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Abstract

Research about crossings is typically about minimization. In this pa-
per, we consider maximizing the number of crossings over all possible ways
to draw a given graph in the plane. Alpert et al. [Electron. J. Combin.,
2009] conjectured that any graph has a convex straight-line drawing, that
is, a drawing with vertices in convex position, that maximizes the number
of edge crossings. We disprove this conjecture by constructing a planar
graph on twelve vertices that admits a non-convex drawing with more
crossings than any convex drawing. Bald et al. [Proc. COCOON, 2016]
showed that it is NP-hard to compute the maximum number of crossings
of a geometric graph and that the weighted geometric case is NP-hard to
approximate. We strengthen these results by showing hardness of approx-
imation even for the unweighted geometric case. We also prove that the
unweighted topological case is NP-hard.
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1 Introduction

While traditionally in graph drawing one wants to minimize the number of edge
crossings, we are interested in the opposite problem. Specifically, given a graph
G, what is the maximum number of edge crossings possible, and what do em-
beddings1 of G that attain this maximum look like? Such questions have first
been asked as early as in the 19th century [3, 23]. Perhaps due to the coun-
terintuitive nature of the problem (as illustrated by the disproved conjecture
below) and due to the lack of established tools and concepts, little is known
about maximizing the number of crossings.

Besides its theoretical appeal, motivation for this problem can be found in
analyzing the worst-case scenario when edge crossings are undesirable but the
placement of vertices and edges cannot be controlled.

There are three natural variants of the crossing maximization problem in the
plane. In the topological setting, edges can be drawn as curves, so that any pair
of edges crosses at most once, and adjacent edges do not cross. In the straight-
line variant (known for historical reasons as the rectilinear setting), edges must
be drawn as straight-line segments. If we insist that the vertices are placed in
convex position (e.g., on the boundary of a disk or on the vertices of a convex
polygon) and the edges must be routed in the interior of their convex hull, the
topological and rectilinear settings are equivalent, inducing the same number
of crossings: the number only depends on the order of the vertices along the
boundary of the disk. In this convex setting, a pair of edges crosses if and only
if its endpoints alternate along the boundary of the convex hull.

The topological setting. The maximum crossing number was introduced by
Ringel [20] in 1963 and independently by Grünbaum [10] in 1972.

Definition 1 ([21]) The maximum crossing number of a graph G, max-cr(G),
is the largest number of crossings in any topological drawing of G in which no
three distinct edges cross in one point and every pair of edges has at most one
point in common (a shared endpoint counts, touching points are forbidden).

In particular, max-cr(G) is the maximum number of crossings in the topolog-
ical setting. Note that only independent pairs of edges, that is those edge pairs
with no common endpoint, can cross. The number of independent pairs of edges
in a graphG = (V,E) is given by M(G) :=

(|E|
2

)
−
∑
v∈V

(
deg(v)

2

)
, a parameter in-

troduced by Piazza et al. [18]. For every graph G, we have max-cr(G) ≤M(G),
and graphs for which equality holds are known as thrackles or thrackable [26].
Conway’s Thrackle Conjecture [15] states that max-cr(G) = M(G) implies
|E(G)| ≤ |V (G)|. If true, thrackles are precisely the pseudoforests (graphs
in which every connected component has at most one cycle) in which there is
no cycle of length four and at most one odd cycle [26].

1We consider only embeddings where vertices are mapped to distinct points in the plane
and edges are mapped to continuous curves containing no vertex points other than those of
their end vertices.
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Another famous open problem is the Subgraph Problem posed by Ringeisen
et al. [19]: Is it true that whenever H is a subgraph or induced subgraph of G,
then we have max-cr(H) ≤ max-cr(G)? Note that this statement is not trivially
true as a drawing of H with max-cr(H) crossings might not be extendable to a
drawing of G satisfying the requirements in Definition 1 above.

Let us remark that allowing pairs of edges to only touch without properly
crossing each other, would indeed change the problem. For example, the 4-cycle
C4 has two pairs of independent edges, and C4 can be drawn with one pair
crossing and the other pair touching, but C4 is not thrackable; it is impossible
to draw C4 with both pairs crossing, i.e., max-cr(C4) is 1 and not 2.

It is known that max-cr(Kn) =
(
n
4

)
[20] and that every tree is thrackable, i.e.,

max-cr(G) = M(G) whenever G is a tree [18]. We refer to Schaefer’s survey [21]
for further known results on the maximum crossing numbers of several graph
classes.

The straight-line setting. The maximum rectilinear crossing number was
introduced by Grünbaum [10]; see also [7].

Definition 2 The maximum rectilinear crossing number of a graph G,
max-cr(G), is the largest number of crossings in any straight-line drawing of G.

For every graph G, we have max-cr(G) ≤ max-cr(G) ≤ M(G), where
each inequality is strict for some graphs, while equality is possible for other
graphs. For example, for the n-cycle Cn we have max-cr(Cn) = max-cr(Cn) =
M(Cn) = n(n− 3)/2 for odd n [26], while max-cr(Cn) = M(Cn)− n/2 + 1 and
max-cr(Cn) = M(Cn) for even n 6= 4 [1, 24]. For further rectilinear crossing
numbers of specific graphs we again refer to Schaefer’s survey [21].

For several graph classes, such as trees, the maximum (topological) crossing
number is known exactly, while little is known about the maximum rectilin-
ear crossing number. Verbitsky [25] studied the maximum rectilinear crossing
number, which he called the obfuscation number, restricted to planar graphs.
He showed that max-cr(G) < 3n2 for any n-vertex planar graph G. For maxi-
mally planar graphs, that is, triangulations, Kang et al. [13] gave a (56/39− ε)-
approximation for computing the maximum rectilinear crossing number.

The convex setting. It is easy to see that in the convex setting we may
assume, without loss of generality, that all vertices are placed on a circle and
edges are drawn as straight-line segments. In fact, if the vertices are in convex
position and edges are routed in the interior of the convex hull of all vertices,
then a pair of edges is crossing if and only if the vertices of the two edges
alternate in the circular order along the convex hull.

Definition 3 The maximum convex crossing number of a graph G, max-cr◦(G),
is the largest number of crossings in any drawing of G where the vertices lie on
the boundary of a disk and the edges in the interior.
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From the definitions we now have that, for every graph G,

max-cr◦(G) ≤ max-cr(G) ≤ max-cr(G) ≤M(G), (1)

but this time it is not clear whether or not the first inequality can be strict. It
is tempting (and rather intuitive) to say that in order to get many crossings in
the rectilinear setting, all vertices should always be placed in convex position.
In other words, this would mean that the maximum rectilinear crossing number
and maximum convex crossing number always coincide. Indeed, this has been
conjectured by Alpert et al. in 2009.

Conjecture 1 (Alpert et al. [1]) Any graph G has a drawing with vertices in
convex position that has max-cr(G) crossings, that is, max-cr(G) = max-cr◦(G).

Our contribution. Our main result is that Conjecture 1 is false. We provide
several counterexamples in Section 3. There we first present a rather simple
analysis for a counterexample with 37 vertices. We then improve upon this by
showing that the planar 12-vertex graphs shown in Figure 5 (d) are counterex-
amples as well. Before we get there, we discuss the four parameters in (1) and
relations between them in more detail, and introduce some new problems in Sec-
tion 2. Finally, in Section 4, we investigate the complexity and approximability
of crossing maximization and show that the topological problem is NP-hard,
while the rectilinear problem is even hard to approximate.

2 Preliminaries and Basic Observations

Here we discuss the chain of inequalities in (1) and extend it by several items.
Recall that for a graph G, M(G) denotes the number of independent pairs of
edges in G. By (1), we have that max-cr◦(G) ≤M(G). We will show that this
inequality is tight up to a factor of 3. The first part of the next lemma is due
to Verbitsky [25].

Lemma 1 For every graph G, we have max-cr◦(G) ≥M(G)/3. Moreover, if G
has chromatic number at most 3, then max-cr◦(G) ≥M(G)/2.

Proof: First, let G be any graph. We place the vertices of G on a circle in
a circular order chosen uniformly at random from the set of all their circular
orders. Then each pair of independent edges of G is crossing with probability 1/3
since among the six possible orders of the endpoints, only two yield a crossing.
Hence, there must be an ordering witnessing max-cr◦(G) ≥M(G)/3.

Second, assume that G can be properly colored with at most three colors.
In this case we place the vertices of G on a circle in such a way that the three
color classes occupy three pairwise disjoint arcs. In each color class, we order
the vertices randomly, choosing each linear order with the same probability.
Doing this independently for each color class, each pair of independent edges
is crossing with probability 1/2. Hence, the expected number of crossings is
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Figure 1: The smallest tree G that is not a caterpillar with a topological drawing
with max-cr(G) = M(G) = 9 crossings (left), a 2-layer drawing with bcr(G) = 1
crossings (middle) and a 2-layer drawing with max-cr(G) = M(G)−bcr(G) = 8
crossings (right).

M(G)/2, which, by the pigeon-hole principle, implies that there must be an
ordering witnessing max-cr◦(G) ≥M(G)/2. �

By Lemma 1 we can extend the chain of inequalities in (1) as follows: For
every graph G, we have

M(G)/3 ≤ max-cr◦(G) ≤ max-cr(G) ≤ max-cr(G) ≤M(G). (2)

The constant 1/3 in the first inequality in (2) cannot be improved: Consider the
six edges connecting a 4-tuple of vertices in a rectilinear drawing of the complete
graph Kn. There is exactly one crossing among them if the four vertices are
in convex position, and there is no crossing among them otherwise. It follows
that the maximum rectilinear crossing number of Kn is attained if and only
if the vertices are in convex position, and in this case there are M(Kn)/3 =(
n
4

)
crossings. Since Ringel [20] proved that max-cr(Kn) =

(
n
4

)
, we get that

max-cr◦(Kn) = max-cr(Kn) = max-cr(Kn) = M(Kn)/3 =
(
n
4

)
.

We now introduce another item in the chain of inequalities (2). We say that
a rectilinear drawing of a graph G is separated if there is a line ` that intersects
every edge of G. Clearly, this is only possible if G is bipartite and in this case
the line ` separates the vertices of the two color classes of G.

Particularly nice are 2-layer drawings where the vertices of the two color
classes are required to be placed on two parallel lines; see Fig. 1. It is easy to
see that drawing bipartite graphs in the 2-layer model is equivalent to separated
drawings with vertices in convex position. In this 2-layer model, the minimum
number of crossings of a bipartite graph G has been studied under the name
bipartite crossing number, denoted bcr(G).

Lemma 2 For every bipartite graph G, the maximum number of crossings
among all 2-layer drawings of G is exactly M(G)− bcr(G).

Proof: Consider any separated convex drawing of any bipartite graph G. A pair
of independent edges is crossing if and only if their endpoints alternate along
the convex hull. So if e1 = u1v1 and e2 = u2v2 with u1, u2 being above the
separating line ` and v1, v2 below, then e1 and e2 are crossing if in the circular
order we see u1 − u2 − v1 − v2, and non-crossing if we see u1 − u2 − v2 − v1.
In particular, reversing the order of all vertices below the separating line `
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transforms crossings into non-crossings and vice versa. This shows that for a
separated convex drawing with k crossings, reversing results in exactly M(G)−k
crossings, which concludes the proof. �

Note that, for any bipartite graph G, the proof of Lemma 1 gives a 2-layered
drawing of G with at least M(G)/2 crossings. Clearly, this is a lower bound
for the maximum number of crossings over all two-layered drawings of G. This
number is specified by Lemma 2 and trivially upperbounded by the maximum
number of crossings over all convex drawings of G. Hence, we can extend the
chain of inequalities (2) as follows for every bipartite graph G:

M(G)/2 ≤M(G)− bcr(G) ≤ max-cr◦(G) ≤ max-cr(G) ≤ max-cr(G) ≤M(G).
(3)

It remains open whether the new inequality M(G) − bcr(G) ≤ max-cr◦(G)
in (3) is attained with equality for every bipartite graph G. For example, for a
tree G it is known, see e.g. [26], that max-cr(G) = M(G), but it is not hard to see
that max-cr(G) = M(G) if and only if G is a caterpillar2. (Hence max-cr(G) <
max-cr(G) holds for every tree which is not a caterpillar.) Moreover, it is equally
easy to see that a tree G has a crossing-free 2-layer drawing if and only if G is
a caterpillar. Thus, for every tree G, we have that M(G) − bcr(G) = M(G) if
and only if max-cr(G) = M(G). We again refer to Fig. 1 for an illustration.

The extended chain of inequalities (3) leads to two natural questions:

Problem 1 Does every bipartite graph G have a separated drawing with
max-cr(G) many crossings? Does every tree G have a separated convex drawing
with max-cr(G) crossings, i.e., is max-cr(G) = M(G)− bcr(G)?

It was Garey and Johnson [8] who showed that bipartite crossing minimiza-
tion is NP-hard for multigraphs. Schaefer [21, Footnote 33] showed how to
adjust the proof for simple graphs. The problem remains NP-hard if the or-
dering of the vertices on one side is prescribed [6]. On trees, bipartite crossing
minimization can be solved efficiently [22]. For the one-sided two-layer crossing
minimization, Nagamochi [16] gave an 1.47-approximation algorithm, improving
upon the well-known median heuristic, which yields a 3-approximation [6]. The
weighted case, which we define formally in Section 4, admits a 3-approximation
algorithm [5].

3 Counterexamples for Conjecture 1

In this section we present counterexamples for the convexity conjecture. After
some preliminary work we provide a counterexample H(4) on 37 vertices. To
show that this graph is a counterexample, we need to analyze only two cases.
(To show that H(2) with 19 vertices also is a counterexample would require
more work. Instead, in Appendix A, we prove that a certain planar subgraph
of H(2) with only 12 vertices and 16 edges is already a counterexample.)

2A caterpillar is a tree in which all non-leaf vertices lie on a common path.



JGAA, 22(1) 67–87 (2018) 73

A set of vertices X ⊂ V in a graph G = (V,E) is a set of twins if all vertices
of X have the same neighborhood in G (in particular, since there are no self-
loops, X is an independent set). The twin relation is an equivalence relation and
thus the vertex set of any graph naturally partitions into its inclusion maximal
vertex subsets that are pairwise twins. A vertex split of vertex v in G consists
in adding a new vertex v′ to G such that v′ is a twin of v, that is, for any edge
vu, there is an edge v′u, and these are all the edges at v′.

Lemma 3 For any graph G there is a convex drawing of G maximizing the
number of crossings among all convex drawings of G, such that each set of twins
forms an interval of consecutive vertices along the convex hull of the drawing.

Proof: Suppose V1, . . . , Vs are the maximal sets of twins in G. Consider a
convex drawing of G maximizing the number of crossings. It clearly suffices to
show that for any set Vi we may move all the points of Vi next to one of the
points of Vi without decreasing the number of crossings, since this procedure
done iteratively s times, once for each of the sets V1, . . . , Vs, results in a desired
convex drawing of G.

We call a crossing k-rich with respect to Vi if there are k vertices of Vi among
the four vertices of the edges forming the crossing. For any fixed i, since Vi is
independent, the set of all crossings partitions into 0-rich, 1-rich, and 2-rich
crossings with respect to Vi. If we move only vertices of Vi then 0-rich crossings
remain in the drawing. If the vertices of Vi appear in consecutive order along
the convex hull of the drawing then the number of 2-rich crossings is maximized
due to the following argument. For any two vertices u, v of Vi and for any two
neighbors x, y of Vi, the 4-cycle uxvy is self-crossing which gives rise to a 2-
rich crossing. Since every 2-rich crossing appears in a single 4-cycle and every
4-cycle can give rise to at most one crossing, the number of 2-rich crossings is
indeed maximized whenever the vertices of Vi appear in consecutive order along
the convex hull. It remains to show that there is a vertex v in Vi such that we
can move the other vertices next to v without decreasing the number of 1-rich
crossings. Each 1-rich crossing involves exactly one vertex of Vi. The number
of 1-rich crossings involving a given vertex of Vi is affected only by the position
of that vertex and of the vertices of V \ Vi. Thus, if we choose v ∈ Vi as the
vertex involved in the largest number of 1-rich crossings and move all the other
vertices of Vi next to v, every vertex will be involved in at least as many 1-rich
crossings as it was before the vertices were moved. �

The construction of H(k). For the construction of our example graphs
H(k), we start with a 9-cycle on vertices v0, . . . , v8 with edges vivi+1 where
i + 1 is to be taken modulo 9. Add a ‘central’ vertex z adjacent to v0, v3, v6.
This graph on 10 vertices is the base graph H. The example graph H(k) is ob-
tained from H by considering each vertex vi on the 9-cycle and applying k − 1
consecutive vertex splits of vi. The graph H(k) thus consists of nine indepen-
dent sets Vi of size k and the central vertex z. In total it has 9k + 1 vertices
and 9k2 + 3k edges. Figure 2 (left) shows a schematic drawing of H(k), where
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v0
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Figure 2: Left: A simplified version of the graph H(k). Each white circle
represents k independent vertices, each black line segment represents a bundle
of k2 edges, each gray line segment represents k edges. Right: A non-convex
drawing of the simplified version of H(k).

each black edge represents a “bundle” of k2 edges of H(k) and each gray edge
represents a set of k edges. We will show that for k ≥ 4 the drawing in Fig. 2
(right) has more crossings than any drawing with vertices in convex position.

From Lemma 3 we know that, in convex drawings of H(k) with many cross-
ings, the twin pairs of vertices can be assumed to be next to each other. Draw-
ings of H(k) of this kind are essentially determined by the corresponding draw-
ings of H, in which each set of twins is represented just by one representative;
see Fig. 2. This justifies that later on we only look at convex drawings of H
with weighted crossings, and not of the full H(k).

An independent set of edges of H(k) is weak if the corresponding edges in
the base graph H are not independent; it is strong otherwise. The next lemma
shows that our non-convex drawing of H(k) realizes as many crossings on weak
pairs of independent edges as possible. This allows us to focus on strong pairs
in the subsequent analysis. We remark that there are also convex drawings of
H(k) realizing that many crossings on weak edge pairs.

Lemma 4 The drawing of H(k) on the right side of Fig. 2 maximizes the num-
ber of crossings on weak pairs of independent edges.

Proof: Each edge vivi+1 of H maps to a Kk,k in H(k). In the given drawing
the Kk,k is represented by a black edge. Since Vi, Vi+1 are in separated convex

position the Kk,k contributes
(
k
2

)
·
(
k
2

)
crossings.

A pair of adjacent edges vi−1vi and vivi+1 in H maps to a Kk,2k in H(k). We

know that max-cr(Kk,2k) =
(
k
2

)(
2k
2

)
and this number of crossings is realized with

separated convex position. In the drawing Vi and Vi−1 ∪ Vi+1 are in separated
convex position.

A pair of adjacent edges viz and vivi+1 in H maps to a Kk,k+1 in H(k). Now

we have max-cr(Kk,k+1) =
(
k
2

)(
k+1
2

)
, and this number of crossings is realized

with separated convex position of the vertices. In the drawing Vi, Vi+1 ∪ {z}
are in separated convex position. The case of adjacent edges viz and vi−1vi is
identical. �
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The remaining crossings of the drawing of H(k) correspond to crossings of
two independent edges of H. These are either two black edges or a black and a
gray edge of H. Black edges represent a bundle of k2 edges of H(k) and gray
edges a bundle of k edges of H(k). Hence a crossing of two black edges represents
k4 individual crossing pairs and a crossing of a black and a gray edge represents
k3 individual crossing pairs. We devide by k3 and speak about two independent
black edges as a pair of weight k and of a black and a gray edge as a pair of
weight 1. In the given non-convex drawing of H(k) every pair of independent
black edges is crossing but every black edge has a unique independent gray edge
which it does not cross. Hence, the total weight of the independent non-crossing
pairs of edges of H is 9. We summarize by saying that the given non-convex
drawing of H(k) has a weighted loss of 9 with respect to its strong pairs of
independent edges.

The loss of convex drawings. We now study the weighted loss of convex
drawings of H. In a convex drawing every black edge splits the 7 non-incident
cycle vertices into those on one side and those on the other side. The span of a
black edge is the number of vertices on the smaller side. Hence, the span of an
edge is one of 0, 1, 2, 3.

First, consider the case where the 9-cycle is drawn with zero loss, i.e., each
black edge has span 3 and contributes a crossing with 6 other black edges.
The cyclic order of the cycle vertices is v0, v2, v4, v6, v8, v1, v3, v5, v7. Any two
neighbors of z have the same distance in this cyclic order. Therefore, we may
assume that z is in the short interval spanned by v0 and v6. Every edge of
the 9-cycle is disjoint from at least one of the two gray edges zv0 and zv6 and
the edge v7v8 is disjoint from both. This shows that the weighted loss of this
drawing is at least 10.

Second, consider the case where the 9-cycle is not drawn with zero loss, i.e.,
at least one black edge has span at most 2. A sequence of eight consecutive
edges of span 3 forces the last edge to also have span 3. Hence, we have at least
two black edges e and f of span at most 2. Each of these edges is disjoint from
at least two independent black edges. Since the two edges may be disjoint they
contribute a weighted loss of at least 3k. For k ≥ 4 this exceeds the weighted
loss of the drawing of Fig. 2.

We summarize the above discussion as follows.

Theorem 1 For any k ≥ 4, it holds that max-cr(H(k)) > max-cr◦(H(k)), that
is, H(k) has a straight-line drawing with more crossings than any straight-line
drawing of H(k) with vertices in convex position.

4 Complexity

Very recently, Bald et al. [2] showed, by reduction from MaxCut, that it is
NP-hard to compute the maximum rectilinear crossing number max-cr(G) of a
given graph G. Their reduction also shows that it is hard to approximate the
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weighted case better than ≈ 0.878 assuming the Unique Games Conjecture and
better than 16/17 assuming P 6= NP. In the convex case, one can “guess” the
permutation; hence, this special case is in NP. Bald et al. also stated that
rectlinear crossing maximization is similar to rectilinear crossing minimization
in the sense that the former “inherits” the membership in the class of the exis-
tential theory of the reals (∃R), and hence in PSPACE, from the latter. They
also showed how to derandomize Verbitsky’s approximation algorithm [25] for
max-cr, turning the expected approximation ratio of 1/3 into a deterministic
one.

We now tighten the hardness results of Bald et al. by showing APX-hardness
for the unweighted case. Recall that MaxCut is NP-hard to approximate be-
yond a factor of 16/17 [12]. Under the Unique Games Conjecture, MaxCut
is hard to approximate even beyond a factor of ≈ 0.878 [14]—the approxima-
tion ratio of the famous semidefinite programming approach of Goemans and
Williamson [9] for MaxCut. For a graph G, let max-cut(G) be the maximum
number of edges crossing a cut, over all cuts of G.

Theorem 2 Given a graph G, max-cr(G) cannot be approximated better than
MaxCut.

Proof: As Bald et al., we reduce from MaxCut. In their reduction, they add a
large-enough set I of independent edges to the given graph G. They argue that
max-cr(G+ I) is maximized if the edges in I behave like a single edge with high
weight that is crossed by as many edges of G as possible. Indeed, suppose for
a contradiction that, in a drawing with the maximum number of crossings, an
edge e ∈ I crosses fewer edges than another edge e′ in I. Then e can be drawn
such that its endpoints are so close to the endpoints of e′ that both edges cross
the same edges—and each other. This would increase the number of crossings;
a contradiction. Without loss of generality, we can make the “heavy edge” so
long that its endpoints lie on the convex hull of the drawing. This means that
the heavy edge induces a cut of G. The cut is maximum since the heavy edge
can be made arbitrarily heavy.

Instead of adding a set I of independent edges to G, we add a star St with
t =

(
m
2

)
+ 1 edges, where m = |E(G)|. Then, max-cr(G) < t. The advantage of

the star is that all its edges are incident to the same vertex and, hence, cannot
cross each other. Let G′ = G + St be the resulting graph. Exactly as for the
set I above, we argue that all edges of St must be crossed by the same number
of edges of G, and must in fact form a cut of G. Hence, we get

t·max-cut(G) ≤ max-cr(G′) ≤ t·max-cut(G)+max-cr(G) < t·(max-cut(G)+1).

This yields max-cut(G) = bmax-cr(G′)/tc. Hence, any α-approximation for
maximum rectilinear crossing number yields an α-approximation for MaxCut.

�

With the same argument, we also obtain hardness of approximation for
max-cr◦, which Bald et al. [2] showed to be NP-hard. The reason is that in
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the convex setting, too, the “heavy obstacle” splits the vertex set into a “left”
and a “right” side.

Corollary 1 Given a graph G, max-cr◦(G) cannot be approximated better than
MaxCut.

Next we consider the weighted topological case, which formally is defined
as follows. For a graph G with positive edge weights w : E → Q>0 and a
drawing D of G, let X be the set of (unordered) pairs of edges that cross in D,
let wt-cr(D) =

∑
{e,e′}∈X w(e) · w(e′) be the weighted crossing number of D,

and let max-wt-cr(G) be the maximum weighted crossing number of G, that is,
the maximum of wt-cr(D) over every drawing D of G. We refer to the problem
of computing this number for a given graph as weighted crossing maximization.

Compared to the rectilinear and the convex case above, the difficulty of
the topological case is that an obstacle (such as the heavy star above) does
not necessarily separate the vertices into “left” and a “right” groups any more.
Instead, our new obstacle separates the vertices into an “inner” group and an
“outer” group, which allows us to reduce from a cut-based problem.

Our new starting point is the NP-hard problem 3MaxCut [27], which is the
special case of MaxCut where the input graph is required to be 3-regular.

Theorem 3 Given an edge-weighted graph G and a rational number c > 0, it
is NP-complete to decide whether max-wt-cr(G) ≥ c.

Proof: Clearly, topological crossing maximization is in NP since we can guess a
rotation system for the given graph and, for each edge, the ordered subset of the
other edges that cross it. In polynomial time, we can then check whether (a) the
weights of the crossings sum up to the given threshold c, and (b) the solution
is feasible, simply by realizing the crossings via dummy vertices of degree 4 and
testing for planarity of the so-modified graph.

To show NP-hardness, we reduce from 3MaxCut. Given an instance of
3MaxCut, that is, a 3-regular graph G and an integer k > 0, we construct an
instance of topological crossing maximization, that is, a weighted graph G′ and
a rational number c′ > 0 such that G has a cut crossed by at least k edges if
and only if G′ has a drawing with weighted crossing number at least c′. Let G′

be the disjoint union of G with edges of weight 1 and a single triangle T with
edges of (large) weight t. Let n be the number of vertices and m the number of
edges of G. Due to the 3-regularity of G, we have m = 3n/2. We set t = 9n2/8
and c′ = t(2m+ k).

Let (V1, V2) be a solution of 3MaxCut, that is, a cut of G crossed by k
edges. We need to show that this implies max-wt-cr(G′) ≥ c′. We construct a
drawing D′ of G′ as in Fig. 3. For i ∈ {1, 2}, let Ei be the edge set of G[Vi].
We can route the edges of G such that each of the k edges in the cut crosses
all three edges of T and each of the m− k edges in E1 ∪E2 crosses exactly two
edges of T . Hence, max-wt-cr(G′) ≥ max-wt-cr(D′) ≥ t(3k + 2(m− k)) = c′ as
desired.
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E2

E1

T E \ E1 \ E2

V1V2

V1

H

V2

V3

C4

Figure 3: Given a 3-regular graph G, a draw-
ing of G′ = G+T with many crossings yields
a large cut of G if the edges of the trian-
gle T have much larger weight than the edges
of G. The edges (in the light blue region)
that cross T three times are in the cut.

Figure 4: A crossing-maximal
drawing of the complete tri-
partite graphKk,k,k for k = 3.

Conversely, let D′ be any drawing of G′ and let c′ = wt-cr(D′). We need
to show that G = G′ − T has a cut that is crossed by at least bc′/tc − 2m
edges. As incident edges cannot cross, the triangle T of G′ must be drawn in D′

without self-crossings. Since max-cr(G) ≤
(
m
2

)
=
(
3n/2
2

)
< 9n2/8 = t, we have

that x = bc′/tc is the number of crossings between edges of G and edges of T .
Let V1 be the set of vertices of G in the interior of T , and let V2 = V \ V1.
Consider the cut (V1, V2), and let k be the number of edges crossing this cut.
Each of these k edges contributes at most 3 to x, and each of the m− k edges
that lie in G[V1] or G[V2] contributes at most 2 to x (as in Fig. 3). Hence,
x ≤ 3k + 2(m− k) = k + 2m, and k ≥ x− 2m = bc′/tc − 2m as desired.

Clearly, our reduction takes polynomial time. �

In Appendix B we argue why it is unlikely that weighted crossing maximiza-
tion admits a PTAS.

We now set out to strengthen the result of Theorem 3; we want to show
that even the maximum unweighted crossing number is hard to compute. Ob-
serve that in the above proof, the given graph G from the 3MaxCut instance
remained unweighted, but we required a heavily weighted additional triangle T .
Our goal is now, essentially, to substitute T with an unweighted structure that
serves the same purpose. Unfortunately, due to the large number of crossings of
this new structure, we cannot make any statement about non-approximability of
the unweighted case. The näıve approach of simply adding multiple unweighted
triangles does not easily work since already the entanglement of the triangles
among each other is non-trivial to argue.

Theorem 4 Given a graph G and an integer c > 0, it is NP-complete to decide
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whether max-cr(G) ≥ c.

Proof: The membership in NP follows from Theorem 3. To argue hardness,
given an instance G of 3MaxCut, we construct an unweighted graph G′—the
instance for computing max-cr(G′)—as the disjoint union of G and a complete
tripartite graph K := Kk,k,k with k vertices per partition set, k >

√
9/8 · n. A

result of Harborth [11] yields max-cr(K) =
(
3k
4

)
− 3
(
k
4

)
− 6k

(
k
3

)
∈ Θ(k4).

We first analyze a crossing-maximal drawing of K; see Fig. 4. Consider a
straight-line drawing “on a regular hexagon H”. Let V1, V2, V3 be the partition
sets of K and label the edges of H cyclically 1, 2, . . . , 6. Place Vi, 1 ≤ i ≤ 3,
along edge 2i of H. We claim that max-cr(K) is achieved by this drawing.
In fact, the arguments are analogous to the maximality of the näıve drawing
for complete bipartite graphs on two layers: a 4-cycle can have at most one
crossing. In the above drawing, every 4-cycle has a crossing. On the other
hand, any crossing in any drawing of K is contained in a 4-cycle.

Intuitively, when thinking about shrinking the sides 2, 4, 6 in H, we obtain
a drawing akin to T in the hardness proof for the maximum weighted crossing
number. It remains to argue that there is an optimal drawing of the full graph G′

where K is drawn as described. Consider a drawing realizing max-cr(G′) and
note that any triangle in K is formed by a vertex triple, with a vertex from
each partition set. Pick a triple τ = (v1, v2, v3) ∈ V1 × V2 × V3 that induces
a triangle Tτ with the maximum number of crossings with G among all such
triangles. Now, redraw K along Tτ according to the above drawing scheme such
that, for i = 1, 2, 3, it holds that (a) all vertices of Vi are in a small neighborhood
of vi and (b) any edge wiwj with wi ∈ Vi, wj ∈ Vj for some j 6= i crosses exactly
the same edges of G as the edge vivj . Our new drawing retains the same
crossings within G′, achieves the maximum number of crossings within K, and
does not decrease the number of crossings between K and G; hence it is optimal.
In this drawing, K plays the role of the heavy triangle T in the hardness proof
of the weighted case, again yielding NP-hardness. �

5 Conclusions and Open Problems

We have considered the crossing maximization problem in the topological, rec-
tilinear, and convex settings. In particular, we disproved a conjecture of Alpert
et al. [1] that the maximum crossing number in the latter two settings always
coincide. On the other hand, we propose a new setting, the “separated draw-
ing” setting, and ask whether for every bipartite graph the maximum rectilinear,
maximum convex, maximum separated, and maximum separated convex cross-
ing numbers coincide.

Concerning complexity, we have shown that the maximum rectilinear cross-
ing number is APX-hard and the maximum topological crossing number is NP-
hard. A natural question then is whether the maximum topological crossing
number is also APX-hard. We have shown this to be true in the weighted topo-
logical case. It also remains open whether rectilinear crossing maximization is
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in NP, which would have followed if the rectilinear and convex setting were
equivalent as conjectured by Alpert et al.. A reviewer of an earlier version of
this paper was wondering about the complexity of maximum crossing number
for planar graphs. For planar graphs, MaxCut is tractable and our hardness
arguments no longer apply, leaving open the question of the complexity of com-
puting the maximum crossing number for this graph class. Another reviewer
recalled that minimizing crossings with a fixed rotation scheme is NP-hard [17]
and wondered about the corresponding maximization problem.

Other intriguing crossing maximization problems remain open: apart from
the two classic problems that we mentioned above—Conway’s Thrackle Conjec-
ture and Ringeisen’s Subgraph Problem—we are interested in the separation of
the rectilinear and the separated convex setting for bipartite graphs.
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Appendix

A Counterexamples with 12 Vertices

Here we provide three similar graphs with 12 vertices and 16 edges violating the
convexity conjecture (Conjecture 1). Note that each graph is planar and has
maximum degree 4 or 5. This shows that the convexity conjecture is false also for
some natural graph classes such as planar graphs or graphs with maximum de-
gree at most four. Our proof is based on a relatively long case-analysis. Manfred
Scheucher independently verified by a computer search that these three graphs
indeed violate the convexity conjecture. Moreover, his unsuccessful attempts
to find a smaller counterexample with the use of computer search support our
feeling that the convexity conjecture might hold for all graphs on at most 11
vertices.

Let H be the graph with 10 vertices and 12 edges from the previous sub-
sections. We distinguish three types of vertices: A-vertices, B-vertices, and
C-vertices. The central vertex is the only A-vertex. The three vertices v0, v3, v6
of H connected to the central vertex are the B-vertices and the six vertices in H
of degree 2 are C-vertices. The three edges adjacent to the A-vertex are called
α-edges, the six edges connecting a B-vertex with a C-vertex are called β-edges
and the remaining three edges connecting independent pairs of C-vertices are
called γ-edges. The nine B- and C-vertices are cycle vertices, and the nine β-
and γ-edges forming a 9-cycle are called cycle edges.

γ

β α A

B

C
2 2

2 2

2 2

(a) H (b) W16 (c) W14

(d) the three possible graphs H16

Figure 5: (a) The graph H with one A-vertex (white), three B-vertices (gray),
six C-vertices (black), three α-edges (thick), six β-edges (gray), and three γ-
edges (dashed); (b) the weighted graph W16; (c) the weighted graph W14; (d) the
three possible graphs H16 with split vertices as white squares.

We choose H16 as a graph obtained from H by selecting a pair of non-
adjacent C-vertices and perfoming a single vertex split on each of these. Since
the C-vertices have degree 2 in H, each split introduces one vertex and two
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edges. Thus, the graph H16 has 12 vertices and 16 edges. Up to isomorphism,
H16 is one of the three planar graphs depicted in Fig. 5 (d). It corresponds to
the weighted graph W16 (see Fig. 5 (b)), which is the graph H with edge weights,
where two of the β-edges have weight two, two of the γ-edges have weight two,
and the remaining eight edges have weight one. Further, let W14 be the same
weighted graph with the exception that all the β-edges have weight one; see
Fig. 5 (c). Thus, only two γ-edges have weight two, otherwise the edges in W14

have weight one. Up to isomorphism, the graph W14 is uniquely determined
regardless of the graph H16.

We now give two lemmas used in the proof that H16 is a counterexample for
the convexity conjecture. We say that in a drawing an edge e avoids another
edge f if e and f are independent and non-crossing.

Lemma 5 In any drawing of H, any cycle edge avoids another edge.

Proof: Let e be a cycle edge. Then there is a 5-cycle Z consisting of edges
non-adjacent to e (the cycle Z contains two α-edges, two β-edges and one γ-
edge). There must be two consecutive vertices of Z lying on the same side of
the edge e in the considered drawing. The edge connecting these two vertices is
avoided by e. �

Lemma 6 In any convex drawing of H, any cycle edge of span s ∈ {0, 1, 2}
avoids at least 6− 2s cycle edges.

Proof: Let e be a cycle edge of span s. We first give an upper bound on the
number of edges incident to e. The edge e is incident to exactly one cycle edge
at each of its two vertices. Since every cycle edge intersecting e is incident to
one of the s cycle vertices of the “span interval” of e, at most 2s cycle edges
intersect e. Altogether, at most 2 + 2s cycle edges different from e have a point
in common with e. Since there are eight cycle edges different from e, the edge e
avoids at least 8− (2 + 2s) = 6− 2s cycle edges. �

We now fix a convex drawing D of H16 maximizing the number of crossings
and with twins placed next to each other. It gives a convex drawing of the

2

2

2

2
2

2

Figure 6: Non-convex drawing of W16 of weighted loss 13 (left), of W14 of
weighted loss 11 (middle), and of H16 with loss 13 with split vertices as white
squares (right).
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weighted graph W14 in the way described above. Since there is a non-convex
drawing of H16 with loss 13 as shown in Fig. 6, we need to show that the loss
of the drawing D of H16 is at least 14. From Lemma 5, applied on the drawing
D, the loss of H16 and the weighted loss of the corresponding drawing of W14

differ by at least two. Thus, it suffices to show that the weighted loss of the
drawing of W14 given by the drawing D is at least 12. Before proving it, we fix
some notation.

The nine B- and C-vertices of W14 are denoted by 1, 2, . . . , 9 in the coun-
terclockwise order in which they appear in the drawing D. Without loss of
generality we may assume that the B-vertices are 1, j, k, where 1 < j < k ≤ 9
and the vertex A lies in the counterclockwise interval (k, 1). In other words,
the three vertices k,A, 1 appear in this counterclockwise order along the convex
hull of the vertex set of D.

In the following, if a β-edge avoids a γ-edge in D, we say that there is
a βγ-avoidance. Similarly we define ββ-avoidances as avoidances of pairs of
the β-edges, and γγ-avoidances as avoidances of pairs of the γ-edges. Finally,
α∗-avoidances are avoidances of pairs of edges that contain an α-edge.

Lemma 7 There are at least 2(k − 2) α∗-avoidances.

Proof: Let X be the set of the k − 2 vertices 2, 3, . . . , k − 1. If a cycle edge
connects two vertices of X then it avoids the α-edges A1 and Ak. If a cycle
edge is incident to one of the vertices of X then it avoids one of the α-edges A1
and Ak. Thus, for each cycle edge e, the number of α-edges avoided by e is at
least as big as the number of incidences of e with X. Since the total number of
incidences of the vertices in X with the cycle edges is exactly 2|X| = 2(k − 2),
the number of α∗-avoidances is at least 2(k − 2). �

We now distinguish six cases.

Case 1: k = 3 and there is no γγ-avoidance. In this case the β-vertices
are 1, 2, 3 and the three γ-edges are 47, 58, and 69. Each of them has span 2
and therefore, by Lemma 6, it avoids at least two of the β-edges. Since the total
weight of the γ-edges is 5, the βγ-avoidances have total weight at least 10. Since
there are at least two α∗-avoidances by Lemma 7, we get that the weighted loss
of the drawing of W14 (i.e., the total weighted number of avoidances) is at least
12 in Case 1.

Case 2: k = 3 and there is a γγ-avoidance. The β-edge β4 containing the
vertex 4 has the five C-vertices 5, 6, 7, 8, 9 on the same side and therefore avoids
two γ-edges. Since any two γ-edges have total weight three or four, it follows
that β4 appears in βγ-avoidances of total weight at least three. By symmetry,
β9 also appears in βγ-avoidances of total weight at least three.

The edge β5 has the four C-vertices 6, 7, 8, 9 on the same side and therefore
avoids at least one γ-edge. By symmetry, β8 also avoids at least one γ-edge.

Summarizing, the edges β5, β6, β8, β9 appear in βγ-avoidances of total weight
at least 3 + 1 + 1 + 3 = 8. Additionally, there are two α∗-avoidances and there
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is a γγ-avoidance which is necessarily of weight two or four. It follows that the
avoidances have total weight at least 8 + 2 + 2 = 12.

Case 3: k = 4 and there is no γγ-avoidance. Without loss of generality,
we assume that the B-vertices are 1, 3, 4. Then the γ-edges are 27, 58, 69. The
edge 58 avoids the β-edges β2 and β9. Similarly, the edge 69 avoids the β-edges
β2 and β5. Since the edges 58 and 69 have total weight three or four, they
appear in βγ-avoidances of total weight at least 3 · 2 = 6.

The edge β2 avoids either the two β-edges incident to the C-vertex 1 or
the two β-edges incident to the C-vertex 4. Thus, there are at least two ββ-
avoidances. Also, there are at least four α∗-avoidances by Lemma 7. Altogether,
the avoidances have total weight at least 6 + 2 + 4 = 12.

Case 4: k = 4 and there is a γγ-avoidance. As in Case 3, we assume that
the B-vertices are 1, 3, 4. The edge β2 avoids two of the three γ-edges, which
gives two βγ-avoidances of total weight three or four. The edge β2 also avoids at
least one β-edge connecting one of the vertices 1 and 4 with one of the vertices
in the interval [5, 9].

Since there is a γγ-avoidance, the interval [5, 9] contains the vertices of a γ-
edge γ0 of span at most 1. (Note that there could additionally be γγ-avoidances
with γ-edges of span at least 2.) The edge γ0 avoids at least one γ-edge and at
least two β-edges different from β2 (for example, if γ0 connects vertices 6 and
8, it avoids the β-edges β5 and β9). The γγ-avoidance has weight two or four,
and the two βγ-avoidances have total weight at least two.

Summarizing, avoidances involving no α-edge have total weight at least 3 +
1 + 2 + 2 = 8. Since there are at least four α∗-avoidances by Lemma 7, all
avoidances have total weight at least 8 + 4 = 12.

Case 5: k = 5. The two β-edges with both vertices in the interval [1, 5] have
span at most 2, and therefore appear in at least four avoidances among cycle
edges. There are at least six α∗-avoidances by Lemma 7. It follows that there
are at least ten avoidances.

Since each of the two γ-edges of weight two avoids another edge, there are at
least two avoidances of weight two or an avoidance of weight four. We conclude
that all the avoidances have total weight at least 10 + 2 = 12.

Case 6: k ≥ 6. Suppose first that all nine cycle edges have span three. Then
the cycle edges form the cycle 162738495, The B-vertices are 1, 4, 7, the γ-
edge 26 avoids the two α-edges A1 and A7, and each of the other eight cycle
edges avoids exactly one of the α-edges A1, A4, A7. Thus, there are ten α∗-
avoidances. Since each of the two γ-edges of weight two appears in at least two
avoidances, the total weight of avoidances is at least 10 + 2 = 12.

Suppose now that there is a cycle edge with span smaller than three. Then
this edge avoids at least two cycle edges. Additionally there are at least eight
α∗-avoidances. Altogether there are at least 2 + 8 = 10 avoidances. Since each
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of the two γ-edges of weight two appears in some avoidance, all the avoidances
have total weight at least 10 + 2 = 12.

B It is Unlikely that Weighted Crossing Maxi-
mization Admits a PTAS

Due to the additive term 2m between the size of a cut and max-wt-cr(G) (see
the definition of c′ in the proof of Theorem 3), the existence of a PTAS for
weighted crossing maximization does not directly imply a PTAS for 3MaxCut.
A PTAS for weighted crossing maximization would, however, give us a very
good estimation of the quantity q = 2m+ max-cut(G). Since G is 3-regular, we
know that 2m/3 ≤ max-cut(G) ≤ m. Hence, assuming a (1− ε)-approximation
for max-cut(G) some ε > 0, the ratio between the smallest and the largest
possible value of q is (8m/3 − ε)/(3m) = 8/9 − ε′ = 0.8 − ε′ for some ε′ ≤ ε.
This would be the approximation ratio of an algorithm for 3MaxCut based on
a hypothetical PTAS for weighted crossing maximization.

3MaxCut is APX-hard, but with 0.997 the best known inapproximability
ratio [4] is too large to yield a contradiction to the existence of a PTAS for
weighted crossing maximization. However, to the best of our knowledge, the
best approximation algorithm for 3MaxCut is the semidefinite program of
Goemans and Williamson [9] for general MaxCut. Its approximation ratio is
≈ 0.878, and any improvement beyond this factor, even for the special case of
3-regular graphs, would be rather unexpected.
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