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Abstract

We study the complexity of the problem Detection Pair. A detection pair
of a graph G is a pair (W,L) of sets of detectors with W ⊆ V (G), the watchers,
and L ⊆ V (G), the listeners, such that for every pair u, v of vertices that are not
dominated by a watcher of W , there is a listener of L whose distances to u and to
v are different. The goal is to minimize |W |+ |L|. This problem generalizes the
two classic problems Dominating Set and Metric Dimension, that correspond
to the restrictions L = ∅ and W = ∅, respectively. Detection Pair was recently
introduced by Finbow, Hartnell and Young [A. S. Finbow, B. L. Hartnell and
J. R. Young. The complexity of monitoring a network with both watchers and
listeners. Networks, accepted], who proved it to be NP-complete on trees, a
surprising result given that both Dominating Set and Metric Dimension are
known to be linear-time solvable on trees. It follows from an existing reduction by
Hartung and Nichterlein for Metric Dimension that even on bipartite subcubic
graphs of arbitrarily large girth, Detection Pair is NP-hard to approximate
within a sub-logarithmic factor and W[2]-hard (when parameterized by solution
size). We show, using a reduction to Set Cover, that Detection Pair is
approximable within a factor logarithmic in the number of vertices of the input
graph. Our two main results are a linear-time 2-approximation algorithm and
an FPT algorithm for Detection Pair on trees.
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1 Introduction

In order to monitor faults in a network, one can place detectors on its nodes.
One possibility is to use “local” devices that are able to detect the location of
a fault within distance one (we call them watchers). Another kind of detectors,
that are more far-reaching, are able to determine the exact distance of a fault
to the device, but not its precise location (we call such detectors listeners).
If we wish to monitor a network by using only watchers, we have the classic
problem Dominating Set [14, GT2] (see the books [20, 19] for a survey of
results on this problem). If, on the other hand, we want to use only listeners,
we have the problem Metric Dimension [14, GT61] (see for example the
papers [2, 4, 15, 17, 22, 24] and references therein). However, it can be useful
to use both kinds of detectors: for example, one watcher is enough to monitor
a complete graph of order n, while we would need n− 1 listeners to do so. On
the other hand, one listener would suffice to monitor a path of order n, but for
the same task we would need dn/3e watchers. Therefore, Finbow, Hartnell and
Young [12] recently proposed the concept of a detection pair in a graph G, that
is, a pair (W,L) where W ⊆ V (G) is a set of watchers and L ⊆ V (G) is a set of
listeners that, together, monitor the graph G.

More formally, we say that a vertex w dominates all the vertices in the
closed neighbourhood N [w] of w (that is, N [w] is the set of neighbours of w
together with w itself). Moreover, a vertex l separates two vertices u and v if
the distance d(u, l) is different from the distance d(v, l). Given a pair (W,L) of
sets with W ⊆ V (G) (the watchers) and L ⊆ V (G) (the listeners), we say that
a vertex u is distinguished by (W,L) either if u is dominated by a watcher of
W , or if for every other vertex v, either v is dominated by a watcher of W , or
u and v are separated by a listener of L. Then, (W,L) is a detection pair of G
if every vertex of G is distinguished by (W,L). The size of (W,L) is the sum
|W |+ |L| and is denoted by ||(W,L)||. Note that we may have W ∩L 6= ∅ if we
choose to place both a listener and a watcher at the same position. We denote
by DP (G) the minimum size of a detection pair of G. Any vertex of (W,L) is
called a detector.

If we have a detection pair (∅, L) in a graph G, then L is called a resolving set
of G, and the smallest size of a resolving set of G is called its metric dimension,
denoted MD(G). On the other hand, if we have a detection pair (W, ∅), then W
is a dominating set ofG, and the smallest size of a dominating set ofG is its dom-
ination number, denoted γ(G). Clearly, we have DP (G) ≤ min{γ(G),MD(G)},
and the inequality can be strict [12]. It follows that for any graph G without
isolated vertices, we have DP (G) ≤ γ(G) ≤ |V (G)|/2 [20].

The goal of this paper is to study the decision and optimization problems
that are naturally associated to the notion of a detection pair (other computa-
tional problems that are mentioned in this paper are defined formally in Sec-
tion 2).
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Detection Pair
Instance: A graph G, a positive integer k.
Question: Is there a detection pair (W,L) of G with ||(W,L)|| ≤ k?

Opt-Detection Pair
Instance: A graph G.
Task: Compute an optimal detection pair of G.

A c-approximation algorithm for a given optimization problem ΠO is an
algorithm that returns a solution whose size is always at most c times the
optimum. We refer to the book [1] for more details. For a decision problem
Π and for some parameter p of the instance, an algorithm for Π is said to be
fixed parameter tractable (FPT for short) if it runs in time f(p)nc, where f is
a computable function, n is the input size, and c is a constant. In this paper
we will always consider the solution size k as the parameter. We refer to the
books [8, 23] for more details.

Finbow, Hartnell and Young proved that Detection Pair is NP-complete
on trees [12], while Opt-Detection Pair is linear-time solvable on trees con-
taining no pair of leaves with a common neighbour. This hardness result is quite
surprising since the related problems Opt-Dominating Set and Opt-Metric
Dimension, while being NP-hard in general [14, GT2,GT61], can be solved in
linear time on trees (see respectively [5] and [15, 24]). We note that Dominat-
ing Set is among the most classic and well-studied graph problems (see the
books [20, 19]), and that Metric Dimension has enjoyed a lot of interest in
the recent years: see the papers [3, 6, 9, 10, 11, 13, 17, 18].

In this paper, we continue the study of the complexity of Detection Pair
and Opt-Detection Pair initiated in [12]. In Section 3, we describe a re-
duction to Opt-Set Cover that shows that Opt-Detection Pair can be
solved within a factor logarithmic in the size of the input graph. On the other
hand, we observe that a reduction of Hartung and Nichterlein [16, 17] for Opt-
Metric Dimension can also be applied to Opt-Detection Pair. This im-
plies that Opt-Detection Pair is NP-hard to approximate within a factor
that is sublogarithmic in the input graph’s order, and that Detection Pair is
W[2]-hard when parameterized by the solution size k. (These hardness results
hold even for graphs that are bipartite, subcubic, and have arbitrarily large
girth.) In Section 4, we prove that Opt-Detection Pair is 2-approximable in
linear time on trees. In Section 5, we show that there is an algorithm for De-
tection Pair running in FPT time 2O(k log k)n2 on trees.1 We start the paper
with some preliminary considerations in Section 2, and conclude in Section 6.

1In this paper, “log” denotes the natural logarithm function.
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2 Preliminaries

We start with some preliminary considerations.

2.1 Definitions of used computational problems

We now formally define a few auxiliary computational problems that are used
or mentioned in this paper.

Dominating Set [14, GT2]
Instance: A graph G, a positive integer k.
Question: Do we have γ(G) ≤ k, that is, is there a dominating set D of G with
|D| ≤ k?

Opt-Dominating Set
Instance: A graph G.
Task: Compute an optimal dominating set of G.

Metric Dimension [14, GT61]
Instance: A graph G, a positive integer k.
Question: Do we have MD(G) ≤ k, that is, is there a resolving set R of G with
|R| ≤ k?

Opt-Metric Dimension
Instance: A graph G.
Task: Compute an optimal resolving set of G.

Set Cover [14, SP5]
Instance: A hypergraph H = (X,S), a positive integer k.
Question: Is there a set cover C of H with |C| ≤ k (that is, C ⊆ S and each
vertex of X belongs to some set of C)?

Opt-Set Cover
Instance: A hypergraph H.
Task: Compute an optimal set cover of H.

2.2 Specific terminology

In a graph G, a vertex of degree 1 is called a leaf. A vertex is called a branching
point if its degree is at least 3. A branching point v is special if there is a path
L starting at v and ending at a vertex of degree 1, and whose inner-vertices all
have degree 2. Path L−v is called a leg of v, and we say that L is attached to v
(note that vertex v does not belong to the leg). A special branching point with
t leaves as neighbours is called a t-stem.2

2The previous terminology is from [12] (branching points, stems) and [22] (legs).
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Given a special branching point x of a tree T , we define the subtree L(x) of
T as the tree containing x and all legs of T attached to x.

2.3 The classic algorithm for Opt-Metric Dimension on
trees

We will use the following results of Slater [24] about Opt-Metric Dimension
on trees, that are classic in the literature about metric dimension. See also [15,
22] for similar considerations.

Proposition 1 (Slater [24]) Let T be a tree and R be the set of vertices con-
taining, for each special branching point x of T that has ` legs attached, the
leaves of the `− 1 longest of these legs. Then, R is an optimal resolving set of
T .

We have the following consequence of Proposition 1.

Theorem 1 (Slater [24]) Opt-Metric Dimension can be solved optimally
in linear time on trees.

2.4 Observations and lemmas about detection pairs

The following easy observations and lemmas will be useful.

Observation 1 Let G be a graph and B2+ the set of its special branching points
with at least two legs attached. Then, we have DP (G) ≥ |B2+ |.

Proof: Let (W,L) be a detection pair of G. We show that for each special
branching point x of B2+ , there is at least one detector of (W,L) among x
and the vertices belonging to a leg attached to x. Indeed, if not, then any two
neighbours of x belonging to this set would neither be dominated by a watcher,
nor separated by a listener, a contradiction. �

Lemma 1 Let x be a special branching point of a graph G with a set Sx of t leaf
neighbours and a set Lx of ` legs of length at least 2 attached to x. Let (W,L)
be a detection pair of G. If there is a watcher at x, at least `− 1 of the legs in
Lx contain a detector of (W,L). Otherwise, at least t+ `− 1 legs attached to x
contain a detector.

Proof: If there is a watcher at x, assume for a contradiction that two legs L1

and L2 of Lx contain no detector. Then, neither the listeners of (W,L) nor the
watcher at x can distinguish the two vertices of L1 and L2 that are at distance 2
from x, a contradiction. A similar argument holds for vertices at distance 1 of
x when x has no watcher. �

Lemma 2 Let G be a graph with a special branching point x having a leg at-
tached, whose leaf is y. If G has a detection pair (W,L) with x ∈ L, then
(W,L \ {x} ∪ {y}) is also a detection pair of G.
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Proof: Let Vx be the set of vertices containing x and the vertices of the leg
attached to x whose leaf is y. Clearly, a pair u, v of vertices in V (G) \ Vx are
separated by x if and only if they are separated by y. Moreover, all the vertices
in the leg containing y are clearly distinguished, because each such vertex is the
unique one with its distance to y. This completes the proof. �

3 General approximability and non-approxima-
bility

In this section, we discuss the general approximation complexity of Opt-
Detection Pair.

Theorem 2 Opt-Detection Pair can be approximated within a factor
2 log n+ 1 on graphs of order n.

Proof: Given a graph G, we build an instance (X,S) of Opt-Set Cover as
follows. We let X be the set of vertex pairs of G. For each vertex v of G, we
have a set Wv of S that contains an element {x, y} of X if v dominates at least
one of x and y. We also have a set Lv that contains an element {x, y} of X if

we have d(v, x) 6= d(v, y). Therefore we have |X| =
(|V (G)|

2

)
and |S| = 2|V (G)|.

Now, we claim that we have a one-to-one correspondance between the detection
pairs of G and the set covers of (X,S). Indeed, for every vertex v of G, the set
Wv of S corresponds to a watcher placed at vertex v, and the set Lv corresponds
to a listener placed at vertex v. Moreover set Uv of S (with U ∈ {W,L}) covers
exactly the elements of X that correspond to a pair that is separated by the
according detector placed on v in G. Since Opt-Set Cover is approximable
within a factor of log(|X|) + 1 in polynomial time [21], the result follows. �

Hartung and Nichterlein [17] provided a reduction from Dominating Set
to Metric Dimension. This reduction was improved by Hartung in his PhD
thesis [16] to get a reduction mapping any instance (G, k) to an instance (G′, k+
4), where G′ is a bipartite graph of maximum degree 3 and has girth 4|V (G)|+6.
In fact, it is not difficult to see that for any detection pair P of G′ of size k′, there
is a detection pair P ′ of G′ of size at most k′ containing no watchers. In other
words, we have DP (G′) = MD(G′), and therefore the aforementioned reduction
is also a reduction to Detection Pair. Hence we have the following.3

Theorem 3 (Hartung and Nichterlein [16, 17]) Opt-Detection Pair
is NP-hard to approximate within a factor of (1 − ε) log n (for any ε > 0) for
instances of order n, and Detection Pair is W[2]-hard (parameterized by the
solution size k). Let g ≥ 4 be an arbitrary integer. These results hold even for
instances that are bipartite, have maximum degree 3, and girth at least g.

3Hartung and Nichterlein only state the hardness of approxmation for factors in o(logn),
but a recent result on the inapproximability of Opt-Set Cover [7], that transfers to Opt-
Dominating Set via standard reductions, implies our stronger statement.



JGAA, 21(6) 1039–1056 (2017) 1045

4 A 2-approximation algorithm on trees

In this section, we prove the following approximability result.

Theorem 4 There is a linear-time 2-approximation algorithm for Opt-
Detection Pair on trees.

Proof: Given an input tree T , we denote by S3+ , the set of vertices of T that
are t-stems for some t ≥ 3. Moreover, we define T ′ as the tree obtained from
T as follows. For each vertex v of S3+ (that is, v is a t-stem for some t ≥ 3),
assuming that there are ` legs of length at least 2 attached to v in T , we remove
from T : (i) t − 2 leaf neighbours of v if ` = 0, (ii) t − 1 leaf neighbours of v if
` = 1, and (iii) all t leaf neighbours of v if ` ≥ 2. Therefore, in T ′, there are at
least two legs attached to each vertex of S3+ .

Let us describe our algorithm A.

1. Compute the set S3+ and build T ′ from T .

2. Compute an optimal resolving set R′ of T ′.

3. Output A(T ) = (S3+ , R
′).

We first prove that A(T ) is a detection pair of T . Notice that the distances
from listeners in R′ and vertices of V (T ′) are the same in T and T ′. Therefore,
all pairs of vertices of V (T ′) are distinguished in T by the listeners of A(T ). On
the other hand, all vertices of V (T )− V (T ′) are dominated by the watchers of
S3+ . Therefore, A(T ) is a detection pair of T .

Moreover, it is clear that S3+ and T ′ can be computed in linear time, and R′

can be computed in linear time using Slater’s algorithm (Theorem 1). Therefore
A is a linear-time algorithm.

It remains to prove that ||A(T )|| = |S3+ | + MD(T ′) ≤ 2 · DP (T ) for any
tree T . Notice that A(T ) contains only vertices that are part of some subtree
L(x), where x is a special branching point of T ; indeed, any vertex of S3+ is
a special branching point of T , and any special branching point of T ′ is also a
special branching point of T (by Proposition 1, any optimal resolving set of T ′

only contains vertices that belong to some subtree L(x) of T ′). Therefore, it
suffices to prove that for any detection pair D = (W,L) of T , for any optimal
resolving set R′ of T ′ and for every special branching point x of T , we have
|S3+ ∩ V (L(x))| + |R′ ∩ V (L(x))| ≤ 2|W ∩ V (L(x))| + 2|L ∩ V (L(x))|. To this
end, let us assume that x is a t-stem for some t ≥ 0, and that there are ` legs
of length at least 2 attached to x. We distinguish the following cases.

Case 1: ` ≤ 1. Then, L(x) contains at most two detectors of A(T ). Indeed, if
t ≤ 2, it contains one or two listeners; if t ≥ 3, it contains one watcher and one
listener. By Lemma 1, there is at least one detector in L(x), which completes
the proof of this case.

Case 2: ` ≥ 2. Then, by Lemma 1, any detection pair (W,L) of T has a
detector in at least ` − 1 legs of length at least 2 of L(x). If t ≥ 3 (that is,
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x ∈ S3+), A(T ) has exactly `− 1 listeners and one watcher in L(x). Therefore,
for any detection pair (W,L) of T , we have 2|W ∩ V (L(x))|+ 2|L∩ V (L(x))| ≥
2`− 2 ≥ ` = |S3+ ∩V (L(x))|+ |R′ ∩V (L(x))| (because ` ≥ 2), and we are done.

Hence, assume that t ≤ 2. Then, L(x) contains only listeners of A(T ), that
is, precisely t+ `−1 leaves of L(x) that belong to R′. If t ≤ 1, we have `−1 ≥ t
and then, for any detection pair (W,L) of T , we have 2|W ∩ V (L(x))| + 2|L ∩
V (L(x))| ≥ 2` − 2 ≥ t + ` − 1 = |S3+ ∩ V (L(x))| + |R′ ∩ V (L(x))|, and we are
done. If however, t = 2, by Lemma 1, there are at least ` detectors of (W,L) in
L(x). Hence, we have 2|W ∩V (L(x))|+2|L∩V (L(x))| ≥ 2` ≥ t+` > t+`−1 =
|S3+ ∩ V (L(x))|+ |R′ ∩ V (L(x))|. This completes the proof. �

There are two infinite families of trees that show that our algorithm has no
better approximation ratio than 2.

The first family consists of trees T 1
` (` ≥ 1) that are built from ` disjoint stars

with at least three leaves each, all whose centers are adjacent to an additional
single vertex. We have ||A(T 1

` )|| = 2` (this solution set contains one watcher
and one listener for every star), while DP (T 1

` ) ≤ ` (simply let every center of a
star be a watcher, and select no listener). Hence the approximation ratio of A
on T 1

` is 2.

A second family consists of trees T 2
` (` ≥ 1) built from a path P of ` + 2

vertices. For each of the two end-vertices of P , add two leaves that are adjacent
to this end-vertex. For each degree 2-vertex v of P , build a star Sv with three
leaves and subdivide one of its edges once. Moreover, the center of Sv is made
adjacent to v. We have ||A(T 2

` )|| = 2`+ 2 (each star contains two listeners, and
two additional listeners are selected among the four degree 1-vertices adjacent
to end-vertices of P ), while DP (T 2

` ) ≤ ` + 2 (put a watcher on each center
of a star, and add one neighbour of each endpoint of P as a listener). The
approximation ratio of A on T 2

` is 2− 2
`+2 .

5 A fixed parameter tractable algorithm on
trees

In this section, we provide an exact algorithm for Detection Pair that is FPT
for the natural parameter k, the solution size.

The idea of the algorithm is as follows. We first search for a solution with
|L| ≤ 1. After this step, we may assume that |L| ≥ 2, which is a technical
condition required for the subsequent steps of the algorithm. Then we proceed
in three phases. In the first phase, we handle the solution around the special
branching points of the tree. As we will see, there is only a fixed set of pos-
sibilities to try for each such branching point. Then, in the second phase, we
determine the set of remaining listeners. Here, we are able to compute a set
(whose size is bounded in terms of k) of possible vertices that may contain a
listener in an optimal solution. Finally, in the third phase, we determine the set
of remaining watchers, and again we are able to compute a set of vertices (whose
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size is bounded in terms of k) that may be used as a watcher. The algorithm
then checks the validity of each possible choice of these placements.

Theorem 5 Detection Pair can be solved in time 2O(k log k)n2 on trees of
order n.

5.1 Preliminary lemmas

Before describing the algorithm, we prove a series of lemmas that will be essen-
tial.

The first lemma is useful to handle special branching points of the tree, by
reducing the problem around these vertices to a fixed number of cases.

Lemma 3 Let G be a graph with a special branching point x with at least two
legs and (W,L) an optimal detection pair of G. Let Sx be the set of leaves
adjacent to x, and let Lx be the set of legs of length at least 2 attached to x.
Denote by V (Lx) the vertices belonging to a leg in Lx, and let ` = |Lx| and
t = |Sx| (so, x is a t-stem). Then, we can obtain from (W,L) another optimal
detection pair of G by replacing all the detectors in Vx = {x} ∪ Sx ∪ V (Lx) by
one of the following sets of detectors:

1. If ` ≤ 1, we may use:

(a) a single watcher at x;

(b) a watcher at x, and a listener at the leaf of a longest leg attached to
x;

(c) if t+ ` = 2, a single listener at the leaf of a longest leg attached to x.

2. If ` ≥ 2, we may use:

(a) a watcher at x and ` listeners at all leaves of the legs of Lx;

(b) a watcher at x and ` − 1 listeners at all leaves of the legs of Lx but
the shortest one;

(c) if t ≤ 1, `+ t listeners at all leaves of the legs attached to x;

(d) if t ≤ 1, ` + t − 1 listeners at all leaves of the legs attached to x,
except for a shortest such leg.

Proof: Clearly, if there are any watchers among {x}∪Sx, we may replace them
by a single watcher at x and obtain a valid detection pair. We now distinguish
two cases.

Case 1: ` ≤ 1. Then, we have t ≥ 1. If Vx contained a unique detector of
(W,L) that is a watcher, then it must have dominated a leaf neighbour of x
(since t ≥ 1, such a neighbour exists). Then as observed at the beginning of the
proof, we may replace this detector by a watcher at x, and we are in Case 1(a).
If Vx had a unique detector of (W,L) that is a listener, then by Lemma 1 we
must have had t + ` = 1. Note that any listener in Vx seperates the same set
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of pairs of vertices from V (G) \ Vx. Hence we may replace the existing listener
by a listener at the leaf of a longest leg attached to x, which separates at least
as many vertices as any other listener in Vx. Then we are in Case 1(c) and we
are done. Hence, we assume that Vx contained at least two detectors of (W,L).
Then, using similar arguments one can check that the solution of Case 1(b)
yields a valid detection pair of G that is not larger than (W,L).

Case 2: ` ≥ 2. As observed before, we can replace all watchers in {x} ∪ Sx

by a single watcher at x. If x has a watcher, we let L+
x = Lx; otherwise, we let

L+
x be the set of all legs attached to x. Let `+ = |L+

x |.
By Lemma 1, at least `+ − 1 ≥ 1 of the legs in L+

x contain a detector of
(W,L). Assume first that (W,L) contained at least `+ detectors of (W,L) on the
legs of L+

x . Then, we replace all such detectors by a listener at the leaf of each
leg of L+

x . Then, any vertex of a leg Li of L+
x is distinguished by its distance

to the listener placed at the leaf of Li. Since any listener in Vx separates the
same set of pairs in V (G) \ Vx, we have obtained a valid detection pair that is
not larger than (W,L) and we are in Case 2(a) or 2(c).

Suppose now that there are exactly `+− 1 detectors of (W,L) on the legs of
L+
x . We replace these detectors by a listener at the leaf of each of the `+ − 1

longest legs of L+
x . By similar arguments as above, all vertices in Vx that do

not belong to the unique leg L1 of L+
x without a detector are distinguished.

Again, any listener in Vx separates the same set of pairs of V (G) \Vx. Hence, if
some vertex is not distinguished by the new detection pair, it must be a vertex
u of L1 that is not separated from a vertex v of V (G) \ Vx. This implies that
d(u, x) = d(v, x) (otherwise u and v would be separated by any of the listeners
placed in Vx). We know that u and v were separated by some detector of (W,L),
which must have been a detector in the leg L1 (no detector in another leg of
L+
x could possibly separate u and v since d(u, x) = d(v, x)). But we know that

there was one leg L2 of L+
x that contained no detector of (W,L). Since L1 is a

shortest leg of L+
x , there is a vertex u′ in L2 with d(x, u) = d(x, u′). But then, u′

and v were not distinguished by (W,L), a contradiction. Hence we have a valid
detection pair whose size is not greater than ||(W,L)|| and we are in Case 2(b)
or 2(d), and we are done. �

The next two lemmas are used in our algorithm to choose the placement of
the listeners.

Lemma 4 Let G be a graph with two vertices u and v connected by a unique
path P . Let V (P+) be the set of vertices of P together with the vertices of each
leg attached to an inner-vertex of degree 3 of P . Then, by placing listeners on
u and on v, all vertices of V (P+) are distinguished (by u and v).

Proof: For every vertex x of G, we let δu,v(x) = d(u, x)− d(v, x). Note that if
for two vertices x and y, δu,v(x) 6= δu,v(y), then x and y are separated by u and
v.

Clearly, u and v are distinguished. Let w be a vertex of V (P+) \ {u, v}, and
assume for a contradiction that there is some vertex z with d(u,w) = d(u, z)
and d(v, w) = d(v, z). In particular, δu,v(w) = δu,v(z).
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Note that for every two vertices p, q of P , we have δu,v(p) 6= δu,v(q), therefore
at most one of the vertices w and z can belong to P . We assume w.l.o.g. that
z does not belong to P .

The shortest paths from z to both u and v must go through an inner-vertex
of P , say s. Then, we have δu,v(z) = δu,v(s) = δu,v(w), which implies that
all shortest paths from w to u and v also go through s. But then, we have
d(w, s) = d(z, s), a contradiction because by the structure of V (P+) this implies
that w = z. �

Lemma 5 Let G be a graph with two vertices u and v connected by a unique
path P , such that each inner-vertex of P has either degree 2 or a single leg
attached. Moreover let V (P+) be the set of inner-vertices of P together with
the vertices of each leg attached to an inner-vertex of degree 3 of P . Then, for
every detection pair (W,L) of G, one can obtain a valid detection pair of G by
replacing all detectors of (W ∪ L) ∩ V (P+) by two listeners at u and v.

Proof: By Lemma 4, all vertices in V (P+) are distinguished by u and v.
Note that no watcher of V (P+) could possibly distinguish any vertex outside
of V (P+) ∪ {u, v} (and u, v are clearly distinguished). Furthermore, since P is
the unique path connecting u and v, for any listener l ∈ L in V (P+), the set of
pairs in V (G) \ V (P+) separated by l is the same as the set of pairs separated
by u (and by v). This completes the proof. �

The next lemma will be used in the algorithm to determine the placement
of watchers in parts of the tree where there is no listener.

Lemma 6 Let T be a tree with a vertex x and an optimal detection pair (W,L)
of T with |L| ≥ 1. Let Tx be a subtree of T containing x and assume that (i) Tx
contains no t-stems for any t ≥ 2, (ii) for each listener l of L and each vertex v
of Tx, the shortest path from l to v goes through x (in particular Tx−x contains
no listener) and (iii) Tx is maximal with respect to (i) and (ii). Then, there
is a set X of size at most 63|W |2 with W ∩ V (Tx) ⊆ X. Moreover, X can be
determined in time linear in |V (Tx)|.

Proof: We may view Tx as a rooted tree whose root is x. Consider the partition
P of V (Tx) into parts P0, P1, . . . , Pd where Pi contains the vertices of V (Tx) that
have distance i to x. Since |L| ≥ 1 and by (ii) all shortest paths from any listener
of L to a vertex of Tx go through x, the set L of listeners separates a pair u, v
of V (Tx) if and only if u and v belong to different parts of P. Therefore, since
(W,L) is a detection pair of G, for any two distinct vertices u and v from the
same part Pi, at least one of u, v is dominated by a watcher of W .

Let S2+ be the set of parts of P of size at least 2 (that is, those parts where at

least one vertex must be dominated by a watcher). Let F̃x be the forest induced
by the set of vertices of Tx that belong to some part of S2+ , together with their
neighbours in Tx. We let X = V (F̃x), and we shall prove that X satisfies the
claim. First, we show that (W ∩ V (Tx)) ⊆ X. Assume by contradiction that
this is not the case, and let w be a watcher of W that belongs to V (Tx)\X. By
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the optimality of (W,L), (W \ {w}, L) is not a detection pair of T . Therefore,
there must be some vertex u dominated by w that is not separated by L from
some other vertex v (and v is not dominated by a watcher of W \ {w}). In
other words, for every listener l ∈ L, we have dT (u, l) = dT (v, l). Thus, since
T is a tree, all shortest paths from l to both u and v have a common part (say
from l until some vertex y) and then are disjoint. By (iii), Tx is maximal with
respect to (i) and (ii), which implies that y = x and both u and v belong to Tx.
However, observe that u belongs to a part of S2+ (otherwise w would belong to
X). Therefore, u is uniquely determined (within Tx) by its distance to x. Since
|L| ≥ 1 and by (ii), this implies that u and v are in fact distinguished by L, a
contradiction.

Thus, we have shown that W ∩ V (Tx) ⊆ X. It is moreover clear that X can
be computed in time linear in |V (Tx)| by using the distances of the vertices of
Tx to x. Therefore, it remains only to bound the size of X.

First, we show that F̃x contains vertices of at most 9|W | distinct parts of P.
To each part Pi of S2+ , we can associate the two parts Pi−1 and Pi+1, that may

have vertices in F̃x but that may not be in S2+ . Hence, the total number of parts
with a vertex in F̃x is at most 3|S2+ |. Since a watcher may dominate vertices
from at most three parts of S2+ and each part in S2+ has at least one vertex
dominated by a watcher, we have |S2+ | ≤ 3|W |, hence F̃x contains vertices of
at most 9|W | distinct parts of P.

Second, we prove that F̃x has at most |W | + 2|S2+ | ≤ 7|W | leaves. Note

that a leaf of F̃x is either an actual leaf in T , or it is a vertex of a part Pi

with |Pi| = 1 (or both). We claim that F̃x can contain at most |W | leaves of
T belonging to a part of S2+ . Indeed, each such leaf must be dominated by a
watcher, but it can be dominated only by itself or by its parent in Tx. But since
by (i) there are no t-stems for t ≥ 2 in Tx, no parent can dominate more than

one leaf, which proves the bound. Furthermore, F̃x contains vertices from at
most 2|S2+ | parts of P of size 1, hence the number of leaves of F̃x that are not
in a part of |S2+ | is at most 2|S2+ | ≤ 6|W | since |S2+ | ≤ 3|W |. Hence in total,

we have at most 7|W | leaves in F̃x.
But any rooted forest with at most 9|W | levels and with at most 7|W | leaves

may have at most 63|W |2 vertices, hence X = V (F̃x) has size at most 63|W |2.
This completes the proof. �

5.2 The algorithm (proof of Theorem 5)

We now describe the claimed FPT algorithm for Detection Pair on trees and
prove its correctness and running time.

Proof: [Proof of Theorem 5] Let us describe the algorithm, that seeks to build
a detection pair (W,L) with at most k detectors of an input tree T of order n.

Preliminary phase: Searching for a solution with |L| ≤ 1. A first step
of the algorithm is to check whether there is a solution with |L| ≤ 1. If we set
L = ∅, the problem is equivalent to finding a dominating set of T of size at most
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k. This can be done in linear time [5]. If we set |L| = 1, one may try the n
possibilities for the placement of the unique listener. For each possibility (say we
have placed the listener at vertex v), we create a subtree Tv of T rooted at v as
follows. First of all, let Tv = T . Then, for each t-stem x of T with t ≥ 2 (except
if v is a leaf attached to x and x is a 2-stem), we may assume that x belongs
to W (by a similar argument as in the proof of Lemma 3, Cases 1a and 2a.).
Thus, we add x to W and we we remove from Tv all leaves but one that are
attached to x (if v is one such leaf, we keep v in Tv). Now Tv has no t-stems
for t ≥ 2 and we can apply Lemma 6. Thus, there is a set X of at most 63k2

vertices that may contain a watcher (X is computable in linear time). Then, it
suffices to try all the possibilities of selecting k − |W | − 1 additional watchers

from this set. There are at most
(
63k2

k

)
∈ O

(
2O(k log k)

)
such possibilities. For

each of them, we check in linear time whether we have a valid detection pair.
In total this phase takes 2O(k log k)n2 time. If we find a valid solution in this
phase, we return YES.

Next, we assume that |L| ≥ 2 and proceed in three phases.

Phase 1: Handling the special branching points. We now do a prepro-
cessing step using Lemma 3. First compute (in linear time) the set of special
branching points of T , and let B2+ be the set of those special branching points
that have at least two legs attached. Note that by Observation 1, if |B2+ | > k we
can return NO. Hence, assume that |B2+ | ≤ k. Now, for each special branching
point x of B2+ , by Lemma 3 we can assume that there are at most four different
choices for the set of detectors on x and the vertices belonging to a leg attached
to x. Therefore, we may go through each of the possible combinations of these
choices; there are at most 4k of them. Of course we discard the choices for
which there are more than k detectors. For a combination Ci, Let (Wi, Li) be
the partial detection pair corresponding to Ci. In the remainder, we show how
to decide whether there is a detection pair (W,L) of T with Wi ⊆ W , Li ⊆ L
and ||(W,L)|| ≤ k.

Phase 2: determining the set of listeners. Let V ∗i be the set of vertices
of T containing, for each pair u, v of listeners of Li, all the vertices of the path
Puv connecting u and v, as well as all the vertices of each leg of T attached
to a degree 3 inner-vertex of Puv. By Lemma 4, all the vertices in V ∗i are
distinguished by (Wi, Li). Clearly, the subgraph T ∗i = T [V ∗i ] of T is a connected
subtree. Let X = {x1, . . . , xp} be the set of vertices in V ∗i that have a neighbour
in T − T ∗i . For each vertex xj of X, we let Txj

be the subtree of T formed by
xj together with all trees of T − T ∗i containing a neighbour of xj . Let F be the
forest consisting of all trees Txj

(1 ≤ j ≤ p) such that at least one vertex of Txj

is not distinguished by (Wi, Li). Next, we upper-bound the size of F .

Claim 1 If there is a detection pair (W,L) of T with Wi ⊆ W , Li ⊆ L and
||(W,L)|| ≤ k, then |F| ≤ k.

Proof of claim. We prove that each tree of F must contain a detector of (W,L).
Assume for contradiction that there is a tree Txa of F such that no detector of
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(W,L) belongs to Txa . By definition, Txa contains a vertex w not distinguished
by (Wi, Li), hence there is a vertex w′ of T − T ∗i (say, w′ ∈ Txb

) not separated
by any listener of Li and none of w, w′ is dominated by a watcher of Wi. Then,
w′ must belong to Txa

(hence a = b), indeed by definition of T ∗i there are two
listeners u and v of Li whose path contains xa and xb. But then, if a 6= b,
clearly u and v would separate w and w′, a contradiction. But since w and w′

both belong to Txa , no listener outside of Txa can separate them, and clearly
no watcher outside of Txa

can dominate them, which proves the claim. (
�

)
By Claim 1, if we have |F| > k, we can discard the combination Ci; hence,

we assume that |F| ≤ k.

Now, from each tree Txj of F , we build the subtree T̂xj of Txj as follows:
(i) remove all legs in Txj

whose closest special branching point has only one leg
attached; (ii) remove each leaf of Txj

that is adjacent to a watcher of Wi. We

also denote by F̂ the forest containing each tree T̂xa
with Txa

∈ F . We next
claim the following.

Claim 2 If there is a detection pair (W,L) of T with Wi ⊆W , Li ⊆ L and ka
detectors on Txa

, then T̂xa
has at most 2ka leaves.

Proof of claim. Let us consider the legs of T̂xa containing no detector of (Wi, Li).

By (i) of the construction of T̂xa
, such a leg must be attached to a special

branching point having at least two legs attached. (Note that operation (i) did
not create any new special branching point.) Moreover, by (ii), if this leg has

length 1 in T̂xa
, its unique vertex will not be dominated by a watcher, since the

set of detectors on this leg and its special branching point are determined by
the combination Ci. Note that in (ii), if we create a new leg, this leg contains
a detector (a watcher).

Let v be a special branching point of T̂xa
and let Lv be the set of legs in

T̂xa
attached to v that do not contain any detector of (Wi, Li). By the previous

discussion, we have |Lv| ≥ 2. If some leg of Lv has length 1, as we observed
there will be no watcher on v. Hence, in order to separate all the neighbours
of v on the legs of Lv, we need a detector in at least |Lv| − 1 ≥ |Lv|/2 of these
legs. Otherwise, we still need that many detectors in order to separate all the
vertices at distance 2 of v on the legs of Lv. Hence, at most half of the leaves
of T̂xa

belong to a leg with no detector, which proves the claim. (
�

)
By Claim 2, T̂xj

has at most 2kj leaves (where kj is the set of detectors

placed on Txj
). Therefore, if the total number of leaves in the forest F̂ is more

than 2k, we can discard the current combination Ci. Hence, we can assume that
the total number of leaves in F̂ is at most 2k.

Therefore, the total number of vertices of degree at least 3 in F̂ is at most
2k. Let us consider the sets of maximal threads in F̂ (that is, paths with inner-
vertices of degree 2). The endpoints of such threads are vertices of degree 1 or

at least 3 in F̂ , and therefore the number of such threads is at most the number
of these vertices, which is upper-bounded by 4k.
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Each such thread Puv between two vertices u and v of a tree T̂xj
of F̂ ,

corresponds (in Txj
) to a path whose inner-vertices either have a single leg

attached, or contain a watcher of Wi with a set of leaves attached. Hence, we
may assume that Puv contains at most two listeners: if it contained more than
two, by Lemma 5, we could replace them with the two endpoints u and v of
Puv. Moreover, if Puv contained exactly one listener, similarly we may assume
it is placed on one of the endpoints of Puv. Indeed, since |L| ≥ 2, there will be
another listener in the solution set. If this listener is closer to u, similarly as in
Lemma 4, a listener on v would distinguish all vertices on V (P+

uv) (where V (P+
uv)

contains all vertices of Puv and the vertices of legs attached to inner-vertices of
Puv). Moreover, the set of pairs of vertices outside of V (P+

uv) separated by u
and by v are the same. Note that by Lemma 2, if we choose to place a listener
on an endpoint u of a path Puv that is a thread in T̂xj

and this endpoint has
a leg attached, instead of placing the listener on u we can instead place the
listener on the leaf of this leg.

Therefore, for each thread Puv of T̂xa
, there are four possibilities for the

placement of the listeners: a listener on both u and v (or the leaf of a corre-
sponding leg attached to u or v); a single listener at u; a single listener at v; no
listener. There are therefore at most 44k possibilities to guess the placement of
listeners on tree Txa . For each such placement Pj , we obtain a set Lj of listeners
(of course, if ||(W,Li ∪ Lj)|| > k we do not consider this placement). Now, we
can assume that L = Li ∪ Lj , that is, that there will be no more listeners in
the sought solution (W,L). Hence, it remains to check whether we can obtain
a valid solution of size k by only adding watchers.

Phase 3: Determining the set of watchers. We compute a tree T ∗i,j sim-
ilarly as T ∗i but using the new set Li ∪ Lj of listeners. Similarly as before, we
define the set X ′ of vertices of T ∗i,j having a neighbour in T − T ∗i,j , and the
set of trees T ′xj

. We also let F ′ be the forest containing those trees T ′xj
that

have at least one vertex not distinguished by (Wi, Li ∪ Lj). We know that for
each tree T ′xj

of F ′, we will use only watchers to distinguish the vertices not yet

distinguished. For each tree T ′xj
in F ′, let T̃ ′xj

be the tree obtained from T ′xj
by

removing all leaves already dominated by a watcher of Wi. If this process has
created a t-stem with t ≥ 2, then at least t − 1 leaf neighbours of this t-stem
have a watcher of Wi; simply remove them. Then, the obtained tree T̃ ′xj

has

no t-stems with t ≥ 2. Hence, we can apply Lemma 6 to T̃ ′xj
(if necessary, we

augment T̃ ′xj
to satisfy the maximality condition (iii) in Lemma 6). Thus, there

is a set Xj of at most 63k2 vertices of T̃ ′xj
that may possibly contain a watcher,

and Xj can be computed in time linear in |V (T̃ ′xj
)|. As before, there are at

most k trees in F ′ and hence in total the set X = ∪jXj of possible placements
for the remaining watchers has size at most 63k3 (and is computable in linear

time). Therefore, we can check all the
(
63k3

k

)
∈ O

(
2O(k log k)

)
possibilities of

placing the remaining watchers. If we find a valid detection pair (W,L) with
Wi ⊆W , we return YES; otherwise, we discard the placement Pj and move on
to the next possibility.
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It is clear, by the lemmas used in the description in the algorithm, that
this algorithm is correct. The running time of the preliminary phase is
2O(k log k)n2. The running time of Phases 1 to 3 is at most 4k44k2O(k log k)n
which is 2O(k log k)n. This completes the proof. �

6 Conclusion

We have obtained a linear-time 2-approximation algorithm for Opt-Detection
Pair on trees, but perhaps this algorithmic upper bound could be improved to a
PTAS? It seems that the reduction of [12] does not show the inapproximability of
Opt-Detection Pair for any constant greater than one. Therefore, it remains
to settle the exact approximation complexity of Opt-Detection Pair on trees.

As a second question, can the factor 2O(k log k) in our FPT algorithm for
Detection Pair be improved to single-exponential FPT time 2O(k) (or even
sub-exponential time 2o(k))? For this, the bottleneck is our use of Lemma 6 in
the preliminary phase and in Phase 3 of the algorithm, during which we search
through all possible subsets of size k of some sets of size O(k2) and O(k3),
respectively. Moreover, it is perhaps possible to obtain a linear running-time
(in terms of n) by reducing the running-time of the preliminary phase.

As an extension of our results, it would be of interest to determine whether,
on further graph classes, Opt-Detection Pair is constant-factor approximable
and whether Detection Pair is FPT. One natural research direction is to
consider the class of planar graphs or its subclasses, the outerplanar graphs and
the series-parallel graphs (that is, graphs of treewidth 2). These three classes
contain all trees. Although both questions are settled in the affirmative for Opt-
Dominating Set and Dominating Set (see [19] and [8, 23]), as far as we know
they also remain open for Opt-Metric Dimension and Metric Dimension
(though, a polynomial-time algorithm exists for Opt-Metric Dimension on
outerplanar graphs [6]).
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