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The Effect of Planarization on Width

David Eppstein

Department of Computer Science, University of California, Irvine, USA

Abstract

We study the effects on graph width parameters of planarization, the
construction of a planar diagram from a non-planar graph drawing by
replacing each crossing with a new vertex. We show that for treewidth,
pathwidth, branchwidth, clique-width, and tree-depth there exists a family
of n-vertex graphs with bounded parameter value, all of whose planariza-
tions have parameter value Ω(n). However, for bandwidth, cutwidth, and
carving width, every graph with bounded parameter value has a planariza-
tion of linear size whose parameter value remains bounded. The same is
true for the treewidth, pathwidth, and branchwidth of graphs of bounded
degree. To show our lower bounds on the width of planarizations, we
prove that arrangements of curves with many crossing pairs of curves must
generate planar graphs of high width.
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1 Introduction

Planarization is a graph transformation, standard in graph drawing, in which
a given graph G is drawn in the plane with simple crossings of pairs of edges,
and then each crossing of two edges in the drawing is replaced by a new dummy
vertex, subdividing the two edges [2,7,14,20]. This should be distinguished from
a different problem, also called planarization, in which we try to find a large
planar subgraph of a nonplanar graph [1, 4, 5, 28]. A given graph G may have
many different planarizations, with different properties; see Figure 1. Although
the size of the planarization (equivalently the crossing number of G) is of primary
importance in graph drawing, it is natural to ask what other properties can be
transferred from G to its planarizations.

Figure 1: Two different planarizations of K3,4. Both have the minimum number
of added crossing vertices (the two small red squares) among planarizations of
this graph.

One problem of this type arose in the work of Jansen and Wulms on the fixed-
parameter tractability of graph optimization problems on graphs of bounded
pathwidth [16]. One of their constructions involved the planarization of a non-
planar graph of bounded pathwidth, and they observed that the planarization
maintained the low pathwidth of their graph. Following this observation, Jansen
asked on cstheory.stackexchange.com whether planarization preserves the prop-
erty of having bounded pathwidth, and in particular whether K3,n (a graph
of bounded pathwidth) has a bounded-pathwidth planarization.1 This paper
represents an extended response to this problem. We provide a negative answer
to Jansen’s question: planarizations of K3,n do not have bounded pathwidth.
However, for bounded-degree graphs of bounded pathwidth, there always exists
a planarization that maintains bounded pathwidth. More generally we study
similar questions for many other standard graph width parameters.

Our work should be distinguished from a much earlier line of research on
planarization and width, in which constraints on the width of planar graphs
are transferred in the other direction, to information about the graph being
planarized. In particular, Leighton [20] used the facts that planar graphs have
width at most proportional to the square root of their size, and that (for certain
width parameters) planarization cannot decrease width, to show that when the

1See https://cstheory.stackexchange.com/q/35974/95.

https://cstheory.stackexchange.com/q/35974/95
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Figure 2: A tree-decomposition and path-decomposition of K3,5, with width
three. Vertices a, b, and c (on one side of the bipartition) belong to all bags;
vertices p, q, r, s, and t (on the other side) are each in only one bag.

original graph has high width it must have crossing number quadratic in its
width. In our work, in contrast, we are assuming that the original graph has low
width and we derive properties of its planarization from that assumption.

1.1 Width parameters in graphs

There has been a significant amount of research on graph width parameters and
their algorithmic implications; see Nešetřil and Ossona de Mendez [22] for a
more detailed survey. We briefly describe the parameters that we use here.

Treewidth. Treewidth has many equivalent definitions; the one we use is that
the treewidth of a graph G is the minimum width of a tree-decomposition
of G [22]. Here, a tree-decomposition is a tree T whose nodes, called bags,
are labeled by sets of vertices of G. Each vertex of G must belong to the
bags of a contiguous subtree of T , and for each edge of G there must exist a
bag containing both endpoints of the edge. The width of the decomposition
is one less than the maximum cardinality of the bags. Figure 2 shows such
a decomposition for K3,5.

Pathwidth. The pathwidth of a graph G is the minimum width of a tree-decom-
position of G whose tree is a path [22], as it is in Figure 2. Equivalently
the pathwidth equals the minimum vertex separation number of a linear
arrangement of the vertices of G (an arrangement of the vertices into
a linear sequence) [17]. Every linear arrangement of an n-vertex graph
defines n− 1 cuts, that is, n− 1 partitions of the vertices into a prefix of
the sequence and a disjoint suffix of the sequence. The vertex separation
number of a linear arrangement is the maximum, over these cuts, of the
number of vertices in the prefix that have a neighbor in the suffix. From a
linear arrangement one can construct a tree-decomposition in the form of a
path, where the first bag on the path for each vertex v contains v together
with all vertices that are earlier than v in the arrangement but that have
v or a later vertex as a neighbor.

Cutwidth. The cutwidth of a graph G equals the minimum edge separation
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Figure 3: K3,8 has tree-depth three: The depth-three tree shown by the green
dashed edges forms a depth-first search tree of a supergraph of K3,8.

number of a linear arrangement of the vertices of G [3]. The edge separation
number of a linear arrangement is the maximum, over the prefix–suffix
cuts of the arrangement, of the number of edges that cross the cut.

Bandwidth. The bandwidth of a graph G equals the minimum span of a linear
arrangement of the vertices of G [3]. The span of a linear arrangement is
the maximum, over the edges of G, of the number of vertices between the
endpoints of the edge (plus one).

Branchwidth. A branch-decomposition of a graph G is an undirected tree T ,
with leaves labeled by the edges of G, and with every interior vertex of
T having degree three. Removing any edge e from T partitions T into
two subtrees; these subtrees partition the leaves of T into two sets, and
correspondingly partition the edges of G into two subgraphs. The width
of the decomposition is the maximum, over all edges e of T , of the number
of vertices that belong to both subgraphs. The branchwidth of G is the
minimum width of any branch-decomposition [27].

Carving width. A carving decomposition of a graph G is an undirected tree
T , with leaves labeled by the vertices of G, and with every interior vertex
of T having degree three. Removing any edge e from T partitions T into
two subtrees; these subtrees partition the leaves of T into two sets, and
correspondingly partition the vertices of G into two induced subgraphs.
The width of the decomposition is the maximum, over all edges e of T ,
of the number of edges of G that connect one of these subgraphs to the
other. The carving width of G is the minimum width of any carving
decomposition [27]. For instance, Figure 7 depicts a carving decomposition
of K3,3 with width four, the minimum possible for this graph.

Tree-depth. The tree-depth of G is the minimum depth of a depth-first-search
tree T of a supergraph of G (Figure 3). Such a tree can be characterized
more simply by the property that every edge of G connects an ancestor–
descendant pair in T [22].
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Clique-width. A clique-construction of a graph G is a process that constructs
a vertex-colored copy of G from smaller vertex-colored graphs by steps that
create a new colored vertex, take the disjoint union of two colored graphs,
add all edges from vertices of one color to vertices of another, or assigning
a new color to vertices of a given color. The width of a clique-construction
is the number of distinct colors it uses, and the clique-width of a graph is
the minimum width of a clique-construction [6].

1.2 New results

In this paper, we consider for each of the depth parameters listed above how the
parameter can change from a graph to its planarization, when the planarization is
chosen to minimize the parameter value. We show that for treewidth, pathwidth,
branchwidth, tree-depth, and clique-width there exists an n-vertex graph with
bounded parameter value, all of whose planarizations have parameter value Ω(n).
In each of these cases, the graph can be chosen as a complete bipartite graph K3,n.
However, for bandwidth, cutwidth, and carving width, every graph with bounded
parameter value has a planarization of linear size2 whose parameter value remains
bounded. The same is true for the treewidth, pathwidth, branchwidth, and
clique-width of graphs of bounded degree. (In graphs of bounded degree and
bounded tree-depth every connected component has bounded size, so this final
case is not interesting.)

Our proof that the planarizations of K3,n have high width combines two
ideas:

• High crossing number. It was known that the planarizations of K3,n

have quadratic size [32]; that is, its crossing number is Ω(n2). In Section 2
we adapt a proof of this result to show that, in addition, the number of
pairs of edges that cross is Ω(n2). That is, the high crossing number of
K3,n cannot be obtained by drawings in which only a small number of
pairs of edges each cross many times; instead, many distinct pairs must
cross. In fact in K3,n the crossing number and the minimum number of
pairs of edges that cross are equal; it is unknown whether they can be
unequal in any other graph.

• Width of curve arrangements. In Section 3 we prove that, if a collec-
tion of n curves has only simple crossings (no three curves cross at the same
point) and has m crossing pairs of curves, then the planarization of the
curve arrangement must have treewidth Ω(m/(n log(n2/m))). This result
can be seen as a partial converse to known results that curve arrangements
with few crossing pairs have intersection graphs of low width [11,12,19,21].

Since the edges of any simple drawing of K3,n form a simple arrangement of
curves with many crossing pairs, the corresponding planarization must have high
width.

2For n-vertex graphs of bounded width, the number of edges is O(n), so “linear size” means
that the planarization also has O(n) vertices and edges.
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After these two sections, the rest of the paper is organized as follows. In
Section 4 we return to the width parameters of graphs. We observe that for
treewidth, branchwidth, pathwidth, tree-depth, and clique-width, the graphs
K3,n have bounded width but (by the above argument, and known relations
between these width parameters) their planarizations have high width. However,
in Section 5, Section 6, and Section 7, we show that cutwidth, bandwidth, and
carving width (respectively) are better-behaved, remaining bounded when we
planarize a graph of bounded width. The same is true for the pathwidth and
treewidth of bounded-degree graphs. We conclude in Section 8.

2 Crossing pairs of edges in K3,n

We begin by determining a formula for the crossing number of K3,n. This is a
special case of Turán’s brick factory problem of determining the crossing number
of all complete bipartite graphs. For our results we need a variant of the crossing
number:

Definition 1 For a given graph G, a drawing of G is a mapping from vertices
of G to distinct points in the plane and edges of G to open curves in the plane,
such that no vertex belongs to any edge curve and such that the endpoints of
each edge are mapped to the endpoints of the corresponding curve. A drawing is
simple if each intersection of multiple curves is a point where exactly two curves
cross each other; that is, this point has a neighborhood within which the curves
are homeomorphic to two crossing lines. (In particular, curves that touch each
other without crossing are not allowed.)

Definition 2 The crossing number cr(G) is the minimum number of crossing
points in any simple drawing of G; any two edges may cross each other multiple
times, but each crossing point counts towards the crossing number. We define the
pair-crossing number crpair(G) to be the minimum number of pairs of crossing
edges in any drawing of G. This variation of the crossing number again allows
edges to cross each other multiple times in the drawing, but we only count a
single crossing in each such case.

For more on the relation between cr and crpair see Pach and Tóth [24, 29]
and Schaefer [26]. For every graph G, crpair(G) ≤ cr(G); however, it is unknown
whether there exist graphs for which these two numbers are different [24, 26, 29].
The exact value of cr(K3,n) was proven by Zarankiewicz [32]. We follow the
same argument, which we adapt from Kleitman [18], to prove that crpair(K3,n)
has the same value.

Lemma 1

crpair(K3,n) =

(
bn/2c

2

)
+

(
dn/2e

2

)
=

⌊
n

2

⌋⌊
n− 1

2

⌋
.
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Figure 4: A drawing of K3,11 with 25 crossings, the minimum possible for this
graph.

Proof: To show that a drawing with this many crossing pairs exists, place the
n vertices on one side of the bipartition of K3,n along the x-axis, with bn/2c on
one side of the origin and dn/2e on the other. Place the three vertices on the
other side of the bipartition along the y-axis, with two points on one side of the
origin and one on the other. Connect all of the pairs of points that have one
point on each axis by a straight line segment, as shown in Figure 4. This layout,
with the two sides of the bipartition on the two coordinate axes, each bisected
by the origin, is the construction conjectured to give the minimum number of
crossings for all complete bipartite graphs. The numbers of crossings in the top
left and top right quadrants of the drawing are the two binomial coefficients
in the formula of the lemma; there are no crossings in the lower left and lower
right quadrants. Straightforward algebraic simplification shows that these two
binomial coefficients have the claimed sum.

In the other direction, we know as base cases that crpair(K3,2) = 0 (because
K3,2 is a planar graph) and crpair(K3,3) = 1 (as one of the two Kuratowski
graphs, K3,3 is nonplanar, but the drawing described above gives it only one
crossing). For any larger n, let the vertices of the n-vertex side of the bipartition
of K3,n be v1, v2, . . . vn, and consider any fixed drawing that minimizes the
number of crossing pairs of edges. If every pair vi, vj form the endpoints of at
least one pair of crossing edges in this drawing, then each such crossing pair
would be distinct from each other pair, so the total number of crossings would be
at least

(
n
2

)
, an impossibility since we already know there is a drawing with fewer

crossing pairs. Therefore, some two vertices vi and vj are not incident to any
crossing pair of edges. We may renumber the vertices so that these two vertices
are last in the numbering. That is, we may assume without loss of generality
that vn−1 and vn do not form the endpoints of any pair of crossing edges.

Then, in the chosen optimal drawing of K3,n, the K3,n−2 subgraph formed by
deleting vn−1 and vn has at least crpair(K3,n−2) crossing pairs of edges. Each of
the n−2 K3,3 subgraphs induced by vn−1, vn, exactly one other vi, and the three
vertices on the other side of the bipartition also includes at least one crossing,
because crpair(K3,3) = 1. None of these K3,n−2 or K3,3 subgraphs share any
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crossings, because the crossings in the K3,n−2 subgraph involve neither vn−1 nor
vn, while the crossings in each K3,3 subgraph involve exactly one of these two
vertices and the one other vertex vi included in the subgraph. Therefore, we
have that

crpair(K3,n) ≥ crpair(K3,n−2) + (n− 2) crpair(K3,3).

The result follows by induction on n. �

3 Width of curve arrangements

A finite set of curves in the plane is called an arrangement. We can define
simplicity and pair crossings for arrangements, by analogy to the same concepts
for graph drawings:

Definition 3 An arrangement of curves is simple if, at every point where two
or more curves intersect, exactly two curves cross. The pair-crossing number
crpair(A) of an arrangement of curves is the number of pairs of curves in A that
have a point of intersection. The string graph of an arrangement of curves is a
graph having a vertex for each curve and an edge for each pair of curves that
intersect; the pair-crossing number of the arrangement is just the number of
edges in the string graph. The planarization of a simple arrangement of curves
is the planar graph whose vertices are crossing points of pairs of curves, and
whose edges are pairs of vertices that are connected by a contiguous arc of one
of the curves that is not crossed by any other curve.

To prove that planarizations of curve arrangements have high treewidth,
we need to find subarrangements (subsets of the curves) with greater densi-
ties of crossings than the given arrangement. To do so, we use the following
“densification lemma”, which we will apply to the string graph of the arrangement.

Lemma 2 Let G be a disconnected graph with n vertices and m edges, number
the connected components of G arbitrarily, and let ni and mi denote the number
of vertices of edges of connected component i. Then there exists i such that
mi/ni ≥ m/n.

Proof: We can represent m/n as a convex combination of the corresponding
quantities in the subgraphs:

m

n
=
∑
i

ni
n
· mi

ni
.

The result follows from the fact that a convex combination of numbers cannot
exceed the maximum of the numbers. �

The following fact about separators in graphs of low treewidth is standard
(see, e.g., [25, Paragraph (2.5)]) and can be proven by orienting each edge of a
tree-decomposition towards the subtree whose induced subgraph of the given
graph is larger. The resulting oriented tree necessarily has a sink, whose bag
provides the desired separator.
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Lemma 3 Let graph G have n vertices and treewidth w. Then there exists a
set S of at most w + 1 vertices (one of the bags of a tree-decomposition of G)
such that each connected component of the graph formed from G by removing all
vertices in S has at most n/2 vertices.

However, we need a variant of this lemma that applies more directly to
planarizations of curves. We adapt the usual proof of Lemma 3 to prove this
variant:

Lemma 4 Let A be an arrangement of n curves whose planarization G has
treewidth w. Then there exists a set B of at most 2(w + 1) curves (the curves
whose crossings are vertices in one of the bags of a tree-decomposition of G) such
that each connected component of the arrangement formed from A by removing
all curves in B has at most n/2 curves.

Proof: We perform the following steps to find B:

1. Construct an optimal tree decomposition T of G, and initialize S to be
any bag of T .

2. Let B be the set of curves whose crossings are vertices in S. While the
subarrangement A′ formed by removing the curves in B from A has a large
component, perform the following steps:

(a) Find the subtrees Ti of T that would be formed by removing B from
T .

(b) Each component of A′ must have all of its crossings in a single one of
these subtrees, because any two crossings on the same curve C of A′

are connected by a path in G none of whose vertices can belong to
bag S (or else C would have been removed when forming A′). Let T ′

be the subtree containing the large component of A′.

(c) Replace S by the neighbor of S in T ′, and B by the set of curves
whose crossings are vertices in the new choice of S.

Each step of this process reduces the number of curves having crossings within
the subtree containing the large component. The other subtrees, after each step,
have fewer than n/2 curves, because none of their curves come from the large
component. It is not possible to reduce the integer size of the large component
infinitely often, so this process eventually terminates, which can only happen
when no component has more than n/2 curves. �

By repeatedly applying this separator lemma to the arrangement and then
choosing the most dense remaining component we obtain that the planarization
of an arrangement with many crossings has treewidth nearly as large as the
average number of crossings per curve. If it had smaller treewidth, we could
recursively partition the arrangement into pieces one of which would have more
crossing pairs of curves than it had total pairs of curves, a contradiction. In
more detail, we have the following lemma.
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Lemma 5 Let A be an arrangement of n curves, with crpair(A) = m. Then the
treewidth of the planarization of A is

Ω

(
m

n

/
log

n2

m

)
.

Proof: Let the treewidth of the planarization of A be w. Letting n′ and m′

denote the number of curves and crossing pairs in the current arrangement
(initially arrangement A), repeat the following steps as long as n′ > m/n:

• Apply Lemma 4 to find a set B of at most 2(w + 1) curves, the removal of
which partitions the arrangement into subarrangements with at most half
as many curves as before.

• Replace the arrangement A by the subarrangement whose number ni of
curves and whose pair-crossing number mi maximizes mi/ni.

At the end of this process, the remaining arrangement has at most m/n curves
in it. Therefore, its ratio m′/n′ of crossings to curves is at most (m/n− 1)/2,
the maximum possible for an arrangement with this many curves, achieved when
every curve crosses every other curve. Each step reduces the number of curves
to at most half its previous value, so the number of steps is at most log2(n2/m).

In a given step, suppose that w < εm′/n′ for some ε < 1. Then, the 2(w+ 1)
curves in B have at most

2(w + 1)(n′ − 1) ≤ 2εm′

crossings in them. The removal of these crossings will reduce m′ by a factor
of (1− 2ε) or larger. The removal of the 2(w + 1) curves also affects n′, but in
the opposite direction, causing m′/n′ to increase, as does the subsequent choice
of one component of the subarrangement. Therefore, in such a step, the total
factor by which m′/n′ decreases is (1− 2ε) or larger.

Suppose for a contradiction that the original planarization could have width

w <
m ln 2

4n log2(n2/m)

then, as long as the density m′/n′ remains at least m/2n, we would have
w < εm′/n′ for

ε <
ln 2

2n log2(n2/m)
,

and we would reduce m′/n′ in each step by a factor of

1− ln 2

n log2(n2/m)

or larger. We can do this at least log2(n2/m) times before reducing m′/n′ to
m/2n, which is at least the number of iterations in the process above. Therefore,
when the process terminates, m′/n′ ≥ m/2n. But this contradicts the inequality
m′/n′ < m/2n derived earlier from the number of curves in the remaining
arrangement. This contradiction shows that w cannot be too small. In particular,
w = Ω(m/(n log2(n2/m)), the bound of the lemma. �
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Figure 5: Clique-width 2 construction of K3,6 by a disjoint union of colored single
vertices, followed by an operation that adds an edge between each bichromatic
pair of vertices.

4 Treewidth, branchwidth, pathwidth,
tree-depth, and clique-width

Combining Lemma 1 and Lemma 5 shows that all planarizations of K3,n have
high width:

Theorem 1 Every planarization of K3,n has treewidth Ω(n).

Proof: Let D be a drawing of K3,n whose planarization has the minimum
possible treewidth, and let A be the simple arrangement of 3n curves formed by
the edges of D. By Lemma 1, A has pair-crossing number Ω(n2). By Lemma 5,
the planarization of A has treewidth Ω(n). But the planarization of A is a
subgraph of the planarization of the drawing D (obtained from the drawing
by removing the vertices of K3,n), and taking subgraphs can only reduce the
treewidth. So the planarization of D also has treewidth Ω(n). �

Corollary 1 For every planarization of K3,n, and every parameter in {treewidth,
branchwidth, pathwidth, tree-depth, clique-width}, the value of the parameter
on K3,n is O(1) but the value of the parameter on the planarization is Ω(n).
Therefore, there exists a family of graphs for which each of these parameters is
bounded but for each planarization has linear parameter value.

Proof: All of these parameters except clique-width are bounded from below
by a linear function of the treewidth, which is Ω(n) by Theorem 1. The Ω(n)
lower bound on clique-width follows from the facts that (as a planar graph) any
planarization has no K3,3 subgraph and that, for graphs with no Kt,t subgraph,
the treewidth is upper-bounded by a constant factor (depending on t) times
the clique-width [15]. Consequently, the clique-width of any planarization is
lower-bounded by a constant times its treewidth, which by Theorem 1 is Ω(n).

The treewidth and pathwidth of K3,n are at most three, by the path-
decomposition and tree-decomposition shown in Figure 2. Its branch-width
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is also O(1), as the branch-width and treewidth of all graphs are within constant
factors of each other. As with any complete bipartite graph, the clique-width
of K3,n is two: it can be constructed from a disjoint union of single vertices of
two colors, by adding edges between all bichromatic pairs of vertices (Figure 5).
The tree-depth of K3,n is at most three, obtained from a height-three tree that
consists of a rooted path of three vertices together with n leaves attached to the
bottom vertex of the path (Figure 3). �

We remark that this bound is optimal. No stronger bound than Ω(n) on
these width parameters is possible. For K3,n, and more strongly for any n-vertex
graph of bounded width, the number of edges is O(n), and therefore any simple
drawing has O(n2) crossings. As a planar graph, the planarization of such a
drawing necessarily has width at most the square root of this number of crossings.
So for all of these width parameters, all simple drawings of n-vertex graphs of
bounded width have planarizations of width O(n).

5 Cutwidth and bounded-degree pathwidth

We have seen that planarization can blow up many width parameters. However, as
we show in this section, cutwidth behaves particularly well under planarization.3

Theorem 2 Let G be a graph with n vertices and m edges, of cutwidth w. Then
G has a planarization with O(n+ wm) vertices, of cutwidth at most w.

Proof: Consider a linear arrangement of G with edge separation number w, and
use the positions in this arrangement as x-coordinates for the vertices. Assign
the vertices y-coordinates that place them into convex and general position,
draw the edges of G as straight line segments between the resulting points,
and planarize the drawing by replacing each crossing by a vertex. Here, by
“general position” we mean that no two points have the same x-coordinate, no
five points form a pentagon in which two crossing points and a vertex have the
same x-coordinate, no six points form a hexagon with three coincident diagonals,
and no eight points form an octagon in which the crossing points of two pairs of
diagonals have the same x-coordinate. This will all be true after a rotation by a
sufficiently small but nonzero angle of any convex placement. In the resulting
drawing, there can be no intersections of vertices or edges other than incidences
and simple crossings, and no two vertices or crossing points can have the same
x-coordinate. An example is shown in Figure 6.

We use the ordering by x-coordinates of the planarization as a linear ar-
rangement of the planarization. The edge intersection number is the maximum
number of edges in the drawing that can be cut by any vertical line, unchanged
between G and its planarization.

Because of the convex position of the vertices of G, each edge (u, v) of G can
only be crossed by other edges that cross exactly one of the two vertical lines

3After the appearance of the preprint version of this paper [10], we learned that this result
has been obtained independently by van Geffen et al. [30].
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Figure 6: Planarizing a graph of low cutwidth (here K3,4, drawn with edge
separation number six) by lifting its linear arrangement to a convex curve.

through u and v; there are O(w) such edges, so the number of crossings per edge
is O(w) and the total number of crossings is O(wm). �

The lower bound of Corollary 1 implies that planarizations of K3,n have
linear cutwidth. However, this does not contradict Theorem 2 because K3,n itself
does not have bounded cutwidth. Its cutwidth is at least 3dn/2e, obtained in any
linear arrangement at the cut between the first dn/2e vertices on the n-vertex
side of the bipartition (together with any vertices from the other side that are
mixed among them) and the remaining vertices of the graph. For instance, the
drawing of K3,4 in Figure 6 achieves the optimal cutwidth of six for this graph.
An example showing that the bound on the number of vertices in Theorem 2 is
tight is given by a disjoint union of O(n/w) bounded-degree expander graphs,
each having O(w) vertices and crossing number Θ(w2).

The graphs of bounded cutwidth must also have bounded degree, because
every graph of maximum degree d has cutwidth at least d/2. If we explicitly
bound the degree, then cutwidth becomes equivalent to pathwidth, as detailed
in the next result:

Corollary 2 Let G be a graph with bounded pathwidth and bounded maximum
degree. Then G has a planarization with linear size and bounded pathwidth.

Proof: If a graph has pathwidth w and maximum degree d, it has cutwidth at
most dw [3], and so does its planarization (Theorem 2). Because the planarization
has cutwidth at most dw, it also has pathwidth at most dw, because the vertex
separation number of any linear arrangement is at most equal to the edge
separation number (with equality when the separation number is achieved by a
matching). �

A planarization of linear size follows from results of Dujmović et al. on the
crossing number of bounded-degree graphs in minor-closed graph families [8],
but their results do not control the pathwidth of the resulting planarization.
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6 Bandwidth

The same construction used for planarizing graphs with low cutwidth also works
for graphs of low bandwidth, and shows that the bandwidth of their planarizations
remains low.

Theorem 3 Let G be a graph with n vertices and m edges, of bandwidth w.
Then G has a planarization with O(n+w2m) vertices, whose bandwidth is O(w4).

Proof: We lift a linear arrangement of G with low span to a convex curve in
the plane, as in the proof of Theorem 2. Within the span of any edge e of G,
there are O(w2) other edges and O(w4) crossings of those edges, so the span
of e in the planarization is O(w4). This bound applies also to the span of any
segment of e created by crossings with other vertices. Each edge may be crossed
by O(w2) other edges, so the total number of dummy vertices added is O(w2m).

�

As with cutwidth, the graphs of bounded bandwidth must also have bounded
degree, because every graph of maximum degree d has bandwidth at least d/2.

It is unclear whether the quartic dependence on w in Theorem 3 is optimal.
It may be possible to reduce the bandwidth of the planarization by introducing
artificial crossings to break up edges with long spans. However, we have not
pursued this approach as we do not believe it will lead to better graph drawings.

7 Carving width and bounded-degree treewidth

If a graph has low carving width, we can use its carving decomposition (a tree
with the vertices at its leaves, internal degree three, and with few edges spanning
the cut determined by each tree edge) to guide a drawing of the graph that leads
to a planarization with low carving width.

It is helpful, for our construction, to relate carving width to cutwidth.

Lemma 6 If a graph G has cutwidth w and maximum degree d, then G has
carving width at most max(w, d).

Proof: We form a carving decomposition of G in the form of a caterpillar: a
path with each path vertex having a single leaf connected to it (except for the
ends of the path which have two connected leaves). The ordering of the leaves is
given by a linear arrangement minimizing the edge separation number. Then
the cuts of the carving decomposition that are determined by edges of the path
are exactly the ones determining the edge separation number, w. The remaining
cuts, determined by leaf edges of the tree, are crossed by the neighboring edges
of each vertex, of which there are at most d. An example of this construction
can be seen in Figure 6: the dashed horizontal green line represents the path
from which the carving decomposition is formed, the heavy vertical green lines
correspond to the leaf edges of the carving decomposition of K3,4, and the thin
vertical green edges correspond to the leaf edges of the carving decomposition of
a planarization of K3,4. �
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Figure 7: Using a carving decomposition of K3,3 to guide a planarization.

Theorem 4 If an n-vertex graph G has carving width w, then G has a pla-
narization with O(w2n) additional vertices that still has carving width at most w.

Proof: Let T be the tree of a carving decomposition of G with width w. Draw T
without crossings in the plane, with straight-line edges, and thicken the vertices
of T to disks and the edges of T to rectangles without introducing any additional
self-intersections of the drawing. Place each vertex of G in the disk of the
corresponding leaf vertex of T . Route each edge of G as a curve through the
rectangles and disks connecting its endpoints, so that within each rectangle
it forms a monotone curve (with respect to the orientation of the rectangle)
crossing at most once each other edge routed within the same rectangle, and
so that, at each end of each rectangle, the curves are sorted by the ordering of
their destination leaves in the planar embedding of T . With this sorted ordering,
there need not be any crossings within the disks representing internal vertices
of T , nor in the rectangles representing leaf edges of T (Figure 7). The n− 3
remaining edges of T each contain at most

(
w
2

)
crossings. So the total number

of crossings is at most (n− 3)
(
w
2

)
= O(w2n).

This drawing cannot yet be recognized as a carving decomposition of a
planarization of G, because some of its vertices (the dummy vertices introduced
at crossings) are now placed along the edges of T rather than at leaves. However,
by topologically sweeping the arrangement of monotone curves [9] within each
rectangle corresponding to an edge of T , we can arrange the crossing points
within that rectangle into a linear sequence, such that the portion of the drawing
within that rectangle has edge separation number at most w for that sequence.
Applying Lemma 6 (replacing the edge of T by a carving decomposition in the
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form of a caterpillar, with a leaf of the decomposition for each vertex added
in the planarization to replace a crossing of G, and with the ordering of these
leaves given by a topological sweep of the arrangement) produces a carving
decomposition of the planarization with width w, as required. �

We note that this planarization technique resembles the “simple planarization”
method of Di Battista et al. [7] for clustered graphs. In this respect, we may
view the carving decomposition of G as a clustering to be respected by the
planarization. A very similar drawing technique was also applied by Wood
and Telle to a much more general class of decompositions with a planar graph
underlying the decomposition rather than a tree, to show that bounded-degree
graphs with these decompositions have linear crossing number [31, Lemma 4.1].

With a constant-factor loss in width we can obtain a tighter bound on
the planarization size. To prove this, we apply a tree clustering technique of
Frederickson [13] to the carving decomposition of G. Following Frederickson,
we define a restricted partition of order z of an unrooted binary tree T (such as
the tree of a carving decomposition) to be a partition of the vertices of T into
connected subtrees with the following properties:

• Each subtree of the partition contains at most z vertices.

• If a subtree of the partition has more than two edges connecting it to other
subtrees, then it contains exactly one vertex.

• If two subtrees of the partition are connected by an edge, then they cannot
be merged into a single subtree while preserving the previous two properties.

Such a partition can be found easily by a greedy algorithm that repeatedly
merges subtrees until no more merges are possible.

Lemma 7 (Frederickson [13]) For every unrooted binary tree T with n ver-
tices, every z, and every restricted partition of T of order z, there are at most
O(n/z) subtrees in the partition.

Proof: If each subtree in a restricted partition is contracted into a single vertex,
the result is again an unrooted tree with maximum degree three. Every leaf
vertex of this contracted tree together with its parent must together have more
than z vertices, or else they could be merged to form a larger tree with at most
z vertices and at most two connecting edges to other subtrees. For the same
reason, every pair of adjacent degree-two vertices in this contracted tree must
together have more than z vertices. Therefore, the contracted tree can only
have O(n/z) leaf vertices and O(n/z) adjacent pairs of degree-two vertices, from
which it follows that it has O(n/z) vertices altogether. �

Theorem 5 If an n-vertex graph G has carving width w, then G has a pla-
narization with O(w3/2n) additional vertices that still has carving width O(w).
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Proof: To planarize G with O(w3/2n) additional vertices and carving width
O(w), proving Theorem 5, we first find a restricted partition of the carving
decomposition T of G, of order O(

√
w).

Each subtree Ti of the restricted partition represents a subset of O(
√
w)

vertices of G, possibly having up to 2w edges connecting it to the rest of G along
the two edges of T connecting this subtree to the rest of T . Let Vi denote the
subset of vertices of G within subtree Ti, together with up to two dummy vertices
representing the two edges of T connecting Ti to the rest of T . We planarize
the subgraph of edges that enter or pass through Ti by placing the vertices of Vi
onto a circle, but otherwise in general position, and by drawing each edge as a
straight line segment between two points of this circle. Each of the O(n/

√
w)

subtrees contributes O(w2) crossings from this drawing (the maximum number
of crossings for a graph on O(

√
w) vertices drawn with straight-line edges on

a circle). Projecting the circle onto a line gives a linear arrangement of the
subgraph, and of its planarization, with edge separation number O(w), so by
Lemma 6 the carving width of this subgraph and its planarization is also O(w).

Let T ′ be the binary tree resulting from T by contracting each Ti into a
point. As in Theorem 4 we draw T ′ in the plane, replacing each of its vertices
by a disk and replacing each of its edges by a rectangle. We place the drawing of
the subgraph associated with each subtree Ti into the corresponding disk of T ′.
We replace the (up to two) two dummy vertices representing connections from
Ti to other subtrees with a bundle of edges passing from the disk to an adjacent
rectangle. As in Theorem 4 we route edges across each rectangle by monotone
curves that cross each other at most once. There are O(n/

√
w) rectangles,

each having O(w2) crossings and carving width at most w, so the contributions
to the total number of crossings and the carving width from this part of the
construction are also O(w3/2n) and O(w) respectively. �

An example showing that Theorem 5 is tight is given by a cluster graph
(that is, a disjoint union of cliques) consisting of O(n/

√
w) disjoint cliques of

size O(
√
w), each requiring Θ(w2) crossings in any drawing.

Corollary 3 Let G be a graph with treewidth or branchwidth w and maximum
degree d. Then G has a planarization with O((dw)3/2) additional vertices and
treewidth and branchwidth O(dw).

Proof: Treewidth and branchwidth are always within a constant factor of
each other [27] so we may concentrate on the results for branchwidth, and the
corresponding results for treewidth will follow automatically.

A carving decomposition may be converted into a branch decomposition by
replacing each leaf of the carving decomposition (representing a vertex of the
given graph) with a subtree (representing edges adjacent to the given vertex), in
such a way that each edge is represented at exactly one of its endpoints. This
increases the width of the decomposition by at most a factor equal to the degree.
In the other direction, a branch decomposition may be converted into a carving
decomposition by replacing each leaf of the branch decomposition (representing
an edge of the given graph) by a subtree of zero, one, or two leaves (representing
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endpoints of the edge) in such a way that each vertex is represented at exactly
one of its incident edges.This increases the width of the decomposition by at
most a factor of two. So, the carving width is at most the degree times the
branchwidth, and at least half the branchwidth [23].

Therefore, if G has treewidth or branchwidth w and maximum degree d, it
has carving width O(dw). Plugging this bound into Theorem 5 (and translating
the carving with of the planarization back into treewidth or branchwidth) gives
the claimed results. �

As for pathwidth, a planarization of linear size for graphs of bounded carving
width, or bounded degree and bounded treewidth or branchwidth, follows from
results of Dujmović et al. on the crossing number of bounded-degree graphs in
minor-closed graph families [8], but their results do not control the width of the
resulting planarization.

8 Conclusions

We have shown that planarizing a graph may blow up its treewidth, pathwidth,
branch-width, tree-depth, or clique-width, but that the cutwidth, bandwidth,
and carving width remain bounded as a function of their original values. There
are many additional properties of graphs that could be affected by planarization
(for instance, connectivity and toughness, metric dimension, or the various types
of centrality); it would be of interest to characterize which ones change only
in a predictable and controlled way and which can change dramatically on
planarization.
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