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Abstract

Visibility graph reconstruction, which asks us to construct a polygon
that has a given visibility graph, is a fundamental problem with un-
known complexity (although visibility graph recognition is known to be
in PSPACE). As far as we are aware, the only class of orthogonal poly-
gons that are known to have efficient reconstruction algorithms is the
class of orthogonal convex fans (staircase polygons) with uniform step
lengths. We show that two classes of uniform step length polygons can
be reconstructed efficiently by finding and removing rectangles formed
between consecutive convex boundary vertices called tabs. In particular,
we give an O(n2m)-time reconstruction algorithm for orthogonally con-
vex polygons, where n and m are the number of vertices and edges in
the visibility graph, respectively. We further show that reconstructing a
monotone chain of staircases (a histogram) is fixed-parameter tractable,
when parameterized on the number of tabs, and polynomially solvable
in time O(n2m) under alignment restrictions. As a consequence of our
reconstruction techniques, we also get recognition algorithms for visibility
graphs of these classes of polygons with the same running times.
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1 Introduction

Visibility graphs, used to capture visibility in or between polygons, are simple
but powerful tools in computational geometry. They are integral to solving
many fundamental problems, such as routing in polygons, and art gallery and
watchman problems, to name a few. Efficient, and even worst-case optimal,
algorithms exist for computing a visibility graph from an input polygon [17];
however, comparatively little is known about the reverse direction: the so-called
visibility graph recognition and reconstruction problems.

In this paper, we study vertex-vertex visibility graphs, which are formed by
visibility between pairs of vertices of a polygon. Given a graph G = (V,E)
on n = |V | vertices and m = |E| edges, the visibility graph recognition problem
asks if G is the visibility graph of some polygon. Similarly, the visibility graph
reconstruction problem asks us to construct a polygon with G as a visibility
graph. Surprisingly, recognition of simple polygons is only known to be in
PSPACE [14], and it is still unknown if simple polygons can be reconstructed
in polynomial time. Therefore, current solutions are typically for restricted
classes of polygons. Even characterizations are only known for special classes of
visibility graphs [18, 21], and only four necessary conditions are known [16] for
standard visibility graphs.

1.1 Special Classes of Polygons

A well-known result due to ElGindy [12] is that every maximal outerplanar
graph is a visibility graph and a polygon can be reconstructed from every such
graph in polynomial time. Other special classes rely on a unique configuration
of reflex and convex chains, which restrict visibility.

For instance, spiral polygons [15] and tower polygons [8] (also called funnel
polygons), can be reconstructed in linear time, and each consists of one and two
reflex chains, respectively. Further, 2-spirals can be reconstructed in polynomial
time [2], as can a more general class of visibility graphs related to 3-matroids [3].
Finally convex polygons with a single convex hole [7] can be reconstructed in
polynomial time.

For monotone polygons, Colley [9, 10] showed that if each face of a maxi-
mal outerplanar graph is replaced by a clique on the same number of vertices,
then the resulting graph is a visibility graph of some uni-monotone polygon
(monotone with respect to a single edge), and such a polygon can be recon-
structed if the Hamiltonian cycle of the boundary edges is known. However, not
every uni-monotone polygon (even those with uniformly spaced vertices) has
such a visibility graph [13]. Finally, Evans and Saeedi [13] characterized terrain
visibility graphs, which consist of a single monotone polygonal line.

Orthogonal polygons. Surprisingly little is known about visibility graphs of
orthogonal polygons: we are only aware of results for orthogonal convex fans,
which consist of a single staircase and an extra vertex. These are also known as
staircase polygons. Abello and Eğecioğlu [1] show that orthogonal convex fans
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with uniform side-length can be reconstructed in linear time; however, their
construction relies on a simpler definition of visibility, which allows for blocking
vertices. Furthermore, Abello et al. [4] show that general orthogonal convex
fans are recognizable in polynomial time, but reconstruction is still open even
for this simple class of orthogonal polygons.

Other algorithms for orthogonal polygons use different visibility represen-
tations, which seem to be easier to work with. For example, researchers have
looked into edge-edge visibility and vertex-edge visibility. For orthogonal poly-
gons, edge-edge visibility graphs [20, Section 7.3] have been shown to consist of
two disjoint trees and the polygon can be reconstructed when these trees “mesh
well”. For vertex-edge visibility, orthogonal polygons can be reconstructed en-
tirely from “stabs” [19]—for each vertex, we are given the edges hit by horizontal
(or vertical) rays shot from the vertex—in O(n log n) time. However, we also
must be given the Hamiltonian cycle of the boundary edges with the input.
See Asano et al. [5] or Ghosh [16] for a thorough review of results on visibility
graphs.

1.2 Our Results

In this work, we investigate reconstructing polygons consisting of multiple uni-
form step length staircases. To the best of our knowledge, the only pure visi-
bility reconstruction result for orthogonal polygons is for a single uniform step
length staircase [1]. We first show that orthogonally convex polygons can be
reconstructed in O(n2m) time. We further show that reconstructing orthogonal
uni-monotone polygons (also known as histograms) is fixed-parameter tractable,
when parameterized on the number of horizontal boundary edges that are inci-
dent to two convex vertices in the polygon. We also provide an O(n2m) time
algorithm under alignment restrictions. As a consequence of our reconstruction
technique, we can also recognize the visibility graphs of these classes of polygons
with the same running times.

2 Preliminaries

Let P be a polygon on n vertices. We say that a point p sees a point q (or p and q
are visible) in polygon P if the line segment pq does not intersect the exterior
of P . Under this definition, visibility is allowed along edges and through vertices.
If we restrict our attention to visibility between vertices of the polygon, we get
a natural pairwise relationship between vertices, giving us a visibility graph.

Definition 1 (visibility graph) A visibility graph GP = (VP , EP ) of poly-
gon P has a vertex vp ∈ VP for each vertex p of P , and an edge (vp, vq) ∈ EP

if and only if vertices p and q are visible in P .

Due to the one-to-one relationship between polygon and graph vertices, we
reference the vertex of a visibility graph as we would a vertex of the polygon.



434 N. Sitchinava and D. Strash Reconstructing Orthogonal Polygons

C1
e1

(a)

C2

e2

(b)

e3 C3

(c)

Figure 1: Maximal convex regions on vertices of polygons (e.g., C1, C2, and C3)
are maximal cliques in visibility graphs, and 1-simplicial edges (e.g., e1, e2, and
e3) are each in exactly one maximal clique.

For our visibility graph discussion, we adopt standard notation for graphs
and polygons. In particular, for a graph G = (V,E), we denote the neighborhood
of a vertex v ∈ V by N(v) = {u | (v, u) ∈ E}, the degree of v by deg(v) = |N(v)|,
and the number of vertices and edges by n = |V | and m = |E|, respectively. For
a visibility graph GP = (VP , EP ) of a polygon P , we call an edge in GP that is
an edge of P a boundary edge. Other edges (diagonals in P ) are non-boundary
edges.

Finally, critical to our proofs is the fact that a maximal clique in GP corre-
sponds to a maximal (in the number of vertices) convex region R ⊆ P whose
vertices are defined by vertices of P . We say that an edge (u, v) is 1-simplicial
if the common neighborhood N(u)∩N(v) is a clique, or equivalently (u, v) is in
exactly one maximal clique1. The intuition behind why we consider 1-simplicial
edges is that, in orthogonal polygons with edges of uniform length, boundary
edges between convex vertices are 1-simplicial, with the vertices of the clique
forming a rectangle. (See Figure 1.) Note, however, that non-boundary edges
may also be 1-simplicial.

For our running times, we rely on the following observation.

Observation 1 We can test if (u, v) is 1-simplicial and in a maximal k-clique
in time O(kn) with an adjacency list data structure, or time O(k2 + n) with an
adjacency matrix.

Proof: Compute X = N(u) ∩N(v) in O(n) time by marking vertices in N(u)
and checking for marked vertices in N(v), then check that |X| = k and X is a
clique. This last step takes O(kn) time with an adjacency list, or O(k2) with
an adjacency matrix. �

1This is not to be confused with simplicial edges, which are defined elsewhere to be edges
(u, v) such that for every w ∈ N(u) and x ∈ N(v), w and x are adjacent. Instead, this
definition parallels the usage for vertices: A vertex v is simplicial if N(v) forms a clique, or
equivalently v is in exactly one maximal clique.
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We note that if k = O(n) this test takes time O(n2) and, if k = O(1), the test
takes time O(n).

3 Uniform-Length Orthogonally Convex Poly-
gons

We first turn our attention to a restricted class of orthogonal polygons that have
only uniform-length (or equivalently, unit-length) edges. Let P be an orthogonal
polygon with uniform-length edges such that no three consecutive vertices on P ’s
boundary are collinear, and further let P be orthogonally convex 2. We call P
a uniform-length orthogonally convex polygon (UP). Note that every vertex vi
on P ’s boundary is either convex or reflex. We call boundary edges between
two convex vertices in a uniform-length orthogonal polygon P tabs and the
endvertices of a tab tab vertices. We reconstruct the polygon by computing the
clockwise ordering of vertices of the UP.

Note that the boundary of a UP consists of four tabs connected via stair-
cases. For ease of exposition, we assume that the UP is embedded in R2 with
polygon edges axis-aligned. We call the tab with the largest y-coordinate the
north tab, and we analogously name the others the south, east, and west tabs.
Following this convention, we refer to the four boundary staircases as northwest,
northeast, southeast, and southwest. Furthermore, note that it is possible for
two (opposite) staircases to have more vertices than the other two (also oppo-
site) staircases. We call the staircases with more vertices long staircases and
others short.

We only consider polygons with more than 12 vertices, which eliminates
many special cases. Smaller polygons can be solved in constant time via brute
force.

We first introduce several structural lemmas which help us to identify all
convex vertices in a UP, which is key to our reconstruction.

Lemma 1 For every convex vertex u in a UP, there is a convex vertex v, such
that (u, v) ∈ EP and (u, v) is 1-simplicial.

Proof: If u is a tab vertex, then the tab vertex v that is u’s boundary neighbor is
convex and (u, v) is 1-simplicial. Otherwise, without loss of generality, suppose
that u is on the northwest staircase. Then there is a convex vertex v on the
southeast staircase that is visible from u. Edge (u, v) is in exactly one maximal
clique, consisting of u, v, the reflex vertices within the rectangle R defined by u
and v as the opposite corners, and any other corners of R that are convex
vertices of the polygon. �

Furthermore, we have the following lemma, which allows us to differentiate
between convex and reflex vertices.

2That is, any two points in P can be connected by a staircase contained in P .



436 N. Sitchinava and D. Strash Reconstructing Orthogonal Polygons

u

z
w

w′

(a)

v

z
w

w′

(b)

v

z w

w′

(c)

Figure 2: Illustration of the proofs of (a) Observation 2 and (b)-(c) Observa-
tion 3. The vertex u on the northwest staircase can be reflex or convex.

Lemma 2 For every visible pair of vertices u and v in a UP, if u or v is a
reflex vertex, then the edge (u, v) ∈ EP is not 1-simplicial.

Combining Lemmas 1 and 2 gives us a simple method to determine convex
and reflex vertices: test if each edge is in more than one maximal clique. Mark
all vertices incident to 1-simplicial edges as convex, and mark the rest as reflex.

We prove Lemma 2 below, but first we make some necessary observations.

Observation 2 If a vertex u on the northwest staircase of a UP sees a reflex
vertex z on the southeast staircase and the slope of the line supporting the line
segment uz is non-positive, then u sees both (convex) boundary neighbors w
and w′ of z.

Proof: We will prove that w, the horizontal boundary neighbor of z, is visible
from u. The proof for visibility of w′, the vertical boundary neighbor of z, is
symmetric. See Figure 2(a) for an illustration.

First, observe that in a UP, no boundary edge on the northeast and the
southwest staircases blocks visibility between the vertices of the northwest stair-
case and the vertices of the southeast staircase, and, consequently, between u
and w.

Next, by viewing u as the origin of the Cartesian coordinate system, z lies
in the southeast quadrant (inclusive of the axis), since the slope of the line
supporting uz is non-positive. And since zw is a horizontal edge, w also lies in
the southeast quadrant. Therefore, no boundary edge of the northwest staircase
blocks the visibility between u and w (recall that our definition of visibility
allows visibility along the polygon edges).

Finally, by viewing w as the origin, we can similarly see that no edge of the
southeast staircase blocks the visibility between u and w. �

Observation 3 Let a reflex vertex v be on the southwest or northeast staircase
of a UP and a reflex vertex z be on the southeast staircase. If the slope of the
line supporting the line segment vz is non-positive, then v sees both (convex)
boundary neighbors w and w′ of z.
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Figure 3: Illustration of the proof that an edge (u, v) is not 1-simplicial when
both u and v are reflex. The proof demonstrates the existence of a convex
vertex w visible from both u and v.

Proof: Consider the case when v is on the southwest staircase (the proof of the
case when v is on the northeast staircase is symmetric). See Figure 2(b)-(c) for
an illustration.

First, observe that no boundary edge on the northwest and northeast stair-
case blocks the visibility between the vertices of the southwest staircase and the
vertices of the southeast staircase, and, consequently, between v and w.

Next, observe that the slope of the line supporting the edges from any reflex
vertex on the southwest staircase and any vertex on the southeast staircase is at
least − tan(π/4) and, therefore, no vertex on the southwest staircase can block
the visibility between them.

Finally, by viewing w (resp., w′) as the origin of the Cartesian coordinate
system, we can see that v is in the northwest quadrant (inclusive of axis) and,
therefore, no boundary edge on the southeast staircase can block the visibility
between w (resp., w′) and v. �

We are ready to prove Lemma 2.

Proof: Let (u, v) ∈ EP and suppose that at least one of u and v is reflex.
Case 1: Both u and v are reflex. Then they belong to a maximal clique

consisting of all reflex vertices and no convex vertices. We will show that both u
and v also see some convex vertex w, therefore, u, v and w are part of another
maximal clique. For concreteness of exposition, we orient the polygon so u
is always on the northwest staircase. Further, if all staircases have the same
number of vertices, we arbitrarily choose the northwest and southeast staircases
to be called short, and the others long. There are two cases to consider:

(a) Both u and v are on short staircases. (See Figure 3(a)). Observe, that
every reflex vertex on a short staircase sees all vertices on the other short
staircase. Then, if u and v are on the same (northwest) staircase, there is a
convex vertex w on the southeast staircase, visible to both u and v. If v is
on the southeast staircase, w is either of the two convex boundary neighbors
of v. Since w is a boundary neighbor of v, it is visible from v.
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Figure 4: Illustration of the proof that an edge (u, v) is not 1-simplicial when u
is convex and v is reflex. For each of the four cases of when v is on the four
different staircases, there is a pair of convex vertices w and w′ on the southeast
staircase, which are visible to both u and v, but not to each other.

(b) At least one of u and v is on a long staircase. (See Figure 3(b)).
Vertex u sees the right tab vertex tr of the north tab and the bottom tab
vertex tb of the west tab. Since the northwest staircase is long, the union
of reflex vertices visible from tr and tb is the set of all reflex vertices in the
polygon. Therefore, every reflex vertex v must see at least one of tr or tb.

Case 2: One of the vertices, u or v, is convex. Without loss of generality,
let it be u (again, on the northwest staircase), and let v be reflex. Let Pu be the
polygon consisting of u and all reflex vertices visible from u. For every reflex
vertex v in Pu, we will identify two convex vertices w and w′ on the southeast
staircase, which are visible to both u and v. Since w and w′ are convex vertices
on the same staircase, they are invisible to each other and, therefore, u, v, w
and u, v, w′ will be part of two distinct maximal cliques.

Let us consider the four possible locations for v (see Figure 4):

(a) v is on the southeast staircase. Let w and w′ be the two convex bound-
ary neighbors of v. Clearly, v sees w and w′. Moreover, since u sees v and v
is on the opposite staircase from u, the slope of the line supporting the
segment uv is non-positive. By Observation 2, u must also see w and w′.

(b) v is on the southwest staircase. Let z be the lowest reflex vertex on
the southeast staircase (adjacent to the south tab’s right vertex) and let w
and w′ be the two convex boundary neighbors of z. Vertex z is visible
from v because both v and z are reflex. Since z is the lowest reflex vertex,
the slope of the line supporting the segment vz is non-positive (the slope
is 0 if v is the lowest reflex vertex on the southwest staircase). Thus, by
Observation 3, w and w′ are visible from v. Moreover, since u sees v and v
is on the southwest staircase, z must be visible from u with even smaller
slope of the line supporting segment uz, i.e., the slope is also non-positive.
Therefore, by Observation 2, w and w′ are also visible from u.

(c) v is on the northeast staircase. Let z be the highest reflex vertex on
the southeast staircase (adjacent to the east tab’s bottom vertex) and let w
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and w′ be the two convex boundary neighbors of z. Again, vertex z is visible
from v because both v and z are reflex. We can see that the slope of the
line supporting the segment vz is negative by viewing v as the origin of
the Cartesian coordinate system and observing that z is in the southeast
quadrant. Thus, by Observation 3, w and w′ are visible from v. At the
same time, z is visible from u because v is visible from u and z is below
and to the right of (or directly below) v. Moreover, the slope of the line
supporting segment uz is also non-positive. Therefore, by Observation 2, w
and w′ are also visible from u.

(d) v is on the northwest staircase. Since v is visible from u, v must be a
reflex boundary neighbor of u. Observe, that because Pu is bounded from
all sides, it must contains a non-empty subset Z of reflex vertices from the
southeast staircase. Moreover, there exists a vertex z ∈ Z, which is not
axis-aligned with u, i.e., the slope of the line supporting the segment uz is
strictly negative. Let w and w′ be the two convex boundary neighbors of z.
By definition of Pu, z is visible from u, therefore, by Observation 2, w and w′

are visible from u. Again, z is visible from v because both v and z are reflex.
Since the slope of the line supporting segment uz is strictly negative and
the polygon has uniform length boundaries, the slope of the line supporting
segment vz must be non-positive. Therefore, by Observation 2, w and w′

are also visible from v.

Therefore, (u, v) is not 1-simplicial. �

Lemma 2 states that only edges between convex vertices can be 1-simplicial.
Combining this lemma with Lemma 1, we can identify all convex vertices by
checking for each edge (u, v) if N(u) ∩ N(v) is a clique in O(n2) time, leading
to the following lemma.

Lemma 3 We can identify all convex and reflex vertices in a visibility graph of
a UP in O(n2m) time.

We now divide the class of uniform-length orthogonal polygons into two
classes of polygons, which we call regular and irregular.

Definition 2 (regularity) We call a UP regular if each of its staircase bound-
aries have the same number of vertices. Otherwise, we call it irregular, consist-
ing of two long and two short staircases.

We restrict our attention to irregular uniform-length orthogonally convex
polygons (IUPs); however, similar methods work for their regular counterparts.

3.1 Irregular Uniform-Length Orthogonally Convex Poly-
gons

Let GP be the visibility graph of IUP P . Our reconstruction algorithm first
computes the four tabs, then assigns the convex and reflex vertices to each
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Figure 5: Steps to identify the tabs. (a) Each tab clique (highlighted) has
three edges between convex vertices. (b) Vertical (also horizontal) non-boundary
edges are not 1-simplicial. (c) After removing these edges, the middle vertex u
on each remaining 2-path is a tab vertex, and in this instance the other tab
vertex v sees more reflex vertices than w.

staircase. The following structural lemma helps us to find the tabs. We assume
that we have already computed the convex and reflex vertices in O(n2m) time.

Lemma 4 In every IUP there are exactly four 7-vertex maximal cliques that
individually contain exactly three convex vertices. Each such clique contains
exactly one tab, and each tab is contained in exactly one of these cliques.

Proof: First note that each of the four tabs is in exactly one such maximal
7-clique. Further, any other clique that contains three convex vertices has at
least nine vertices. Each convex vertex must be on a different staircase with its
two boundary neighbors, which are therefore distinct. �

We note that it is not necessary to identify the four tabs explicitly to continue
with the reconstruction. There are only 74 = O(1) choices of tabs (one from each
7-clique of Lemma 4), thus we can try all possible tab assignments, continue with
the reconstruction and verify that our reconstruction produces a valid IUP P
with the same visibility graph. Since there are only O(1) choices for tabs, this
would add no additional running time to our algorithm.

However, we show how to explicitly find the four tabs in the proof of the
following lemma.

Lemma 5 We can identify the four tabs of an IUP in O(nm) time.

Proof: We compute the four 7-vertex maximal cliques of Lemma 4 in O(nm)
time using Observation 1. These cliques have exactly three convex vertices each,
and tabs are incident to two convex vertices, narrowing our choice of tab down
to 4 ·

(
3
2

)
= 12 edges. See Figure 5(a). Four of these are vertical or horizontal
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(non-boundary) edges, which we can detect and eliminate, as they are not 1-
simplicial: these edges are in both a clique with both tab vertices, and a clique
containing a tab vertex, another convex vertex, and reflex vertices not in the
tab clique. See Figure 5(b). We have eight remaining edges to consider. These
eight edges form four disjoint paths on two edges, and the middle vertex on each
path is a tab vertex.

Note that these “middle” tab vertices are on the long staircases. Let one of
them be called u. Now it remains to find u’s neighbor on its tab. Vertex u has
two candidate neighbors; let’s call them v and w. Just for concreteness, let’s
say u is the vertex of the north tab on the northeast staircase. See Figure 5(c).

Suppose, without loss of generality, that v has more reflex neighbors than w,
then v is u’s neighbor on a tab, because it sees reflex vertices on the whole
northeast and southeast staircases, while w sees only a subset of those. Oth-
erwise v and w have the same number of reflex neighbors, which only happens
when w sees every reflex vertex on the southeast and northeast staircases. Then
either v or w has more convex neighbors. Suppose, without loss of generality,
that v is a tab vertex, then v has fewer convex neighbors than w. To see why,
note that since u is on the northeast (long) staircase, v is on the northwest
(short) staircase. Vertex v has convex neighbors u, w, and every convex vertex
on the southeast (short) staircase. Likewise, w has convex neighbors v, u, every
convex vertex on the northeast (long) staircase (including u) and one vertex on
the southeast (short) staircase.

We can perform these checks for all such pairs v and w, thereby computing
all tabs. Note that, if we have already distinguished convex and reflex vertices,
this step takes time O(nm): O(nm) time to compute the four cliques containing
tabs, and O(n) to count the number of reflex and convex vertices visible from
each tab vertex candidate. �

We pick one tab arbitrarily to be the north tab. We conceptually orient the
polygon so that the northwest staircase is short and the northeast staircase is
long. We do this by computing elementary cliques, which identify the convex
vertices on the short staircase.

Definition 3 (elementary clique) An elementary clique in an IUP is a max-
imal clique that contains exactly three convex vertices: one from a short stair-
case, and one from each of the long staircases. (See Figure 6(a).)

Lemma 6 We can identify the elementary cliques containing vertices on the
northwest staircase in O(nm) time.

Proof: Each elementary clique C contains a 1-simplicial edge, as C is maximal
and two convex vertices in C must be on opposite staircases. Using Observa-
tion 1, we compute all 1-simplicial edges in maximal cliques on seven or nine
vertices in O(nm) time, and keep the cliques that are elementary cliques—those
that contain three convex vertices (and either four or six reflex vertices).

Let kNW be the number of convex vertices on the northwest staircase. We
number these convex vertices from v0 to vkNW−1 in order along the northwest
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Figure 6: Elements of our reconstruction. (a) The elementary cliques C0, . . . , C4

interlock along a short staircase. (b) The tab vertices a and b see unique reflex
vertices on long staircases. (c) Unassigned reflex vertices (squares) are assigned
by forming rectangles between the convex vertices u and v and their already-
assigned reflex boundary neighbors (circles).

staircase from the north tab to the west tab. Denote by Ci the unique elemen-
tary clique containing vi. Then C0 is the unique maximal (elementary) clique
containing the north tab. Furthermore, each clique Ci contains a set of reflex
vertices Ri such that |Ri ∩ Ci+1| = 3, and for j 6∈ {i− 1, i, i+ 1}, Ri ∩ Cj = ∅.
Therefore, given the elementary cliques C0, . . . , Ci, we can compute the elemen-
tary clique Ci+1 by searching for the remaining elementary clique containing
three reflex vertices in Ri. (Note that the elementary clique Ci−1 also contains
vertices in Ri, but Ci−1 has already been discovered.) Once we reach an ele-
mentary clique containing a tab, then we have computed all elementary cliques
on the northwest staircase. This tab is the west tab and we are finished. �

Note that, if our sole purpose is to reconstruct the IUP P , we have sufficient
information. The number of elementary cliques gives us the number of vertices
on a short staircase of P , from which we can build P . However, in what follows,
we can actually map all vertices to their positions in the IUP, a technique which
we later use to build a recognition algorithm for IUPs.

First, we show how to assign all convex vertices from the elementary cliques
to each of the three staircases, using visibility of the north and west tab vertices.
Note, constructing the elementary cliques with Lemma 6 also gives us the west
tab, since it is contained in the last elementary clique on the northwest staircase.

Lemma 7 We can identify the convex vertices on the northwest staircase in
O(n) time.

Proof: The northwest staircase contains the convex vertices of the elementary
cliques from Lemma 6 that cannot be seen by any of the north or west tab
vertices. The staircase further contains the left vertex of the north tab and the
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top vertex of the west tab (which can be identified by the fact that they are tab
vertices that do not see either vertex of the other tab). �

We can repeat the above process to identify the convex vertices of the south-
east staircase. However, we might not yet be able to identify tabs as south or
east. Thus, we will obtain two possible orderings of the convex vertices on the
southeast staircase. Next, we show how to assign convex vertices to the long
staircases. In the process we determine south and east tabs, and consequently,
identify the correct ordering of convex vertices on the southeast staircase.

Lemma 8 We can assign the remaining convex vertices in O(n2) time.

Proof: Let W and E be the sets of all convex vertices on the southwest and
northeast staircases (which we are computing) and let W0 and E0 be the sets
of convex vertices on the southwest and northeast staircases that are already
known from the elementary cliques from Lemma 7. Note that the order of these
vertices has not been determined.

Let Nc(v) denote the set of convex neighbors on the opposite staircase of a
vertex v. We now illustrate how to discover vertices inW and E . Suppose for the
moment that we can select the convex vertex w0 ∈ W0 that is the northernmost
vertex in W0. There is exactly one convex neighbor of w0 that has not yet been
discovered, and it is in Nc(w0) ⊆ E . Call this convex vertex e. We note that a
maximal clique (a rectangle) is formed between vertices w0, e, and their reflex
boundary neighbors, and therefore we have discovered a new vertex in E by
computing a rectangle spanning the polygon. See Figure 6(c). However, note
that we do not need to begin with the northernmost (convex) vertex in W0; we
can discover vertices in E with any vertex w0 ∈ W0. All of w0’s undiscovered
convex neighbors are in E , and at least one vertex inW0 (e.g., the northernmost)
has undiscovered neighbors in E . Similarly, with vertices in E0 we will discover at
least one new w ∈ W. We can then iteratively build setsW and E by computing
the sets Ei = (∪w∈Wi−1Nc(w))\Ei−1 andWi = (∪e∈Ei−1Nc(e))\Wi−1. We then
identify all vertices of the southwest and northeast staircases as W = ∪iWi

and E = ∪iEi.
To order the vertices along the southwest staircase, note that the sets Wi

should appear in order of increasing i from top to bottom. Also note that if
one were to assign the vertices of Wi to a staircase from top to bottom, each
vertex wi in this order would see fewer vertices of Ei−1. Thus, we can order the
vertices within each Wi. The argument for ordering vertices of Ei is symmetric.

Computing the set Ei takes time O(|Wi−1|·n): we evaluate all O(n) neighbors
of each neighbor in Wi−1. Likewise, computing Wi takes time O(|Ei−1| · n).
Thus, overall it takes O((|W|+ |E|) · n) = O(n2) time to construct (and order)
sets W and E . �

We can now choose the south and east tabs: a vertex on the east (south)
tab can see convex vertices on the southwest (northeast) staircase.

Now all convex vertices are assigned to staircases, and all that remains is to
assign any remaining reflex vertices.
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Lemma 9 We can assign the reflex vertices to each staircase in O(n2) time.

Proof: Now that the convex vertices are also ordered on the long staircases,
we can assign the reflex vertices to each staircase. We first assign those reflex
vertices that are seen from the tab vertices. Let a and b be vertices on different
tabs such that a sees b and ab contains all reflex vertices of a short staircase
(see Figure 6(b)). For ease of discussion, we assume that a and b are on the
west and north tabs, respectively. Let R be the set of all reflex vertices of
the IUP. The set R0 = N(a) ∩ N(b) ∩ R contains all reflex vertices from the
northwest staircase, plus two extra reflex vertices: the boundary neighbors of
a and b, each on a different long staircase. The remaining vertices N(a) \ R0

are on the northeast (long) staircase and N(b) \R0 are on the southwest (long)
staircase. Let k be the number of reflex vertices on the northwest staircase,
then |R0| = k + 2 and |N(b) \R0| = |N(a) \ R0| = k.

Let ` be the number of reflex vertices on the southwest (or equivalently,
northeast) staircase, and let w1, w2, . . . , w`, and e1, e2, . . . , e` be the reflex ver-
tices on the southwest and northeast staircases respectively (which we are com-
puting), where subscripts indicate north to south order along each staircase.
In contrast to w1 and e1, we have already discovered the vertices w2, . . . , wk+1

and e2, . . . , ek+1 – though we do not yet know their order. However, the reflex
vertices on a single staircase can easily be ordered in time O(n2) time by inter-
secting the neighborhoods of the (already-ordered) consecutive convex vertices
on the staircase.

We first compute the reflex boundary neighbors of a and b, which will be w1

and e1, respectively. Note that, w1 is contained in a maximal 4-clique that is
a degenerate rectangle (a horizontal line segment) containing a, w1, ek+1, and
ek+1’s convex boundary neighbor to the east, x, which is the (k + 1)-th convex
vertex on the northeast staircase. The vertex w1 can be found in time O(n)
by computing this 4-clique from the 1-simplicial edge (a, x). The vertex e1 can
be assigned analogously. Note also that this gives us all reflex vertices on the
northwest staircase, which consists of the set of vertices R0 \ {w1, e1}.

To assign the remaining reflex vertices to their staircases, we will conceptu-
ally build axis-aligned rectangles that span from one long staircase to the other,
similar to the proof of Lemma 8. These rectangles are maximal cliques consist-
ing of two convex vertices u and v on different long staircases, two known reflex
boundary neighbors of u, and one known reflex boundary neighbor of v (see
Figure 6(c)). These rectangles contain one yet-unassigned reflex vertex, which
is boundary neighbor of v, which is then assigned to v’s staircase.

Let u be the (convex) boundary neighbor of both w1 and w2, and let v be
the boundary neighbor of ek+1 that is not a neighbor of ek. Then (u, v) is a 1-
simplicial edge in a maximal 6-clique (rectangle) with a single unassigned reflex
vertex, which is ek+2. A symmetric argument can be used to discover wk+2

from e1, e2 and wk+1. We alternate discovering vertices from the southwest and
northeast staircases until we have assigned all reflex vertices.

Note that since convex vertices are known and in order along their staircases,
the convex vertex v can be be computed in O(1) time from u: if u is the i-th
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(a) (b)

Figure 7: (a) A histogram with three tabs and (b) its decomposition into touch-
ing rectangles with a contact graph that is a tree.

convex vertex on a long staircase, then v is the (i+k)-th vertex on the opposite
long staircase. Given the two convex vertices u and v, it takes O(n) time to
compute the maximal 6-clique of the rectangle containing them, and O(1) time
to determine the new reflex vertex. We must do this for O(n) rectangles. Hence,
the total time to discover these new reflex vertices is O(n2). �

Observe that within each staircase, boundary edges are formed only between
convex vertices and their reflex neighbors. Thus, we can order reflex vertices on
each staircase by iterating over the staircase’s convex vertices (order of which is
determined in Lemmas 6-8) and we are done. The running time of our algorithm
is dominated by the time to differentiate convex and reflex vertices, giving us
the following result:

Theorem 1 In O(n2m) time, we can reconstruct an IUP from its visibility
graph.

4 Uniform-Length Histogram Polygons

In this section we show how to reconstruct a more general class of polygons:
those that consist of a chain of alternating up- and down-staircases with uniform
step length, which are monotone with respect to a single (longer) base edge. Such
polygons are uniform-length histogram polygons [11], but we simply call them
histograms for brevity (see Figure 7(a) for an example). We refer to the two
convex vertices comprising the base edge as base vertices. Furthermore, we refer
to top horizontal boundary edges incident to two convex vertices as tab edges
or just tabs and their incident vertices as tab vertices.

We briefly note that, for histograms with two staircases, reconstruction can
be done in linear time by a counting argument, similar to the staircase poly-
gons [1]. (We give such an algorithm in Section 4.5.2.) However, this construc-
tion relies on the symmetry of the two staircases and that nearly all vertices
have unique degrees. This symmetry breaks down when moving to general his-
tograms, where it is not clear that any counting strategy will work.
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4.1 Overview of the Algorithm

Every histogram can be decomposed into axis-aligned rectangles whose contact
graph is an ordered tree [11], as illustrated in Figure 7(b). In Section 4.2, we
show that we can construct the (unordered) contact tree T from the visibility
graph GP in O(n2m) time by repeatedly “peeling” tabs from the histogram.
We then show that each left-to-right ordering of T ’s k leaves (as well as a left-
to-right orientation of the rectangles in the leaves) induces a histogram P ′. For
each candidate polygon P ′ (of k!2k candidates), we then compute its visibility
graph GP ′ in O(n log n + m) time [17] and check if GP ′ is isomorphic to GP .
Instead of requiring an expensive graph isomorphism check [6], we show how to
use the ordering of T to quickly test if GP and GP ′ are isomorphic.

In Section 4.4 we show how to reduce the number of candidate histograms
from k!2k to (k − 2)!2k−2, leading to the main result of our paper:

Theorem 2 Given a visibility graph GP of a histogram P with k ≥ 2 tabs, we
can reconstruct P in O(n2m+ (k − 2)!2k−2(n log n+m)) time.

Finally, we give a faster reconstruction algorithm when the histogram has a
binary contact tree, solving these instances in O(n2m) time (Section 4.4).

4.2 Rectangular Decomposition and Contact Tree Con-
struction

We construct the contact tree T from GP by computing a set T of the k tab
edges of GP (Lemma 11). Each tab (u, v) is 1-simplicial and in a maximal
4-clique, since {u, v} ∪ (N(u) ∩ N(v)) is a 4-clique representing a unit square
at the top of the histogram. Given the set T of tab edges, our reconstruction
algorithm picks an edge t from T and removes the maximal 4-clique containing t.
This is equivalent to removing an axis-aligned rectangle in P , and, equivalently,
removing a leaf node from T . Moreover, it associates that node of T with four
vertices of P : two top vertices that are convex and two bottom vertices that are
either both reflex or are both convex base vertices. This process might result in
a new tab edge, which we identify and add to T .

4.2.1 Finding initial tabs

We start by finding the k tabs. Recall that every tab edge is 1-simplicial and in
a maximal 4-clique. The converse is not necessarily true. Therefore, we begin by
finding all 1-simplicial edges that are in maximal 4-cliques as a set of candidate
edges, and later exclude non-tabs from the candidates.

Given a visibility graph GP = (VP , EP ) of a histogram P and a maximal
clique C ⊆ VP , we call a vertex w ∈ C an isolated vertex with respect to P if
there exists a tab edge (u, v) ∈ EP , such that (N(u)∪N(v))∩C = {w}, i.e., of
all vertices of C, only w is visible to some tab of P .

Lemma 10 In a histogram, every 1-simplicial edge in a maximal 4-clique con-
tains either a tab vertex or an isolated vertex.
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Figure 8: Edges between u and v on a tab t’s staircases, but disjoint from t, are
in a clique of size at least five.

Proof: Let `u denote the level of a vertex u in P , which is its y-coordinate
assuming all uniform edges have unit length, where the base vertices are at
level 0. Consider an arbitrary 1-simplicial edge (u, v) that is part of a maximal
4-clique C. We assume that neither u nor v is a tab vertex, otherwise we are
done. Note that if |`u − `v| ≤ 1 then u and v are in an axis-aligned rectangle
in P defined by at least six vertices of GP (see Figure 8(a)), i.e., contradicting
the assumption that (u, v) is part of a maximal 4-clique.

Without loss of generality, suppose that u lies above v (i.e., `u − `v ≥ 2) to
the left of v (the case of u lying to the right of v, or below v, can be proven
symmetrically). Since a top vertex does not see any vertices above it, v must be
a bottom vertex. Thus, v sees a vertex of some tab t. We will show that either t
cannot see any other vertex of C, or C must contain more than 4 vertices,
contradicting the assumption that it is a 4-clique.

Let R be a set of reflex vertices on v’s staircase on levels `v + 1 up to and
including `u. Observe, that v cannot be part of the maximal 4-clique that
contains both vertices of t (since it just sees one of t’s vertices), hence, we have
that 1 ≤ |R| ≤ `u − `v (|R| < `u − `v when u and v are on the staircases of
different tabs and the vertices of t are below u).

Case 1: u and v belong to the staircases of a single tab t. (See Figure 8(b)-
(d).) Consider the following cases:

1. u is a top vertex: (See Figure 8(b).) Then u and v must lie on different
staircases and (u, v) belongs to a clique consisting of at least six vertices:
vertex u, (`u − `v) ≥ 2 reflex vertices on v’s staircase, v, and u’s two
(reflex) boundary neighbors.

2. u is a bottom vertex: (See Figures 8(c)-(d).) Then (u, v) belongs to a
clique consisting of at least five vertices: (`u− `v + 1) ≥ 3 bottom vertices
on v’s staircase from levels `u through `v, and at least two vertices on the
opposite staircase, e.g., the vertices of the vertical boundary edge spanning
levels lu and lu + 1.

Case 2: Vertices u and v belong to the staircases of different tabs t′ and t
(see Figure 9). We call (u, v) a crossing edge. Consider the following cases:

1. u is reflex: Let (u, u′) and (u, u′′) be the vertical and horizontal boundary
edges, respectively. Since u′ and u′′ do not see each other, if v sees both u′
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Figure 9: Illustration for the proof of Lemma 10. (a)-(b) If u is reflex, then the
edge (u, v) is in a clique of size greater than four. (c) If u is convex and w blocks
v from seeing u′′, then v is an isolated vertex.

and u′′, then (u, v) belongs to two cliques and, therefore, cannot be 1-
simplicial. Since u′′ is to the left of u, v sees u′′. Therefore, there must
be some vertex w that is visible to both u and v and that blocks the view
from v to u′.

(a) u′′ is convex: (See Figure 9(a).) Then consider the vertical bound-
ary edge (u′′, w′). Clearly, v sees w′ and (u, v) belongs to a clique
consisting of at least five vertices: {v, w, u, u′′, w′}.

(b) u′′ is reflex: (See Figure 9(b).) Then there must be at least one
vertex w′ ∈ C, bounding the convex region of C on the left (e.g., by
line segments u′′w′ and w′v). Again, v sees w′ and (u, v) belongs to
a clique consisting of at least five vertices: {v, w, u, u′′, w′}.

2. u is convex: (See Figure 9(c).) Let (u, u′) and (u′′, u) be the vertical
and horizontal boundary edges incident to u, respectively. Since v sees u
and u′ is below u, v must also see u′. Moreover, there must be some vertex
(visible from both u and v), which bounds the convex region of C from
the right. Let w be the closest such vertex to the edge (u, v). There are
two cases to consider:

(a) w is on v’s staircase: Then v sees u′′ and (u, v) belongs to a clique
consisting of at least five vertices: {u, v, w, u′, u′′}.

(b) w is not on v’s staircase: If C is a 4-clique, u′′ is not visible
from v, i.e., w is below vu′′, and C consists of {u, v, w, u′}. Since w
bounds the convex region from the right, it cannot be visible from t.
Moreover, it also blocks u and u′ from t’s view. Thus, t sees only v
among the vertices of C, i.e., v is an isolated vertex.

�

Lemma 11 In a visibility graph of a histogram, tabs can be computed in time
O(n2m).

Proof: We begin by computing all 1-simplicial edges in maximal 4-cliques,
which takes time O(nm) by Observation 1. Call this set of edges Esim, and the
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Figure 10: Illustrating all maximal 4-cliques that contain 1-simplicial edges.
These include tab cliques (squares) and non-tab cliques (triangles). Note that
tab cliques can share vertices with zero, one, or two non-tab cliques.

set of their maximal cliques Csim (see Figure 10). Then Esim contains the tabs,
some edges that share a vertex with the tabs, and edges between staircases of dif-
ferent tabs (crossing edges) (which contain isolated vertices by Lemma 10). For
all (non-incident) pairs of 1-simplicial edges e1 and e2 in maximal 4-cliques C1

and C2, respectively, we check if exactly one vertex of C2 can be seen by an end-
vertex of e1. That is, we compute the set V12 = {v ∈ C2 | (u, v) ∈ E and u ∈ e1}
and verify that |V12| = 1. If so, then C2 is a non-tab clique and can be elimi-
nated: If e1 is a tab, then C2 is a non-tab clique containing an isolated vertex
(and a crossing edge); otherwise, e1 is not a tab and its endvertices see either
zero or three vertices of any tab clique, and therefore C2 cannot be a tab clique.
Thus, if we compare all pairs of edges and cliques, all 4-cliques containing cross-
ing edges will be eliminated, leaving only tab cliques. We can do this check in
O(nm) time by first storing, for each vertex u, the edges {(u, v) ∈ Esim} and
cliques {C ∈ Csim | u ∈ C}. Then for each edge (u, v) in GP , we run the isolated
vertex check for each pair of edges and cliques stored at the endvertices u and v.
Each check of all pairs takes O(n2), and we do this for |Esim| = O(m) edges.

If only disjoint cliques remain after the previous step, then we have computed
exactly all k tabs. Otherwise, we need to eliminate non-tab edges that share a
tab vertex. Note that non-tab edges form cliques along the staircase incident
to the tab. Since staircases in a histogram are disjoint, non-tab cliques only
intersect where they intersect a tab clique. Therefore, the remaining set of
cliques can be split into k mutually disjoint sets, where k is the number of tabs,
and each set has at most three cliques that intersect (see Figure 10), of which
exactly one is a tab clique, and the other at most two cliques contain a tab
vertex, and its non-tab neighbors on the opposite staircase. Let S be one of
these k sets. We can compute the tab in S as follows (three cases):

1. (|S| = 1) Then the tab vertices see fewer vertices than non-tab (reflex)
vertices. We can see this as follows: tab vertices see the vertices in their
tab clique, plus the bottom vertices on the tab’s staircases. The non-tab
reflex vertices see the same vertices, plus at least two other vertices at
their same level, which tab vertices cannot see. See Figure 11(a).

2. (|S| = 2) The two cliques in S share three vertices, and two vertices u
and v are in exactly one unique clique each. One of these vertices (say u)
is on the tab, and sees fewer vertices than the other non-tab vertex (v)
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Figure 11: Configurations of tab cliques (squares) overlapping non-tab 4-cliques
(triangles) considered the case analysis in the proof of Lemma 11. Regions
represent maximal 4-cliques. Emboldened lines are 1-simplicial edges. Blue
regions (and lines) represent tab cliques (and tabs). (a) One (tab) clique. (b)
Two overlapping cliques. (c) Three overlapping cliques.

does. We can see this as follows: assume without loss of generality that u
is on the left staircase. Then u sees the three vertices of its tab clique,
and all reflex vertices on the right staircase. Meanwhile v is on the same
side (left) as u, and sees the same vertices as u, plus a (convex) boundary
neighbor w, which is on the level between u and v, which u cannot see. The
remaining tab vertex is adjacent to v along its 1-simplicial edge forming
the clique in S. See Figure 11(b).

3. (|S| = 3) The cliques intersect symmetrically. The tab edge is formed
between the two vertices that are in exactly two of these maximal cliques.
See Figure 11(c).

After removing cliques with isolated vertices, there are at most 3k overlapping
cliques in total, and they can be separated into k sets of cliques incident to
each tab in O(k) time by marking the vertices of each set, and collecting the
intersecting sets. Then within each set, it takes O(1) time to find the tab clique
(and the tab). Thus, the running time is dominated by the time to detect
crossing edges in Esim: O(n2m). �

Note that top vertices cannot see the vertices above them. Therefore, only
bottom vertices see tab vertices. Moreover, every bottom vertex sees at least
one tab vertex. Thus, identifying all tabs immediately classifies vertices of GP

into top vertices and bottom vertices.

4.2.2 Peeling tabs

Let P ′ be a polygon resulting from peeling tab cliques (rectangles) from a his-
togram P . We call P ′ a truncated histogram. See Figure 12(a) for an example.
After peeling a tab clique, the resulting polygon does not have uniform step
length and the visibility graph may no longer have the properties on which
Lemma 11 relied to detect initial tabs. Instead, we use the following lemma to
detect newly created tabs during tab peeling.
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Figure 12: (a) A truncated histogram, created by iteratively removing six tabs
(dashed) from a histogram. (b) When removing Ct: t

′
a, t
′
b form a tab if and only

if t′a, t
′
b ∈ T \ Ct, they see u and v, and |Ct′ | = 4.

Lemma 12 When removing a tab clique from the visibility graph of a truncated
histogram, any newly introduced tab can be computed in time O(n).

Proof: Denote the removed (tab) clique by Ct and let t be its tab. Let u, v 6∈ t
be the non-tab vertices of Ct. Since u sees v, (u, v) is an edge in GP .

Since top vertices can only see vertices at and below their own level, besides
the vertices of t, there are exactly two other top vertices in (remaining) GP that
see u and v, namely, the top vertices t′a and t′b of P on the same level as u and v
(see Figure 12(b)). Since t′a, t

′
b are adjacent in GP , let t′ = (t′a, t

′
b).

When removing Ct from GP , we can compute t′a and t′b in time O(n) by
selecting the only two top vertices adjacent to both u and v. Since t′a and t′b
are the top vertices of a same rectangle Rt′ , edge t′ is 1-simplicial and is in
exactly one maximal clique Ct′ = N(t′a) ∩ N(t′b), which corresponds to the
convex region Rt′ . Finally, after Ct is removed, t′ is a newly created tab if and
only if |Ct′ | = 4, which can again be tested in time O(n) by computing the
common neighborhood N(t′a) ∩N(t′b). �

With each tab clique (rectangle) removal, we iteratively build the parent-
child relationship between the rectangles in the contact tree T as follows. Using
an array A, we maintain references to cliques being removed whose parents in T
have not been identified yet. When a tab clique Ct is removed from GP , the
reference to Ct is inserted into A[u], where u is one of the rectangle’s bottom
vertices. If the removal of Ct creates a new tab t′ = (t′a, t

′
b), we identify Ct′

in O(n) time using Lemma 12. Recall that t′ sees all bottom vertices on the
same level. Thus, for every bottom vertex u ∈ N(t′a) (in the original graph GP ),
if A[u] is non-empty, we set Ct′ as the parent of the clique stored in A[u] and
clear A[u]. This takes at most O(n) time for each peeling of a clique. We get
the following lemma, where the time is dominated by the computation of the
initial tabs:

Lemma 13 In O(n2m) time we can construct the contact tree T of P , associate
with each v ∈ T the four vertices that define the rectangular region of v, and
classify vertices of GP as top vertices and bottom vertices.
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4.3 Mapping Candidate Polygon Vertices to the Visibility
Graph

Let T̂ correspond to T with some left-to-right ordering of its leaves and let P̂
be the polygon corresponding to T̂ . We will map the vertices of GP to the
vertices of P̂ by providing for each vertex of GP the x- and y-coordinates of
a corresponding vertex of P̂ . Let t1, t2, . . . , tk be the order of the tabs in P̂ .
Since T̂ unambiguously defines the polygon P̂ , each node v of T̂ is associated
with a rectangular region on the plane, and the four vertices of GP are associated
with the four corners of the rectangular region. Since by Lemma 13 every vertex
of GP is classified as a top vertex or a bottom vertex, the y-coordinate can be
assigned to all vertices unambiguously, because there are two top vertices and
two bottom vertices associated with each node v of T̂ .

However, for every pair p, p̄ of top vertices or bottom vertices associated
with a node in T̂ (call them companion vertices) there is a choice of two x-
coordinates: one associated with the left boundary and one associated with the
right boundary of the rectangular region. Thus, determining the assignment
of each top vertex and bottom vertex in GP to the left or the right boundary
is equivalent to defining x-coordinates for all vertices in GP . Although there
appears to be 2n/2 possible such assignments, there are many dependencies
between the assignments due to the visibility edges in GP . In fact, we will
show that by choosing the x-coordinates of the tab vertices, we can assign all
the other vertices. Thus, in what follows we consider each of the 2k possible
assignments of x-coordinates to the 2k tab vertices.

At times we must reason about the assignment of a vertex to the left (right)
staircases associated with some tab tj . Given T̂ , the x-coordinates of each
vertex in the left and right staircase associated with every tab tj is well-defined.
Therefore, assigning a vertex p to a left (right) staircase of some tab tj defines
the x-coordinate of p.

In a valid histogram, companion vertices p and p̄ must be assigned distinct
x-coordinates. Therefore, after each assignment below, we check the companion
vertex and if they are both assigned the same x-coordinate, we exclude the
current polygon candidate P̂ from further consideration.

We further observe that in a valid histogram, if a bottom vertex p is not in
the tab clique, then it sees exactly one tab vertex, which lies on the opposite
staircase associated with that tab. Each bottom vertex can see through all
other bottom vertices on its staircase along either a 45◦ or 135◦ angle to this
tab vertex, and the bottom vertices of the tab clique block visibility with the
other tab vertex. Thus, we can assign every bottom vertex the left (right)
x-coordinate if it sees the right (left) tab vertex.

Next, consider any node v of the contact tree T̂ and let Rv define the rect-
angle associated with v in the rectangular decomposition of a valid histogram.
Let p be a top vertex in Rv and let S(p) be the set of vertices visible from p
that are not in Rv (S(p) can be determined from the neighborhood of p in GP ).
Observe that if p is assigned the left (right) x-coordinate, then every vertex
in S(p) is a bottom vertex to the right (left) of the rectangle Rv, none of them
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Figure 13: Visibility from the left (right) base vertex determines the left- (right-)
most tab, and orients all rectangles on the left (right) spine of the contact tree.

belongs to a tab clique, and all of them are assigned a right (left) x-coordinate.
Since the x- and y-coordinates of the boundaries of Rv are well-defined by T̂
(regardless of vertex assignment), if S(p) is non-empty, we check all of the above
conditions and assign p an appropriate x-coordinate. If a condition is violated,
then the current polygon candidate is invalid and we exclude it from further
consideration.

Let p be one of the remaining top vertices without an assigned x-coordinate.
If the companion p̄ is assigned an x-coordinate, we assign p the other choice
of the x-coordinate. Otherwise, both p and p̄ see only the vertices inside their
rectangle. In this case, the neighborhoods N(p) and N(p̄) are the same and we
can assign p and p̄ to the opposite staircases arbitrarily.

The only remaining vertices without assigned x-coordinates are bottom ver-
tices in tab cliques. Consider a companion pair p and p̄ of bottom vertices
that are in a tab clique. Let R be the rectangle defined by the tab and
let Sright(p) (resp., Sleft(p)) denote the set of vertices that p sees among the
vertices to the right (resp., left) of R. Observe that if p is on the left bound-
ary, then Sright(p̄) ⊆ Sright(p) or Sleft(p) ⊆ Sleft(p̄). Symmetrically, if p̄ is
on the left boundary then Sright(p) ⊆ Sright(p̄) or Sleft(p̄) ⊆ Sleft(p). Thus,
if |Sright(p̄)| 6= |Sright(p)| or |Sleft(p)| 6= |Sleft(p̄)|, we can assign p and p̄ ap-
propriate x-coordinates. Otherwise, the neighborhoods N(p) and N(p̄) are the
same, and we can assign p and p̄ to the opposite boundaries arbitrarily.

4.4 Reducing the Number of Candidate Histograms

We can reduce the number of possible orderings of tabs and staircases by consid-
ering only those that meet certain visibility constraints on the vertices that form
the corners of each rectangle. In particular, we say that two rectangles R1 6= R2

in the decomposition are orientation-fixed if a bottom vertex vbot from one
can see a top vertex vtop of another. Then these rectangles must be oriented
so that vbot and vtop are on opposite staircases (an up-staircase and a down-
staircase). Thus, fixing an orientation of one rectangle fixes the orientation of
the other.

Note that every rectangle is orientation-fixed with some leaf rectangle (as
its bottom vertex can see a tab vertex). Therefore, ordering (and orienting)
the leaves induces an ordering/orientation of the tree. There are O(k!2k) such
orderings (and orientations) for all leaf rectangles, where k is the number of
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tabs.

For double staircases, T is a path and the root rectangle is orientation-
fixed with every other rectangle (every top vertex sees a base vertex). Hence,
orienting the base rectangle determines the positions of the top vertices on the
double staircase. Likewise, for the histogram, the spines of T are fixed:

Lemma 14 The base rectangle of a histogram is orientation-fixed with all rect-
angles on the left and right spines of T .

Moreover, the only tab vertices visible from a base vertex are incident to the
left-most or right-most tab. Thus, we can identify the left-most and right-most
tabs based on the neighborhood of the base vertices. Note that removing a
base rectangle of the histogram produces one or more histograms. Then we can
apply this logic recursively, leading to the following algorithm:

1. Fix the orientation of the base rectangle. This identifies the rectangles on
the left and right spines of T and their orientations. (See Figure 13.)

2. The remaining subtrees collectively contain the remaining rectangles, which
still must be ordered and oriented. We recursively compute the ordering
and orientation of the rectangles in these subtrees.

Note if we compute the left and right spines of T , we identify the first and
last tabs, and the orientations of their tab edges. Thus, we have (k − 2)!2k−2

remaining orderings of T and orientations of the tab edges to check, as k − 2
tabs remain. This results in the overall reconstruction of a histogram with k ≥ 2
tabs in O(n2m+ (k − 2)!2k−2(n log n+m)) time, where O(n2m) is the time to
compute the tabs of the histogram, and O(n log n+m) is the time to compute a
candidate polygon’s visibility graph (from an ordering of T and an orientation
of the tab edges) and check it against the input graph. Thus, we have proved
Theorem 2.

4.5 Polynomial-Time Algorithms for Special Cases

We now show that some histograms can be reconstructed in polynomial time:
in particular, for histograms with a binary contact tree, and histograms with
two staircases.

4.5.1 Histograms with a binary contact tree

We can generalize the technique from above to more accurately describe the
number of candidate polygons, by giving a recurrence based on the structure
of the contact tree. Let v ∈ T , and define C(v) to be the set of v’s children
in T and d(v) = |C(v)|. Then if we have a fixed orientation of v’s corresponding
rectangle, fixing the rectangles on the left-most and right-most paths from v
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limits the number of possible orderings/orientations of v’s descendants to

F (v) ≤


2d(v)−2

∏
u∈C(v) F (u) if d(v) > 1,

F (u) if d(v) = 1, with C(v) = {u},
1 if d(v) = 0.

Note that F (root) = 1 when T is a binary contact tree. That is, the orienta-
tion of the base rectangle completely determines the histogram. Furthermore,
we can find such an orientation by fixing the orientation of the base edge, deter-
mining the left- and right-most paths, ordering and orienting them to match the
base edge, and then repeating this for each subtree whose root is oriented and
ordered (but its children are not), which acts as a base rectangle for its subtree.
This process can be done in time O(n+m) by traversing T and orienting each
rectangle exactly once by looking at its vertices’ neighbors in its base rectangle
in T . Here, the time is dominated by the time to compute the tabs: O(n2m).

Theorem 3 Histograms with a binary contact tree can be reconstructed in time
O(n2m).

Note that, by Theorem 3, histograms consisting of two staircases can also
be constructed in time O(n2m) time. However, as we now show it is possible to
construct them in linear time.

4.5.2 A linear-time algorithm for two staircases

We first note that in double staircase polygons (consisting of only two staircases)
there is a simple linear-time reconstruction algorithm based on the degrees of
vertices in the visibility graph.

Every double staircase polygon can be decomposed into k axis-aligned rect-
angles for some integer k ≥ 1. Note that the number of vertices in such a
polygon is 4k, with each vertex u on one of k + 1 levels lu = 0, . . . , k. With the
exception of levels lu = 0 and lu = k, which contain only two vertices (pairs of
tab and base vertices), there are four vertices per level (two top and two bottom
vertices).

Observe that the degree deg(u) of each vertex u ∈ GP exhibits the following
pattern:

(a) uk is a tab vertex (on level k). deg(uk) = k+ 2: vertex uk is a neighbor
to k bottom vertices on the opposite staircase and two boundary vertices
of u.

(b) ul is a top vertex on level l = 1, . . . , k − 1. deg(ul) = l + 4: vertex ul
is a neighbor to l + 1 bottom vertices on the opposite staircase, 1 convex
vertex on the same level as ul on the opposite staircase, and two boundary
vertices of ul.
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(c) ul is a bottom vertex on level l = 1, . . . , k − 1. deg(ul) = 3k − l + 2:
vertex ul is a neighbor to k bottom vertices on the opposite staircase, k−l+1
top vertices on the opposite staircase, k − 1 bottom vertices on the same
staircase and two boundary vertices of ul.

(d) u0 is a base vertex (on level 0). deg(u0) = 3k: vertex u0 is a neighbor
to 2k vertices on the opposite staircase, k − 1 bottom vertices on the same
staircase, and one boundary vertex of u0.

Observe, that most of the above values for degrees come in pairs: one vertex
per staircase. For positive integer k, the only two exceptions are deg(u) = k+ 2
and deg(u) = 3k, each of which appears four times: two tab vertices uk and u′k
and two top vertices uk−2 and u′k−2 (on level k − 2), and two base vertices u0
and u′0 and two bottom vertices u2 and u′2 (on level 2). However, we can
easily differentiate tab vertices uk and u′k from top vertices uk−2 and u′k−2,
because uk and u′k are neighbors to the two bottom vertices on level k − 1 (of
degree 2k+ 3), while uk−2 and u′k−2 are not. Similarly, we can differentiate the
two base vertices u0 and u′0 from bottom vertices u2 and u′2, because u0 and u′0
are neighbors to the two top vertices on level one (of degree 5), while u2 and u′2
are not.

Thus, we can identify the levels of each vertex by their degrees (or the degrees
of their neighbors). Finally, an arbitrary left-right assignment of the two base
vertices to the two staircases defines the assignment of all top (convex) vertices
(including tab vertices) to the staircase. Furthermore, the assignment of tab
vertices to the staircases defines the assignment of all reflex vertices to staircases.
These assignments can be performed in linear time using the classification of
the vertices into top and bottom vertices based on their degrees.

Theorem 4 Double staircases can be reconstructed in O(n+m) time.

Finally, we briefly note that this is O(n2), since k = n/4, and the number of
edges in a double staircase is

m = 3k + (k + 2) +

k−1∑
l=1

[(3k − l + 2) + (l + 4)] = 3n2/16 + 7n/4− 4 = Θ(n2).

5 From Reconstruction to Recognition

Note that our reconstruction algorithms assign each vertex to a specific position
in the constructed polygon, which we call a vertex assignment reconstruction
algorithm. Assigning vertices to positions is not a requirement of reconstruction
algorithms in general. However, as a result, the assignment enables us to develop
recognition algorithms for these polygons as well. We first note the following.

Theorem 5 If there exists a vertex assignment reconstruction algorithm A with
time O(f(n)) for polygons in the class C, and further if polygons in the class C
can be recognized in time g(n), then the visibility graphs of polygons in C can be
recognized in time O(f(n) + g(n) + n log n+m).
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Proof: Given a graph GP , run A. If A fails to give a vertex assignment, or if
it succeeds and the constructed polygon is not in the class C, then GP is not
the visibility graph of a polygon in the class C. If A successfully constructs a
polygon P ′ in the class C, then compute the visibility graph GP ′ of P ′ via the
method of Ghosh and Mount [17], which takes time O(n log n+m) with respect
to the output graph. Note that the number of edges of GP ′ could exceed that
of GP ; however, we can stop the algorithm as the number of edges differ and
report that GP is not the visibility graph of a polygon in the class C. Otherwise,
if the number of edges is the same, we verify that all edges are between the same
vertices. �

Uniform-length orthogonally convex polygons and histograms can be recog-
nized the vertex coordinates (given in clockwise order) in time O(n). Therefore,
our reconstruction algorithms imply recognition algorithms for these polygon
classes with the same running times. This also implies a recognition algorithm
for double staircases in time O(n log n+m), which we note is not linear in the
visibility graph size whenm = o(n log n). However, there are several ways to cor-
rect this. Perhaps the simplest is to first check if the graph has 3n2/16+7n/4−4
edges. If not, we know it is not the visibility graph of a double staircase; oth-
erwise m = Θ(n2) and the remaining steps take O(n log n + m) = Θ(m) time,
which is linear in the graph size.

6 Conclusion and Future Work

In this paper, we showed how to reconstruct two classes of orthogonal polygons
with uniform step lengths. For orthogonally convex polygons, we developed
a reconstruction algorithm with O(n2m) running time, and we further gave a
fixed-parameter tractable reconstruction algorithm for histograms. Although
we showed that histograms with a binary contact tree can be reconstructed effi-
ciently, whether or not histograms can be reconstructed in polynomial time still
remains open. Our original intent in studying histograms was to find a simple
class of polygons that may be NP-hard to reconstruct. Their rigidity and integer
coordinates ensure that histogram reconstruction is in NP, whereas it is unclear
that polynomial-sized certificates exist for the general case. Furthermore, it
would be interesting to see which polyominoes, which are a class of polygons
formed by joining together unit squares along their edges, can efficiently be
reconstructed.
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