
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 22, no. 4, pp. 555–575 (2018)
DOI: 10.7155/jgaa.00478

Approximation Algorithms for Not Necessarily
Disjoint Clustered TSP

Nili Guttmann-Beck 1 Eyal Knaan 1 Michal Stern 1,2

1Academic College of Tel-Aviv Yaffo, Yaffo, Israel
2Caesarea Rothchild Institute, university of Haifa, Haifa, Israel

Abstract

Let G = (V,E) be a complete undirected graph with vertex set V ,
edge set E and let H =< G,S > be a hypergraph, where S is a set
of not necessarily disjoint clusters S1, . . . , Sm, Si ⊆ V ∀i ∈ {1, . . . ,m}.
The clustered traveling salesman problem CTSP is to compute a shortest
Hamiltonian path that visits each one of the vertices once, such that the
vertices of each cluster are visited consecutively. In this paper, we present
a 4-approximation algorithm for the general case. When the intersection
graph is a path, we present a 5/3-approximation algorithm. When the
clusters’ sizes are all bounded by a constant and the intersection graph is
connected, we present an optimal polynomial time algorithm.

Submitted:
June 2017

Reviewed:
June 2018

Revised:
September 2018

Accepted:
September 2018

Final:
September 2018

Published:
November 2018

Article type:
Regular paper

Communicated by:
S. Albers

E-mail addresses: becknili@mta.ac.il (Nili Guttmann-Beck) eyal@berale.co.il (Eyal Knaan)

stern@mta.ac.il (Michal Stern)

http://dx.doi.org/10.7155/jgaa.00478
mailto:becknili@mta.ac.il
mailto:eyal@berale.co.il
mailto:stern@mta.ac.il

556 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

1 Introduction

Let G = (V,E) be a complete undirected graph with vertex set V , edge set E
and edge lengths l(e). Let H =< G,S > be a hypergraph, where S is a set of
not necessarily disjoint clusters S1, . . . , Sm, Si ⊆ V ∀i ∈ {1, . . . ,m}, such that
∪mi=1Si = V . The clustered traveling salesman problem CTSP is to compute a
shortest Hamiltonian path that visits each one of the vertices once, such that
the vertices of each cluster are visited consecutively.

One of the main results of this paper is a 4-approximation algorithm for the
general case of the CTSP. When the intersection graph is connected and the
clusters satisfy the property that for every i 6∈ {j, k}: Si 6⊆ (Sj∪Sk), the problem
has a feasible solution only if the intersection graph is a path. For this case, we
present a 5

3 -approximation algorithm. For both approximation algorithms, we
assume that edge lengths satisfy the triangle inequality. Another main result of
this paper is for the case where the intersection graph is connected and clusters’
sizes are all bounded by a constant, without any additional constraints on the
intersections sizes. For this case, we present a polynomial time algorithm which
finds an optimal solution. When a feasible solution does not exist, all of the
above algorithms give an appropriate statement.

The CTSP may be considered as a generalization of the classic traveling
salesman problem (TSP) where Si = {vi} and m = |V |. The CTSP may
also be considered as a generalization of the problem where the clusters are
disjoint. While for every instance of the problem with disjoint clusters there
exists a feasible solution, the intersection between clusters may impose addi-
tional constraints creating instances with no feasible solution. The TSP and
the disjoint-clustered TSP are known to be NP-hard [6]. Information about
different versions of TSP can be found in [14] and [9]. In [6] Christofides gives a
well known 1.5-approximation algorithm for the TSP. In [7] Frederickson, Hecht
and Kim present approximation algorithms for some routing problems, includ-
ing the Stacker-Crane problem, searching for a TSP path which must include
a pre-defined set of arcs. In [11] Hoogeveen presents approximation algorithms
for minimum length TSP paths, where part or all of the endpoints are known.

A lot of research has also been investigated on the clustered TSP problem,
where the clusters are disjoint. A heuristic for this problem is presented in [4],
a branch and bound algorithm for solving this problem is presented in [15] and
bounded-approximation algorithms are in [2] and [10]. In [1] the ordered disjoint
clustered TSP is considered and a 5

3 -approximation algorithm is offered. In [16]
a genetic algorithm for solving this problem is presented. All these algorithms
cannot be applied to the CTSP, as the clusters intersections impose additional
restrictions on the required TSP path. However, in one case of the problem
(Subsection 3.2) we manage to convert the problem into ordered disjoint clusters,
and we use the algorithm in [1] for the last step of the solution.

Related work introduces a polynomial time algorithm where the offered so-
lution is a tree (instead of a path) and each cluster is spanned by a sub-tree
[12]. In [13] the case where each cluster is spanned by a complete star is solved
in polynomial time.

JGAA, 22(4) 555–575 (2018) 557

The unweighted version of the CTSP may be solved in linear time by the
PQ-tree data structure presented by Booth and Lueker in [3]. The unweighed
solution offers a feasible solution for the weighted CTSP. Thus, the PQ-tree
data structure offers an initial solution in some of the algorithms presented
in this work. Related work for the unweighted version is the recognition of
interval graphs: Given a graph G, find whether a representation of a path and
a collection of sub-paths (clusters) of the path exist, such that the intersection
graph of the collection of clusters is the given graph G. The recognition of
interval graph may be solved in linear time [8].

A possible application for the problem described in [4] and [15] arises from
the area of robotics. In a warehouse, an order for goods contains several sub-
orders, not necessarily disjoint, each of which will call for several goods. A
motorized robot is dispatched through the warehouse to pick up the goods for
each sub-order, the robot may deal with parallel sub-orders, but once it starts
handling a sub-order it must complete it consecutively. The aim is to find
minimal length route for the robot, such that the order of picking the goods for
each sub-order is consecutive.

A similar application described in [15] is the Numerically Controlled ma-
chine. In this application, there is a set of customers that require one or more
operations with different tools. A machine containing the different tools travel
among the customers. Since operating each tool is costly, the path for operating
each tool must be consecutive.

Another application is the Physical Mapping of Chromosomes in bio- infor-
matics, described in [5]. Each chromosome is mapped by n probes P1, . . . , Pn

and m clones C1, . . . , Cm. The problem is to reconstruct the probes in a manner
satisfying that all the probes which hybridizes to one clone appear consecutively
in the solution. Using the Hamming distance, the problem is in fact the CTSP.

In Section 2 we survey known algorithms which we use throughout the paper.
In section 3 we present two approximation algorithms. The first is Algorithm
NDC, which is a 4-approximation algorithm for the general case of CTSP. The
second is Algorithm IGP, which is a 5

3 -approximation algorithm for the case
where the intersection graph is a path. We also prove that this requirement
is not too strict as in many cases either the intersection graph is a path or
there is no feasible solution. In section 4 Algorithm BC is presented. This is a
polynomial time algorithm which finds an optimal solution when the intersection
graph is connected and the clusters’ sizes are bounded by a constant C.

2 Preliminaries

We present here some known notations and results that will be used throughout
the paper.

558 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

2.1 Christofides’ Algorithm for the TSP Path

In [6] Christofides presents the following well known algorithm to approximate
the minimal length TSP path:

1. Find T a minimum spanning tree of the graph.

2. Find M a minimum weight perfect matching for the odd degree vertices
of T .

3. The union of edges in T and M form an Eulerian path of the graph.

4. Use the triangle inequality to create a TSP path whose length is no bigger
than the length of the Eulerian path.

Theorem 1 ([6]) Christofides’ Algorithm returns a TSP path whose length is
at most 3

2 the length of the optimal solution in O(n3) time complexity assuming
the edges’ lengths satisfy the triangle inequality.

2.2 Shortest TSP Path with Known Endpoints

Hoogeveen in [11] studies approximation algorithms for finding a shortest TSP
path for three variants of the problem, varying according to the number of
known endpoints: zero, one, or two. The algorithm is a slight variation of
Christofides’ Algorithm. When the number of known endpoints is zero or one,
the approximation bound is 3

2 . When two endpoints are given, Hoogeveen’s
Algorithm is a 5

3 -approximation bound.
The main steps of the algorithm are:

1. Find T a minimum spanning tree of the graph.

2. Find a set W ⊆ V containing all the fixed endpoints of even degree and all
other vertices of odd degree. Find M a minimum weight perfect matching
on W , leaving 2 − k vertices exposed, where k is the number of fixed
endpoints.

3. The graph which is the union of edges in T and M is connected and has
either two or zero odd degree vertices. In the latter case, there is one fixed
endpoint which is exposed in M . Delete an arbitrary edge touching this
vertex. Find an Eulerian path using the two odd-degree vertices at its
end-points.

4. Use the triangle inequality to create a TSP path whose length is no bigger
than the length of the Eulerian path.

Theorem 2 ([11]) Hoogeveen’s Algorithm returns a TSP path whose length is
at most 5

3 the length of the optimal solution when the two endpoints are known
or at most 3

2 the length of the optimal solution when one endpoint is known
assuming the edges’ lengths satisfy the triangle inequality. The algorithm works
in O(n3) time complexity.

JGAA, 22(4) 555–575 (2018) 559

2.3 Stacker Crane

The Stacker Crane problem is presented in [7]. This is a version of the TSP path,
where a set of arcs must be traversed. Given G = (V,E,A) a graph with E a set
of undirected edges and A a set of directed arcs, find a minimum length tour,
visiting all the vertices in V and traversing all the arcs in A. Assuming the edges
lengths satisfy the triangle inequality, the authors offer a 1.8-approximation
algorithm. This algorithm is based on running two Procedures LARGEARC
and LARGEEDGE and returning the better solution. Procedure LARGEARC
is more suitable when the arcs in A are long (compared with E) and Procedure
LARGEEDGE is more suitable when the edges in E are long. We use Procedure
LARGEARC as part of one of the algorithms presented in this paper. The main
steps of Procedure LARGEARC are:

1. Find M a minimum length matching on the endpoints of A using edges
from E.

2. The union of M and A creates disjoint cycles, since the degree of each
vertex is even.

3. Represent each cycle as a vertex and find a minimum spanning tree using
edges from E.

4. Double the edges of the spanning tree.

5. Create a TSP tour which traverses all the arcs in A. Use the triangle
inequality to find a tour whose length is bounded by 3l(E) + l(A).

Theorem 3 ([7]) Procedure LARGEARC returns a TSP path whose length is
at most 3l(E) + l(A) assuming the edges’ lengths satisfy the triangle inequality.

2.4 Ordered Disjoint Clusters

For the special case of disjoint clusters, when the order of the clusters in the
TSP path is given, Anily, Bramel and Hertz in [1] present an approximation
algorithm, yielding a 5

3 -approximation with time complexity of O(n3).
The main steps of the algorithm are:

1. Find a set of edges that represent the shortest connections between con-
secutive clusters, denote ai, bi ∈ Si as the endpoints of these edges.

2. Find a minimum spanning tree within each cluster and let F be the union
of these trees.

3. Augment the graph by duplicating each vertex ai and bi with even degree
in F . Add a zero length edge between each vertex and its duplicate.

4. Define a symmetric weight function on the set of vertices (including the
new duplicates) and find a minimum weight perfect matching using this
weight function.

560 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

5. Combine all the above edges to construct a feasible solution.

Theorem 4 ([1]) Anily, Bramel and Hertz’ Algorithm returns a TSP path
whose length is at most 5

3 the length of the optimal solution in O(n3) time
complexity assuming the edges’ lengths satisfy the triangle inequality.

2.5 PQ-tree

The PQ-tree is a data structure introduced by Booth and Lueker [3] for checking
the consecutive ones property (COP) in linear time. A binary matrix satisfies
the COP if there exists a permutation of its rows such that in each column the
ones appear consecutively. In our application, each row represents a vertex from
V and each column represents a cluster in S. A matrix cell contains 1 if the row’s
vertex exists in the column’s cluster. The PQ-tree data structure represents all
the permutations of vertices in V that satisfy the clusters’ constraints.

A PQ-tree is a rooted tree with internal nodes of two types P and Q. The
children of a P -node occur in no particular order, while the children of a Q-
node occur in a preserved order, up to reversal. The frontier of a PQ-tree is the
permutation of the tree’s leaves by reading the label of the leaves from left to
right. Two PQ-trees are equivalent if one is obtained from the other either by
permuting arbitrarily the order of all the children of a P -node or reversing the
order of the children of a Q-node.

The Booth-Lueker Algorithm, henceforth denoted as BL-Algorithm, uses a
pattern matching routing based on 11 templates. Each template consists of a
pattern matching a possible sub-tree of the current PQ-tree and a replacement of
this pattern. The BL-Algorithm works on the tree from bottom to top, replacing
the appropriate patterns. After applying the algorithm, either the frontier of
the tree satisfies the COP or a ’no feasible solution’ message is returned.

In our application, the leaves of the tree represent all the vertices in V .
After applying BL-Algorithm, each permutation of the nodes created by the
tree represents a possible order of the vertices in a TSP path. When the COP
is satisfied, the TSP path visits the vertices of each cluster consecutively.

Note that for the restricted case of disjoint clusters, an appropriate PQ-tree
contains 3 levels. The leaves level represents the vertices in V . The middle level
contains one P -node for each cluster, whose sons are the vertices contained in
this cluster, with no particular order. The top level contains one P -node as a
root, whose sons are all the P -nodes of the middle level.

The structure of a PQ-tree and the use of P -nodes in the tree, allows every
order of the vertices inside each cluster and every order of the clusters in the
TSP path, thus creating all the feasible solutions of the problem. In a PQ-tree
which represents an ordered disjoint clustered TSP we simply replace the root
P -node by a Q-node which defines the order of the clusters.

Definition 5 In a hypergraph H =< G,S > with a PQ-tree representation, a
node in the PQ-tree spans v ∈ V if it is an ancestor of the leaf in the tree which
represents v.

JGAA, 22(4) 555–575 (2018) 561

Remark 6 In this paper we make the following adjustments on the PQ-tree,
before applying the BL-Algorithm :

• Every original vertex is represented by a leaf, and we denote each leaf as
a V-node (vertex node). We add a father node which is a P -node that
spans only this leaf. In this manner we assure that every node has at least
one ancestor node which is a P -node. This will be used later in Lemma
25.

• When a node has exactly two children there is no difference between a
P -node and a Q-node. We change every P -node which spans only two
children into a Q-node. Therefore, in our representation, a P -node spans
at least 3 vertices.

2.6 Gint

Let H =< G,S > be a hypergraph with G = (V,E) and S = {S1, . . . , Sm},
Si ⊆ V ∀i ∈ {1, . . . ,m}. Denote by Gint the intersection graph of H, where
Gint is a graph with node set s1, . . . , sm, such that si represents cluster Si and
an edge exists between si and sj if and only if Si ∩ Sj 6= φ.

Theorem 7 Checking whether Gint is a path and creating Gint when it is a
path takes O(mn) time complexity, where m = |S| and n = |V |.

Proof: When Gint is a path the following two conditions are satisfied:

1. Each vertex v ∈ V is contained in at most two clusters from S.

2. There are two nodes in Gint with degree 1, all the other nodes in Gint

have degree 2.

Assume the hypergraph is presented in a table where each row represents a
vertex from V and each column represents a cluster in S. A table cell contains
1 if the row’s vertex exists in the column’s cluster. Perform the following steps:

1. Traverse the input table and create for each vertex v ∈ V the list of clusters
containing this vertex. If a vertex is contained in more than two clusters,
indicate that Gint is not a path and stop.

2. Create an m ∗m neighbourhood table for Gint using the lists of clusters
containing each vertex.

3. Verify that Gint is a path using the degree of each cluster in the neigh-
bourhood table.

The above steps require O(mn) time complexity and either indicate that
Gint is not a path, or create the neighbourhood table which represents Gint

when it is a path. �

562 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

3 Approximation Algorithms

In this section we offer two approximation algorithms. The first algorithm is a
bounded 4-approximation algorithm which works on any instance of the CTSP
problem, even when the intersection graph is not connected. The second ap-
proximation algorithm is appropriate for the special case when the intersection
graph is connected and forms a path. In this case we achieve a bounded 5

3 -
approximation algorithm.

3.1 The General Case

In this section we address the general case, where the clusters’ sizes are not
bounded and the intersection graph is not necessarily connected. We call the
algorithm for approximating this general case NDC - ”Non-Disjoint Clusters”
(See Figure 1). First, the algorithm creates one PQ-tree for each connected
component of the intersection graph. Next, it adds a root P -node whose sons
are the roots of previously created PQ-trees, thus combining all the trees into
one PQ-tree, which represents the whole hypergraph. Then the algorithm spans
the tree from bottom to top, creating a path to represent each scanned tree node.
The path is created either by the order defined by Q-nodes in the PQ-tree, or
using Procedure LARGEARC from Stacker Crane (see [7]) to approximate the
path representing the vertices that correspond to all the descendants of a P -
node.

Remark 8 By the PQ-tree properties, all the V -nodes that are descendants of
the same PQ-tree node are on a consecutive sub-path in any feasible solution.

Remark 9 During the algorithm, at the end of every step which handles a P -
node, the node is replaced by a Q-node. So when the algorithm reaches a node
in a higher level, all its children are either V -nodes or Q-nodes.

Definition 10 Denote the followings:

• opt - the value of an optimal solution.

• TPQ - A PQ-tree on S = {S1, . . . , Sm}.

• POPT (u) - The sub-path spanning all descendants of u in an optimal so-
lution.

• PNDC(u) - The sub-path spanning all descendants of u in the solution
returned by Algorithm NDC (see Figure 1).

• PNDC - The path returned by Algorithm NDC.

• lNDC - Distances defined during Algorithm NDC.

Lemma 11 In Algorithm NDC, for every node u in TPQ, lNDC(PNDC(u)) ≤
3lNDC(POPT (u)).

JGAA, 22(4) 555–575 (2018) 563

NDC (Non-Disjoint Clusters)
input

A hypergraph H =< G,S >, where G = (V,E)
with edge lengths l(e), ∀e ∈ E .
S = {S1, . . . , Sm}, Si ⊆ V ∀i ∈ {1, . . . ,m}.
assumption

The edge lengths satisfy the Triangle Inequality.
returns

A clustered TSP path P , or a statement ”No feasible solution”.
begin

Find Gint (defined in 2.6).
Calculate a PQ-tree for each connected component of Gint,
using BL-Algorithm ([3]).
if BL-Algorithm returns ”No feasible solution”

on any of the connected components
then Return ”No feasible solution”.

end if

Add a P -node as a root, and connect by an edge each PQ-tree as a subtree,
creating one PQ-tree denoted by TPQ.
Initialize lNDC(e) = l(e) for every e ∈ E.
All the following steps of the algorithm use the lNDC distances.
Scan the tree from bottom to top.
for every u a node which is not a leaf in TPQ:

if u is a Q-node:
then Use the order defined by the Q-node to create a path Pu in G.
else (u is a P -node)

if (all the children of u are V -nodes)
then Approximate Pu a TSP path spanning all the children

of u, using Christofides’ Algorithm [6].
else (u is a P -node with at least one Q-node child defined in

this algorithm in lower level of TPQ)
Let {vu1 , . . . , vuk} ⊂ V be the children of u which
are V -nodes, and let {qu1 , . . . , quj } be the children of u
which are Q-nodes (defined in a lower level of TPQ).
Each Q-node quj represents an edge Eu

j in G.
Create Pu a Stacker Crane path on {vu1 , . . . , vuk} and
{Eu

1 , . . . , E
u
j }, using Procedure LARGEARC ([7]).

end if

end if

Represent the path Pu:
· By an edge Eu in G whose length is the length of the path.
· By a Q-node qu in TPQ,
where all the vertices of the path are children of qu.
qu replaces u in TPQ.

Figure 1: Algorithm NDC (continues)

564 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

Update the distances in G:
for every v 6∈ Eu:

lNDC(v,Eu) = minw∈Pu
l((v, w))

end for

for every Ev 6= Eu:
lNDC(Ev, Eu) = minw1∈Pv,w2∈Pu l((w1, w2))

end for

end for

Return Pu where u is the root node of TPQ.
end NDC

Figure 1: Algorithm NDC (continued)

Proof: The proof of the lemma is by induction on the level of node u in TPQ.
The induction is carried on according to the different cases of u in the algorithm.

We note that the lengths used in the algorithm, lNDC (which are minimal
distances), are not longer than the original lengths used by the optimal solution.

1. u is a Q-node:

If all the children of u are V -nodes, then PNDC(u) is POPT (u), hence
lNDC(PNDC(u)) = lNDC(POPT (u)).

Otherwise, for every w, a child of u that is not a V -node, w is a Q-node
created during the algorithm and is represented in G by an edge created
in a lower level of TPQ (at an earlier stage of the algorithm). By the
induction hypothesis, lNDC(PNDC(w)) ≤ 3lNDC(POPT (w)). Since the
order of the children of u is uniquely defined, the same order also exists in
the optimal solution, giving that lNDC(PNDC(u)) ≤ 3lNDC(POPT (u)).

2. u is a P -node and all the children of u are V -nodes:

By Theorem 1, Christofides Algorithm gives

lNDC(PNDC(u)) ≤ 1.5lNDC(POPT (u)).

3. u is a P -node with at least one child which is a Q-node defined in lower
level of TPQ:

Let w1, . . . , wk be the children of u which are Q-nodes defined in lower
level of TPQ. Let E1, . . . , Ek be the corresponding edges defined in G
by the algorithm. By the construction of the algorithm, each edge Ej is
created to represent the path PNDC(wj) with l(Ej) = l(PNDC(wj)). Let
A be the union of all these edges A = ∪kj=1Ej , giving that lNDC(A) =∑k

j=1 lNDC(Ej) =
∑k

j=1 lNDC(PNDC(wj)). Let A′ be the union of the

corresponding optimal sub-paths: A′ = ∪kj=1P
OPT (wj). Hence lNDC(A′) =∑k

j=1 lNDC(POPT (wj)).

JGAA, 22(4) 555–575 (2018) 565

Using Algorithm LARGEARC and by Theorem 3, the length of the re-
turned PNDC(u) is bounded by 3∗(lNDC(POPT (u))−lNDC(A′))+lNDC(A).

By the induction hypothesis, for every wj a child of u, lNDC(PNDC(wj)) ≤
3lNDC(POPT (wj)). Hence lNDC(A) ≤ 3

∑k
j=1 lNDC(POPT (wj)). There-

fore,

lNDC(PNDC(u)) ≤ 3 ∗ (lNDC(POPT (u))− lNDC(A′)) + lNDC(A)

≤ 3 ∗ (lNDC(POPT (u))− 3

k∑
j=1

lNDC(POPT (wj)

+3

k∑
j=1

lNDC(POPT (wj))

= 3 ∗ (lNDC(POPT (u)))

�

Corollary 12 lNDC(PNDC) ≤ 3opt.

Theorem 13 l(PNDC) ≤ 4opt.

Proof: The length of PNDC , calculated by the lengths defined in the algorithm,
uses minimal distances which might use inner vertices of the sub-paths. We note
that for every sub-cluster, this may happen exactly once for entering the sub-
cluster and once for leaving the sub-cluster. The true lengths may be larger,
but, using the triangle inequality, the length added to the final TSP solution
is bounded by the lengths of the optimal TSP sub-path inside each sub-cluster.
Since the optimal solution contains a TSP path inside each sub-cluster, the total
added length is bounded by opt. �

Corollary 14 Algorithm NDC, for the general not necessarily disjoint clusters
CTSP, returns a 4-approximated solution, in polynomial time, when a feasible
solution exists, or reports that there is no feasible solution.

3.2 Intersection Graph Path

In this section we present algorithm IGP (Intersection Graph Path) which is an
approximation algorithm for the case whenGint is a path. The path representing
Gint uniquely defines the order of the clusters in the solution TSP path. The
algorithm (see Figure 2) first verifies that Gint is a path. In this case, the
algorithm uses the order of the clusters in this path to partition the graph
vertices into 2m−1 disjoint sub-clusters B1, . . . , B2m−1. In the final step we use
the algorithm presented in [1] to find the required TSP path. The approximation
ratio of the algorithm in this case is 5

3 .
We also prove that when Si 6⊆ (Sj ∪ Sk) for every i 6∈ {j, k}, then a feasible

solution exists only when Gint is a path. Hence, requiring that Gint is a path
is relevant for most interesting instances of the CTSP problem.

566 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

IGP (Intersection Graph Path)
input

A hypergraph H =< G,S >, where G = (V,E)
with edge lengths l(e), ∀e ∈ E .
S = {S1, . . . , Sm} Si ⊆ V ∀i ∈ {1, . . . ,m}.
assumptions

The edge lengths satisfy the Triangle Inequality.
returns

A TSP path P , or a statement ”Gint is not a path”.
begin

If there is only one cluster in G, return an approximated TSP path
using Christofides’ Algorithm [6].
Check whether Gint (defined in 2.6) is a path.
if (Gint is not a path)

then return ”Gint is not a path”.
else Create Gint as a path.

Use the order of the nodes in the path representing Gint

to define an order on the clusters: S1, S2, . . . , Sm.
Identify the following partition of V :
B1 = S1\S2.
for every i ∈ {1, . . . ,m− 2}

B2i = Si ∩ Si+1.
B2i+1 = Si+1\(Si ∪ Si+2).

end for

B2(m−1) = B2m−2 = Sm−1 ∩ Sm.
B2m−1 = Sm\Sm−1.
Calculate and return a TSP path using Anily et al. Algorithm ([1]).

end if

end IGP

Figure 2: Algorithm IGP

JGAA, 22(4) 555–575 (2018) 567

Theorem 15 Algorithm IGP (see Figure 2), for CTSP with an intersection
graph which is a path, returns a 5

3 -approximated solution in O(n3) time com-
plexity.

Proof: If there is only one cluster, we use Christofides’ Algorithm. By Theorem
1 we find a 3

2 - approximated TSP path in O(n3) time.
Otherwise, suppose that there are at least two clusters. If Gint is not a path,
the algorithm reports an appropriate message. If Gint is a path, it uses the
order of the clusters to define the sub-clusters B1, . . . , B2m−1.

The last step of Algorithm IGP uses Anily et al. Algorithm, hence by The-
orem 4 the approximation ratio of Algorithm IGP is 5

3 .
By Theorems 1, 4 and 7 the time complexity for the whole algorithm is

O(n3). �

The next theorem justifies our interest in the special case where Gint is a path.
It proves that when no two clusters contain a third one, then a feasible solution
exists only when Gint is a path.

Theorem 16 In a hypergraph H =< G,S >, suppose that for every i 6∈ {j, k}:
Si 6⊆ (Sj ∪ Sk) and that there exists a feasible CTSP path for H, then the
corresponding intersection graph is a path.

Proof: Consider a feasible solution. This solution is a path on the vertices
in V . This path defines an order of the clusters in S and therefore implies a
path in Gint. Hence, Gint includes a path: sp1

, . . . , spm
. Suppose Gint includes

an edge outside the path: (spi
, spj

) with j > i + 1. Therefore, Spi
∩ Spj

6= φ.
Since j > i + 1 there is another index k satisfying i < k < j. The feasible
solution contains, in the following order, all the vertices of Spi

, the vertices of
Spk
\(Spi ∪ Spj) and only after that all the vertices of Spj . Since Spi ∩ Spj 6= φ

we get that Spk
\(Spi ∪ Spj) = φ, giving that Spk

⊆ (Spi ∪ Spj), contradicting
the assumption of the lemma. �

Remark 17 When the intersection graph of H is a path and the intersection’s
size of every two clusters is bounded by a constant, it is possible to obtain a
bounded 5

3 -approximated algorithm which works in O(
∑m

j=1 |Sj |3 + mn) time
complexity, using dynamic programming.

4 A Polynomial Algorithm for Bounded Size Clus-
ters

In this section we assume that the intersection graph is connected and that
|Si| < C for every i ∈ {1, . . . ,m}, for a constant C, but we pose no additional
constraints on the size of the intersections. For this case we present a polynomial
time algorithm, denoted by BC (Bounded size Clusters), which finds an optimal
solution, even when the edge lengths do not satisfy the triangle inequality. Note

568 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

that in this case we profit from the additional constraints posed by the clusters,
as they enable us to obtain a polynomial algorithm.
In this case, Gint is not necessarily a path, even when a feasible solution exists.
Therefore, instead of Gint, we use the structure of the appropriate PQ-tree
to define ordered disjoint sub-clusters B1, . . . , Bq. Note that these sub-clusters
are different from the ones defined and used in algorithm IGP . On these sub-
clusters we activate a special defined dynamic procedure, denoted by DPBC
(Dynamic Programming for Bounded size Clusters), to find a TSP path which
satisfies all constraints imposed by the clusters.

In Procedure DPBC:

1. for every u ∈ Bi, 2 ≤ i ≤ q, we calculate f(u) - the length of the optimal
shortest TSP path, which ends at u and includes all the vertices in B1 ∪
· · · ∪ Bi−1 ∪ {u} and spans consecutively every contained-cluster of B1 ∪
· · · ∪Bi−1 ∪ {u}.

2. for every v ∈ Bq, we calculate d(v) - the length of the optimal shortest TSP
path, which starts at v, spans all the vertices in Bq and spans consecutively
every contained-cluster of Bq.

In the end, the algorithm uses the above function values and a concatenation
of the corresponding TSP paths to create one TSP path which spans all the
vertices of the graph in an appropriate order.
We start with some definitions.

Definition 18 In a PQ-tree:

• An ancestor-P-node is a P-node which has only Q-nodes as ancestors.

• A high-Q-node is a Q-node with only Q-nodes as its ancestors. (A high-
Q-node does not have an ancestor which is a P -node.)

Definition 19 In a hypergraph H =< G,S > with a PQ-tree representation,
a cluster Si ∈ S is:

• P-nested-cluster if there is an ancestor-P -node which spans all the ver-
tices of Si and at least one vertex which is not in Si.

• non-contained-cluster if there is no cluster Sj such that Si (Sj.

Note that there are clusters which may be neither P -nested-clusters nor non-
contained-clusters.

Lemma 20 In a hypergraph H =< G,S >, the order of non-contained-clusters
in every feasible solution is unique.

Proof: First, we identify a partition of V (the vertices of G) into disjoint sub-
clusters defined by the intersections of the non-contained-clusters, such that
every non-empty intersection of at least two non-contained clusters defines a

JGAA, 22(4) 555–575 (2018) 569

sub-cluster. Every cluster contains at least two sub-clusters, since it must in-
tersect with at least one other non-contained cluster by the connectivity of the
intersection graph. We claim that the order of these sub-clusters is unique in
every feasible solution and that the unique order of the sub-clusters implies a
unique order of the non-contained clusters.
Suppose, by contradiction, that there is a non-contained cluster Si with two
different feasible orderings of its sub-clusters, F1 and F2, such that F2 is not the
reversal of F1. Since its sub-clusters must appear consecutively in every order,
for Si to have two different orderings of its sub-clusters, it must contain at least
three disjoint sub-clusters: Si1 , Si2 , Si3 . Without loss of generality, suppose that
in F1 they are ordered (Si1 , Si2 , Si3) and in F2 they are ordered (Si1 , Si3 , Si2).
Since the ordering (Si1 , Si2 , Si3) is feasible, there is a non-contained cluster
Sj 6= Si, such that Si3 is contained in Si ∩ Sj and Si2 is not contained in Sj .
Since Sj is a non-contained cluster Sj\Si 6= φ. In F1 the vertices of the sub-
clusters contained in Sj\Si must appear adjacent to Si3 , to ensure that all the
vertices of Sj appear consecutively in any feasible solution. However, in F2
the vertices of Sj do not appear consecutively, since Si3 ⊂ Sj , and Si2 6⊂ Sj , a
contradiction.
Previous reasoning proves that the order of the sub-clusters contained in Si is
unique in any feasible solution. Since each sub-cluster is defined by an inter-
section with other non-contained clusters, the order of Si with respect to other
non-contained clusters is uniquely defined by the order of its sub-clusters. Thus,
implying a unique order among all non-contained clusters. �

Lemma 21 In a hypergraph H =< G,S > with a PQ-tree representation and
|V | > C, a P -node spans at most C − 1 vertices.

Proof: Since |V | > C there are at least two non-contained-clusters. Clearly,
if a P -node spans more than C vertices, then it spans vertices of at least two
non-contained-clusters. Under the assumption of connected intersection graph,
the same also holds when a P -node spans exactly C vertices. This contradicts
Lemma 20 which states that the order between any two non-contained-clusters
is unique and therefore cannot be defined by a P -node. �

Corollary 22 In a hypergraph H =< G,S > with a PQ-tree representation, if
Si is a P -nested-cluster, it cannot be a non-contained-cluster, therefore there is
a cluster Sj such that Si (Sj.

Proof: Suppose Si is a P -nested-cluster and a non-contained-cluster. Since it
is a P -nested-cluster, there is a P -node p which spans all the vertices of Si and
at least one vertex which is not in Si. Since all the vertices of Si must appear
consecutively, there is a node t in the PQ-tree which spans all the vertices
of Si and is a child of p. According to Remark 6, a P -node has at least 3
children, therefore p has another two children t1, t2, each of them spans vertices
which are not in Si. Since p is a P -node, both orderings are allowed t1, t, t2
and t, t1, t2, which gives two allowed orderings between Si and another non-
contained cluster, contradicting Lemma 20, which states that the order of the
non-contained-clusters is unique. �

570 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

BC (Bounded size Clusters)
input

A hypergraph H =< G,S >, where G = (V,E)
with edge lengths l(e), ∀e ∈ E .
S = {S1, . . . , Sm}, Si ⊆ V , |Si| ≤ C, ∀i ∈ {1, . . . ,m}.
assumption

The intersection graph of G is connected.
returns

A TSP Path P , or a statement ”No feasible solution”.

begin

If there is only one cluster in G, return the optimal TSP path.
Apply BL-Algorithm on H (see [3]) to find a PQ-tree .
if BL-Algorithm returns ”No feasible solution”

then Return ”No feasible solution”.
else Let TPQ be the PQ-Tree returned by BL-Algorithm.

end if

Define a set of disjoint sub-clusters B1, . . . , Bq:
- Each sub-cluster is the set of vertices spanned by an ancestor-P -node.
- The order of the sub-clusters is defined by the high-Q-nodes,
which are the ancestors of the ancestor-P -nodes.
(For an ancestor-P -node ignore the structure of the tree under this node.)

Return an optimal TSP path P ,
using the dynamic programming in Procedure DPBC (Figure 4).
end BC

Figure 3: Algorithm BC

Corollary 23 In a PQ-tree which represents a given hypergraph, a non-contained-
cluster cannot be a P -nested-cluster, hence only a high-Q-node may span all its
vertices. Therefore, the order of the non-contained-clusters is uniquely defined
by the high-Q-nodes.

Corollary 24 In a PQ-tree which represents a given hypergraph, a cluster that
has an ancestor which is an ancestor-P -node and spans all its vertices, has at
most C vertices for which an optimal TSP path order can be found in constant
time, when C is constant.

Lemma 25 In a PQ-tree which represents a given hypergraph, every V -node is
spanned by exactly one ancestor-P-node.

Proof: Every V -node is a leaf of the tree and, according to changes we defined in
Remark 6, is connected by an edge to a P -node. Hence, it also has an ancestor-
P -node. By the structure of a tree it can only have one ancestor-P -node. �

JGAA, 22(4) 555–575 (2018) 571

DPBC (Dynamic Programming for Bounded size Clusters)
input

A graph G = (V,E) with edge lengths l(e), ∀e ∈ E.
A partition of V into disjoint sub-clusters B1, . . . , Bq.
returns

A TSP path P .

begin

for every u ∈ B2:
Calculate f(u) = the length of the optimal TSP path which:
- Spans the vertices of B1 ∪ {u},
- Spans consecutively every contained-cluster of B1,
- Ends at u.
Save the corresponding path as Pu.

end for

for every 3 ≤ i ≤ q:
Call Procedure BP (Figure 5)
to calculate f(u) and Pu for every u ∈ Bi.

end for

for every v ∈ Bq:
Calculate d(v) = the length of the optimal TSP path which:
- Starts at v,
- Spans the vertices of Bq,
- Spans consecutively every contained-cluster of Bq.
Save the corresponding path as PEv.

end for

Find fDP = minv∈Bq
{f(v) + d(v)} .

Calculate and return the TSP path whose length is fDP .
This path is the concatenation of Pv∗ and PEv∗ ,
where v∗ = argminv∈Bq

{f(v) + d(v)}.
end DPBC

Figure 4: Procedure DPBC

572 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

BP (Between Path)
input

A graph G = (V,E) with edge lengths l(e), ∀e ∈ E.
Two sub-clusters Bi−1, Bi ⊂ V
Function values f(v) and corresponding paths Pv for every v ∈ Bi−1.
returns

Function values f(u) and corresponding paths Pu for every u ∈ Bi .
begin

for every u ∈ Bi:
for every v ∈ Bi−1:

Calculate bd(v, u) = the length of the optimal TSP path
which:
- Starts at v,
- Spans the vertices of Bi−1 ∪ {u},
- Spans consecutively every contained-cluster of Bi−1,
- Ends at u.
Save the corresponding path as PB(v,u).

end for

Calculate f(u) = minv∈Bi−1
{f(v) + bd(v, u)}.

Save the corresponding path as Pu,
where Pu is the concatenation of Pv∗ and PB(v∗,u),
where v∗ = argminv∈Bi−1{f(v) + bd(v, u)}.

end for

end BP

Figure 5: Procedure BP

Corollary 26 In Algorithm BC (see Figure 3) each one of the vertices (of V)
belongs to exactly one sub-cluster from B1, . . . , Bq.

Theorem 27 Algorithm BC, for CTSP with clusters’ sizes which satisfy |Si| ≤
C, for a constant C (see Figures 3, 4 and 5), returns an optimal solution in
polynomial time, when a feasible solution exists, or reports that there is no
feasible solution.

Proof: If there is only one cluster, an optimal TSP path can be found in
constant time, under the assumption that C is constant.
Otherwise, suppose that there are at least two clusters. Each sub-cluster in
B1, . . . , Bq, q ≥ 3, is defined by an ancestor-P -node. By Lemma 21 every
sub-cluster contains at most C − 1 vertices. By definition, all the ancestors of
ancestor-P -nodes are high-Q-nodes. Therefore, the order of B1, . . . , Bq in an
optimal solution is uniquely defined by the order of high-Q-nodes of the PQ-
tree. This is the same order imposed on the non-contained-clusters, which is
uniquely defined in Corollary 23.

JGAA, 22(4) 555–575 (2018) 573

The correctness of the dynamic programming (which can be trivially proved by
induction) guarantees the return of an optimal solution.

For the complexity, the algorithm contains the following steps:

1. Find a PQ-tree using BL-Algorithm (defined in [3]).

2. For every v ∈ Bi−1 and u ∈ Bi, calculate the optimal TSP path which
starts at v, ends at u and spans all the vertices of Bi−1. The optimal
solution can be found in polynomial time, since the clusters’ sizes are
bounded by C. Note that we calculate the paths inside Bi−1, whose size
is bounded by C-1. Therefore, we can also demand that the paths satisfy
all the constraints imposed by the contained clusters, in polynomial time
complexity.

3. Calculate f(v) for every v ∈ Bi, i ∈ {3, . . . , q} (using the optimal paths
found in step 2).

4. Calculate f(v) for every v ∈ B2 and d(v) for every v ∈ Bq.

All the above steps are polynomial, assuming that C is constant. �

5 Summary and Future Research

Our significant result is the bounded approximation algorithm for finding a TSP
path when not necessarily disjoint clusters are defined on the vertex set. We
also present a better approximation when certain restrictions are imposed on
the structure of the intersection graph. When the clusters’ sizes are bounded
and the intersection graph is connected we present a polynomial time algorithm
for finding an optimal solution.
It will be interesting to research the general case further, trying to improve the
approximation bound for this case. Furthermore, additional special cases of the
problem may be defined and solved.

Acknowledgements

We thank Ephraim Korach for introducing and motivating us to work on this
problem. We would also like to thank Refael Hassin for his careful reading and
helpful suggestions.

574 Guttmann-Beck et al. Approximation Algorithms for NDCTSP

References

[1] S. Anily, J. Bramel, and A. Hertz. A 5
3 -approximation algorithm for the

clustered traveling salesman tour and path problems. Operations Research
Letters, 24(1-2):29–35, 1999. doi:10.1016/S0167-6377(98)00046-7.

[2] E. M. Arkin, R. Hassin, and L. Klein. Restricted delivery problems
on a network. Networks, 29(4):205–216, 1997. doi:10.1002/(SICI)

1097-0037(199707)29:4<205::AID-NET3>3.3.CO;2-X.

[3] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal
of Computer and System Sciences, 13(3):335–379, 1976. doi:10.1016/

S0022-0000(76)80045-1.

[4] J. A. Chisman. The clustered traveling salesman problem. Computers &
Operations Research, 2(2):115–119, 1975. doi:10.1016/0305-0548(75)

90015-5.

[5] T. Christof, M. Jünger, J. Kececioglu, P. Mutzel, and G. Reinelt. A
branch-and-cut approach to physical mapping of chromosomes by unique
end-probes. 4(4):433–447, 02 1997. doi:10.1089/cmb.1997.4.433.

[6] N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie Mellon University, 1976.

[7] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms
for some routing problems. In 17th Annual Symposium on Foundations of
Computer Science, pages 216–227. IEEE Computer Society, 1976. doi:

10.1109/SFCS.1976.6.

[8] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15:835–855, 1965. doi:10.2140/pjm.

1965.15.835.

[9] G. Gutin and A. Punnen. Editorial: the traveling salesman problem. Dis-
crete Optimization, 3(1):1, 2006. doi:10.1016/j.disopt.2005.12.001.

[10] N. Guttmann-Beck, R. Hassin, S. Khuller, and B. Raghavachari. Approx-
imation algorithms with bounded performance guarantees for the clus-
tered traveling salesman problem. Algorithmica, 28(4):422–437, 2000.
doi:10.1007/s004530010045.

[11] J. A. Hoogeveen. Analysis of Christofides’ heuristic: some paths are more
difficult than cycles. Operations Research Letters, 10(5):291–295, 1991.
doi:10.1016/0167-6377(91)90016-I.

[12] E. Korach and M. Stern. The clustering matroid and the optimal clustering
tree. Mathematical Programming, 98(1-3, Ser. B):385–414, 2003. doi:

10.1007/s10107-003-0410-x.

http://dx.doi.org/10.1016/S0167-6377(98)00046-7
http://dx.doi.org/10.1002/(SICI)1097-0037(199707)29:4<205::AID-NET3>3.3.CO;2-X
http://dx.doi.org/10.1002/(SICI)1097-0037(199707)29:4<205::AID-NET3>3.3.CO;2-X
http://dx.doi.org/10.1016/S0022-0000(76)80045-1
http://dx.doi.org/10.1016/S0022-0000(76)80045-1
http://dx.doi.org/10.1016/0305-0548(75)90015-5
http://dx.doi.org/10.1016/0305-0548(75)90015-5
http://dx.doi.org/10.1089/cmb.1997.4.433
http://dx.doi.org/10.1109/SFCS.1976.6
http://dx.doi.org/10.1109/SFCS.1976.6
http://dx.doi.org/10.2140/pjm.1965.15.835
http://dx.doi.org/10.2140/pjm.1965.15.835
http://dx.doi.org/10.1016/j.disopt.2005.12.001
http://dx.doi.org/10.1007/s004530010045
http://dx.doi.org/10.1016/0167-6377(91)90016-I
http://dx.doi.org/10.1007/s10107-003-0410-x
http://dx.doi.org/10.1007/s10107-003-0410-x

JGAA, 22(4) 555–575 (2018) 575

[13] E. Korach and M. Stern. The complete optimal stars-clustering-tree prob-
lem. Discrete Applied Mathematics, 156(4):444–450, 2008. doi:10.1016/

j.dam.2006.12.004.

[14] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, D. B. Shmoys, et al. The
traveling salesman problem: a guided tour of combinatorial optimization.
Wiley, New York, 1985.

[15] F. C. J. Lokin. Procedures for travelling salesman problems with additional
constraints. European Journal of Operational Research, 3(2):135–141, 1979.
doi:10.1016/0377-2217(79)90099-7.

[16] J. Y. Potvin and F. Guertin. A genetic algorithm for the clustered traveling
salesman problem with a prespecified order on the clusters. In Advances in
computational and stochastic optimization, logic programming, and heuris-
tic search, volume 9 of Operations Research/Computer Science Interfaces
Series, pages 287–299. Springer, 1998. doi:10.1007/978-1-4757-2807-1_
11.

http://dx.doi.org/10.1016/j.dam.2006.12.004
http://dx.doi.org/10.1016/j.dam.2006.12.004
http://dx.doi.org/10.1016/0377-2217(79)90099-7
http://dx.doi.org/10.1007/978-1-4757-2807-1_11
http://dx.doi.org/10.1007/978-1-4757-2807-1_11

	Introduction
	Preliminaries
	Christofides' Algorithm for the TSP Path
	Shortest TSP Path with Known Endpoints
	Stacker Crane
	Ordered Disjoint Clusters
	PQ-tree
	Gint

	Approximation Algorithms
	The General Case
	Intersection Graph Path

	A Polynomial Algorithm for Bounded Size Clusters
	Summary and Future Research

