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Planarity of Overlapping Clusterings Including
Unions of Two Partitions
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Abstract

We consider clustered planarity with overlapping clusters as intro-
duced by Didimo et al. [14]. It can be deduced from a proof in Athenstädt
et al. [2] that the problem is NP-complete, even if restricted to instances
where the underlying graph is 2-connected, the set of clusters is the union
of two partitions and each cluster contains at most two connected com-
ponents while their complements contain at most three connected compo-
nents.

In this paper, we show that clustered planarity with overlapping clus-
ters can be solved in polynomial time if each cluster induces a connected
subgraph. It can be solved in linear time if the set of clusters is the union
of two partitions of the vertex set such that, for each cluster, both the
cluster and its complement induce connected subgraphs.
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1 Introduction

An (overlapping) clustered graph (G = (V,E), C) consists of an undirected graph
G and a set C of subsets of the vertex set V . The elements of C are called clusters.
A vertex may be contained in several clusters. Moreover, clusters may overlap,
i.e., there might be C1, C2 ∈ C with C1 ∩ C2 6= ∅, C1 6⊆ C2, and C2 6⊆ C1.
Observe that the abstract Hasse diagram of C ∪{{v}, v ∈ V }∪{V } is a succinct
representation of an overlapping clustering C – actually, Didimo et al. [14] define
overlapping clustered graphs via the Hasse diagram.

Didimo et al. [14] defined planarity for overlapping clustered graphs geomet-
rically: An overlapping clustered graph (G = (V,E), C) is clustered planar if the
vertices can be represented by distinct points1, each edge e ∈ E by a curve R(e)
between its incident vertices, and each cluster C ∈ C by a simple closed region
R(C) in the plane such that for X,Y ∈ E ∪ C we have that (i) X ⊂ R(X),
(V \ X) ∩ R(X) = ∅, (ii) R(X) ⊆ R(Y ) if X ⊆ Y , and (iii) every connected
region of R(X) ∩ R(Y ) contains a vertex. (Recall that edges of an undirected
graph are subsets of the vertex-set of size two.) Condition (i) means that edges
may not contain non-incident vertices while clusters must enclose the vertices
they contain and no others. Condition (ii) implies that cluster boundaries may
not intersect if one cluster is contained in the other and that intra-cluster edges
must be routed within the cluster. Condition (iii) ensures several things: (a)
two edges intersect at most in a common incident vertex, (b) an edge crosses a
cluster boundary at most once, (c) if two clusters do not share a vertex, their
regions must be disjoint (d) the regions of clusters with common vertices might
intersect in several connected components, yet each of them must contain at
least one vertex.

Thus, the clustered graph in Fig. 1a is clustered planar while the clustered
graph in Fig. 1b is not.

Clustered planarity is NP-complete in general as shown in [17], where the
case with E = ∅ is examined. Didimo et al. [14] showed that clustered planarity
can be solved in polynomial time for the special case where each cluster over-
laps with at most one other cluster, each cluster as well as the intersection of
any two clusters induce connected subgraphs, and some additional connectiv-
ity properties. They posed it as an open question whether clustered planarity
is polynomial-time solvable for general overlapping clustered graphs under the
only condition that each cluster induces a connected subgraph. We will answer
this question in the affirmative.

If the clustering is hierarchical, i.e., if any two clusters in C are either disjoint
or one is contained in the other then clustered planarity is the classical problem
of c-planarity as considered in [15]. One of the most important open problems
in the field of Graph Drawing is the complexity of c-planarity of hierarchically
clustered graphs. An overview on the classical c-planarity problem can be found
in [5, 11, 19]. Dahlhaus [12] and later Cortese et al. [11] showed that c-planarity
of hierarchically clustered graphs can be solved in linear time if each cluster

1For the sake of simplicity, we identify each vertex with its image in the plane.
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(a) clustered planar (b) not clustered planar

Figure 1: Two graphs with two clusters each (set of vertices enclosed by red
dotted and blue dashed curve, respectively)

induces a connected subgraph. Their approaches make use of the decomposition
of the graph into 3-connected components as represented by BC- and SPQR-
trees.

Angelini et al. [1] defined drawings with region-region crossings of hierar-
chically clustered graphs. These are essentially representations by points and
regions such that all conditions of clustered planarity are fulfilled except for
Condition (iii) when X and Y are both clusters. As an example, Fig. 1b shows
a drawing of a clustered graph with one region-region crossing. Observe that
the intersection of the two regions does not contain a vertex as required by the
definition of clustered planarity. Angelini et al. [1] showed how to use SPQR-
trees to test in polynomial time whether any hierarchically clustered graph with
an underlying 2-connected graph has a drawing with region-region crossings.

If E = ∅ then clustered planarity is closely related to the NP-complete
problem of hypergraph (vertex) planarity as defined in [17]: Given a set C of
subsets of a set V , is there a planar support, i.e., a planar graph G = (V,E)
such that each set in C induces a connected subgraph of G? Various subclasses
of planar supports that directly imply clustered planarity – such as trees, cacti,
and outerplanar supports – were considered [3, 4, 7, 8, 9, 18]. Hypergraph
planarity remains NP-complete even if C is the union of two partitions [2].

The proof in [2] even shows that clustered planarity remains NP-complete
if the underlying graph G is 2-connected, C is the union of two partitions, each
cluster contains at most two connected components, and the complement of any
cluster contains at most three connected components.

Contribution: In Sect. 3 we focus on a special case: C is the union of two
partitions and for each cluster, both the cluster itself and its complement are
connected. Different from hierarchical clusterings, this connectivity property
does not automatically imply clustered planarity in the overlapping case. Yet,
for the special case considered, we can give a characterization that yields a linear-
time testing algorithm. In Sect. 4 and 5, we show how to use BC-trees, SPQR-
trees and the consecutive-ones property to obtain an algorithm for the more
general case of testing clustered planarity of possibly overlapping, connected
clusters. The run time of the algorithm is polynomial in |V | and |C|.
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Figure 2: The blue (dashed) and red (dotted) lines induce two partitions PB =
{{2}, {1, 3, 4, 5}} and PR = {{1, 2, 3}, {4, 5}}. This leads to an intersection
partition PI = {{2}, {1, 3}, {4, 5}} and a connected intersection partition P ′I =
{{1}, {2}, {3}, {4, 5}}.

2 Preliminaries

For a subset C ⊆ V of the vertices of an undirected graph G = (V,E), we denote
by G[C] the subgraph of G induced by C, i.e. the graph with vertex set C and
edge set {e ∈ E; e ⊆ C}. A C-path (C-cycle) is a path (simple cycle) in G[C].
For two subsets S, T ⊆ V , let E(S, T ) be the set of edges with one end vertex in
S and the other end vertex in T . A partition of V is a set P of subsets of V such
that each vertex in V is contained in exactly one set in P. For two partitions
PB = {B1, . . . , B`B} and PR = {R1, . . . , R`R} of V , we define the intersection
partition PI = {Bi ∩ Rj ; i = 1, . . . , `B , j = 1, . . . , `R}. (This is also known as
coarsest common refinement.) The connected intersection partition P ′I of PB
and PR is the partition induced by the connected components of G[C], C ∈ PI ,
i.e. X ⊆ V is contained in P ′I if and only if X is the set of vertices of a connected
component of one of the graphs G[C], C ∈ PI . See Fig. 2 for an example.

A consecutive-ones ordering of a binary matrix is a permutation of its
columns such that in each row all of the 1s are consecutive, i.e. such that each
row is of the form 0∗1∗0∗. A binary matrix has the consecutive-ones property
if and only if it has a consecutive-ones ordering. It can be tested in linear time
whether a binary matrix has the consecutive-ones property and a consecutive-
ones ordering can be found in linear time if it exists [6].

2.1 Planarity of Overlapping Clustered Graphs

Let (G = (V,E), C) be an overlapping clustered graph. The clustered graph
(G, C) is c-connected if G[C] is connected for all C ∈ C and c-co-connected if
both, G[C] and G[V \ C], are connected for all C ∈ C.

If (G, C) is c-connected then a c-planar embedding of G for C is a planar
embedding of G such that V \ C is in the outer face of G[C] for all C ∈ C. A
graph G+ = (V,E+) is a c-planar support of a clustered graph (G = (V,E), C)
if E ⊆ E+, (G+, C) is c-connected and there is a c-planar embedding of G+

for C.
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It was shown that a c-connected overlapping clustered graph [14] or a hier-
archically clustered graph [15], respectively, is clustered planar in the sense of
[14] if and only if it has a c-planar support.

In this work, we define any clustered graph to be c-planar if and only if it
has a c-planar support.

2.2 BC-Trees

A vertex v is a cut vertex of a connected graph G if the graph that results from
G by deleting v and its incident edges is not connected. A connected graph
is 2-connected if it contains more than two vertices but no cut vertices. The
blocks of a connected graph are the maximally 2-connected subgraphs and the
subgraphs induced by bridges. The vertices of the block–cut tree (BC-tree) of
a graph G are the blocks and the cut vertices of G. There is an edge in the
block–cut tree between a block H and a cut vertex v if v is contained in H. See
Fig. 16 for an illustration.

2.3 SPQR-Trees

A way of representing all possible embeddings of a 2-connected subgraph are
SPQR-trees. Two vertices v and w are a separation pair of a 2-connected graph
G if the graph that results from G by deleting v and w and their incident edges
is not connected. A graph is 3-connected if it contains more than three vertices
but no separation pair. An SPQR-tree [13] is a labeled tree that represents the
decomposition of a 2-connected graph into 3-connected components. Each node
ν of an SPQR-tree is labeled with a multi-graph skel(ν) – called the skeleton of
ν. There are four different types of labels associated with the skeletons: S-nodes
for simple cycles, P-nodes for three or more parallel edges, R-nodes for a simple
3-connected graph, and Q-nodes for two parallel edges.

The Q-nodes are the leaves of an SPQR-tree. Neither two S-nodes, nor two
P-nodes are adjacent in an SPQR-tree. For each node ν of an SPQR-tree there
is a one-to-one correspondence of the edges of skel(ν) and the edges incident to ν
(except for the Q-nodes where one of the two edges of the skeleton corresponds
to the only incident edge of the Q-node). The edge of skel(ν) corresponding to
the edge {ν, µ} of the SPQR-tree is denoted by eµ. We consider the edges of
the skeletons oriented. For simplicity, we assume that the edges of the skeleton
of an S-node are oriented as a directed cycle and the edges of the skeleton of a
P-node are all oriented in parallel.

We consider the SPQR-tree T rooted at a Q-node r. Let ν be a node of T .
The root edge of skel(ν) is the edge that corresponds to the parent edge of ν.
The poles of skel(ν) (or node ν, respectively) are the end vertices of the root
edge. Let skel−(ν) be the skeleton of ν without the root edge.

Each node ν of the rooted SPQR-tree represents a (multi-)graph Gr(ν): The
Q-nodes (excluding the root) represent a graph with two vertices connected by
an edge and additionally by the root edge. Let ν be a non-leaf node of an
SPQR-tree and let ν1, . . . , νk be the children of ν. For i = 1, . . . , k, remove the
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edge associated with {ν, νi} from both skel(ν) and Gr(νi). Insert the remaining
parts of Gr(νi) into skel(ν) identifying the poles of Gr(νi) with their counter
parts in skel(ν). The poles of Gr(ν) are the poles of ν. Let G−r (ν) be Gr(ν)
without the root edge of skel(ν). (Some papers refer to G−r (ν) as the pertinent
graph.) Gr(r) is the graph represented by the SPQR-tree T . The edges of Gr(r)
correspond to the Q-nodes of the SPQR-tree. See Fig. 3 for an example.

If all skeletons have a planar embedding with the root edge on the outer
face, then the construction yields a planar embedding of Gr(r) with the root
edge on the outer face. On the other hand, any planar embedding of Gr(r) with
the root edge on the outer face can be obtained, by permuting the ordering of
the edges of the skeleton of a P-node, or by flipping the skeleton of an R-node
around its root edge.

Every 2-connected graph is represented by a unique SPQR-tree (up to the
choice of the root) and the SPQR-tree of a 2-connected graph can be constructed
in linear time [16].

3 Two C-Co-Connected Partitions

In this section we show that c-planarity of a c-co-connected clustered graph
can be tested in linear time if the set of clusters is the union of two partitions.
Observe that in contrast to the hierarchical case [10], there are c-co-connected
clustered graphs with an underlying planar graph that are not c-planar. See
Fig. 4a for an example: The graph G = (V,E) is 3-connected and, thus, has a
unique embedding up to the choice of the outer face. No matter which face we
choose as the outer face, there is always at least one cluster C among the four
clusters in PB ∪ PR such that G[C] contains a simple cycle enclosing a vertex
in V \ C.

The key for the linear-time algorithm to test c-planarity of c-co-connected
clustered graphs is the following characterization.

Theorem 1 Let G = (V,E) be a graph and let PR and PB be two partitions of
V such that the clustered graph (G,PR ∪ PB) is c-co-connected. Let P ′I be the
connected intersection partition of PR and PB. Then (G,PR ∪ PB) is c-planar
if and only if (G,P ′I) is c-planar.

Proof: We first show that if (G,PB ∪ PR) is c-connected and c-planar then
(G,P ′I) is c-planar : Consider a c-planar embedding of G for PR ∪ PB . Let
C ∈ P ′I , R ∈ PR, and B ∈ PB with C ⊆ B ∩ R. Assume that there is a
vertex v in an inner face of G[C]. Observe that by c-planarity of (G,PR ∪PB),
all vertices in the inner faces of G[C] are in B ∩ R. Since G[B] and G[R] are
connected there must be a path from v to C that contains only vertices in one
inner face of G[C] and thus in B ∩ R. Therefore, v and C are in the same
connected component of G[B ∩R] and hence v ∈ C. Thus no v ∈ V \C is in an
inner face of G[C] and therefore (G,P ′I) is c-planar.

We now show that if (G,PB ∪PR) is c-co-connected and (G,P ′I) is c-planar
then (G,PB ∪PR) is c-planar : Let C ∈ PB ∪PR. Being c-co-connected implies
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(a) SPQR-tree

(b) Gr(ν) (c) G−r (ν) (d) Gr(r) (e) flip and permute

Figure 3: An SPQR-tree T rooted at a Q-node r and its represented graph
Gr(r). The root edge of each skeleton is dashed. The correspondence of the
remaining edges of the skeleton of a node µ and the edges around µ is as follows.
If µ is a P-node, we assume that the edges around µ and the edges around the
topmost pole of skel(µ) are in the same clockwise order. If µ is an S-node then
we assume that the edges in skel(µ) from top to bottom correspond to the edges
incident to µ from left to right. Finally, if µ is an R-node, we explicitly indicate
the corresponding tree edges by little red arrows.
(e) A different embedding of Gr(r) with the root edge on the outer face can be
obtained by flipping the R-node and permuting the children of the P-node.
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7
(a) c-co-connected, but not
c-planar

(b) (G,PB), (G,PR),
(G,P ′I) c-planar,

but (G,PB ∪ PR) not

Figure 4: a) PR = {{1}, {2, 3, 4, 5, 6, 7}},PB = {{1, 2, 3, 4}, {5, 6, 7}}, i.e. clus-
ters are separated by the curves. (G,PB ∪ PR) is c-co-connected and G is
planar but (G,PB ∪PR) is not c-planar. b) Clusters are enclosed by the curves.
(G,PB∪PR) is c-connected and (G,PB), (G,PR), and (G,P ′I) are c-planar, but
(G,PB ∪ PR) is not.

that V \ C is contained in a single face of G[C] in
any planar drawing of G. We call C bad if V \ C is
contained in an inner face of G[C]. We have to show
that there is an embedding that has no bad clusters.
Among all planar embeddings of G that are c-planar
for P ′I choose one that has the minimum number of
bad clusters. Assume that there is a bad cluster C ∈
PB ∪ PR. We assume without loss of generality that

C

C ′

f0

e

C ∈ PB (squared blue vertices in the drawing). Let f be the face of G[C]
containing V \ C (gray shaded area in the drawing).

If C is the union of some clusters in PR, choose a face f0 of G inside f
incident to a vertex of C as the outer face. Now C is not bad anymore and
we do not create any new bad clusters. Thus, we decrease the number of bad
clusters – contradicting that we started with an embedding with the minimum
number of bad clusters.

Otherwise, let C ′ ∈ PR intersect C and V \ C. Since G[C ′] is connected,
E(C ′∩C,C ′\C) is not empty. There must even be an edge e ∈ E(C ′∩C,C ′\C)
that is in the outer face of G[C ′]: Otherwise G[C ∩ C ′] would enclose C ′ \ C,
i.e., there is a cycle c in G[C ∩C ′] with a vertex in C ′ \C in its interior. Thus f
is contained in the region bounded by c. However, c is contained in a connected
component of C ∩ C ′. This contradicts the fact that (G,P ′I) is c-planar.

Let now f0 be a face of G incident to e in the outer face of G[C ′]. Then f0 is
incident to a vertex of the outer face of both a graph induced by a cluster in PR
and a graph induced by cluster in PB . Thus, f0 is not contained in any cluster.
Choosing f0 as the outer face decreases the number of bad clusters by the same
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f1

f2

f3

f4

f0

Figure 5: A c-co-connected clustered graph (G, C) with 3 partions separated
by the lines. In the respective coarsest common refinement, each connected
component contains exactly one vertex. The graph is 3-connected, however, no
choice of the outer face yields a c-planar embedding.

argument as above. This contradicts that we have chosen a planar embedding
minimizing the number of bad clusters. �

Note that this method does not work for more than two partitions. Consider
the example in Fig. 5.

Since c-planarity of c-connected hierarchically clustered graphs can be tested
in linear time [11] and (G,P ′I) is c-connected and hierarchically clustered, it re-
mains to show that P ′I can be constructed in linear time. Since connected com-
ponents can be computed in linear time it suffices to show that the intersection
partition PI of the two partitions PB = {B1, . . . , B`B} and PR = {R1, . . . , R`R}
of V can be computed in linear time. This might be common knowledge, but
for the sake of completeness we give a quick description here:

We introduce the following data structure: For X ∈ {B,R}, we use a vertex
array with X[v] = i for v ∈ Xi. We also initialize an array S[1, . . . , `R] of stacks,
where S[i] will contain the vertices of Ri, i = 1, . . . , `R in the order in which
they appear in B1, . . . , B`B . We fill the stacks as follows: For i = 1, . . . , `B
and v ∈ Bi, we push v to S[R[v]]. Now, the sets in PI can be obtained by
going through the stacks and opening a new set whenever B[v] changes. This
concludes the proof of the following theorem:

Theorem 2 It can be tested in linear time whether a c-co-connected clustered
graph is c-planar if the set of clusters is the union of two partitions of the vertex
set.

Observe that if (G,PB ∪PR) is only c-connected then (G,PB ∪PR) does not
have to be c-planar even if (G,PB), (G,PR), and (G,P ′I) are. See the example
in Fig. 4b: Let G be the graph, and let PR and PB , respectively, be the partition
of the vertex set enclosed by the red dotted and blue dashed curves, respectively.
Let P ′I be the connected intersection partition of PR and PB . Then (G,PB),
(G,PR), and (G,P ′I) are c-planar, but (G,PB ∪ PR) is not. This can be shown
as follows:

The embedding in Fig. 4b is c-planar for PB and P ′I – see also Fig. 6a and
Fig. 6b. Fig. 6c shows an embedding that is c-planar for PR. Assume now that
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(a) PB
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4 3

756

(b) P ′I = PI

1 2

4 3

56

7

(c) PR

Figure 6: Illustration why in Fig. 4b, (G,PB), (G,PR), and (G,P ′I) are c-planar,
but (G,PB ∪ PR) is not.

there would be an embedding that is c-planar for (G,PB ∪ PR). We use the
vertex labeling indicated in Fig 6. Due to cluster {1, 2, 3, 4} the interior of the
cycle cR = 〈1, 2, 3, 4〉 must be empty. Thus, vertex 5 must be drawn outside
cR. Due to the cluster C = {1, 3, 4, 5, 7}, vertex 2 and 6 must not be enclosed
by the triangle cB = 〈1, 4, 5〉. It follows that the edges connecting 5 to cR must
be drawn such that cB does not enclose cR and that 6 is outside cB . Due to
the edge {3, 7}, vertex 7 is not enclosed by cB either. Thus, except for the
edge e = {1, 7}, the embedding is as indicated in Fig. 6c. But no matter how
we would add e in a planar embedding, we would either create a cycle in G[C]
enclosing vertex 2 or vertex 6, which are not in C.

4 C-Connected Clusterings on Blocks

We now present a polynomial-time method for testing c-planarity for a planar
2-connected graphG and a set of (overlapping) c-connected clusters C. Through-
out this section, let T be the SPQR-tree of G rooted at a Q-node r representing
the edge e of G. We start with an informal description.

4.1 Informal Description

Recall that all planar embeddings of G with e on the outer face can be obtained
by ordering the children of the P-nodes and by flipping the skeletons of the
R-nodes. In order to find a suitable embedding, we will use a labeling scheme
for each node ν in T and its corresponding edge in the skeleton of its parent
node to capture which parts of skel(ν) are contained in a given cluster.

Assume for a moment that the SPQR-tree does not contain R-nodes. In
order to find a c-planar embedding, we have to permute the children of each
P-node in such a way that for any cluster C there is no C-cycle enclosing a
vertex not in C. So consider a fixed P -node ν and a fixed cluster C. We call a
C-cycle c of G−r (ν) new if c is not already contained in the graph represented
by a child of ν. We distinguish four cases for a child νi of ν (see Fig. 7).
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ν1 ν3ν2 ν4 ν5

(a) double-border

s

t

ν1 ν3ν2 ν4 ν5

(b) inner and border

Figure 7: In (a) node ν3 is double-border and all other nodes are outside. In
(b) node ν3 is inside, ν2 and ν4 are border, and ν1 and ν5 are outside. The red
area sketches the vertices within the cluster.

1. If G−r (νi) does not contain a C-path between its poles, it does not con-
tribute to a new C-cycle, so we can put νi as one of the first or last children
of ν and we call νi an outside node.

2. If G−r (νi) contains only vertices of C, then G−r (νi) can be contained in the
interior of any C-cycle and we call νi an inside node.

3. If G−r (νi) contains a C-path between its poles, but also vertices not in C,
we have to make sure that the latter are not enclosed by a C-cycle. We
call νi border or double-border, depending on whether the vertices not in
C can all be put on the same side of the C-paths connecting the poles or
not.

Now the children of ν must be permuted such that either there is one double-
border node pre- and succeeded by arbitrary many outside nodes (see Fig. 7a),
or there are arbitrary many consecutive inside nodes pre- and succeeded by at
most one border node, respectively, and then arbitrary many outside nodes (see
Fig. 7b).

Note that the method described in this section has some similarities with the
algorithm described by Angelini et al. [1] for deciding whether a hierarchically
clustered graph has a drawing with region-region crossings. They also use a
labeling scheme for the nodes in the SPQR-tree. Their “full” corresponds to our
“inside”, their “spined” corresponds to our “non-outside”. Observe, however,
that their labels “side-spined” and “central-spined” depend on a given drawing
while our labels “double-border” and “border” do not.

Depending on the labels, Angelini et al. permute the edges of the skeletons
of each P-node and decide how to flip the children according to a 2-SAT for-
mula. However, this requires that no two clusters determine different flips. This
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property does no longer hold if clusters overlap as in our case. We discuss this
problem in more detail in Sect. 4.3.4. Thus, in our approach we find the per-
mutations of the children of multiple P-nodes simultaneously. In addition, we
demonstrate how our method can be extended to the case where the underlying
graph is not 2-connected (see Sect. 5).

In the next section, we describe our labeling scheme more formally. In
Section 4.3, we then show how to use the consecutive ones property to check for
all P-nodes and for all clusters simultaneously whether the required permutation
can be found and whether the R-nodes can be flipped accordingly.

4.2 Formal Description and Characterization

In the following let C ∈ C be a cluster such that G[C] is connected and let
Cext ⊆ C be a subset of vertices that we want to be incident to the outer face
of G[C]. (We will need Cext in Sect. 5 when extending the method to non-
biconnected graphs. In that case, Cext will be a subset of the set of cut-vertices.
In the case of biconnected graphs, Cext is empty.)

Let ν be a node in T and let s and t be the poles of Gr(ν). We call a planar
embedding of G−r (ν) appropriate if (a) the poles are on the outer face and (b)
no C-cycle encloses a vertex of (V \ C) ∪ Cext.

Given a planar embedding of Gr(ν), let f1 and f2 be the two faces of Gr(ν)
that are incident to the root edge. An outer s-t-path is the s-t-path in G−r (ν)
that is incident to f1 or f2, respectively. Observe that there is one outer s-t-
path if ν is a Q-node or an S-node that has only Q-nodes as children. Otherwise
there are exactly two outer s-t-paths. E.g., in Fig. 9 the two outer s-t-paths
of G{1,2}(S2) are 〈2, 8, 7, 6, 4, 1〉 and 〈2, 6, 5, 1〉. We call a vertex of an outer
s-t-path inner, if it is not incident to both faces, f1 and f2. I.e., the poles s and
t are never inner. Further, if ν is an S-node then the poles of the children of ν
are also not inner. E.g., vertex 5 is the only inner vertex of the outer s-t path
〈2, 6, 5, 1〉 of G{1,2}(S2) in Fig. 9.

Now, for a given cluster C, we label the node ν as

• inside, if all vertices of Gr(ν) are contained in C and at most the poles s
and t of Gr(ν) are in Cext.

• inappropriate if G−r (ν) has no appropriate embedding.

• outside, if it is not inappropriate and G−r (ν) contains no C-path between
its poles.

• border if ν is neither inside nor outside and G−r (ν) has an appropriate
embedding in which at most one of the outer s-t-paths contains inner
vertices in (V \ C) ∪ Cext.

• double-border in all other cases.

See Fig. 8 for examples of the different labels in the case of a P-node and Fig. 9
for a more general example, both with Cext = ∅. Let µ be a child of ν and let
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eµ be the edge of skel(ν) corresponding to the edge {ν, µ}. Then eµ gets the
same label as µ. We refer to nodes (and their corresponding edges) of any label
except inside as non-inside and of any label except outside as non-outside.

Without computing any particular embedding and only by traversing the
SPQR-tree T , we can decide for all nodes in linear time, whether they are
inside, outside, border, double-border, or inappropriate for a given cluster C.
To this end, we use the following terminology given an R-node ν: Consider
the unique embedding of skel−(ν) with the poles s and t on the outer face. A
caging cycle is a simple cycle of non-outside edges in skel−(ν) that (a) contains
double-border edges or (b) encloses vertices in Cext or non-inside edges. The
following remark is a direct consequence of the definitions.

Remark 1 An R-node ν is inappropriate if and only if one of its children is
inappropriate or skel−(ν) contains a caging cycle.

Lemma 1 Once the edges of the skeleton of an R-node ν without inappropriate
children are labeled, it can be computed in time linear in the size of the skeleton,
whether skel−(ν) contains a caging cycle.

Proof: First remove all outside edges of skel−(ν). Remove all but the edges
incident to the outer face of the resulting graph and also remove all bridges.
The remainder S is a collection of edge-disjoint simple cycles each with empty
interior (in S). If S contains any double-border edge then there is a caging
cycle. Otherwise consider all edges and vertices of skel−(ν) that were in the
interior of one of the cycles of S. If among those there is a vertex in Cext or an
edge labeled other than inside then there is a caging cycle. Otherwise there is
no caging cycle. �

Lemma 2 For each cluster, the labels can be computed in time linear in the
size of the input graph as summarized in Table 1.

Proof: Since the size of an SPQR-tree (including the sum of the sizes of the
skeletons) is linear in the size of the represented graph, the linear run time
follows directly from the construction and the previous remark. �

An external path of a node ν is a path in G between the poles of Gr(ν) that
does not contain any other vertices of Gr(ν). We label the root edge of skel(ν)
inside for C if ν has an external C-path and outside otherwise. We say that an
external path p of node ν is to the right (left) of ν with respect to the ordered
pair (s, t) of its poles if the cycle that is induced by p in the graph that results
from G by contracting Gr(ν) into a single vertex – and removing multi-edges
and loops – is oriented (counter-) clockwise assuming that p was oriented from
t to s. Two external paths of ν are on the same side of ν if they are both to the
right or both to the left of ν with respect to an arbitrary ordering of the poles
of ν. Otherwise, they are on different sides.

The following lemma characterizes the c-planar embeddings with respect to
a single cluster.
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Figure 8: Illustration of the labeling of a P-node ν depending on various given
clusters C. The pictures show the graph G−r (ν). Blue encircled vertices are in
C. We always assume Cext = ∅. The node ν is labeled border in 8e, since G−r (ν)
has an embedding (shown in 8f) that is c-planar for {C} in which only one of
the outer s-t-paths contains vertices in C. Similarly, the embedding in 8i shows,
why ν is labeled double-border in 8h.
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(a) (G, {C})

1,2

P1

S1 S2

1,3 R1 P3

3,2

P2

9,23,9

S3 S3

7,8

5,64,64,51,51,4 6,2

6,7 8,2

(b) SPQR-tree Tr

Figure 9: (a) A graph G with cluster C = {1, 2, 3, 4, 6, 7} containing the circled
vertices and (b) the labeling of the nodes of its SPQR-tree: thick blue solid
circled nodes are inside, dashed nodes border, and dotted nodes double-border.
The root is inappropriate. The remaining nodes are outside. Cext = ∅.

Lemma 3 Let G = (V,E) be a 2-connected graph, let C ⊂ V be a cluster
inducing a connected subgraph of G, let Cext ⊆ C, let T be the SPQR-tree of G,
and let r be a Q-node of T representing an edge e of G. A planar embedding of G
with e on the outer face is c-planar for {C} with Cext incident to the outer face
of G[C], if and only if the following conditions are fulfilled for any non-inside
node ν of its SPQR-tree T .

1. All external C-paths of ν are embedded on the same side of Gr(ν) – which
is reflected by the side on which the root edge of skel(ν) is embedded.

2. skel(ν) contains no simple cycle of non-outside edges that encloses a non-
inside edge or a vertex in Cext.

Proof: By definition, both conditions must be fulfilled for a c-planar embedding
with Cext on the outer face of the cluster. So assume now that both conditions
are fulfilled. Let v ∈ (V \C)∪Cext, let e′ 6= e be an edge incident to v, and let ν′

be the Q-node representing e′. Assume that G contains a C-cycle c′ enclosing
v. By Condition 1, there is no node ν on the ν′-r-path such that c′ can be
decomposed into two external C-paths of ν. So, let ν be the first node on the
ν′-r-path such that c′ is contained in G−r (ν) or can be composed by a path in
G−r (ν) and an external C-path of ν. Observe that c′ induces a cycle c in skel(ν)
that contains only non-outside edges. Let µ be the child of ν on the ν′-ν-path.
By the choice of ν it follows that c does not contain the edge eµ of skel(ν).
Hence c encloses the edge eµ. However, eµ was either not inside or v ∈ Cext is
an end vertex of eµ not in c – contradicting Condition 2. �

In Sect. 4.3, we construct a set of binary matrices from an initial embedding
of T that have the consecutive-ones property, if and only if there is a c-planar
embedding for C with the fixed root edge on the outer face. The ordering of the
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ν

ρ′

r

(a) SPQR tree T

ν′

r

ν1 ν2 ν3
(b) Tr

ρ

ρ′

(c) Tρ

Figure 10: The tree T is split at every R node, resulting in a forest containing
only S-, P-, and Q-nodes.

columns of the matrices will correspond to the orderings of the children of the
P-nodes and the flips of the R-nodes. The total size of the matrices will be in
O(|V |2|C|).

4.3 Modeling by Consecutive-Ones Property

For each possible root r of T that is not inappropriate for any C ∈ C, we start
with a fixed embedding of T – including fixed flips of the R-nodes – and perform
the following steps:

4.3.1 Splitting T

We split T at each R-node (see Fig. 10), removing the edges from the R-node
to its children from T . Let Tr be the subtree containing r. For each former
non-leaf child ρ′ of an R-node ν we attach a new Q-node ρ to ρ′. We root the
subtree containing ρ′ at ρ and denote it by Tρ. We label ρ inside for a cluster
C, if ρ′ had an external C-path and outside otherwise. In the parent tree, we
replace the R-node ν by a special P-node ν′ with the same label and three Q-
nodes ν1, ν2, ν3 in this order as children. If the R-node ν was labeled border
for a cluster C, we label ν2 and exactly one among ν1 and ν3 as inside and the
other as outside. More precisely, we label ν1 as outside if and only if the left
outer path of skel−(ν) between its poles contains non-inside edges or vertices
from Cext. If the R-node ν was labeled double-border, we label ν1 and ν3 as
border and ν2 as inside. If the R-node was labeled inside or outside, we label all
three children as inside or outside, respectively. We thus end up with a forest
containing only S-, P-, and Q-nodes.

4.3.2 Initializing the Matrices

For each root ρ of one of the subtrees, we create a new binary matrix Mρ. A node
in Tρ is a lowest-P-child, if it is the child of a P-node and has no other P-nodes
in its subtree. The embedding of Tρ induces an ordering of the lowest-P-children
from left to right. We initialize Mρ with a column for each lowest-P-child in
accordance with the ordering. For a node ν of Tρ, we use c(ν) to refer to the set
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of its corresponding columns in Mρ, i.e. the columns of the lowest-P-children in
ν’s subtree. For Mr we create one additional external column c(r). For ρ 6= r,
we create two additional external columns, enclosing the rest of the matrix.

For each cluster C, one of the two external columns will represent the side
of possible external C-paths of the child of ρ and will be denoted by cC(ρ).

We then create a row for each non-leaf node ν distinct from a lowest-P-child,
adding 1s in the columns in c(ν) and 0s in all other columns. This ensures that
in every permutation of the columns of Mρ for which the 1s are consecutive
in all rows, the columns of the lowest-P-children of each node remain adjacent,
allowing a reconstruction of an embedding of Tρ from the ordering of the columns
in Mρ. See Fig. 11. If ρ 6= r we add two rows having all 1s except for one 0 in
the first or last external column, respectively.

In order to fill the matrix Mρ, we traverse the tree Tρ with a post-order DFS.
For each cluster C ∈ C and each examined node we add up to three rows to Mρ.
We define for each node ν and each cluster C a set r(ν, C) of relevant rows. For
each lowest P-child ν, we set r(ν, C) = ∅. The block B(ν, C) is the submatrix
of Mρ with entries in rows r(ν, C) and columns c(ν). When we create rows in
Mρ, the default entries are 0 and we explicitly mention when we set the entries
to 1.

4.3.3 Handling P-nodes

For a P-node ν with children ν1, . . . , νk we initialize r(ν, C) as r(ν1, C) ∪ . . . ∪
r(νk, C). Since ν is not inappropriate, we have one among the following two
cases: a) ν has only outside children except for possibly one double-border child.
Then the children of ν can be permuted arbitrarely. b) the children of ν must
be permuted such that all inside children are consecutive pre- and succeeded by
at most one border child and arbitrary many outside children.

Thus, if ν is not outside and has no double-border child, we add up to
3 constraint-rows r0(ν, C), r1(ν, C), and r2(ν, C) to r(ν, C). If ν has inside
children, we add r0(ν, C) with 1s in all columns in c(νi) where νi is an inside
child of ν. This ensures that all inside children are placed in consecutive order.
If ν has a child µ that is a border node, we add r1(ν, C) with 1s in all columns
in c(µ) and again with 1s in all columns in c(νi) where νi is an inside child of ν.
We do the same for a potential second border child in a third row r2(ν, C). This
ensures that the border children are placed next to the inside children, with at
most one border child on each side. Finally, let µ be a child of ν let i ∈ r(µ,C)
and let j ∈ c(ν) \ c(µ). Then we set the entry in row i and column j to 1, if one
or more of the rows in r(ν, C) \ r(µ,C) contain a 1 in the same column. This is
to make sure that the columns between the P-node and potential ones induced
by external paths is filled with 1s. See Fig. 12a.

4.3.4 Handling S-nodes

If an S-node ν with children ν1, . . . , νk is outside then r(ν, C) = ∅, otherwise
r(ν, C) = r(ν1, C) ∪ . . . ∪ r(νk, C).
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

c(S1) c(S3) c(S4) c(S5) c(S6) c(S7) c(1, 2)
(=ext)

P1 1 1 1 1 1 1 0

S2 0 1 1 1 1 1 0

P2 0 1 1 0 0 0 0

P3 0 0 0 1 1 1 0

r0(P1, B) 1 0 0 0 0 0 0

r1(P1, B) 1 1 1 1 1 1 0

r0(P2, B) 1 1 0 0 0 0 0

r0(P3, B) 1 1 1 1 0 0 0

r1(P1, R) 0 1 1 1 1 1 1

r0(P2, R) 0 0 1 1 1 1 1

r0(P3, R) 0 0 0 0 0 1 1




in
it
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li
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ti

o
n

P2

P3S2

P1

P2

P3S2

P1

(c) Mr

Figure 11: C = {R,B} with R = {1, 2, 5, 6, 8}, B = {1, 2, 3, 4, 6, 7}. Circled blue
nodes in Tr are inside for B, squared red nodes inside for R. P1, P2, P3, and
S2 are border for R and B. R and B have a different constraint in S2 and thus
different halves of the blocks are filled with 1s in Mr.

Assume now that ν is not outside and has an external C-path. Observe that
in this case ν cannot be double-border. Otherwise r would be inappropriate for
C. If ν has two or more P-nodes as children, we have to make sure that the
1s in each P-node and the 1s in the external path can be made consecutive via
additional 1s.

More precisely, let ν1, ν2, . . . , νk be the children of ν that are P-nodes. The
upper half for a cluster C are all entries in rows r(νi, C), i = 1, . . . , k and
columns c(νj), j = i + 1, . . . , k while the lower half are all entries in rows
r(νi, C), i = 1, . . . , k and columns c(νj), j = 1, . . . , i−1. We fill both, the upper
and the lower half with 1s if ν is inside and we fill either the upper or the lower
half with 1s if ν is border. See Fig. 12b.
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half
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(b) S-node

Figure 12: (a) The block B(ν, C) for a P-node ν with an inside child ν2, an
outside child ν4 and two border children ν1 and ν3. (b) The block B(ν, C) for
an S-node ν with four children. If ν is not outer and has an external C-path
then the upper half, the lower half, or both are filled with 1s.

Recall that if ν is not inside then the external C-paths must all be on the
same side of Gr(ν) in a c-planar drawing of G. However, external C1- and
C2-paths could be on different sides for distinct clusters C1 and C2. Hence,
we cannot just always fill the upper half with 1s. To this end, we will define
same and different constraints on the clusters that are critical for ν, i.e., on the
clusters C such that ν is border with respect to C and has an external C-path.

Let C1 and C2 be two clusters that are critical for ν. Then we say that there
is a same (different) constraint between C1 and C2 if the external C1-paths
and the external C2-paths must be on the same side of G−r (ν) in any c-planar
embedding of G. The following remark implies that there is either a same or a
different constraint between any two clusters that are critical for ν and how to
decide whether there is a same or a different constraint.

Remark 2 Let C1 and C2 be two clusters that are critical for ν. If ν has an
external C1-path that is also an external C2-path then there is a same constraint
between C1 and C2. Otherwise, there is a different constraint between C1 and C2

Proof: Assume that there is an external C1-path p1 and an external C2-path
p2 of ν that are on the same side of Gr(ν) in a c-planar embedding of G.

Since ν is border, there is a Ci-path pνi , i = 1, 2 in G−r (ν). Consider the
cycles ci, i = 1, 2 composed by pνi and pi. By c-planarity, each portion of p1
that is inside c2 must be in G[C2] and vice versa. Since p1 and p2 are on the
same side of Gr(ν), there is an external path of ν that contains only edges of p1
inside c2, edges of p2 inside c1 and common edges of p1 and p2, i.e., only edges
in G[C1 ∩ C2]. �

Observe that for every S-node ν and every pair C1, C2 of clusters, we can
decide in O(|V |) time whether ν has an external (C1 ∩ C2)-path, and thus,
whether there is a same-constraint between C1 and C2.
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Fix now an arbitrary cluster C that is critical for ν and assign C the upper
half. Assign to any other cluster C ′ that is critical for ν the upper half if there
is a same constraint between C and C ′ and the lower half otherwise.

4.3.5 External Columns

If ρ = r (i.e. the subtree has no parent) let ν be the unique child of r and let
e be the edge represented by the Q-node r. Then the external column is 1 for
each row in r(ν, C) if the cluster C contains both end vertices of e.

If ρ 6= r then the unique child ρ′ of ρ was the child of an R-node ν. Consider
the fixed embedding of skel−(ν) with its poles s and t on the external face.
Let C be a cluster for which ρ′ is a border node and has an external C-path.
We have to make sure that the parts of G−r (ρ′) that are not in C \ Cext are
embedded such that they are not enclosed by a C-cycle in G that is composed
of an external C-path of ρ′ and a C-path in Gr(ρ

′) between its poles s′ and t′.
Consider first that skel−(ν) contains a simple cycle c containing eρ′ and

consisting only of non-outside edges. If c is (counter-)clockwise oriented when
orienting eρ′ from s′ to t′, then we set cC(ρ) to be the (left) right external
column.

Otherwise all external C-paths of ρ′ must contain an external C-path of ν.
Thus, ν is not double-border. Moreover, the set of vertices of skel−(ν) that can
be reached from s using only non-outside edges and not eρ′ induces an s-t-cut
of skel−(ν) that contains eρ′ and no other non-outside edges. It follows that
eρ′ is on the left (right) outer s-t-path and all external C-paths of ν are to
the left (right) of ν with respect to (s, t) in any c-planar embedding. Hence, if
e is on the left (right) outer s-t-path then we set cC(ρ) to be the left (right)
external column. In both cases we set the entry in column cC(ρ) to 1 for each
row in r(ρ′, C).

Clearly the number of columns is linear in the number of Q-nodes and R-
nodes and thus linear in |V | for planar graphs. During initialization, we add
O(|V |) rows, namely one for each inner node. For a cluster C and a P-node ν,
we add up to three rows but only if both poles are in C. Observe that at least
one of the poles of a P-node ν is not a pole of another P-node ν′ on the path
from ν to the root. Hence, the number of rows added for P-nodes is bounded
by 3 ·∑C∈C |C| ∈ O(|V | · |C|).

Applying the next theorem with Cext = ∅ yields a characterization of c-
connected overlapping clustered graphs with underlying 2-connected graphs.

Theorem 3 A c-connected overlapping clustered graph (G, C) with an under-
lying planar 2-connected graph G and sets Cext ⊆ C, C ∈ C has a c-planar
embedding in which Cext is incident to the outer face of G[C] for any C ∈ C
if and only if the root of the SPQR-tree of G can be chosen such that it is
not inappropriate for C ∈ C and all matrices Mρ fulfill the consecutive-ones
property.

We prove the theorem in the following two subsections.
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Figure 13: The three forbidden cases in the proof of Lemma 4.

4.4 Proof of Sufficiency

Let the SPQR-tree T of G be rooted at the Q-node r, and let e be the edge
represented by r. Assume that r is not inappropriate for any cluster and that
the columns of all matrices Mρ are permuted such that in each row the 1s are
consecutive. We have to show that (G, C) is c-planar.

We may assume without loss of generality that the external columns were
not permuted. (Otherwise reverse the order of the columns.) Starting from
ρ = r, we traverse T and do the following at a non-leaf node ν:

If ν is a P-node, we permute the children ν1, . . . , νk of ν according to the
ordering of c(ν1), . . . , c(νk) in the permuted matrix Mρ.

If ν is an R-node, we fixed an embedding of Gr(ν) and replaced ν with a P-
node and three incident Q-nodes ν1, ν2, ν3 in this order. If ν was labeled inside
or outside for all clusters then we maintain the fixed flip of Gr(ν). Otherwise the
labeling was such that c(ν2) will remain between c(ν1) and c(ν3). We maintain
the fixed embedding of Gr(ν) if c(ν1) remains before c(ν3) after the permutation
and flip Gr(ν) otherwise. If we flip Gr(ν), we also reverse all matrices for all
non-leaf nodes in the subtree rooted at ν that are children of an R-node. Finally,
we embed e to the right of G−r (r) if the external column of Mr is on the right
hand side of Mr and to the left otherwise.

Lemma 4 The thus constructed embedding of (G, C) is c-planar.

Proof: Let C ∈ C and let ν1 be a non-inside node of T . We show by induction
on the length of the ν1-r-path that all external C-paths of ν1 are on the same
side and that no non-inside edge and no vertex in Cext is enclosed by a simple
cycle of non-outside edges in skel(ν1) – provided that the root edge of skel(ν)
is embedded on the same side as the external C-paths of ν1. I.e., we have to
consider the following three cases of pairs of C-paths between the poles of ν1
(see Fig. 13).

(a) ν1 has two external C-paths p1 and p2.
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(b) skel−(ν1) contains a cycle c of non-outside edges. Observe that
if c enclosed a non-inside edge or a vertex in Cext then ν1 could not be
an R-node: otherwise c would be a caging cycle and thus, ν1 and all its
ancestors, including the root, would be inappropriate. Thus, in this case
we may assume that ν1 is a P-node with two non-outside children µ1, µ2.
Let pj , j = 1, 2 be C-paths in G−r (µj) between its poles.

(c) skel(ν1) contains a cycle c of non-outside edges such that the
root edge is contained in c. Then there are the following two C-paths
between the poles of ν1: An external C-path p2 of ν1 and a path p1 within
G−r (ν1) that goes exactly through the graphs represented by the children
of ν1 that correspond to the edges of c other than the root edge.

Let now e0 be a non-inside edge of skel(ν1) or let v0 ∈ Cext be a vertex of
skel(ν1) other than the poles and let e0 be an edge of skel(ν1) incident to v0.
Let ν0 be the child of ν1 corresponding to e0. In all three cases, we have to show
that the cycle composed by p1 and p2 does not enclose G−r (ν0).

We will introduce a notation such that we can handle all three cases in one
step. First, we will split the path pj , j = 1, 2 into three segments, some of which
might be empty. Figure 14 gives an illustration of the most general case.

Let ν1, . . . , ν` = r be the ν1-r-path. Let j ∈ {1, 2}. If pj in G−(ν1) let
ij = 1. Otherwise let 2 ≤ ij ≤ ` be minimum such that νij is an R-node or
G−r (νij ) contains pj . We may assume that i1 ≤ i2. If νij is an R-node, we
actually redefine νij to be the root ρ of the tree containing νij−1: we replace pj
by the respective path in Gr(νij−1) through the root edge eρ of skel(νij−1). If ν1
was an R-node we redefine ν1 to be the special P-node with which we replaced
the R-node and we redefine ν0 to be one of the artificial non-inside Q-nodes we
appended to ν1.

Observe that νij is either ρ or a P-node and pj is composed by two C-paths
p1j and p2j connecting the poles of Gr(ν1) with the poles of Gr(νij ) and a middle

C-path p′j . p
1
j and p2j are empty if ij = 1. p′j consists of the edge eρ if νij = ρ.

If νij is a P-node then it has a non-outside child µj 6= νij−1 such that p′j is a
path in G−r (µj) between its poles.

We distinguish some cases. (1) If νi1 = ρ or if νi1 = νi2 6= ρ and µ1 = µ2 then
p1 and p2 are trivially on the same side of Gr(ν1). (2) Assume that νi1 = νi2 6= ρ
and µ1 6= µ2. Since the 1s are consecutive in the rows inserted for νij the two
non-outside children µ1 and µ2 must be on the same side of the non-inside
child νij−1. (3) Otherwise, observe that the C-paths p12 and p22 connecting
the poles of Gr(ν) with the poles of Gr(νi2) must contain the poles of Gr(νk),
k = 1, . . . , i2. (See Fig. 14b.) This implies especially that for each k = i1, . . . , i2
the graphs G−r (νk) contain a C-path connecting their poles: such a C-path can
be composed by p′1 and portions of p12 and p22. Hence, νk, k = i1, . . . , i2 is not
outside. Further a subpath of p2 is an external C-path of νi1 . Hence, νi1 cannot
be double-border, since otherwise the root would be inappropriate for C.

Since νi1−1 is non-inside and νµ1 is border or inside there is a row κ inserted
for νi1 that contains only 0s in c(νi1−1) and only 1s in c(µ1). Further, when we
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Figure 14: Composition of the external paths in Lemma 4

handled νi2 , we added 1s in the row κ and the external column (if νi2 = r) or
the columns c(µ2) (otherwise). Hence, since the 1s must be consecutive in κ, it
follows that c(νi1−1) cannot be between c(µ1) and the external column cC(ρ) or
c(µ2), respectively. Hence, p1 and p2 must be on the same side of Gr(ν0).

Now, if νi2 6= ρ we are done. Otherwise let ν be the parent R-node of νi2−1
in T . By induction, we already know that all external C-paths of ν are on the
same side and that eνi2−1

is not enclosed by a simple cycle of non-outside edges
in skel(ν). Hence, the external C-paths of νi2−1 are all on the same side and by
construction this is represented by the external column cC(ρ). �

4.5 Proof of Necessity

Assume now that a c-planar embedding with e on the outer face is given in which
Cext is on the outer face of G[C] for every cluster C. This yields a permutation of
the children of the P -nodes of T and flips of the R-nodes. Permute the columns
of the matrices accordingly. Let ρ be the root of a split off tree Tρ and let ρ′ be
the only child of ρ in Tρ. The external columns of Mρ are exchanged if on the
ρ′-r-path there are an odd number of R-nodes that are flipped.

Lemma 5 The thus constructed permutation of the columns is a consecutive-
ones ordering up to a possible re-permutation due to the assignment of upper
and lower halves for S-nodes.
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Proof: Recall that we have inserted up to three rows for each P-node and each
cluster and no other rows into the matrices (except for the initialization). Let ν
be a P-node in a subtree Tρ and let C be a cluster such that we have created a
row κ for ν and C in Mρ. Then ν has no double-border child. Due to c-planarity
and the condition on all Cext, the children of ν must be permuted such that all
inside children are consecutive pre- and succeeded by at most one border child
and arbitrary many outside children. It follows that the 1s in columns c(ν) must
be consecutive.

Let ν = ν1, . . . , ν` = ρ be the path from ν to the root of Tρ, and let 1 < k ≤ `
be maximum such that ν1, . . . , νk are not outside. If ν1 was not a special P -
node substituting an R-node then νi is a P-node if i is odd and an S-node if i
is even (otherwise it might be vice versa, but the situation is similar). νk is a
P-node if νk 6= ρ. Also observe that c(νi−1) ⊆ c(νi), i = 2, . . . , ` and that for
each i = 1, . . . , ` the columns in c(νi) are consecutive in the permuted matrix.
If k < `, we have set r(νk+1, C) = ∅. Hence, the entries in row κ are 0 in all
columns in c(ν`−1) \ c(νk).

We consider first a P-node νi, i = 3, . . . , k odd. Since νi−1 is not outside it
follows that no child of νi other than νi−1 can be double-border. Hence, for each
non-outside child µ 6= νi−1 of νi there are 1s in row κ and all columns in c(µ).

Observe that due to c-planarity the non-outside children of νi are consec-
utive. Moreover, if there are both, non-outside children of νi to the right and
the left of νi−1 then νi−1 is inside and, thus, all columns in c(ν1) as well as
c(νj) \ c(νj−1) have entry 1 in row κ for all 3 ≤ j < i odd.

If νk = ρ, let m = k = ` and assume that the external C-paths of ν`−1 are
all to the right (left) of ν`−1, i.e., the column cC(ρ) is the right (left) external
column. If νk 6= ρ, let m ≤ k be maximum such that νm is a P-node that has
a non-outside child other than νm−1 (If no
such P-node exists then all entries in row κ
other than in the columns c(ν) are zero and
thus all 1s are consecutive.) Assume that νm
has a non-outside child µ to the right (left) of
νm−1. Assume now that there is a 1 ≤ j < m
odd such that the P-node νj has a child µ′ to
the right (left) of νj−1. I.e., the columns c(µ′)
are between the columns c(ν) and c(µ). If µ′

were not inside then Gr(µ
′) would contain a

vertex in V \(C\Cext) that would be enclosed
by a C-cycle composed by the following four
paths: (1) A C-path in G−r (νj−1) between
its poles, (2+3) two C-paths connecting the
poles of Gr(νm−1) with the poles of Gr(νj),
and (4) either an external C-path of ν`−1, if
νm = ρ or a C-path in Gr(µ) between its
poles, if νm is a P-node. Hence, the entries

ν = ν1
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Figure 15: Possible ordering of the 0s and 1s in a row inserted for a P-node ν1
according to a c-planar embedding.

Consider now an S-node νi, i = 2, . . . , k even, that has an external C-path.
By the choice of k, νi is not outside. Since the root is not inappropriate, νi is not
double-border. Thus, we’ve set the entries in row κ and columns c(νi) \ c(νi−1)
to 1 if νi is inside. Otherwise, we set the entries in c(νi) \ c(νi−1) that are to
one side of c(νi−1) to 1. Observe that an S-node νi has an external path if and
only if ` = k or i < m.

Hence, row κ looks as follows: Assume without loss of generality that c(νm)\
c(νm−1) contains a 1 to the right of c(νm−1). Then the entries in c(ν) are ordered
such that all 0s (if any) are to the left and all 1s are to the right. Moreover, if
ν is inside let 1 ≤ b ≤ k be maximal such that νb is inside. Then all entries in
columns c(νb) are 1. Otherwise let b = 1.

For i = b+ 1, . . . ,m−2 odd all entries in c(νi)\ c(νi−1) that are on the right
side of c(νi−1) are 1. For i = b+ 1, . . . ,m− 1 even, all entries in c(νi) \ c(νi−1)
on one side of c(νi−1) are 1 – however, for some i that could be the right-hand
side and for others the left-hand side. Finally, the entries in c(νm) \ c(νm−1) to
the right of c(νm−1) are ordered such that the 1s are to the left and the 0s (if
any) are to the right. See Fig. 15.

Hence, the 1s in row κ are consecutive up to maybe the wrong choice of the
side for the 1s inserted for border S-nodes. Observe, however, on one hand that
we could remove now the 1s from the wrong side and insert them on the right
side and would thus obtain the 1s consecutive. We could obtain that for one
cluster also by permuting the columns for the children of the S-node accordingly.
On the other hand the assignment to sides was forced by the same and different
constraints – up to the choice for one cluster. Hence, if we do the permuting
that works for one cluster it will create the feasible assignment we would obtain
if we had assigned the sides now that we know were the external paths are
embedded. �

5 C-Connected Clusterings on General Graphs

We now show how to extend the method from the last section to work for
an arbitrary planar graph. Let (G, C) be a c-connected overlapping clustered
graph with underlying planar graph G. If G is not connected, we can test each
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Figure 16: The hierarchy in the BC-tree given by the choice of the root. The
green vertex is the parent cut vertex of B while the red vertex is a child cut
vertex of B. Note that the child blocks must be embedded with their parent
cut vertices on the outer face.

connected component separately, since the c-connectivity limits each cluster to
a single component.

It remains to show the case where G is connected but not 2-connected and
can thus be represented by a BC-tree. We consider the BC-tree of G rooted at
a block Hr. The interpretation of this choice is that Hr should contain an edge
incident to the outer face of G in a planar drawing. Let H be a block of G. If
H 6= Hr then the parent cut vertex of H is the cut vertex of H on the path from
H to Hr. H is a child block of its parent cut vertex. All other cut vertices of H
are called child cut vertices of H. All cut vertices of Hr are child cut vertices
of Hr.

Consider the SPQR-tree T of H. If H = Hr, any root of T is suitable.
Otherwise the parent cut vertex of H must be on the outer face of H. Thus, a
root of the SPQR-tree T is suitable if it corresponds to an edge incident to the
parent cut vertex of H. See Fig. 16.

Let H1, . . . ,Hk be the child blocks of a cut vertex v and let Vi, i = 1, . . . , k
be the set of vertices in the connected components of G− v containing Hi. We
call a cluster C relevant for a child block Hi, if v ∈ C and Vi 6⊆ C. Let Cext be
the set of child cut vertices v of H such that C is relevant for a child block of v.

We use the algorithm for 2-connected graphs, restricting the roots for the
SPQR-trees to be suitable, to test whether there is some c-planar embedding for
each block H with the parent cut vertex on the outer face of H and Cext on the
outer face of H[C]. For each child cut vertex v of a block H and for each child
block Hi of v, we test whether there is a free face, i.e., a face f of H incident
to v such that the boundary of f contains a vertex not in C for any cluster
C that is relevant for Hi. If so, the c-planar embeddings of the blocks can be
combined into a c-planar embedding of the whole graph. In the following, we
show that otherwise there is no c-planar drawing for the whole graph with the
given choices of the root of the BC-tree and the roots of the SPQR-trees.

Given a c-planar embedding, a face f is free with respect to a subset C′ ⊆ C
of clusters if f is not enclosed by a C-cycle for any C ∈ C′. Otherwise, f is
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covered by C′. In the following we use C instead of {C} if the context is clear.

Remark 3 A face is covered by C if and only if its boundary is a C-cycle.

A vertex v is free with respect to a subset C′ ⊆ C of clusters if one of its
incident faces is free with respect to C′ and covered by C′ otherwise. Our goal
is to prove the following lemma.

Lemma 6 Let H be a block, v a vertex in H, and C′ ⊆ C. If there is a c-planar
embedding of H, in which v is free with respect to C′, then v is free with respect
to C′ in any c-planar embedding of H in which v is free with respect to C for all
C ∈ C′.

Given a vertex v in a block H, we call two incident edges e1 and e2 of v
equivalent with respect to a set C′ of clusters, if they are in the same block of
H[
⋂
C∈C′ C], i.e. if there is a simple cycle in H that is a C-cycle for any C ∈ C′

and contains both, e1 and e2. A C′-equivalence class around v is a maximal set
of edges incident to v that are pairwise equivalent with respect to C′.

Lemma 7 Let v be a vertex of a block H and let C′ ⊆ C. Then a C′-equivalence
class around v is a consecutive set of edges in the cyclic order around v in any
c-planar embedding of H.

Proof: Let C′ be a set of clusters, v a vertex in block H and let ei = {v, vi},
i = 1, 2 be two edges incident to v that are contained in a simple cycle c in
H[
⋂
C∈C′ C]. See Fig. 17a. Then all vertices that are enclosed by c are in⋂

C∈C′ C. Let e′ = {v, v′} be an edge enclosed by c. Let i ∈ {1, 2}. Since H
is 2-connected, there must be a v′-vi path pi in H not containing v. Let v′i be
the first vertex of pi on c. Let c′i be the cycle formed by the v′-v′i-subpath of pi,
the v′i-v-subpath of c containing ei and the edge e′. Then c′i is a simple cycle in
H[
⋂
C∈C′ C] containing e′ and ei. �

Let v be a vertex that is free with respect to any C ∈ C′. Given a c-planar
embedding of a block, a C′-interval around a vertex v is a maximal sequence
of consecutive edges around v that are (a) equivalent with respect to C′ and
such that (b) the face between any two consecutive edges is covered by C for
all C ∈ C′. Note that there is a one-to-one correspondence between the C′-
equivalence classes and the C′-intervals around v: the condition that v is free
with respect to any cluster in C′ guarantees that the C′-intervals have a well
defined start and end point. Also note that there might be several distinct
C′-intervals around v – even if C′ contains only one cluster.

Proof: (of Lemma 6) Assume that there is a c-planar embedding of H in which
v is free with respect to C for all C ∈ C′ but v is not free with respect to C′.
Consider the cyclic order e1, . . . , e` of the edges around v. Since v is not covered
by any C ∈ C′, the C-intervals around v are well defined. Among all C-intervals
for all C ∈ C′, let I be a minimal set of intervals such that all faces around v
are covered by at least one interval in I. Let Ii = 〈esi , . . . , eti〉 , i = 1, . . . , κ
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Figure 17: Illustration of the proofs of (a) Lemma 7 and (b) Lemma 6. (The
symbol ∼ refers to equivalence with respect to the set C′.)

be the intervals in I in cyclic order around v. See Fig. 17b. We assume that
s1 = 1, si < ti for i = 1, . . . , κ − 1, and tκ > sκ. For simplicity, we set
sκ+1 := s1. Let Ci ∈ C′ be such that Ii is a Ci-interval. Since all faces around v
are covered, it holds that si+1 ≤ ti.

〈
esi+1

, . . . , eti
〉

is a {Ci, Ci+1}-interval. Let
si+1 ≤ j < ti. The face f between ej and ej+1 is covered by both, Ci and Ci+1.
Hence the boundary of f is a both a Ci- and a Ci+1-cycle. Thus {esi+1 , . . . , eti}
is consecutive in any c-planar embedding. Hence, in any c-planar embedding,
the ordering of edges around v is a sequence of overlapping C-intervals for several
C ∈ C′. Hence, for any face f incident to v there is at least one C ∈ C′ such
that f is covered by C. Therefore v cannot be free with respect to C′ in any
c-planar embedding. �

We now apply Lemma 6 to any child cut vertex v of any block H and to
the set C′ of relevant clusters of any child block of v to obtain our main result.
Observe that the particular choice of Cext in the following theorem guarantees
that the child cut vertices are free with respect to any relevant cluster.

We call a cut vertex v free for a child block Hi, if v is free with respect to
the set of clusters that are relevant for Hi.

Theorem 4 A c-connected overlapping clustered graph (G, C) is c-planar, if
and only if G is planar and for each connected component of G, there is a root
block of its BC-tree for which there exist suitable root nodes of the SPQR-tree
of each block that are not inappropriate for any C ∈ C with Cext = {v; v child
cut vertex and C relevant for a child block of v} such that

1. all binary matrices fulfill the consecutive-ones property and
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2. given an arbitrary consecutive-ones ordering of the binary matrices each
cut vertex is free for each of its child blocks in the corresponding embedding.

Proof: Assume that the two conditions hold. We embed the blocks as in the
proof of Theorem 3 and combine the embeddings of the blocks as follows. Let
H be a block, let v be a child cut vertex of H and let Hi be a child block of v.
We place Hi into a face of H incident to v that is free with respect to the set
of Hi’s relevant clusters. This yields a c-planar embedding of G:

Otherwise there must be a cluster C and a vertex w ∈ V \ C such that w
is enclosed by a C-cycle c. Let c be in block H. The first condition requires,
that the embedding of H is c-planar (see Theorem 3). Hence, w cannot be a
vertex of H. Let v′ be the parent cut vertex of H and let V ′ be the union of
the sets of vertices in the connected components of G − v′ not containing H.
By the choice of the root of the BC-tree, V ′ must be drawn in the outer face of
H. Hence w /∈ V ′.

Finally, let v be a child cut vertex of H, let Hi be a child block of v, let Vi
be the set of vertices in the connected components of G− v containing Hi, and
assume that w ∈ Vi. Then v must be enclosed by c and thus, by c-planarity of
H, v ∈ C. Since w /∈ C it follows that C is relevant for Hi. Since we embedded
Hi into a face of H that was free with respect to Hi’s relevant clusters, it follows
that w cannot be enclosed by the C-cycle c.

For the other direction assume now that there is a c-planar embedding E .
Without loss of generality, we assume that G is connected. Let the root Hr

of the BC-tree be a block with an edge that is incident to the outer face of G.
Root each SPQR-tree at an edge incident to the outer face of the respective
block and incident to the parent cut vertex.

In a c-planar drawing, a child cut vertex v of a block H is placed on the
outer face of H[C] for any relevant cluster C of any of v’s child blocks. Thus,
Theorem 3 implies that the roots are not inappropriate and Condition 1 is
fulfilled.

Obviously any block must be inserted into a face that is free with respect
to its relevant clusters in any c-planar embedding of G. Consider now a block
H and an embedding E ′ of H corresponding to an arbitrary consecutive-ones
ordering of the binary matrices. Let v be a child cut vertex of H and let Hi be
a child block of v. Let C′ be the set of relevant clusters for Hi.

The labeling guarantees that v is on the outer face of H[C] for any C ∈ C′.
Thus, E ′ is a c-planar embedding of H in which v is free with respect to each
C ∈ C′. We further know that E induces a c-planar embedding of H in which v
is free with respect to C′. Hence, Lemma 6 implies that v is free with respect
to C′ in E ′. �

The characterization in the previous theorem immediately yields the follow-
ing corollary.

Corollary 1 It can be tested in polynomial time whether a c-connected over-
lapping clustered graph is c-planar.
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Proof: We consider the connected components independently. For each choice
of the root of the BC-tree and for each cluster C we first proceed bottom up
in the BC-tree in order to compute for each node ν of the BC-tree the sets
Cext = {v; v child cut vertex and C relevant for a child block of v} in overall
O(|V |) time. Then for any choice of a suitable root of the SPQR-tree of each
block, we have to construct the respective matrices and check whether they
have the consecutive-ones property. The size of the matrices is in O(|V |2|C|).
The bottle-neck of constructing them is the handling of the S-nodes which can
be done in O(|V | · |C|2) time per S-node and thus in overall O(|V |2|C|2) time.
Finally, we can check whether the cut vertices are free, by simply traversing the
incident faces.

Since there are O(|V |) choices of the root of the BC-tree and for each SPQR-
tree O(|V |) choices of their roots, we can test in O(|V |4|C|2) time whether an
overlapping clustered graph is c-planar. �

6 Conclusion

We showed that clustered planarity of c-connected overlapping clustered graphs
can be solved in polynomial time, thus solving an open problem stated by
Didimo et al. [14]. Yet, the run time of our algorithm is far from being effi-
cient.

For special instances of the problem, there exist efficient algorithms, like the
cases discussed by Didimo et al. [14] or the cases of two c-co-connected partitions
discussed in Sect. 3. These approaches are based on reducing c-planarity of
special subclasses of overlapping clustered graphs to c-planarity of sufficiently
connected hierarchically clustered graphs. Then an efficient algorithm for this
case is used, e.g., the algorithm of Cortese et al. [11].

There are two main reasons why we can not (yet) match the linear run time
of this algorithm with our approach: (1) only one choice of the root of the
SPQR-tree has to be considered in the hierarchical case – namely an edge that
is not contained in any cluster (other than the whole vertex set), and (2) the
characterization of Cortese et al. can make use of the interplay between the
SPQR-tree and the rooted tree representing the cluster hierarchy. It would be
interesting whether these ideas could be extended to our case, as an interplay
between the SPQR-tree and the Hasse diagram.
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