤ 2k.

Proof: Suppose that there is a solution S1, . . . , Sk of the given MCSC instance,
with Si ∈ Si, for i ∈ [k] and

⋃
i∈[k] Si = R. Recall that for each Si there is a

vertex in Ii in the constructed graph representing Si. Our first k moves consist
of changing the color of each of these k vertices to k+1 in some arbitrary order.

Observe that in the graph resulting after these k moves the vertices with
color k+1 form a single connected component: all vertices of R have a neighbor
with color k+1 because

⋃
Si is a set cover; all vertices with color k+1 in some Ii

are in the same component as u; and all vertices of
⋃

i∈[k] Li are connected to one
of the vertices we played. Furthermore, observe that this component dominates
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the graph: all remaining vertices of
⋃
Ii, as well as all leaves attached to vertices

of
⋃

i∈[k] Li are dominated by the vertices of
⋃

i∈[k] Li. Hence, we can select an
arbitrary vertex with color k + 1, say u, and cycle through the colors 1, . . . , k
on this vertex to make the graph monochromatic. �

Now we establish the converse of Lemma 3.4.

Lemma 3.5 If OPTFree(G, col) ≤ 2k, then (S1, . . . ,Sk, R) is a YES instance
of MCSC.

Proof: Suppose that there exists a sequence of at most 2k moves solving
(G, col). We can assume without loss of generality that the sequence has length
exactly 2k, since performing a move on a monochromatic graph keeps the graph
monochromatic. Let (u1, c1), . . . , (u2k, c2k) be a solution, let col0 = col, and
let colj denote the coloring of G obtained immediately after the jth move has
been performed. The key observation that we will rely on is the following:

(i) For all i ∈ [k], there exist j ∈ [k], v ∈ Ii such that colj(v) = k + 1.

In other words, we claim that for each group Ii there exists a vertex that
received color k + 1 at some point during the first k moves. Before proceeding,
let us prove this claim. Suppose for contradiction that the claim is false. Then,
there exists a group Ii such that no vertex in that group has color k + 1 in
any of the colorings col0, . . . , colk. We now consider the vertices of Li and
their attached leaves. Since Li contains 3k > k + 2 vertices, there exist two
vertices v1, v2 of Li such that {u1, . . . , uk} contains neither v1, v2, nor any of
their attached leaves. In other words, there exist two vertices of Li on which
the winning sequence does not change colors by playing them or their private
neighborhood directly. However, since v1, v2 only have neighbors in Ii (except
for their attached leaves), and no vertex of Ii received color k + 1, we conclude
that colk(v1) = colk(v2) = k + 1, that is, the colors of these two vertices have
remained unchanged, and the same is true for their attached leaves. Consider
now the graph G with coloring colk: we observe that this coloring uses k + 1
distinct colors, and that each color induces a disconnected graph. This is true
for colors 1, . . . , k because of the leaves attached to v1, v2, and true of color k+1
because of v1, v2 and the fact that no vertex of Ii has color k + 1. We conclude
that OPTFree(G, colk) ≥ k+ 1 by Lemma 3.2, which is a contradiction, because
the whole sequence has length 2k.

Because of claim (i) we can now conclude that for all i ∈ [k] there exists a
j ∈ [k] such that colj−1(uj) = i. In other words, for each color i there exists
a move among the first k moves of the solution that played a vertex which at
that point had color i. To see that this is true consider again for contradiction
the case that for some i ∈ [k] this statement does not hold: this implies that
vertices with color i in col0 still have color i in col1, . . . , colk, which means that
no vertex of Ii has received color k + 1 in the first k moves, contradicting (i).

As a result of the above, we therefore claim that for all j ∈ [k], we have
colj−1(uj) 6= k + 1. In other words, we claim that none of the first k moves
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changes the color of a vertex that at that point had color k+1. This is because,
as argued, for each of the other k colors, there is a move among the first k moves
that changes a vertex of that color. We therefore conclude that for all vertices
v for which col0(v) = k+ 1 we have colj(v) = k+ 1 for all j ∈ [k]. In addition,
because in col0 all colors induce independent sets, each of the first k moves
changes the color of a single vertex. Because of claim (i), this means that for
each i ∈ [k] one of the first k moves changes the color of a single vertex from Ii
to k + 1. We select the corresponding set of Si in our MCSC solution.

We now observe that, since all vertices of
⋃

i∈[k] Li retain color k+1 through-
out the first k moves, colk is a coloring function that uses k+ 1 distinct colors,
and colors 1, . . . , k induce disconnected graphs (because of the leaves attached
to the vertices of each Li). Thanks to Lemma 3.2, this means that col−1k (k+ 1)
must induce a connected graph. Hence, all vertices of R have a neighbor with
color k + 1 in colk, which must be one of the k vertices played in the first k
moves; hence the corresponding element is dominated by our solution and we
have a valid set cover selecting one set from each Si. �

We are now ready to combine Lemmas 3.4 and 3.5 to obtain the main result
of this section.

Theorem 3.6 Free-Flood-It is W[2]-hard parameterized by OPTFree, that
is, parameterized by the length of the optimal solution. Furthermore, if there is
an algorithm that decides if a Free-Flood-It instance has a solution of length
k in time no(k), then the ETH is false.

Proof: The described construction, as well as Lemmas 3.4 and 3.5 give a re-
duction from MCSC, which is W[2]-hard parameterized by k, to an instance
of Free-Flood-It with k + 1 colors, where the question is to decide whether
OPTFree(G, col) ≤ 2k. Furthermore, it is known that MCSC generalizes Dom-
inating Set, which does not admit an algorithm running in time no(k), under
the ETH [4]. Since our reduction only modifies k by a constant, we obtain the
same result for Free-Flood-It. �

We note that because of Lemma 3.1 we can always assume that the number
of colors of a given instance is not much higher than the length of the optimal
solution. As a result, Free-Flood-It parameterized by OPTFree is equivalent
to the parameterization of Free-Flood-It by OPTFree + cmax and the result
of Theorem 3.6 also applies to this parameterization.

3.1 Kernel lower bound for Free-Flood-It

As a byproduct of the reduction above, we can show a kernel lower bound for
Free-Flood-It parameterized by the vertex cover number.

Let P and Q be parameterized problems. A polynomial-time computable
function f : Σ∗ ×N → Σ∗ ×N is a polynomial parameter transformation from
P to Q if there is a polynomial p such that for all (x, k) ∈ Σ∗ ×N ,

• (x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q, and
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• k′ ≤ p(k).

If such a function exits, then P is polynomial parameter reducible to Q.

Proposition 3.7 ([1]) Let P and Q be parameterized problems, and P ′ and
Q′ be unparameterized versions of P and Q, respectively. Suppose P ′ is NP-
hard, Q′ is in NP, and P is polynomial parameter reducible to Q. If Q has a
polynomial kernel, then P also has a polynomial kernel.

Theorem 3.8 Free-Flood-It parameterized by the vertex cover number ad-
mits no polynomial kernel unless PH = Σp

3 .

Proof: The reduction in this section can be seen as a polynomial parameter
transformation from “MCSC parameterized by the solution size k and the size
|R| of the universe” to “Free-Flood-It parameterized by the vertex cover
number” with a polynomial p(k, |R|) = 3k2 + |R|. To see this observe that the
black vertices in Figure 4 form a vertex cover of size 3k2 + |R|.

Since MCSC is NP-hard and the decision version of Free-Flood-It is
in NP, Proposition 3.7 implies that if Free-Flood-It parameterized by the
vertex cover number has a polynomial kernel, then MCSC parameterized by k
and |R| also has a polynomial kernel.

It is known that Set Cover (and thus MCSC) parameterized simultane-
ously by k and |R| does not admit a polynomial kernel unless PH = Σp

3 [5]. This
completes the proof. �

4 Clique-width and the number of moves

In this section, we consider as a combined parameter for Free-Flood-It the
length of an optimal solution and the clique-width. We show that this case is
indeed fixed-parameter tractable by using the theory of the monadic second-
order logic on graphs. As an application of this result, we also show that
combined parameterization by the number of colors and the modular-width
is fixed-parameter tractable.

To prove the main claim, we show that Free-Flood-It with a constant
length of optimal solutions is an MSO1-definable decision problem. The syntax
of MSO1 (one-sorted monadic second-order logic) of graphs includes (i) the
logical connectives ∨, ∧, ¬, ⇔, ⇒, (ii) variables for vertices and vertex sets,
(iii) the quantifiers ∀ and ∃ applicable to these variables, and (iv) the following
binary relations:

• u ∈ U for a vertex variable u and a vertex set variable U ;

• adj(u, v) for two vertex variables u and v, where the interpretation is that
u and v are adjacent;

• equality of variables.
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If G models an MSO1 formula ϕ with an assignment X1, . . . , Xq ⊆ V (G) to the
q free variables in ϕ, then we write 〈G,X1, . . . , Xq〉 |= ϕ.

It is known that, given a graph of clique-width at most w, an MSO1 formula
ϕ, and an assignment to the free variables in ϕ, the problem of deciding whether
G models ϕ with the given assignment is solvable in time O(f(||ϕ||, w) · n3),
where f is a computable function and ||ϕ|| is the length of ϕ [3, 21].

Theorem 4.1 Given an instance (G, col) of Free-Flood-It such that G has
n vertices and clique-width at most w, it can be decided in time O(f(k,w) · n3)
whether OPTFree(G, col) ≤ k, where f is some computable function.

Proof: Let Vi (1 ≤ i ≤ cmax) be the set of vertices with color i in the input
graph. We construct an MSO1 formula ϕ with cmax free variables X1, . . . , Xcmax

such that OPTFree(G, col) ≤ k if and only if G models ϕ with the assignment
Xi := Vi for 1 ≤ i ≤ cmax. We can define the desired formula ϕ(X1, . . . , Xcmax)
as follows:

ϕ(X1, . . . , Xcmax
) :=

∨
1≤c1,...,ck≤k ∃v1,v2,...,vk∈V (G)

∨
1≤c≤k ∀u∈V (G) colorc,k(u),

where colorc,i(u) for 0 ≤ i ≤ k implies that the color of u is c after the moves
(v1, c1), . . . (vi, ci).

We define colorc,i(u) recursively as follows. We first set colorc,0(u) := (u ∈
Xi). This is correct as we assign Vi to Xi. For 1 ≤ i ≤ k, we set

colorc,i(u) =

{
colorc,i−1(u) ∨ SameCCCi−1(u, vi) c = ci,

colorc,i−1(u) ∧ ¬SameCCCi−1(u, vi) c 6= ci,

where SameCCCi(u1, u2) implies that u1 and u2 are in the same monochro-
matic component after the moves (v1, c1), . . . (vi, ci). The formula precisely rep-
resents the recursive nature of the colors of the vertices. That is, a vertex u is
of color c after the ith move (vi, ci) if and only if either its color is changed to
c by the i move, or it was already of color c before the ith move and its color is
not changed by the i move.

Given that colorc,i(u) is defined for all c and u, defining SameCCCi(u1, u2)
is a routine:

SameCCCi(u1, u2) =
∨

1≤c≤k ∃S⊆V (G)

(
(u1, u2 ∈ S) ∧ (∀u∈S colorc,i(u))

∧ (∀T⊆S (T = ∅) ∨ ∃x∈T∃y∈S\T adj(x, y))
)
.

Since k ≥ cmax−1 by Lemma 3.1, it holds that ||ϕ|| is bounded by a function
of k. �

Corollary 4.2 Given an integer k and an instance (G, col) of Free-Flood-It
such that G has n vertices and modular-width at most w, it can be decided in time
O(f(cmax, w) · n3) whether OPTFree(G, col) ≤ k, where f is some computable
function.
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Figure 5: Simple reductions that do not work for Free-Flood-It.

Proof: Observe that for every connected graph G of modular-width at most
w, it holds that OPTFree(G, col) ≤ w + cmax − 2: we pick one vertex v from a
module M ; we next color one vertex in each module except M with col(v); we
then play at v with the remaining cmax − 1 colors. Thus we can assume that
k ≤ w+cmax−2. Since the modular-width of a graph is at most its clique-width
by their definitions, Theorem 4.1 gives an O(g(w+ cmax, w) ·n3)-time algorithm
for some computable g, which can be seen as anO(f(cmax, w)·n3)-time algorithm
for some computable f . �

5 Neighborhood diversity and the number of
colors

Since the modular-width of a graph is upper bounded by its neighborhood di-
versity, Corollary 4.2 in the previous section implies that Free-Flood-It is
fixed-parameter tractable when parameterized by both the neighborhood diver-
sity and the number of colors. Here we show that Free-Flood-It admits a
polynomial kernel with the same parameterization. This section is devoted to a
proof of the following theorem.

Theorem 5.1 Free-Flood-It admits a kernel of at most nd(G) · cmax ·
(nd(G) + cmax − 1) vertices.

Fellows et al. [7] observed that for Fixed-Flood-It, a polynomial kernel
with the same parameterization can be easily obtained since twin vertices of the
same color can be safely contracted. In Free-Flood-It, this is true for true
twins but not for false twins. See Figure 5a.

Though it might be still possible to show something like “if there are more
than some constant number of false twins with the same color, then one can
remove one of them without changing the minimum number of moves,” here we
show a weaker claim. Our reduction rules are as follows:

• Rule TT : Let u and v be true twins of the same color in (G, col). Remove
v.

• Rule FT : Let F be a set of false-twin vertices of the same color in (G, col)
such that |F | = nd(G) + cmax. Remove one arbitrary vertex in F .

Observe that after applying TT and FT exhaustively in polynomial time,
the obtained graph can have at most nd(G) · cmax · (nd(G) + cmax − 1) vertices.
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This is because each set of twin vertices can contain at most nd(G) + cmax − 1
vertices. Hence, to prove Theorem 5.1, it suffices to show the safeness of the
rules. Recall that a reduction rule is safe if it produces an equivalent instance.

Lemma 5.2 Rule TT is safe.

Proof: Let u and v be true twins of the same color. Observe that removing
v is equivalent to contracting the edge {u, v}. Since u and v are in the same
monochromatic component, the lemma holds. �

To guarantees the safeness of FT, we need the following technical lemmas.

Lemma 5.3 Let (G, col) be an instance of Free-Flood-It and x, y ∈ V (G)
be false-twin vertices of the same color c. A sequence (u1, c1), . . . , (uk, ck) with
ui /∈ {x, y} for 1 ≤ i ≤ k is a valid flooding sequence for (G, col) if and only if
it is a valid flooding sequence for (G− x, col|G−x).

Proof: Let (G′, col′) = (G− x, col|G−x). If a neighbor of x and y has color c,
then the lemma trivially holds. Hence, in what follows, we assume that none of
the vertices adjacent to x and y has color c. Assume that (u1, c1), . . . , (uk, ck)
is valid for at least one of (G, col) and (G′, col′). Then there is a move that
changes the color of a neighbor of y to c since ui 6= y for 1 ≤ i ≤ k. Let (ui, ci) be
the first such move. Note that ci = c and that at least one of Comp(coli−1, ui)
and Comp(col′i−1, ui) contains a neighbor of y.

The first part (u1, c1), . . . , (ui−1, ci−1) of the sequence has the same effect
to (G, col) and (G′, col′). That is, the monochromatic components and con-
nections among them are the same in (G, coli−1) and (G′, col′i−1) except that
(G, coli−1) contains the monochromatic component {x}. Note that {y} is a
monochromatic component of color c in both (G, coli−1) and (G′, col′i−1), and
{y} and {x} have the same adjacent monochromatic components in (G, coli−1).

Let C be the set of monochromatic components of color c in (G, coli−1) that
are adjacent to Comp(coli−1, ui). Similarly, let C′ be the set of monochromatic
components of color c in (G′, col′i−1) that are adjacent to Comp(col′i−1, ui).
Observe that Comp(coli−1, ui) = Comp(col′i−1, ui), C′ = C\{{x}}, and {y} ∈
C ∩ C′.

Now we apply the move (ui, ci). Recall that ci = c. It follows that

Comp(coli, ui) = Comp(coli−1, ui) ∪
⋃

C∈C C, and

Comp(col′i, ui) = Comp(col′i−1, ui) ∪
⋃

C′∈C′ C
′.

Since Comp(coli, ui) \ Comp(col′i, ui) = {x} and both Comp(coli, ui) and
Comp(col′i, ui) include y, the components Comp(coli, ui) and Comp(col′i, ui)
have the same adjacent monochromatic components. Also, it holds that for each
u /∈ Comp(coli, ui), Comp(coli−1, u) = Comp(col′i−1, u).

This implies that (G, coli) and (G′, col′i) are equivalent and thus the remain-
ing of the sequence, i.e. (ui+1, ci+1), . . . , (uk, ck), has the same effect to (G′, col′i)
and (G, coli). Therefore, (G, colk) is constant if and only if so is (G′, col′k). �
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Lemma 5.4 Let S be a set of false-twin vertices with the same color in (G, col).
If |S| ≥ OPTFree(G, col) + 2, then OPTFree(G, col) = OPTFree(G− x, col|G−x)
for every x ∈ S.

Proof: We first show that OPTFree(G, col) ≤ OPTFree(G − x, col|G−x) for
every x ∈ S. Let (u1, c1), . . . , (uk, ck) be an optimal valid flooding sequence for
(G − x, col|G−x). Assume that OPTFree(G, col) ≥ k (otherwise we are done).
Since |S \ {x}| ≥ OPTFree(G, col) + 1 ≥ k + 1, there is a vertex y ∈ S \ {x}
such that ui 6= y for 1 ≤ i ≤ k. By Lemma 5.3, (u1, c1), . . . , (uk, ck) is valid for
(G, col) as well.

Next we show the other direction. Since S is a set of monochromatic
false-twin vertices, it suffices to show that OPTFree(G, col) ≥ OPTFree(G −
x, col|G−x) for some x ∈ S. Let (u1, c1), . . . , (uk, ck) be an optimal valid flood-
ing sequence of (G, col). Since |S| ≥ OPTFree(G, col) + 2 = k + 2, there are
two vertices x, y ∈ S such that ui /∈ {x, y} for 1 ≤ i ≤ k. By Lemma 5.3,
(u1, c1), . . . , (uk, ck) is valid for (G− x, col|G−x) as well. �

Corollary 5.5 Rule FT is safe.

Proof: Let G be a connected graph and col a coloring of G with cmax colors.
Observe that (G, col) admits a flooding sequence of length nd(G) + cmax − 2 as
follows. Let T be a maximal set of twin vertices of G and c be a color used in
T . For each maximal set of twin vertices T ′ 6= T of G, pick a vertex u ∈ T ′ and
play the move (u, c). After these nd(G)− 1 moves, the vertices of color c form
a connected dominating set of G. Now pick a vertex v of color c and play the
move (v, c′) for each c′ ∈ [cmax] \ {c}. These cmax − 1 moves make the coloring
constant.

Now for some color class C and a false-twin class I of (G, col), if |C ∩ I| ≥
cmax + nd(G), then we can remove an arbitrary vertex in C ∩ I while preserving
the optimal number of steps by Lemma 5.4. This implies the safeness of FT. �

Note that using the concept of twin colors, Fellows et al. [7] further re-
duced the number of colors in instances of Fixed-Flood-It and obtained a
(nonpolynomial-size) kernel parameterized by the neighborhood diversity. They
say that two colors are twins if the colors appear in the same family of the max-
imal sets of twin vertices. They observed that, in Fixed-Flood-It, if there
are twin colors, then removing all vertices in one of these colors reduces the
fewest number of moves exactly by 1. Unfortunately, this is not the case for
Free-Flood-It. See Figure 5b.

6 Relation Between Fixed and Free Flood-It

The main theorem of this section is the following:

Theorem 6.1 For any graph G = (V,E), coloring function col on G, and
p ∈ V we have

OPTFree(G, col) ≤ OPTFixed(G, col, p) ≤ 2OPTFree(G, col).
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Theorem 6.1 states that the optimal solutions for Free-Flood-It and
Fixed-Flood-It can never be more than a factor of 2 apart. It is worthy
of note that we could not hope to obtain a constant smaller than 2 in such a
theorem, and hence the theorem is tight.

Theorem 6.2 There exist instances of Fixed-Flood-It such that

OPTFixed(G, col, p) = 2OPTFree(G, col).

Proof: Consider a path on 2n+ 1 vertices properly colored with colors 1, 2. If
we set the pivot to be one of the endpoints then OPTFixed = 2n. However, it is
not hard to obtain a Free-Flood-It solution with n moves by playing every
vertex at odd distance from the pivot. �

Before we proceed to give the proof of Theorem 6.1, let us give a high-
level description of our proof strategy and some general intuition. The first
inequality is of course trivial, so we focus on the second part. We will establish
it by induction on the number of non-pivot moves performed by an optimal
Free-Flood-It solution. The main inductive argument is based on observing
that a valid Free-Flood-It solution will either at some point play a neighbor
u of the component of p to give it the same color as p, or if not, it will at some
point play p to give it the same color as one of its neighbors. The latter case
is intuitively easier to handle, since then we argue that the move that changed
p’s color can be performed first, and if the first move is a pivot move we can
easily fall back on the inductive hypothesis. The former case, which is the more
interesting one, can be handled by replacing the single move that gives u the
same color as p, with two moves: one that gives p the same color as u, and one
that flips p back to its previous color. Intuitively, this basic step is the reason
we obtain a factor of 2 in the relationship between the two versions of the game.

The inductive strategy described above faces some complications due to
the fact that rearranging moves in this way may unintentionally re-color some
vertices, which makes it harder to continue the rest of the solution as before. To
avoid this we define a somewhat generalized version of Free-Flood-It, called
Subset-Free-Flood-It.

Definition 6.3 Given G = (V,E), a coloring function col on G, and a pivot
p ∈ V , a set-move is a pair (S, c), with S ⊆ V and S = Comp(col, u) for some
u ∈ V , or {p} ⊆ S ⊆ Comp(col, p). The result of (S, c) is the coloring col′

that sets col′(v) = c for v ∈ S; and col′(v) = col(v) otherwise.

We define Subset-Free-Flood-It as the problem of determining the min-
imum number of set-moves required to make a graph monochromatic, and
Subset-Fixed-Flood-It as the same problem when we impose the restriction
that every move must change the color of p, and denote as OPTS-Free,OPTS-Fixed

the corresponding optimum values.
Informally, a set-move is the same as a normal move in Free-Flood-It,

except that we are also allowed to select an arbitrary connected monochromatic
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set S that contains p (even if S is not maximal) and change its color. Intuitively,
one would expect moves that set S to be a proper subset of Comp(col, p) to
be counter-productive, since such moves split a monochromatic component into
two pieces. Indeed, we prove below in Lemma 6.4 that the optimal solutions
to Fixed-Flood-It and Subset-Fixed-Flood-It coincide, and hence such
moves do not help. The reason we define this version of the game is that it
gives us more freedom to define a solution that avoids unintentionally recoloring
vertices as we transform a given Free-Flood-It solution to a Fixed-Flood-It
solution.

Lemma 6.4 For any graph G = (V,E), coloring function col on G, and pivot
p ∈ V we have OPTFixed(G, col, p) = OPTS-Fixed(G, col, p).

Proof: First, observe that OPTS-Fixed(G, col, p) ≤ OPTFixed(G, col, p) is triv-
ial, as any solution of Fixed-Flood-It is a solution to Subset-Fixed-Flood-
It by playing the same sequence of colors and always selecting all of the con-
nected monochromatic component of p.

Let us also establish the converse inequality. Consider a solution (S1, c1),
(S2, c2), . . . , (Sk, ck) of Subset-Fixed-Flood-It, where by definition we have
p ∈ Si for all i ∈ [k]. We would like to prove that (p, c1), (p, c2), . . . , (p, ck)
is a valid solution for Fixed-Flood-It. Let coli be the result of the first i
set-moves of the former solution, and col′i be the result of the first i moves of
the latter solution. We will establish by induction the following:

1. For all i ∈ [k] we have Comp(coli, p) ⊆ Comp(col′i, p).

2. For all i ∈ [k], u ∈ V \Comp(col′i, p) we have coli(u) = col′i(u).

The statements are true for i = 0. Suppose that the two statements are true
after i − 1 moves. The first solution now performs the set-move (Si, ci) with
Si ⊆ Comp(coli−1, p) ⊆ Comp(col′i−1, p). We now have that Comp(coli, p)
contains Si plus the neighbors of Si which have color ci in coli−1. Such vertices
either also have color ci in col′i−1, or are contained in Comp(col′i−1, p); in both
cases they are included in Comp(col′i, p), which establishes the first condition.
To see that the second condition continues to hold observe that every vertex for
which coli−1(u) 6= coli(u) or col′i−1(u) 6= col′i(u) belongs in Comp(col′i, p); the
colors of other vertices remain unchanged. Since in the end Comp(colk, p) = V
the first condition ensures that Comp(col′k, p) = V . �

We are now ready to state the proof of Theorem 6.1.

Proof: [Theorem 6.1] As mentioned, we focus on proving the second inequality
as the first inequality follows trivially from the definition of the problems. Given
a graph G = (V,E), an initial coloring function col = col0, and a pivot p ∈ V ,
we suppose we have a solution to Free-Flood-It (u1, c1), (u2, c2), . . . , (uk, ck).
In the remainder, we denote by coli the coloring that results after the moves
(u1, c1), . . . , (ui, ci). We can immediately construct an equivalent solution to
Subset-Free-Flood-It from this, producing the same sequence of colorings:
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(Comp(col0, u1), c1), (Comp(col1, u2), c2), . . . , (Comp(colk−1, uk), ck). We
will transform this solution to a solution of Subset-Fixed-Flood-It of length
at most 2k, and then invoke Lemma 6.4 to obtain a solution for Fixed-Flood-
It of length at most 2k. More precisely, we will show that for any G, col, p we
have OPTS-Fixed(G, col, p) ≤ 2OPTS-Free(G, col, p).

For a solution S = (S1, c1), (S2, c2), . . . , (Sk, ck) to Subset-Free-Flood-It
we define the number of bad moves of S as b(S) = |{(Si, ci) | p 6∈ Si}|. We will
somewhat more strongly prove the following statement for all G, col, p: for any
valid Subset-Free-Flood-It solution S, we have

OPTS-Fixed(G, col, p) ≤ |S|+ b(S).

Since |S| + b(S) ≤ 2|S|, the above statement will imply the promised in-
equality and the theorem.

We prove the statement by induction on |S|+ 2b(S). If |S|+ 2b(S) ≤ 2 then
S is already a Subset-Fixed-Flood-It solution, so the statement is trivial.
Suppose then that the statement holds when |S| + 2b(S) ≤ n and we have a
solution S with |S|+ 2b(S) = n+ 1. We consider the following cases:
• The first move (S1, c1) has p ∈ S1. By the inductive hypothesis there

is a Subset-Fixed-Flood-It solution of length at most |S| + b(S) − 1 for
(G, col1, p). We build a solution for Subset-Fixed-Flood-It by appending
this solution to the move (S1, c1), since this is a valid move for Subset-Fixed-
Flood-It.
• There exists a move (Si, ci) with Si = Comp(coli−1, u), for some u ∈

N(Comp(coli−1, p)) \ Comp(coli−1, p) such that ci = coli−1(p). That is,
there exists a move that plays a vertex u that currently has a different color
than p, and as a result of this move the component of u and p merge, because
u receives the same color as p and u has a neighbor in the component of p.

Consider the first such move. We build a solution S ′ as follows: we keep
moves (S1, c1) . . . (Si−1, ci−1); we add the moves (Comp(coli−1, p), coli−1(u)),
(Comp(coli−1, p) ∪ Comp(coli−1, u), coli−1(p)); we append the rest of the
previous solution (Si+1, ci+1), . . . , (Sk, ck).

To see that S ′ is still a valid solution we observe that Comp(coli−1, p) ∪
Comp(coli−1, u) is monochromatic and connected when we play it, and that
the result of the first i − 1 moves, plus the two new moves is exactly coli. We
also note that |S ′| + b(S ′) = |S| + b(S) because we replaced one bad move
with two good moves. However, |S ′| + 2b(S ′) < |S| + 2b(S), hence by the
inductive hypothesis there exists a Subset-Fixed-Flood-It solution of the
desired length.
• There does not exist a move as specified in the previous case. We then

show that this reduces to the first case. If no move as described in the previ-
ous case exists and the initial coloring is not already constant, S must have
a move (Si, ci) where {p} ⊆ Si ⊆ Comp(col0, p) and ci = coli−1(u) for
u ∈ N(Comp(col0, p))\Comp(col0, p). In other words, this is a good move (it
changes the color of p), that adds a new vertex u to the connected monochro-
matic component of p. Such a move must exist, since if the initial coloring is not
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constant, the initial component of p must be extended, and we assumed that no
move that extends it by recoloring one of its neighbors exists.

Consider the first such good move (Si, ci) as described above. We build a
solution S ′ as follows: the first move is (Comp(col0, p), col0(u)), where u is,
as described above, the neighbor of Comp(col0, p) with coli−1(u) = ci. For
j ∈ [i− 1] we add the move (Sj , cj) if u 6∈ Sj , or the move (Comp(colj−1, u) ∪
Comp(col0, p), cj) if u ∈ Sj . In other words, we keep other moves unchanged if
they do not affect u, otherwise we add to them Comp(col0, p). We observe that
these moves are valid since we maintain the invariant that Comp(col0, p) and
u have the same color and since none of the first i− 1 moves of S changes the
color of p (since we selected the first such move). The result of these i moves is
exactly coli. We now append the remaining move (Si+1, ci+1), . . ., and we have
a solution that starts with a good move, has the same length and the same (or
smaller) number of bad moves as S and is still valid. We have therefore reduced
this to the first case. �

As we mentioned before, this combinatorial theorem implies 2-
approximability of Free-Flood-It for the cases where Fixed-Flood-It
is polynomial-time solvable. Also, as Fixed-Flood-It admits a (cmax − 1)
approximation [2],2 we have a 2(cmax − 1) approximation for Free-Flood-It.

Corollary 6.5 Free-Flood-It admits a 2(cmax − 1) approximation, where
cmax is the number of used colors.

7 Non-monotonicity of Free-Flood-It

We now consider the (non-)monotonicity of the problem. A game has the mono-
tonicity property if no legal move makes the situation worse. That is, if Fixed-
Flood-It (or Free-Flood-It) has the monotonicity property, then no single
move increases the minimum number of steps to make the input graph mono-
tone. We believe that the monotonicity of Fixed-Flood-It was known as
folklore and used implicitly in the literature. On the other hand, we are not
sure that the non-monotonicity of Free-Flood-It was widely known. The only
result we are aware of is by Meeks and Scott [17] who showed that on paths
Free-Flood-It has the monotonicity property. In the following, we show that
Free-Flood-It loses its monotonicity property as soon as the underlying graph
becomes a path with one attached vertex.

To be self-contained, we start with proving the following folklore, which says
that Fixed-Flood-It is monotone.

Lemma 7.1 Let (G, col) is an instance of Fixed-Flood-It with pivot p.
For every color c, it holds that OPTFixed(G, col′) ≤ OPTFixed(G, col), where
(G, col′) is the result of the move (p, c).

Proof: Let (p, c1), . . . , (p, ck) be an optimal solution for (G, col). We show
that this sequence is valid for (G, col′) too. Let col = col0 and for i ≥ 1,

2Their proof was only for grids, but it works for the general case.
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Figure 6: Non-monotonicity of Free-Flood-It.

let coli be the coloring obtained from coli−1 by applying the ith move (p, ci).
We define col′i in the analogous way. Observe that since all moves are played
on the pivot p, we have Comp(coli, v) ∈ {Comp(col, v),Comp(coli, p)} and
Comp(col′i, v) ∈ {Comp(col′, v),Comp(col′i, p)} for every v ∈ V (G) and for
every i.

It suffices to show that Comp(coli, p) ⊆ Comp(col′i, p) for all i. This
obviously holds when i = 0. Assume that Comp(coli, p) ⊆ Comp(col′i, p) for
some i ≥ 0. Let v ∈ V (G) \ {p} such that Comp(col, v) is not contained in
but adjacent to Comp(coli, p), and thus contained in Comp(coli+1, p). Since
Comp(coli, p) ⊆ Comp(col′i, p), the monochromatic component Comp(col, v)
is either contained in or adjacent to Comp(col′i, p). Therefore, Comp(col, v) ⊆
Comp(col′i+1, p) holds, and thus Comp(coli+1, p) ⊆ Comp(col′i+1, p). �

Meeks and Scott [17] showed the following monotonicity of Free-Flood-It
on paths.

Proposition 7.2 ([17, Lemma 4.1]) Let G be a path, col a vertex coloring of
G, (v, c) a move, and (G, col′) the result of the move. Then, OPTFree(G, col′) ≤
OPTFree(G, col).

One may wonder whether the monotonicity property holds in general for Free-
Flood-It. The following example, however, shows that it does not hold even
for some graphs very close to paths. See the two instances in Figure 6. The
instance (G, col′) is obtained from (G, col) by playing the move (v, 3). We show
that OPTFree(G, col) < OPTFree(G, col′).

Observe that OPTFree(G, col) = 3: by Lemma 3.2, OPTFree(G, col) ≥ 3,
and the sequence (u, 2), (u, 1), (u, 3) floods the graph. Now suppose that
OPTFree(G, col′) ≤ 3. By Lemma 3.2, the first move in each optimal solu-
tion of (G, col′) has to make the subgraph induced by some color connected,
and then the second move has to remove the connected color. We can see that
2 is the only color that can play this role. If the first move is not played on u,
then it is played on one of the two color-2 vertices and then the second move is
played on the other color-2 vertex. Such a sequence of two moves cannot make
either of color-1 or color-3 vertices connected. Thus by Lemma 3.2, it still needs
at least two moves. Hence we can conclude that the first move is (u, 2). Now
the second move has to remove the color 2, and thus has to be played on u (or
equivalently on any vertex in the monochromatic component including u). No
matter which color we choose, we end up with an instance with at least two
colors that are not connected. Again by Lemma 3.2, this instance needs more
than one step, and thus OPTFree(G, col′) > 3.
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8 Concluding remark

The results in this paper somehow infer that Free-Flood-It is often at least
as hard as Fixed-Flood-It. One may wonder this is always the case in some
sense. Fellows et al. [8] asked the following question in their recent survey:

Is there any graph class for which Free-Flood-It can be solved in
polynomial time, but Flood-It is NP-hard?

where by Flood-It they mean Fixed-Flood-It. To tackle this problem, our
results (e.g., Theorem 6.1) would be useful.
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