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Abstract

A simple topological graph is a topological graph in which any two
edges have at most one common point, which is either their common
endpoint or a proper crossing. More generally, in a k-simple topological
graph, every pair of edges has at most k common points of this kind. We
construct saturated simple and 2-simple graphs with few edges. These
are k-simple graphs in which no further edge can be added. We improve
the previous upper bounds of Kynčl, Pach, Radoičić, and Tóth [Com-
put. Geom., 48, 2015] and show that there are saturated simple graphs
on n vertices with only 7n edges and saturated 2-simple graphs on n ver-
tices with 14.5n edges. As a consequence, there is a k-simple graph (for
a general k), which can be saturated using 14.5n edges, while previous
upper bounds suggested 17.5n edges. We also construct saturated simple
and 2-simple graphs that have some vertices with low degree.
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1 Introduction

Let G = (V,E) be a finite simple graph. A drawing of G is a map δ : V ∪E → R2

that is one-to-one on δ|V : V → R2, i.e., δ assigns the vertices of the graph to
different points of the plane. Furthermore, we require that δ|E : E → C, where
C is a set of “nice” non-self-intersecting curves with two boundary points of
the plane. For example we might think of C as the set of all Jordan curves or,
more elementary, of the set of all simple polygonal curves. For simplicity, we
will not distinguish between an edge and the curve on which it is embedded,
and between a vertex and the point on which it is embedded. We assume that
for any e = xy ∈ E the edge δ(e) is a curve connecting δ(x) and δ(y) and
it doesn’t go through any other vertex, and also that any two different edges
meet at finitely many points and any meeting point—that is not a common
endvertex—is a proper crossing of the two curves.

The pair (G, δ), i.e., a graph with a drawing, is called a topological graph. A
topological graph (G, δ) is simple if in δ two edges have at most one common
point, which can either be a common endpoint or a proper crossing. More
generally, the topological graph is called k-simple if in δ two edges have at most
k common points. For both simple and k-simple graphs we do not allow self-
intersecting edges. A topological graph is a geometric graph if all its edges are
drawn as straight-line segments. Obviously, every geometric graph is simple,
provided that the vertices are placed in general position. Thus, every graph has
simple drawings. Simple graphs harness the complexity of topological graphs to
some degree. From this perspective simple drawings can be considered as more
readable compared to general “topological drawings”.

For a graph property T , a graph G is T -saturated if G has property T ,
but the addition of any edge joining two non-adjacent vertices of G violates
property T . Often structures with property T are quite hard to grasp, but
T -saturated structures might have a more useful character. We direct the in-
terested reader to applications of the saturation technique [1, 3, 5]. This notion
can be naturally extended to hypergraphs. A thorough survey by Faudree, Fau-
dree, and Schmitt [2] discusses the case when property T is “not having F as a
sub(hyper)graph”.

In this paper we study saturated k-simple topological graphs. These are
topological graphs that are k-simple, but no edge can be added without violating
the k-simplicity of the drawing. Saturated planar drawings are triangulations
and have therefore due to Euler’s formula 3n− 6 edges. Recently, Kynčl, Pach,
Radoičić, and G. Tóth [4] started to investigate saturated k-simple graphs. The
maximum number of edges a saturated simple topological graph can have is
clearly

(
n
2

)
, since the geometric graph of Kn with vertices in general position

is a simple drawing. The more intriguing questions ask about the minimum
number of edges for saturated k-simple topological graph. One of the main
results of Kynčl et al. [4] is a construction of sparse saturated simple and k-
simple topological graphs. We denote by sk(n) the minimum number of edges a
saturated k-simple graph with n vertices can have. Their upper bound on sk(n)
is a linear function of n, for n being the number of vertices; see Table 1 for the
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k 1 2 3 4 5 6,8,10 7 9, ≥ 11
old upper bounds [4] 17.5n 16n 14.5n 13.5n 13n 9.5n 10n 7n
new upper bounds 7n 14.5n

Table 1: Old and new upper bounds for sk(n), the minimum number of edges
in a saturated k-simple graph with n vertices.

bounds obtained by Kynčl et al. [4]. The gap between the best known upper and
lower bounds for sk(n) is quite substantial. We only know that s1(n) ≥ 1.5n
and that sk(n) ≥ n [4].

Our contribution. We improve the upper bounds for sk(n) for k = 1, 2.
We do this by showing that for any positive integer n there exists a saturated
simple topological graph with at most 7n edges (in Sect. 2), and a saturated
2-simple graph with at most 14.5n edges (in Sect. 3). Sections 2 and 3 are
independent. This result also implies that there are saturated k-simple graphs
with at most 14.5n edges for every k. See also Table 1 for a comparison with
the old bounds. Our proofs are constructive, i.e., we can explicitly present the
sparse saturated graphs.

We complete our results by studying local saturation of topological graphs.
Here, local saturation refers to drawings in which one (or several) vertices have a
small vertex degree even though the full drawing might not be the sparsest. Such
observations might be helpful in further studies, e.g., if we want to investigate
techniques for proving lower bounds that are based on the minimum vertex
degree in saturated graphs. We show that there are arbitrarily large saturated
simple graphs that have a vertex of degree 4, and saturated simple graphs in
which 10 percent of the vertices have degree 5. For saturated 2-simple graphs
we can prove that there are drawings with minimum degree 12. The current
lower bounds for sk(n) are obtained by bounding the minimum vertex degree
in saturated k-simple graphs [4]. Our results show the limits of this approach.
These results can be found in Sect. 4.

2 Saturated simple topological graphs with few
edges

In this section we give a construction that generates sparse saturated simple
graphs. We start with defining a graph G, parametrized by an integer `,
with n = 6` vertices and 9` − 6 edges. This graph is the backbone of our
sparse saturated graph.

The drawing is best visualized on the surface of a long circular cylinder.
Fig. 1 shows an unrolling of the cylinder into the plane. The cylinder is obtained
by cutting the drawing along the two dotted lines and gluing the top and the
bottom together. The vertices of the graph are placed in a 3 × 2`-grid-like
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fashion. We draw the vertices together in pairs, with each vertex XL
i on the left

and the corresponding vertex XR
i on the right, for X = A,B,C and i = 1, . . . , `.

We refer to the vertices whose label have the subscript i as the i-th layer. G is
the union of

• three vertex-disjoint paths of blue edges connecting AL1A
L
2 . . . A

L
` ,BL1 B

L
2 . . .

BL` , and CL1 C
L
2 . . . C

L
` ,

• three vertex-disjoint paths of red edges connecting AR1 A
R
2 . . . A

R
` , BR1

BR2 . . . B
R
` , and CR1 C

R
2 . . . C

R
` , and

• ` disjoint cycles of green edges connecting ALi B
L
i C

L
i .
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Figure 1: The graph G on an unrolled cylinder.

The cylinder can be homeomorphically mapped into the plane, as shown in
Fig. 2 for the red and blue edges only. The horizontal directions turn into radial
directions. But the resulting drawings suffer from large distortions, and the
left-right symmetry is lost. We therefore prefer the cylindrical drawings, and
we extend the cylinder surface periodically beyond the dotted lines (using the
plane as a universal cover of the cylinder). One should however be aware that
vertices (and edges) that appear as distinct in the figure may denote the same
vertex, as indicated by the vertex labels.
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Figure 2: The graph G on the plane.

We will first consider the graph GRB that omits the green edges, because

this graph is more symmetric: with the exception of the vertices X
L/R
1 and

X
L/R
` near the boundary, all vertices look identical. Apart from these boundary

effects, the drawing has a rotational symmetry, cyclically shifting the labels
A→ B → C → A, a translational symmetry, shifting indices i up or down, and
a mirror symmetry, exchanging left with right and blue with red. The green
edges destroy this mirror symmetry: there are then two classes of vertices, the
blue vertices XL

i and the red vertices XR
i .

We will show that the maximum degree in any saturated drawing which
extends GRB is 16. The 16 potential neighbors of a vertex on ALi are shown in
Fig. 3. This establishes that there are saturated drawings with n vertices and
less than 8n edges. When the green edges are included, the three dashed edges
in Fig. 3 become impossible. Thus, each blue vertex has 13 potential neighbors.
The red vertex ARi+1, which can be taken as a representative of a typical red
vertex, loses ALi as a potential neighbor. Thus, each red vertex has at most 15
potential neighbors. This improves the upper bound for the smallest number of
edges in a saturated drawings with n vertices to 7n.

Theorem 1 Let s(n) denote the minimum number of edges that a simple sat-
urated drawing with n vertices can have. Then s(n) ≤ 7n.

The remainder of this section is devoted to proving the above theorem. We
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Figure 3: The 16 potential neighbors of a vertex in the graph GRB . The three
dashed connections become impossible when the green edges (dotted) are in-
cluded.

start with the analysis of the graph GRB .

Lemma 1 The 16 potential neighbors of a typical vertex ALi in GRB are all
11 vertices of levels i − 1 and i (ALi−1, B

L
i−1, C

L
i−1; ARi−1, B

R
i−1, C

R
i−1; BLi , C

L
i ;

ARi , B
R
i , C

R
i ) plus the 5 vertices ARi−2; ALi+1, B

L
i+1, C

L
i+1; ARi+1.

When any of the neighbors listed above does not exist because i ≤ 2 or i = `,
the lemma still holds in the sense that the remaining vertices form the set of
potential neighbors. In the proofs, when we exclude an edge between, say, levels
i and j, our arguments will not use edges outside this range.

In the following we will look at the given drawing of GRB (or G) and argue
about the additional edges that can be drawn. The implicit assumption is
that these edges cannot cross any given edge more than once. Usually, we will
regard a new edge as a directed edge, starting at some vertex and trying to
reach another vertex.

A belt is a substructure of our drawing. It is formed by the 12 vertices of
two successive layers with their 6 edges between them, see Fig. 4. This drawing
separates a large face on the left from a large face on the right. More precisely,
the belt is defined as the part of the plane (or the cylinder) which lies between
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these two large faces.
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Figure 4: Escape from a belt is
difficult (Lemma 2).
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Figure 5: The situation discussed in the
proof of Lemma 1 for left side neighbors.

We denote the six edges of the belt by αL = (ALi , A
L
i+1), βL =

(BLi , B
L
i+1), γL = (CLi , C

L
i+1), αR = (ARi , A

R
i+1), βR = (BRi , B

R
i+1), γR =

(CRi , C
R
i+1); as shown in Fig. 4. Each edge is cut into six sections by the

intersections with the other edges: Two sections are little “stumps” at the
end vertices. One section belongs to the boundary between the belt and the
outside. The remaining three sections form the top part of the edge. We say
that a new (directed) edge crosses a belt edge from the outside or from the top
if it crosses the boundary part or the top part in the appropriate direction.

Lemma 2 In a simple drawing that contains GRB, the following holds:

1. If an edge crosses a belt edge from the top or from the outside, it must
terminate inside the belt.

2. No edge can cross a belt, meaning it cannot pass through the shaded region
in Fig. 4.

Proof: We start with the following observation: If an edge crosses αL from the
outside or from the top, and it does not terminate at BLi or at BRi , then it must
later cross γL or γR from the top. This observation holds symmetrically for αR
instead of αL, and cyclically for the other four belt edges. Hence, any edge that
“enters” the belt from the outside has to continue by crossing another edge of
the belt from the top. There is no way to leave the belt without crossing some
edge twice. �
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After these preparations, we are ready to prove Lemma 1.
Proof of Lemma 1. Let us first look at the potential neighbors on the left side.
A connection from ALi to levels j ≤ i−3 is impossible, because it would have to
cross a belt. For the vertices at level i− 2 we observe the following (see Fig. 5
for the edge numbers we are referring to): When we start from ALi we cannot
cross the right boundary of the belt formed by levels i− 1 and i, because then
we would have to cross the whole belt to reach level i − 2. If we cross edge 1
or 2 from the top, then, by Lemma 2, we are restricted to the belt defined by
level i − 1 and i. Thus we can regard edge 1 and 2 as closed from the top.
(These edges can later be crossed from the bottom.) We successively conclude
that the new edges must cross the shadowed parts of the edges 3, 4, 5, and 6.
The endpoints BRi−2, B

L
i−2, A

L
i−2 of the edges 4, 5, and 6 cannot be taken. CLi−2

and CRi−2 are enclosed in a small face delimited by the edges 4, 5, and 6, and
cannot be reached. ARi−2 is thus the only reachable vertex of level i− 2.

Let us turn to the potential neighbors on the right side. A connection from
ALi to levels j ≥ i + 3 is impossible, because it would have to cross a belt.
Vertices at level i+ 2 cannot be reached either, because (i) if we cross the edge
forming the left boundary of the belt spanned by the vertices of level i and i+ 1
we cannot cross this belt anymore and therefore cannot reach level i + 2, and
(ii) if we cross one of the edges in the face that contains ALi from the top (edge
labeled 1 and 2 in Fig. 6a), then, by Lemma 2, we are also restricted to this
belt. Thus we are restricted to the shaded region in Fig. 6a.

The vertices BRi+1 and CRi+1 also cannot be neighbors of ALi . We discuss
the exclusion of CRi+1 as a potential neighbor – the case for BRi+1 is symmetric.
The edges incident to ALi and CRi+1, which we call the closed edges, cannot be
crossed. The closed edges are depicted as thicker curves in Fig. 6b. Consider
the portion of the red edge πr that runs between ARi and ARi+1 above the closed
edges (see Fig. 6b). The curve πr bounds a region below in which the remaining
edges bounding this region are parts of the closed edges. Hence, if we enter
this region we cannot leave and therefore we cannot cross πr (see Fig. 6b). Let
us now consider the partial edge πb that runs between BLi+1 and BLi above the
closed edges and πr. Again, there is a region whose boundary is part of the
closed edges and also πb. To enter and leave this region we have to cross either
one of the closed edges or πr, or we have to cross πb twice. Since all these
options are invalid, we have to avoid this region, and therefore are not allowed
to cross πb. We observe that the closed edges together with πb and πr leave ALi
and CRi+1 in different faces, which shows that these vertices cannot be neighbors
unless we cross one edge twice. �

Now we turn back to G. The additional green edges exclude some of the
possible edges from the Lemma 1.

Lemma 3 1. The 13 potential neighbors of a typical vertex ALi in G are all
5 vertices of level i (BLi , C

L
i ; ARi , B

R
i , C

R
i ), all but one vertex of level i−1

(ALi−1, B
L
i−1; ARi−1, B

R
i−1, C

R
i−1 ) plus the 3 vertices ARi−2; ALi+1, C

L
i+1.

2. The 15 potential neighbors of a typical vertex ARi in G are all 11
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Figure 6: Restricting the neighbors to the right.

vertices of levels i and i + 1 (ALi , B
L
i , C

L
i ; BRi , C

R
i ; ALi+1, B

L
i+1, C

L
i+1;

ARi+1, B
R
i+1, C

R
i+1 ) plus the 4 vertices ARi−1, B

R
i−1, C

R
i−1; ALi+2.

The claim immediately follows from the next two lemmas.

Lemma 4 In a simple extension of G, ARi+1 cannot be a neighbor of ALi .

Proof: We call the edges incident to ARi+1 and ALi the closed edges. Let πb the
portion of the edge connecting BLi with BLi+1 that runs above the closed edges
(see Fig. 7a). The cell “below” πb is only bounded by πb and the closed edges.
Hence, we cannot leave this cell once we have entered. As a consequence we
cannot cross πb. Since the closed edges together with πb disconnect ARi+1 and
ALi , these two vertices cannot be neighbors. �

Lemma 5 In a simple extension of G, BLi+1 cannot be a neighbor of ALi .

Proof: All edges that are incident to either BLi+1 or ALi cannot be crossed.
These edges are drawn as black curves in Fig. 7b and are now considered as
being the closed edges. The only chance to connect ALi with BLi+1 is to enter
the region that is bounded by the closed edges and the edge πA from ARi to
ARi+1. Thus we have to cross this edge to leave this face. This leads us to a
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Figure 7: Restricting more neighbors by putting back the green edges.

region that is bounded by the closed edges, πA and the edge πC from CRi to
CRi+1. Clearly we have to cross πC to leave this region. Now we have entered a
region that is separated from BLi+1 by the closed edges, πA, and πC , thus BLi+1

can not be reached. �

By symmetry, CLi−1 and ALi cannot be neighbors, and this concludes the
proof of Lemma 3. Moreover, as a consequence of Lemma 3 the average degree
in a saturated extension of G is at most 14, which proves Theorem 1 when the
number n of vertices is a multiple of 6.

We can determine the vertex degrees more carefully. If ` ≥ 3, then

1. the degrees of AL1 , B
L
1 , C

L
1 are at most 7,

2. the degrees of AR1 , B
R
1 , C

R
1 are at most 12,

3. the degrees of AL2 , B
L
2 , C

L
2 are at most 12,

4. the degrees of ARi , B
R
i , C

R
i are at most 15, when 1 < i < `− 1,

5. the degrees of ALi , B
L
i , C

L
i are at most 13, when 2 < i < `,
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6. the degrees of AR`−1, B
R
`−1, C

R
`−1 are at most 14,

7. the degrees of AL` , B
L
` , C

L
` are at most 11,

8. the degrees of AR` , B
R
` , C

R
` are at most 8.

A straightforward calculation gives that any saturated extension of G has at
most 7n − 30 edges. For ` = 2, the degrees of XL

1 , X
R
1 , X

L
2 , X

R
2 are bounded

by 7, 11, 10, 8, respectively, for a total of 54 edges, which also agrees with the
formula 7n − 30. Hence, for any n ≥ 12 that is a multiple of 6, there exists a
saturated simple topological graph with n vertices and at most 7n− 30 edges.

Our construction can be extended to any vertex size by cloning some vertices.
Take a saturated simple topological graph and any vertex P of it. Next to P we
add ρ new copies of P – the clones. Connect the neighbors of P to each clone
by edges that are perturbations of the edges incident to P (not intersecting
themselves). By this we obtain a simple drawing. A saturation of this drawing
can include as additional edges only edges among P and its clones.

For n ≥ 12, we can write n as 6r+ρ where 0 ≤ ρ ≤ 5. If ρ = 0, we are done.
If ρ ≥ 1, then start with a construction for a saturated simple topological graph
with 6r vertices. Add ρ clones of its lowest-degree vertex P , and saturate. In
our construction, the lowest degree is 7. Cloning such a vertex ρ times adds
up to 7ρ+

(
ρ+1
2

)
additional edges after saturation. Since ρ ≤ 5, the number of

edges is bounded by

7(6r)− 30 + 7ρ+
(
ρ+1
2

)
≤ 7(6r + ρ)− 30 + 15 = 7(6k + ρ)− 15 < 7n

The resulting simple topological graph proves Theorem 1 for n ≥ 12. If n ≤ 11,
then the bound of Theorem 1 holds since even the complete graph has at most(
n
2

)
≤ 5n edges.

3 Saturated 2-simple topological graphs with
few edges

3.1 The grid-block configuration

To begin, we study a drawing of 6 edges (three red edges and three black edges)
as depicted in Fig. 8. The drawing consists of three disjoint horizontal seg-
ments representing the red edges r1, r2, r3, and three disjoint black edges b1,
b2, b3 that are drawn such that one crosses (in order) r1, r2, r3, r1, r2, r3, the
other r2, r3, r1, r2, r3, r1, and the last one r3, r1, r2, r3, r1, r2. There are no other
crossings in the drawing. Note that the configuration superimposes a grid. We
call such an arrangement of edges a grid-block . These blocks have been used by
Kynčl et al. as building blocks in their saturated graphs [4]. In the terminology
of Kynčl et al., our grid-blocks would be called (3,2)-grid-blocks.

As done in the previous section we consider the graph as drawn on the cylin-
der. Different to the presentation in the previous section we draw no overlap. In
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particular, we draw the graph inside a rectangle in which we identify two sides
in opposition (bottom side and top side), while the other sides are named right
side and left side. If an edge uses the transition across the bottom/top edge
we say that it wraps around. In the following we assume that the grid-blocks
are drawn such that only the black edges wrap around. We label every face
of the drawing of a grid-block with 2 numbers. These numbers refer to the
coordinates of the (dual) superimposed grid, with (0, 0) being the label of the
face that contains the two bottom most endpoints of the black edges on the left
side. All “vertical” coordinates are considered modulo 3.

(0,2)

(0,1)

(0,0)

(1,
1)

(1,
0)

(1,
2)

(3,
1)

(3,
0)

(3,
2)

(5,0)

(5,1)

(5,2)

Figure 8: A grid-block with some labeled faces.

Throughout the section we study paths connecting the left and the right
sides of the cylinder and passing through some blocking configurations. By a
path in this context we always mean a path in a graph dual to the arrangement
of the blocking configuration in question.

Kynčl et al. observed that every path connecting the left with the right side
of the cylinder has to intersect the edges of grid-block at least 5 times. For
our construction we need a stronger statement which is presented in Lemma 6.
The following lemma simplifies the treatment of paths passing through the grid-
block.

Lemma 6 Let γ be a path crossing the grid-block that starts in face (0, i) and
ends in face (5, j) and that never visits the faces (0, ·), (5, ·) again, see Fig. 9.
Then γ can be transformed, keeping its endpoints fixed, to a path γ̃ passing
through the grid block, such that γ̃:

1. crosses (with the same or smaller multiplicity) only the edges of the grid-
block crossed by γ,

2. first walks between the faces (0, i), 0 ≤ i ≤ 2, then crosses some black edges
to the right, passing from a face (a, i) to a face (a+1, i), then crosses some
red edges upwards, passing from a face (a, i) to a face (a+ 1, i+ 1).

Proof: We refer to the transition of the path from one cell of the arrangement
to an adjacent cell as a step. There are four different types of steps: →, ←, ↗
or ↙, depending on the crossed edge and the direction, see Fig. 9.

We execute the path simplification through a series of local modifications
on pairs of two consecutive steps: (1) annihilation of two consecutive steps in
opposite directions and (2) changing places of two consecutive steps that are
not yet in a desired order.
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Figure 9: Process of the simplification of a path passing through a grid-block.

The simplification is carried out in two stages. In the first stage (shown in
the first 6 pictures in Fig. 9) we remove all “backward steps” ↙ and ←, while
possibly increasing the number of steps the path γ̃ walks between faces (0, i),
0 ≤ i ≤ 2. In the second stage we reorder the steps ↗ and → such that no ↗
precedes any →.

(a) (b) (c) (d)

Figure 10: 4 possible 2-step configurations involving “backward steps” as a
second step before (first row) and after (second row) the appropriate local mod-
ification.

Stage 1: We traverse the path until we meet the first← or↙ step. Together
with its preceding step it forms one of the 4 configurations shown in Fig. 10.
In cases (a) and (d) the steps only differ in their orientation, hence we can
annihilate two steps. In the remaining cases (b) and (c) we reorder the two
steps. This reordering can be safely executed unless it forces the path to leave
the grid-block. This, however, may happen only when the backward step (←
or ↙) starts from one of the faces labeled (2, ·). Since this backward step is
the first backward step of the path, we are left with two subcases for each (b)
and (c) depending on the preceding step, which might be either → or ↗. The
four cases are depicted in Fig. 11. All the cases can be handled by further local
simplifications that are shown in the figure.

We finish the proof of the stage 1 using double induction on the number of
backward steps and, within it, on the distance from the beginning of the path
to the first backward step.
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→ + (b)

↗ + (b)

→ + (c)

↗ + (c)

Figure 11: Handling of the 4 possible cases (each row represents one case) when
the local modifications (b) or (c) force the path out of the grid-block.

Stage 2: After the stage 1 our path through the grid, leaving aside its first
steps between faces (0, i), has only→ and↗ steps. These two types of steps can
be reordered without changing the number of times the path crosses any edge of
the grid. Moreover, this reordering never leads the path out of the grid-block.

�

3.2 A blocking configuration

We call the building blocks of the following constructions black block and red
block, see Fig. 12. We refer to the edges of the red (black) block as red edges
(black edges). Any two red edges, as well as any two black edges, cross exactly
twice. Note that up to a reflection the red block is isotopic to the black block.

Figure 12: A black (left) and a red (right) blocks.

We combine two black blocks and a red block as shown in Fig. 13 to obtain a
drawing that we call a 3-block . Since the red block differs from the black block
only by a reflection, the 3-block built from consecutive black-red-black blocks is
a mirror image of the 3-block built from consecutive red-black-red blocks.
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Figure 13: A 3-block, formed by consecutive black, red and again black blocks.

The following theorem is the key observation that we need for the construc-
tion of the sparse 2-simple drawing.

Theorem 2 Any path connecting the left with the right sides of the cylinder
while passing through the 3-block crosses one of the edges forming the 3-block at
least 3 times.

Before proving the theorem we provide some helpful lemmas. We label some of
the faces of the arrangement as shown in Fig. 14. In particular, for i = 0, 1, 2,
we denote the faces containing the left endpoint of the red edges ri as Li, and
the faces containing the right endpoint as Ri. The edges of the left black block
are named bi and the edges of the right black block are named b′i. Finally, let
LM i be the face that contains the right endpoint of bi, and let RM i be the face
that contains the left endpoint of b′i. The region spanned by L0, L1 and L2 is
denoted by L. We similarly define regions LM , RM and R.

link 1 link 2 link 3 link 4 link 5

L1

L0

L2

b2

b0

b1

LM2

LM0

LM1

RM2

RM0

RM1

b′2

b′0

b′1 R2

R0

R1

r2

r0

r1

Figure 14: A 3-block with some distinguished faces (capital letters) and edges.
The red edges forming the blocks are labeled bi, b′i and ri. The “zones” at which
we subdivide the path into links are labeled above the strip.

Let γ be a path that passes through the 3-block. To facilitate the analysis
we subdivide the path γ into smaller pieces, which we call links. The links are
defined as follows:

link 1: from the start point (left) of γ to the last point of γ in L,

link 2: from the last point of γ in L to its first point in LM ,

link 3: from the first point of γ in LM to its last point in RM ,

link 4: from the last point of γ in RM to its first point in R,

link 5: from the first point of γ in R to its (right) endpoint.
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Before we proceed we check that the links are well defined, i.e., that the points
defining the links appear in order. For the links 1, 3 and 5 this holds trivially,
while to check it for links 2 (and, symmetric, 4), we need to prove that the last
point in L precedes the first point in LM :

Lemma 7 No path can visit the regions L → LM → L → LM in this order
without crossing some of the edges forming the 3-block at least 3 times.

Proof: The faces L and LM are separated by a grid-block. Passing through it
requires at least 5 crossings of its edges. Any path visiting L → LM → L →
LM would cross the grid-block at least 3 times, and hence it would cross the
edges of the grid-block at least 3 · 5 = 15 times. Since a grid-block is formed by
6 edges, at least one of them will be crossed 3 times or more. �

We continue by analyzing the path through the 3-block following its links.

Lemma 8 Any path passing through the 3-block from left to right with the last
point of link 1 at Li crosses the edge bi+1 at least once or one of the edges bi
and bi+2 at least twice at its first link (all indices modulo 3).

Proof: A path that ends in Li crosses either bi+1 or it crosses bi+2 while
entering from Li+1. If it came from Li+1 it has to enter Li+1 before. This can
be achieved by either crossing bi+2 or by crossing bi. In the former case we
would have crossed bi+2 twice. In the later case the path came from Li+2. To
enter Li+2 it either has to cross bi a second time or it has to go back to Li. In
the latter case we could as well start form the beginning. So this case is already
covered. �

The following lemma summarizes the behavior of the path on the first two
links:

Lemma 9 Any path γ passing the 3-block that does not intersect any edge 3
times or more crosses the red edges rj, rj+1 before it first visits the zone LM at
LM j.

Proof: We modify the path γ along link 2 following the simplification procedure
described in Lemma 6 to get a path γ̃. Lemma 6 also implies that the link 2 of
γ̃ consists of exactly 5 “steps”: first, 0 ≤ h ≤ 5 steps crossing the black edges
→ to the right, followed by v = 5− h steps crossing red edges ↗ upward.

Assume that the first point of link 2 of γ̃ lies inside the face Li. Then h
horizontal steps of link 2 cross the bi+1, bi, bi−1, . . . , bi+1−(h−1). Moreover,
Lemma 8 guarantees that already link 1 of the path γ̃ crossed either bi+1 once
or one of bi or bi+2 twice. Since γ̃ does not cross any of the black edges more
than twice, it follows that h ≤ 3. This, however, shows that v ≥ 2, which
implies that the path γ̃ crosses the red edges rj+1, rj before it reaches the last
point of its second link in face LM j . To finish the proof we recall that the path
γ crosses every edge of the 3-block at least as many times as γ̃ and that the last
points of the link 2 of γ and γ̃ coincide. �
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Proof of Theorem 2. We prove by contradiction, namely, we assume that there
is a path γ that passes through the 3-block while crossing every edge of the
3-block at most twice. Let LM j be the face where link 2 ends, and let RM `

be the face where link 4 starts. By Lemma 9 we know that γ crosses rj and
rj+1 in link 1 and link 2. Since the structure of the link 4 and 5 coincides with
the structure of link 2 and 1 we can apply Lemma 9 also to the last two links.
Thus, γ crosses r`−1, r` in link 4 and 5. A short case distinction (` might be
either j, j + 1, or j + 2) shows that γ cannot connect endpoints of link 2 and 4
via link 3 without crossing at least one of the red edges 3 times; see Fig. 15.
The figure depicts all ways of how to possibly route the path γ in link 3. Each
of the possible continuations crosses some of the red edges rj , rj+1, rj−1 twice
and is blocked within one of the faces before it reaches the face RM `. As a
consequence the path γ cannot exists. �

` = j + 2

` = j + 1

` = j

rj+1

rj

rj−1

rj+1

rj

rj−1

rj+1

rj

rj−1

rj+1

rj

rj−1

rj+1

rj

rj−1

rj+1

rj

rj−1

rj+1

rj

rj−1

rj+1

rj

rj−1

Figure 15: Each row depicts a case. Black dots inside faces mark the faces LM j

(left) and RM ` (right). Black crosses on red edges mark the edges that are, due
to Lemma 9, crossed by the path outside link 3. We color red edges black as
soon as they are crossed by the path γ twice and no more crossings are allowed.
In the case ` = j the path can be continued in 3 different directions, in each of
them the path is blocked after one step.

3.3 A sparse saturated 2-simple drawing

We show now how to combine a sequence of 3-blocks to obtain a 2-simple sat-
urated drawing with few edges.

Theorem 3 Let s2(n) denote the minimum number of edges that a 2-simple
saturated drawing with n vertices can have. Then s2(n) ≤ 14.5n.

Proof: We consider the drawing that repeats the pattern shown in Fig. 16. The
drawing is formed by ` consecutive black and red blocks; see Fig. 12. Each block
contains 6 vertices, so the total number of vertices is 6`. Clearly, the drawing
is 2-simple.
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Figure 16: A 2-simple drawing that does not allow too many edges to be added.

Now we add as many edges as possible without violating the 2-simplicity,
so that the drawing becomes saturated (this padding procedure is definitely
not unique). Theorem 2 implies that without violating the 2-simplicity any
vertex can be connected by an edge only to 29 other vertices; see Fig. 17 for
“internal” vertices and Fig. 18 for vertices close to the left (right) boundary of
the cylinder. This implies that the maximal number of edges in the resulting
saturated 2-simple drawing is less than or equal to 14.5n.

red-black-red blocking 3-block black-red-black blocking 3-block

30 vertices reachable from the vertex A

A

Figure 17: The potential neighbors of a typical vertex A.

For n not divisible by 6 we build the construction above with ` = bn/6c.
We split the remaining n − 6bn/6c vertices into two groups of no more than 3
vertices each, and place one group with l1 vertices to the left and one group
with l2 vertices on to the right of the resulting arrangement.

15 + l2 vertices reachable from the vertex A or F

A

B

21 + l2 vertices reachable from the vertex D or E

27 + l2 vertices reachable from the vertex B or C

C D E F

Figure 18: The potential neighbors of vertices close to the boundary.

The possible connections with the newly introduced vertices are illustrated
in Fig. 18. Since l1, l2 ≤ 3, no vertex has degree greater than 29. �
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4 Local saturation

4.1 Simple drawings

The lower bound in [4] on the number of edges in a saturated simple topological
graph is based on the following lemma.

Lemma 10 ([4]) Let G be a simple topological graph with at least four vertices,
and let A be a vertex of degree at most two. Then G has a simple extension by
an edge incident to A.

This lemma implies that in a simple saturated topological graph with at
least four vertices, every vertex must have degree at least three, and hence the
number of edges is at least 1.5n. Can we improve the bound on the edge number
by strengthening the lower bound on the degree? The following considerations
establish a limit to this approach: There are saturated graphs with minimum
degree four.

We say that a vertex S in a simple topological graph is saturated if it cannot
be connected to a non-adjacent vertex while maintaining simplicity. The above
lemma implies that in a simple topological graph with at least four vertices, a
saturated vertex must have degree at least three.

Observation 1 For any positive integer n ≥ 6, there is a simple topological
graph on n vertices with a saturated vertex of degree four.

...

...

Figure 19: The boxy vertex of degree four is saturated.

The observation is due to the construction presented in Fig. 19. This example
is an extension of the case n = 6 from [4, Fig. 2]. The topmost vertex is
saturated, since only the straight edges are not incident to that vertex. It is
easy to see, that in order to connect a vertex p to the degree four vertex, one
has to cross an edge incident to p before reaching p.

The following lemma presents a construction that realizes small vertex de-
grees for many vertices.

Lemma 11 For any positive integer `, there exists a saturated simple topological
graph on 10` vertices with ` vertices of degree 5.
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Figure 20: In the simple topological graph above, the central vertex has degree 5,
and it cannot be connected by an edge to any point in the unbounded region
while keeping simplicity.

Proof: The main idea of our construction is depicted in Fig. 20. A simple case
distinction verifies that no edge can connect the central vertex with a point on
the outer face without violating the simplicity of drawing.

Now, take ` copies of the drawing in Fig. 20, and place them on the plane
next to each other such that the interior faces of the copies are non-overlapping.
The ` copies of the central vertex will remain degree-5 vertices no matter how
we saturate the graph. �

4.2 2-simple drawings

To study local saturation in 2-simple case we use a slight modification of the
3-block introduced in Sect. 3; see Fig. 21.

A

12 vertices reachable from A

Figure 21: The rightmost vertex A cannot be connected to any vertex that
belongs to the leftmost (unbounded) face without violating 2-simplicity.

By the arguments given in the proof of Theorem 2 the rightmost vertex
can be connected to only 12 other vertices (Fig. 21) and thus it cannot be
connected to any vertex that belongs to the leftmost (unbounded) face of the
drawing without violating 2-simplicity.

The “unrolling” of this configuration from the cylinder to the plane (with
center of the unrolling in the rightmost vertex) is presented in Fig. 22. The
central vertex cannot be connected by an edge to any vertex that belongs to the
unbounded region without violating 2-simplicity, and so it has degree no larger
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C

Figure 22: Unrolling of Fig. 21 to the plane. The central vertex C corresponds
to the rightmost vertex A of Fig. 21.

than 12 in any saturation. After placing ` disjoint copies of this construction to
the plane next to each other we obtain the following result:

Lemma 12 For any positive integer `, there exists a saturated 2-simple topo-
logical graph on 16` vertices with ` vertices of degree 12.

5 Open Problems

The main open problem is obviously to close the gaps between the upper and
lower bounds. It is somehow intriguing that it is unclear if the function sk(n)/n
is increasing, decreasing or non-monotone in k.

We expect that the lower bounds are not tight and that the true value of
sk(n)/n is closer to the upper bounds. In fact, the lower bound constructions
are rather elementary and ignore many facets of the problem by looking only
at the minimal vertex degree [4]. Even though we showed in Sect. 4 that this
strategy is limited, we think that a more careful execution with a clever case
distinction could improve the current lower bounds.
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