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Abstract
We introduce the notion of column planarity of a subset R of the vertices

of a graph G. Informally, we say that R is column planar in G if we can assign
x-coordinates to the vertices in R such that any assignment of y-coordinates to
them produces a partial embedding that can be completed to a plane straight-
line drawing of G. Column planarity is both a relaxation and a strengthening
of unlabeled level planarity. We prove near tight bounds for the maximum size
of column planar subsets of trees: every tree on n vertices contains a column
planar set of size at least 14n/17 and for any ε > 0 and any sufficiently large
n, there exists an n-vertex tree in which every column planar subset has size
at most (5/6 + ε)n. In addition, we show that every outerplanar graph has a
column planar set of size at least n/2.

We also consider a relaxation of simultaneous geometric embedding (SGE),
which we call partially-simultaneous geometric embedding (PSGE). A PSGE of
two graphs G1 and G2 allows some of their vertices to map to two different
points in the plane. We show how to use column planar subsets to construct
k-PSGEs, which are PSGEs in which at least k vertices are mapped to the same
point for both graphs. In particular, we show that every two trees on n vertices
admit an 11n/17-PSGE and every two outerplanar graphs admit an n/4-PSGE.

Submitted:
December 2015

Reviewed:
May 2016

Revised:
September 2016

Reviewed:
November 2016

Revised:
May 2017

Accepted:
July 2017

Final:
September 2017

Published:
October 2017

Communicated by:
S.-H. Hong

Article type:
Regular Paper

L. Barba is supported by the ETH Postdoctoral Fellowship. M. Hoffmann and V. Kusters are

partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR and the

Swiss National Science Foundation, SNF Project 20GG21-134306. M. Saumell was supported

by project LO1506 of the Czech Ministry of Education, Youth and Sports, by project NEXLIZ

CZ.1.07/2.3.00/30.0038, co-financed by the European Social Fund and the state budget of the

Czech Republic, and by institutional support RVO:67985807. W. Evans is partially supported

by NSERC Canada. Preliminary versions of this paper appeared in [2, 16].

E-mail addresses: luis.barba@inf.ethz.ch (Luis Barba) will@cs.ubc.ca (William Evans)

hoffmann@inf.ethz.ch (Michael Hoffmann) vincent.kusters@inf.ethz.ch (Vincent Kusters)

saumell@cs.cas.cz (Maria Saumell) b.speckmann@tue.nl (Bettina Speckmann)

http://dx.doi.org/10.7155/jgaa.00446
mailto:luis.barba@inf.ethz.ch
mailto:will@cs.ubc.ca
mailto:\hoffmann@inf.ethz.ch
mailto:\hoffmann@inf.ethz.ch
mailto:vincent.kusters@inf.ethz.ch
mailto:\saumell@cs.cas.cz
mailto:\saumell@cs.cas.cz
mailto:b.speckmann@tue.nl


984 Barba et al. Column planarity and PSGE

1 Introduction

A graph G = (V,E) on n vertices is unlabeled level planar (ULP) if for all
injections γ : V → R, there exists an injection % : V → R, so that embedding
each v ∈ V at (%(v), γ(v)) results in a plane straight-line embedding of G. In
other words, for any assignment of y-coordinates to the vertices of G, there exists
an assignment of x-coordinates that results in a plane straight-line embedding of
G. Estrella-Balderrama, Fowler and Kobourov [14] originally introduced ULP
graphs and characterized ULP trees in terms of forbidden subgraphs. Fowler
and Kobourov [17] extended this characterization to general ULP graphs. ULP
graphs are exactly the graphs that admit a simultaneous geometric embedding
with a monotone path: this was the original motivation for studying them.

In this paper we introduce the notion of column planarity of a subset R of
the vertices V of a graph G = (V,E). Informally, we say that R is column
planar in G if we can assign x-coordinates to the vertices in R such that any
assignment of y-coordinates to them produces a partial embedding that can be
completed to a plane straight-line drawing of G. Column planarity is both a
relaxation and a strengthening of unlabeled level planarity. It is a relaxation
since it applies only to a subset R of the vertices and a strengthening since the
requirements on R are more strict than in the case of unlabeled level planarity.

More formally, for R ⊆ V , we say that R is column planar in G = (V,E)
if there exists an injection % : R → R such that for all %-compatible injections
γ : R→ R, there exists a plane straight-line embedding of G where each v ∈ R
is embedded at (%(v), γ(v)). Injection γ is %-compatible if the combination of %
and γ does not embed three vertices on a line. Clearly, if R is column planar in
G then any subset of R is also column planar in G. We say that R is %-column
planar when we need to emphasize the injection % (see Figure 1 for an example).
If R = V is column planar in G then G is ULP since column planarity implies
the existence of one assignment of x-coordinates to vertices that will produce a
planar embedding for all assignments of y-coordinates, while to be a ULP graph
the x-coordinate assignment may depend on the y-coordinate assignment. In
this sense, column planarity of V is strictly more restrictive than unlabeled level
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Figure 1: (a) A graph G = (V,E) with R = {a, d, e, f} which is %-column planar
for % = {d 7→ 1, a 7→ 2, e 7→ 3, f 7→ 4}. (b-c) Two assignments of y-coordinates
to the vertices R and corresponding plane straight-line completions of G.
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planarity of G. Di Giacomo et al. [10] studied column planarity under a different
name. Specifically, they defined EAP graphs as the graphs G = (V,E) where V
is column planar in G. They considered a family of graphs called fat caterpillars
and proved that these are exactly the EAP graphs.

As mentioned above, the study of ULP graphs was originally motivated by
simultaneous geometric embedding, a concept introduced by Brass et al. [5].
Formally, given two graphs G1 = (V,E1) and G2 = (V,E2) on the same set of
n vertices, they defined a simultaneous geometric embedding (SGE) of G1 and
G2 as an injection ϕ : V → R2 such that the straight-line drawings of G1 and
G2 induced by ϕ are both plane. With slight abuse of notation, we refer to
these drawings as ϕ(G1) and ϕ(G2). Figure 2c depicts an SGE of the graphs
in Figure 2a and Figure 2b. Bläsius et al. [3] gave an excellent survey of the
subsequent papers on SGE with a comprehensive list of results. On the positive
side, Brass et al. [5] proved that two paths, cycles or caterpillars always admit
an SGE. Cabello et al. [6] proved that a matching and a tree or outerpath (a
type of outerplanar graph) always admit an SGE. On the negative side, Brass
et al. [5] proved that three paths sometimes do not admit an SGE. Erten and
Kobourov [13] proved that a planar graph and a path may not admit an SGE.
Frati, Kaufmann and Kobourov [18] strengthened this result to the case where
the planar graph and the path do not share any edges. Geyer, Kaufmann
and Kobourov [19] described two trees that do not admit an SGE. Angelini et
al. [1] closed a long-standing open question by describing a tree and a path that
admit no SGE. Finally, Estrella-Balderrama et al. [15] showed that the decision
problem for SGE is NP-hard.

In light of the restrictiveness of simultaneous geometric embedding, several
other variations on the abstract problem have been studied. Cappos et al. [8]
considered a version of SGE where edges are embedded as circular arcs or with
bends. Di Giacomo et al. [11] considered matched drawings: a version of SGE
where the location of a vertex in the drawing of G1 needs to have only the same
y-coordinate as its location in the drawing of G2.

In this paper we study a variant on SGE which we call partially-simultaneous
geometric embedding (PSGE). We do not require every vertex to map to a single
point in the plane. Instead, some vertices can have a “split personality” and
map to two different locations, one associated with G1 and one associated with
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Figure 2: (a–b) Two graphs on the same vertex set. (c) An SGE of these graphs.
(d) A 3-PSGE of these graphs.
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G2. Specifically, given two graphs G1 = (V,E1) and G2 = (V,E2) on the same
set of n vertices, a k-partially-simultaneous geometric embedding (k-PSGE) of
G1 and G2 is a pair of injections ϕ1 : V → R2 and ϕ2 : V → R2 such that (i) the
straight-line drawings ϕ1(G1) and ϕ2(G2) are both plane; (ii) if ϕ1(v1) = ϕ2(v2)
then v1 = v2 and; (iii) ϕ1(v) = ϕ2(v) for at least k vertices v ∈ V . An n-PSGE
is simply an SGE. Figure 2(d) depicts a 3-PSGE of the graphs in Figure 2(a)
and Figure 2(b).

PSGE is related to the notion of planar untangling : Given a straight-line
drawing of a planar graph, change the embedding of as few vertices as possible
in order to obtain a plane drawing. Goaoc et al. [20] described an improvement
of a result by Bose et al. [4] to show that 4

√
(n+ 1)/2 vertices can always be

kept in their original positions. Since we can simply take any plane embedding
of G1, use the same embedding for G2 and then untangle G2, it immediately
follows that every two planar graphs on n vertices admit a 4

√
(n+ 1)/2-PSGE.

In the other direction, Cano et al. [7] showed the existence of a graph and
a straight-line drawing of this graph such that in any planar untangling, the
embedding of all but O(n.4965) vertices has to change. However, an upper bound
for untangling does not have direct implications for PSGE because untangling
is more restrictive compared to PSGE: In the untangling problem the positions
of all vertices, in particular, of those that remain fixed, are given, whereas in
PSGE one may select suitable positions for those vertices.

Results and organization. We prove that n-vertex trees have column planar
sets of size at least 14n/17 and we show that there exist n-vertex trees where
every column planar subset has size at most 5n/6. For n-vertex outerplanar
graphs, we can always find a column planar subset of size n/2. These results
complement the recent developments of Da Lozzo et al. [9] who showed that
n-vertex triconnected cubic planar graphs have column planar sets of size at
least dn4 e, and that n-vertex planar graph of treewidth at most three have a
column planar sets of size at least dn−38 e. Moreover, they proved that n-vertex
planar graphs of treewidth k have column planar sets of size Ω(k2).

Next, we establish the relation between column planarity and PSGE. We
show that every two trees admit an 11n/17-PSGE, that every tree and ULP
graph admit a 14n/17-PSGE, and that every two outerplanar graphs admit an
n/4-PSGE.

2 Column planar sets in trees

In this section, we show how to find large column planar sets in trees. Let p(v)
be the parent of vertex v in a rooted tree T , and let r(T ) be the root of T .
Given a subset R of the vertices of T , let CR(v) be the non-leaf children of v in
R and let C+

R (v) be those vertices in CR(v) with at least one child in R. We first
prove that subsets of T satisfying certain conditions are always column planar
and next that every tree contains a large such subset.
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Figure 3: Embedding a tree with a column planar set. The column planar
vertices are black. Figure (a) refers to the case r ∈ R and p(r) ∈ R, (b) refers
to the case r ∈ R and p(r) /∈ R, and (c) refers to the case r /∈ R.

Lemma 1 For a rooted tree T = (V,E), a set R ⊆ V is column planar in T if
for all v ∈ R, either

1. p(v) ∈ R, the number of non-leaf children of v in R is at most two, and
at most one of these children has a child in R (i.e. |CR(v)| ≤ 2 and
|C+

R (v)| ≤ 1); or

2. p(v) 6∈ R, the number of non-leaf children of v in R is at most four, and
at most two of these children have a child in R (i.e. |CR(v)| ≤ 4 and
|C+

R (v)| ≤ 2).

Proof: We will embed T recursively. The x-coordinates of V will be fixed in
such a way that any assignment γ : R→ R of y-coordinates to R can be accom-
modated by embedding the vertices of V \ R with y-coordinates much larger
than max γ or much smaller than min γ. Thus, the edges between V \ R and
R are embedded as near-vertical line segments. In the figures that accompany
this proof, such edges will be drawn as curves.

For a subtree T ′ of T , let p(T ′) be the parent of r(T ′). If r(T ′) is the root of
T then p(T ′), though it does not exist, is viewed as not in R. Our embedding
will have the following properties for each subtree T ′:

(i) if r(T ′) 6∈ R or {r(T ′), p(T ′)} ⊆ R, then r(T ′) has either the smallest or
largest x-coordinate among all vertices in T ′;

(ii) if r(T ′) 6∈ R, then the y-coordinate of r(T ′) can be chosen arbitrarily, as
long as it is sufficiently small or sufficiently large; and

(iii) no almost-vertical ray from r(T ′) intersects any edge from T ′.

Let T be the rooted tree we want to embed. Let r = r(T ). First we discuss
the case r ∈ R. There are two subcases, corresponding to the two cases of the
statement of this lemma.
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Suppose first that we are in Case 1 of the lemma, that is, p(T ) ∈ R and
|CR(r)| ≤ 2 while |C+

R (r)| ≤ 1. Embed r at x = 1 and its ` leaf children at
x = 2, . . . , ` + 1. (Their y-coordinates are determined by γ.) Let r1 and s1 be
vertices of T such that CR(r) ⊆ {r1, s1} and C+

R (r) ⊆ {r1}. Embed r1 and
its subtree recursively and scale its x-coordinates to lie in [` + 3, ` + 4]. By
Property (i), and possibly after mirroring the embedding of the subtree rooted
at r1 horizontally, the edge {r, r1} does not cross edges in the subtree rooted
at r1. See Figure 3(a).

Embed s1 at x = `+ 2. Let 〈T1, . . . , Tk〉 be the child subtrees of s1. Embed
Ti recursively and scale its x-coordinates to lie in [` + 3 + 2i, ` + 4 + 2i] for all
1 ≤ i ≤ k. Vertex s1 will be above {r, r1} for some γ and below {r, r1} for other
γ. If it is above, let r(T1), . . . , r(Tk) have progressively larger y-coordinates (by
Property (ii)). If it is below, let them have progressively smaller y-coordinates.
Then none of the edges {s1, r(Ti)} cross {r, r1} and the edge {s1, r(Ti)} does
not cross any edges in Ti by (i) and (ii).

Recursively embed the remaining subtrees 〈T ′1, . . . , T ′t 〉 of r (none of their
roots are in R) with x-coordinates in [` + 3 + 2k + 2i, ` + 4 + 2k + 2i] for all
1 ≤ i ≤ t such that 〈r(T ′1), . . . , r(T ′t )〉 have progressively larger y-coordinates.
The edge {r, r(T ′i )} does not cross any edges in T ′i by (ii). Note that r has
the lowest x-coordinate, and thus (i) is satisfied. Properties (ii) and (iii) are
trivially satisfied.

Suppose now that we are in Case 2 of the lemma, that is, p(T ) 6∈ R and
|CR(v)| ≤ 4 while |C+

R (v)| ≤ 2. Let r1, r2, s1 and s2 be vertices of T such that
CR(r) ⊆ {r1, r2, s1, s2} and C+

R (r) ⊆ {r1, r2}. In order to embed r and its child
subtrees different from the ones rooted at r2 and s2, proceed as in the previous
case. Mirror the recursive embedding of the subtree rooted at r2 horizontally
and scale it to have x-coordinates in [−3,−2]. Embed the subtree rooted at s1
as in the previous case. In order to embed the subtree rooted at s2, proceed
similarly to s1, but embed s2 and its subtree to the left of r. See Figure 3(b).
Properties (i)-(iii) are trivially satisfied.

Finally, suppose that r = r(T ) 6∈ R. Embed its child subtrees T1, . . . , Tt
to have x-coordinates in [2i, 2i + 1] for all 1 ≤ i ≤ t. Embed r sufficiently
high on the line x = 1. For subtrees Ti with r(Ti) ∈ R, note that the edge
{r, r(Ti)} does not cross any edges of Ti due to Property (iii). For the other
ones, {r, r(Ti)} does not cross edges of Ti due to Properties (i) and (ii). See
Figure 3(c). Properties (i)-(iii) are satisfied. �

It remains to show that every tree contains a large subset that satisfies the
conditions imposed by Lemma 1. We show that every tree on n vertices contains
such a subset of size at least 14n/17 and that there are trees with no column
planar subset of size larger than 5n/6. Note that 14/17 ≈ 5/6− 0.01, and thus
our results are almost tight.

Lemma 2 Let T be a tree on n vertices rooted at any vertex r(T ). Let ci be the

number of vertices with exactly i children. Then c0 = (n+1+
∑n−1

i=1 (i−2)ci)/2.

Proof: The number of edges in T is n−1 and also equals the degree sum divided
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by two. Thus,
∑n−1

i=0 ci(i+ 1) = 2(n− 1) + 1 = 2n− 1. Since
∑n−1

i=0 ci = n, we

get
∑n−1

i=0 ci(i − 2) + 3n = 2n − 1 and thus −2c0 = −n − 1 −∑n−1
i=1 ci(i − 2).

The lemma follows. �

Theorem 1 A tree T on n vertices contains a column planar set of size at least
14n/17.

Proof: Let R denote the column planar set to be constructed. Note that the set
formed by all leaves in T and all vertices with exactly one child in T is column
planar by Lemma 1 (for each vertex v in this set, it holds that |C+

R (v)| ≤ 1
and |CR(v)| ≤ 1). Intuitively, if this set is large enough, then we are done.
Otherwise, we construct a column planar set greedily as follows. Root T at
an arbitrary non-leaf vertex r(T ). Orient every edge towards the root and
topologically sort T to obtain an order 〈v1, . . . , vn〉 where vn = r(T ). We will
greedily add vertices to R in this order. More precisely, let R0 = ∅ and let
Ri := Ri−1∪{vi} if Ri−1∪{vi} satisfies Lemma 1 and let Ri := Ri−1 otherwise.
Let R = Rn be our final subset of T .

We say that a vertex is marked if it is in R. Consider a vertex v = vi 6∈ R.
The reason that v is not in R is that Ri−1 ∪ {v} does not satisfy the condition
in Lemma 1 for v or for a child u of v (or both). More precisely, v is contained
in exactly one of the following sets:

Xa = {v ∈ T \R : |C+
R (v)| > 2},

Xb = {v ∈ T \R \Xa : |CR(v)| > 4},
Xc = {v ∈ T \R \Xa \Xb : |C+

R (u)| > 1 ∧ v = p(u)},
Xd = {v ∈ T \R \Xa \Xb \Xc : |CR(u)| > 2 ∧ v = p(u)}.

We associate with each such v a witness tree W (v) as follows (see Figure 4).
If v ∈ Xa, then let W (v) consist of v, three vertices of C+

R (v), and a marked
child of each of them (which must exist by definition of C+

R (v)). If v ∈ Xb, then
let W (v) consist of v and five marked children of v. If v ∈ Xc, then let W (v)
consist of v and u, two vertices of C+

R (u), and a marked child of each of them.
If v ∈ Xd, let W (v) consist of v and u, and three marked children of u. Note

vv

u

v

u

v

v ∈ Xa v ∈ Xb v ∈ Xc v ∈ Xd

Figure 4: The witness tree W (v) when v is in Xa, Xb, Xc or Xd. The marked
vertices are black. Dotted line segments indicate that a vertex has at least one
child.
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that W (v) and W (v′) are disjoint for v, v′ ∈ T \ R with v 6= v′. We have the
following.

|Xa|+ |Xb|+ |Xc|+ |Xd|+ |R| = n. (1)

Let Lt and It be the set of marked vertices of
⋃

v∈Xt
W (v) that are leaves and

internal vertices in T , respectively, for t = a, b, c, d. We have

|Ia|+ |La| = 6|Xa| |La| = 3|Xa| (2)

|Ib|+ |Lb| = 5|Xb| |Lb| = 0 (3)

|Ic|+ |Lc| = 5|Xc| |Lc| = 2|Xc| (4)

|Id|+ |Ld| = 4|Xd| |Ld| = 0 (5)

Since R always contains all leaves of T , we have

|R| ≥ c0 + |Ia|+ |Ib|+ |Ic|+ |Id|, (6)

where ci is the number of vertices with exactly i children in T . Note that W (v)
contains a vertex with at least three children if v ∈ Xa ∪Xb ∪ Xd. Hence, by
Lemma 2,

c0 >
n− c1 +

∑n−1
i=3 ci

2
≥ n− c1 + |Xa|+ |Xb|+ |Xd|

2
. (7)

In addition, we have

c0 ≥ |La|+ |Lb|+ |Lc|+ |Ld| = |La|+ |Lc|. (8)

Before we bound |R|, consider the set S formed by all leaves in T and all
vertices with exactly one child in T . Then S is column planar by Lemma 1 and
|S| = c0 + c1. Whenever the greedily chosen R has size less than c0 + c1, we
choose R = S instead. Thus, we may assume

|R| ≥ c0 + c1. (9)

Combining (7) and (9) yields

|R| > n− c0 + |Xa|+ |Xb|+ |Xd|; (10)

combining (2) and (8) yields

c0 ≥ 6|Xa| − |Ia|+ |Lc|; (11)

and combining (3), (4), (5), and (6) yields

|R| ≥ c0 + 5|Xb|+ 5|Xc|+ 4|Xd| − |Lc|+ |Ia|. (12)

To eliminate c0, we add inequality (10) to two times (11) and three times (12)
to obtain 4|R| > n + 13|Xa| + 16|Xb| + 15|Xc| + 13|Xd| − |Lc| + |Ia|. With
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equation (4), this gives 4|R| > n + 13|Xa| + 16|Xb| + 13|Xc| + 13|Xd| + |Ia| ≥
n + 13(|Xa| + |Xb| + |Xc| + |Xd|). Together with equation (1), this yields the
desired bound of |R| > 14n/17. �

The algorithm achieves roughly this amount on the family (Bi)∞i=0 of trees de-
picted in Figure 5. The tree Bi has |Bi| = 17i+ 23 vertices, of which the greedy
algorithm selects |Ri| = 14i + 19. The set Si of all vertices in Bi with at most
one child has size |Si| = |Ri| = 14i+ 19. Hence the algorithm from Theorem 1
selects a fraction of |Ri|/|Bi| vertices, with limi→∞ |Ri|/|Bi| = 14/17.

· · ·

Figure 5: A family of trees for which |R| = |S| ≈ 14n/17. The set R is colored
black.

The algorithm does not, however, find a maximum column planar subset
for these trees. Figure 6 depicts a column planar subset of size 15n/17 and
a corresponding drawing. The vertices u1 and u2 are always drawn with very
large or very small y-coordinates in such a way that the edge {ui, vi} does not
cross the drawing of the tree rooted at vi for i = 1, 2. In Figure 6, u1 would be
given a high y-coordinate and u2 would be given a low y-coordinate. Although
the bound in Theorem 1 is not tight, it is close to best possible:

u1 u2
v1 v2

u1

u1

u2

u2

v1

v1

v2

v2

Ti−1

Ti+1

Ti−1 Ti+1

Figure 6: A larger column planar subset and corresponding drawing for the tree
depicted in Figure 5.

Theorem 2 For any ε > 0 and any n > 1/ε that is a multiple of six, there
exists a tree T with n vertices in which every column planar subset has less than
(5/6 + ε)n vertices.

Proof: Let p = n/6. Let T consist of p copies, 〈T1, T2, . . . , Tp〉, of the tree shown
in Figure 7(a) in which the root r of Ti+1 is made a child of the rightmost leaf
w of Ti, for i = 1, . . . , p− 1. Suppose for a contradiction that there is a column
planar set R of marked vertices in T with |R|/n ≥ 5/6 + ε. We say that a copy
Ti is full if its 6 vertices are marked. We claim that there are at least two full
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t
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v
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(a)

H1 H2 Hq−1

· · ·

r1 r2 rq−1 rq

s1

t1

u1

v1

w1

(b)

Figure 7: (a) The tree Ti and (b) H used in the proof of Theorem 2.

trees. To see this, suppose for a contradiction that there is at most one full tree.
Then, using n > 1/ε the number of marked vertices is at most

5(p− 1) + 6 = 5p+ 1 < (5/6 + ε)n, (13)

contrary to our assumption |R|/n ≥ 5/6 + ε. Hence the claim holds and there
are at least two full trees.

Let Ti and Tj be two consecutive full trees in T , that is, Tk is not full
for each i < k < j. If there is some index i < k < j such that Tk has less
than 5 marked vertices, then the average number of marked vertices of the
sequence 〈Ti, Ti+1, . . . , Tj−1〉 is at most 5/6. If this is the case between any
two consecutive full trees, then in the set containing all vertices of T except for
those that belong to the last full tree, the average number of marked vertices
is at most 5/6. That is, the total number of marked vertices in T is at most
5(p−1)+6 which, using (13), is less than (5/6+ε)n contrary to our assumption
that |R| ≥ (5/6 + ε)n.

Therefore, there exists a sequence 〈Ti, Ti+1, . . . , Tj〉 such that Ti and Tj are
full and Tk has exactly 5 marked vertices for each i < k < j. Let ` > i be
the smallest index such that the root of T` is marked. Since Tj is full, T`
exists. Let H be the subtree induced by the root of T` and the vertices in
Ti∪Ti+1∪ · · ·∪T`−1. By definition, the unmarked vertices in H are exactly the
roots of the subtrees 〈Ti+1, Ti+2, . . . , T`−1〉. We claim that the marked vertices
are not column planar in H. If this claim is true, then we obtain a contradiction
as the set of marked vertices is column planar in T . That is, if this claim is
true, then every column planar subset of T has at most (5/6 + ε)n vertices as
claimed by the theorem. Therefore, to complete our proof, we focus on proving
that the marked vertices are not column planar in H.

In order to simplify notation, let 〈H1, H2, . . . ,Hq−1〉 be the sequence of sub-
trees in H and let rq be the (marked) root of T`. Label the vertices of Hi by
adding the subscript i to every vertex in Figure 7(a); see Figure 7(b). Let R′ be
the marked vertices in H and suppose for a contradiction that R′ is %-column
planar in H for some injection % : R′ → R. For an edge {a, b} in H with
a, b ∈ R′, let x(a, b) = [%(a), %(b)] be the x-interval of edge {a, b}. Note that for
two edges {a, b} and {c, d} in H, where a, b, c, and d are distinct vertices in
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R′, x(a, b) ∩ x(c, d) = ∅: otherwise, by choosing γ appropriately we can cause
the edges to intersect within their shared x-interval. This implies, for example,
that the x-interval spanned by marked vertices in one subtree does not intersect
that of a different subtree.

For H1, since x(s1, t1) ∩ x(u1, v1) = ∅ and x(t1, u1) ∩ x(r1, s1) = ∅, %(t1) is
between x(r1, s1) and x(u1, v1) (meaning that either x(r1, s1) < %(t1) < x(u1, v1)
or x(u1, v1) < %(t1) < x(r1, s1), where A < B if a < b for all a ∈ A and b ∈ B).
By similar reasoning, %(w1) is between %(t1) and x(u1, v1) or between %(t1) and
x(r1, s1). Let us assume by renaming vertices if necessary, that %(w1) is between
%(t1) and x(u1, v1). See Figure 8.

To achieve a contradiction, we describe a %-compatible injection γ for which
the resulting partial embedding cannot be extended to a plane straight-line
drawing of H. The basic idea is to choose γ so that

γ(ui) < γ(si) < 0 ≈ γ(wi) < γ(ti) < γ(vi)

for all i (except when mentioned otherwise), and so that unmarked vertices are
forced to be above the x-axis. To ease description, we assume that γ(wi) = 0.
However, because γ must be %-compatible, we cannot allow the embeddings of
the wi’s to be collinear. Thus, we perturb their value under γ so that they stay
very close to 0, but the resulting embedding has no collinear triples.

We set γ(u1) < γ(s1) to be both negative and γ(t1) < γ(v1) to be both
positive so that w1 lies in the triangle t1u1v1. Because x(s2, t2) ∩ x(t1, u1) = ∅
and x(s2, t2)∩x(u1, v1) = ∅, we know that ρ(s2) is not between ρ(t1) and ρ(v1).
All this, together with the fact that r2 is connected to s2, forces the edge from
w1 to r2 to be upward and thus r2 to be above the x-axis (the edges {t1, u1}
and {u1, v1} work as barriers that prevent it from going downwards). Moreover,
by setting γ(s2) smaller than γ(t1) < γ(v1), we can guarantee that the vertical
coordinate of r2 is larger than γ(t1) (r2 must be in the convex cone with apex
w1 bounded by the rays passing through v1 and t1, and must connect to s2).

Consider the order of %(s2), %(t2) and x(u2, v2) and notice that x(u2, v2) ∩
x(s2, t2) = ∅ as the edges {u2, v2} and {s2, t2} are vertex disjoint. If %(s2) is

s2

t2

u2

v2w2

r3

r1

s1

t1

u1

v1w1

r2

s3

t3

u3

v3
w3

r4

u4

v4

s4

t4w4

r5

Figure 8: An example of how γ is chosen in the proof of Theorem 2 where q = 5.
Note that forcing r5 (bottom left) below the x-axis causes the edge {w4, r5} to
intersect another edge.
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between %(t2) and x(u2, v2), then we set γ so that

γ(t2) < γ(v2) < 0 < γ(s2) < γ(u2),

and s2 lies in the triangle t2u2v2. As a result either {t2, u2} or {u2, v2} intersects
{r2, s2} (recall that {r2, s2} is going downwards). Therefore, %(t2) is between
%(s2) and %(u2, v2). Now let us consider the possible positions of %(w2). If %(s2)
is between %(w2) and %(t2), then we set γ so that

γ(w2) < γ(u2) < 0 < γ(s2) < γ(t2),

and s2 lies in the triangle u2t2w2. As a result either {t2, w2} or {u2, t2} intersects
{r2, s2} (recall that {r2, s2} is going downwards). Note that x(u2, v2) cannot be
between %(w2) and %(t2) since x(u2, v2)∩x(t2, w2) = ∅. Hence, %(w2) is between
%(s2) and %(t2) or between %(t2) and x(u2, v2).

In the first case, we set γ so that

γ(u2) < γ(s2) < 0 ≈ γ(w2) < γ(t2),

and w2 lies above the line segment from s2 to t2. We claim that as a consequence,
w2 lies in the triangle r2s2t2. While we do not know the exact position of r2,
since we can lower bound its vertical coordinate, we can assume that r2 lies
higher than t2 (having γ(t2) < γ(t1) is sufficient as r2 lies higher than t1). To
prove our claim, let ω be the line passing through s2 and w2. Note that if r2
and t2 lie on the same closed halfplane supported by ω, then the edge {s2, r2}
crosses either the edge {w2, t2} or the edge {t2, u2}. Therefore, r2 and t2 lie
on different halfplanes supported by ω and hence, w2 lies in the triangle r2s2t2,
as claimed. To avoid intersecting the path r2, s2, t2, the edge from w2 to r3 is
forced upward. As before for r2, we can lower bound the vertical coordinate of
r3 because r3 must lie in the convex cone with apex w2 bounded by the rays
passing through r2 and t2.

In the second case, that is, if %(w2) is between %(t2) and x(u2, v2), then we
set γ so that

γ(u2) < 0 ≈ γ(w2) < γ(t2) < γ(v2),

and w2 lies in the triangle t2u2v2. Thus, to avoid intersecting the path t2u2v2,
the edge from w2 to r3 is forced upward. We can lower bound the vertical
coordinate of r3 because it must lie in the convex cone with apex w2 bounded
by the rays passing through v2 and t2.

By repeating this argument, we force all unmarked vertices as well as rq to
be above the x-axis. Since rq is marked, we derive a contradiction by setting
γ(rq) < 0 that comes from assuming that R′ was column planar in H. �

3 Column planar sets in outerplanar graphs

Let G = (V,E) be an outerplanar graph with n ≥ 4 vertices. Assume without
loss of generality that G is maximal outerplanar. In this section we show that
G has a column planar subset of size at least n/2.
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Every maximal outerplanar graph on n ≥ 4 vertices has at least two nonad-
jacent vertices of degree 2; the internal face incident to such a vertex is called
an ear. Let 〈v0, v1, . . . , vn−1〉 be the sequence of vertices of V along the unique
Hamiltonian cycle of G. Consider the following removal procedure: Choose an
arbitrary vertex of degree 2 in G and different from v0 and vn−1, remove it from
the graph and repeat recursively. Note that removing a degree-2 vertex of an
ear maintains maximal outerplanarity in the resulting graph. Thus, because G
has at least two ears and since v0 and vn−1 do not both have degree 2 as they
are adjacent, the above procedure is well-defined. The removal order of the
vertices V \{v0, vn−1} is the order in which they are removed by this procedure.
For 0 ≤ i < n, let

V (vi) = {vj ∈ V : vj is removed before vi}.

Let N(vi) be the set that consists of vi and its neighbors in G. For 0 < i < n−1,
the left index `i of vi is the smallest index such that v`i ∈ N(vi). Similarly,
the right index ri of vi is the largest index with vri ∈ N(vi). Naturally, `i <
i < ri. (Note that these indices are defined with respect to the order along the
Hamiltonian cycle of G, not with respect to the removal order.)

Lemma 3 Let vi be a vertex with 0 < i < n − 1 and suppose that there is a
vertex vj with i 6= j such that `i < j < ri. Then all neighbors of vj, except
possibly for vi, v`i and vri , are in V (vi).

Proof: Let ` = `i and r = ri and assume without loss of generality that i < j (if
i > j, then consider the reversed sequence vn−1, . . . , v0 instead). Since i < r−1,
the edge {vi, vr} is a chord of G. See Figure 9. Hence, the removal of vi and
vr splits G into two connected components H1 and H2 such that vj ∈ H1 and
v0 ∈ H2. Note that vj neighbors no vertex in H2. Let V −i = V \ (V (vi) ∪ {vi})
denote the vertex set after removal of vi. We claim that all the vertices in V −i lie
in H2. If this claim is true, then vj neighbors no vertex in V −i , expect possibly
for vr, which proves the statement.

vi

vr

vj v0
vn−1H1 H2

Figure 9: Connected components in the proof of Lemma 3.

Assume for a contradiction that there is a vertex v ∈ V −i that belongs
to H1. Therefore, v lies after vi in the removal order. Since (i) there is no
edge between a vertex of H1 and a vertex of H2, (ii) H1 contains a vertex
after removing vi (namely v), and (iii) H2 contains a vertex after removing vi
(namely v0), the induced subgraph G[V −i ] is either disconnected, or has vr as a
cutvertex. Regardless of the case, the graph is no longer maximal outerplanar
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after removal of vi. However, the removal procedure described above preserves
maximal outerplanarity: a contradiction. �

Let EC ⊂ E be the set of all chords of G having endpoints whose removal
splits G into components with at least two vertices each. Note that the chords
adjacent to ears of G are not part of EC . Let C = (V,EC) be the chord graph
of G (Figure 10).

Figure 10: A maximal outerplanar graph G = (V,E). The edge set EC is drawn
solid; the other edges are dotted.

Lemma 4 Let I ⊂ V be an independent set in C such that there is an edge of
the Hamiltonian cycle of G whose endpoints are both not in I. Then I is column
planar in G.

Proof: Let 〈v0, v1, . . . , vn−1〉 be the sequence of vertices of V along the unique
Hamiltonian cycle of G such that v0 and vn−1 are not in I. To set the x-
coordinate of the vertices in I, we define the injection % : I → R such that
%(vi) = i.

For any %-compatible injection γ : I → R, we need to show that there
exists a plane straight-line embedding of G where each vi ∈ I is embedded at
ϕ(vi) = (%(vi), γ(vi)).

We show that ϕ is a plane straight-line embedding of the graph G[I]. We first
prove that G[I] contains no edge {vi, vi+c} with c > 2 (sum taken modulo n). If
it has such an edge, then the removal of {vi, vi+c} splits G into two components
with at least two vertices each. Hence, by definition of C, the edge {vi, vi+c}
is in C, which contradicts the assumption that I is an independent set of C.
We conclude that all edges of G[I] are of the form {vi, vi+1} or {vi, vi+2}. An
edge {vi, vi+1} in G[I] cannot cross any other edge {vj , vj+c} of G[I], since this
would require j < i < i+ 1 < j+ c and thus c > 2. Hence, any possible crossing
in ϕ must involve two edges {vi−1, vi+1} and {vi, vi+2}. However, since vi is
separated from the rest of G by the chord {vi−1, vi+1}, it cannot be adjacent to
vi+2. We conclude that ϕ is a plane straight-line embedding of G[I].

We now describe an algorithm that places the remaining vertices of V to
obtain a plane straight-line embedding of G. The algorithm is incremental and
adds one vertex at a time in the given removal order.

Let Xk be the union of the vertices in I and the length-k prefix of the removal
order. We never embed two vertices at the same x-coordinate. We say that the
visibility invariant holds if each vertex of Xk that neighbors a vertex of V \Xk

in G is visible from below, i.e., the ray shooting downwards from this vertex
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intersects no edge of the embedding of G[Xk]. We can see that the visibility
invariant holds for X0 = I as follows. Suppose that there is a vertex vi that is
not visible from below. Then the ray from vi downwards intersects some edge
{vx, vy}. Since vx and vy are independent in C and since x < i < y, we must
have i = x+ 1 and y = x+ 2. But then the only neighbors of vi are vx and vy,
and hence vi does not neighbor a vertex of V \X0, as required.

For any k ≥ 0, let vi be the first vertex in V \Xk according to the removal
order and let Xk+1 = Xk ∪ {vi}. Note that V (vi) ⊆ Xk by definition of V (vi).
Let `i and ri be the left and right indices of vi, respectively. We place vi at
coordinates (i, yi), where yi is a sufficiently small number such that all neighbors
of vi in Xk are visible from vi. This number always exists by the visibility
invariant and since we never embed two vertices with the same x-coordinate.
After placing vi and drawing the edges to its neighbors in Xk, the vertices
vj ∈ Xk with `i < j < ri (and only those) may no longer be visible from below.
In particular, vi is visible from below after embedding vi. By Lemma 3 and the
fact that V (vi) ⊆ Xk, all neighbors of vj , except maybe for vi, v`i and vri , are in
Xk, and have hence already been embedded. That is, each vertex vj ∈ Xk with
`i < j < ri that is no longer visible from below has no neighbor in V \ Xk+1.
Therefore, the visibility invariant is preserved for Xk+1.

After this process completes, the only remaining vertices to embed are v0 and
vn−1. Embed v0 at x = 0 and vn−1 at x = n− 1. Move both down sufficiently
far so that the edge {v0, vn−1} does not intersect the rest of the drawing and so
that v0 and vn−1 can both see their neighbors from below. This completes the
plane straight-line embedding of G. �

Lemma 5 The graph C has an independent set of size at least (n+ 2)/2.

Proof: Let D be the weak dual graph (the dual graph, but without a vertex
for the outer face) of the maximal outerplanar graph G. Let xi be the number
of vertices of degree i in D. Note that D is a binary tree (that is, of maximum
degree 3) whose leaves correspond to ears of G. Since the degree-2 vertex of
an ear in G is an isolated vertex in C, we know that C has at least x1 isolated
vertices. Since D is a binary tree, we know that x1 = x3 + 2.

We describe a greedy procedure to construct an independent set I of C. The
algorithm chooses a vertex of smallest degree in the current graph (initially C),
adds it to I, and removes its neighbors from the graph. Clearly this procedure
generates an independent set. We claim that |I| ≥ (n+ 2)/2.

Because C is outerplanar, it is 2-degenerate (every subgraph has a vertex of
degree at most 2). Therefore, whenever we add a vertex to I, it has degree 0,
1, or 2. Let ni be the number of vertices in I that had degree i at the moment
they were chosen. Thus, |I| = n0 + n1 + n2. Moreover, we know that n0 ≥ x1
as isolated vertices of C will be added to I before any other vertex of C. Thus,
n0 ≥ x1 = x3 + 2.

Let m be the number of bounded faces of C. Since m ≤ x3, we conclude
that m+ 2 ≤ n0.
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Since removing vertices of degree 0 or one does not change the number of
bounded faces, we remove a bounded face of the current graph exactly when we
add a vertex of degree 2 to I. Thus, m ≥ n2. Therefore, n2 ≤ n0 − 2.

Since every time our algorithm chooses a vertex of degree i we remove its i
neighbors from the graph, and since only vertices of degree 0, 1 or 2 are chosen,
we conclude that n = n0 + 2n1 + 3n2. Because |I| = n0 +n1 +n2, we infer that

n = n0 + 2n1 + 3n2 ≤ 2(n0 + n1 + n2)− 2 = 2|I| − 2.

Consequently |I| ≥ (n+ 2)/2. �

If the independent set I guaranteed by Lemma 5 does not satisfy the condi-
tion of Lemma 4, for instance when n is even and I is the set of vertices with
an even index, then take any vi ∈ V \ I and remove vi+1 from I. Since the
modified I satisfies Lemma 4, we have the following.

Theorem 3 Every outerplanar graph on n vertices contains a column planar
set of size at least n/2.

4 Partially-simultaneous geometric embedding

The relation between column planarity and PSGE is expressed by the following
lemma, which relates the size of column planar sets to PSGE.

Lemma 6 Consider planar graphs G1 = (V,E1) and G2 = (V,E2) on n ver-
tices. If R1 is column planar in G1 and R2 is column planar in G2, then G1

and G2 admit a k-PSGE with k = |R1 ∩R2| ≥ (|R1|+ |R2| − n).

Proof: Figure 11 illustrates the construction. The set R = R1 ∩R2 has size at
least |R1|+|R2|−|R1∪R2| ≥ |R1|+|R2|−n and is column planar in both G1 and
G2. More specifically, there exist injections %1 : R → R and %2 : R → R such
that R is %1-column planar in G1 and %2-column planar in G2. By exchanging
the roles of the x- and y-coordinates in the definition of column planar in G2,
we see that there exists an injection % : V → R such that, for all injections
γ : R→ R, there exists a plane straight-line embedding of G2 that embeds each
v ∈ R at (γ(v), %2(v)). In particular, we may choose γ = %1. �

4.1 Two trees

Combining Lemma 6 and Theorem 1 immediately yields the following lower
bound on the size of a PSGE of two trees.

Theorem 4 Every two trees on a set of n vertices admit an 11n/17-PSGE.

There are two trees T1 and T2 on 226 vertices that do not admit an SGE [19].
Thus, an upper bound on the size of the common set in a PSGE of T1 and T2
is 225. Root T1 arbitrarily and let T k

1 be the result of taking k copies of T1 and
connecting their roots with a path. Define T k

2 similarly. Then the size of the
common set in a PSGE of T k

1 and T k
2 is at most 225k. It follows that:
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Figure 11: (a) Graph G1 with R1 = {a, d, e, f} and %1 = {d 7→ 1, a 7→ 2, e 7→
3, f 7→ 4}. (b) Graph G2 with R2 = {a, b, f} and %2 = {a 7→ 1, b 7→ 2, f 7→ 3}.
(c) A 2-PSGE of G1 and G2 where vertex set R = R1 ∩R2 = {a, f} is shared.

Corollary 1 There exist two trees on a set of n vertices that admit no k-PSGE
for k > 225n/226.

4.2 Tree and ULP graph

If one of the two graphs in our PSGE is ULP, then the size of the common set
depends only on the size of the column planar set in the other graph:

Lemma 7 Consider a planar graph G1 = (V,E1) and a ULP graph G2 =
(V,E2) on n vertices. If R is column planar in G1, then G1 and G2 admit a
|R|-PSGE.

Proof: By exchanging the roles of x- and y-coordinates in the definition of
column planar, we see that for all injections γ : R → R, there exists a plane
straight-line embedding of G1 with v ∈ R at (γ(v), %(v)). Since G2 is a ULP
graph, for all injections y : V → R, there exists an injection x : V → R such
that placing v ∈ V at (x(v), y(v)) results in a straight-line embedding of G2.
Thus, placing the vertices v ∈ R at (x(v), %(v)) permits both a straight-line
embedding of G1 and G2. �

Combining this with Theorem 1 yields the following.

Theorem 5 A tree and a ULP graph admit a 14n/17-PSGE.

4.3 Two outerplanar graphs

Let G1 = (V,E1) and G2 = (V,E2) be two outerplanar graphs, both on the
same set V of n vertices. Let C1 and C2 be the chord graphs of G1 and G2,
respectively. First use Lemma 5 to compute an independent set I1 of size at
least n/2 + 1 in C1. Remove at most one vertex from I1 to obtain a set R1 of
size at least n/2 that is column planar in G1 by Lemma 4. Next, use Lemma 5
to compute an independent set I2 of size at least n/4 + 1 in the chord graph of
G2[R1] (after adding edges to make G2[R1] maximal outerplanar). Note that
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I2 is also independent in C2, and hence we can remove at most one vertex from
I2 to obtain a set R ⊆ R1 ⊆ V of size at least n/4 that is column planar in
G2 using Lemma 4. Note that R is also column planar in G1 since R ⊆ R1.
Applying Lemma 6 with R gives the following result.

Theorem 6 Every two outerplanar graphs on a set of n vertices admit an
(n/4)-PSGE.

5 Concluding remarks

It is worth noting that for both trees and outerplanar graphs, our results hold
true for a slightly stronger notion of column planarity. In both cases, we can
prescribe the x-coordinate of each vertex of the graph and not only of the
column planar set R, and still get a planar straight-line drawing of the graph
for an arbitrary y-coordinate assignment for the vertices of R.

Our results leave several directions for future research. The tree drawings
produced by Theorem 1 may have exponential area. It would be interesting to
see whether polynomial area is sufficient. Recently, Dujmović [12] showed that
every planar graph has a column planar subset of size at least

√
n/2. No upper

bounds other than the one from Theorem 2 are known. A matching upper bound
for the case of outerplanar graphs is also an open problem. Further research
could be directed towards closing the gap between the lower and upper bound
on the size of column planar sets for trees. Finally, another direction of research
is to design efficient algorithms to compute column planar sets in planar graphs.
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[9] G. Da Lozzo, V. Dujmović, F. Frati, T. Mchedlidze, and V. Roselli. Drawing
planar graphs with many collinear vertices. In Proc. 24th Internat. Sym-
pos. Graph Drawing and Network Visualization (GD2016), volume 9801 of
LNCS, pages 152–165. Springer, 2016.

[10] E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, and S. K. Wismath.
Planar and quasi-planar simultaneous geometric embedding. The Computer
Journal, 58(11):3126–3140, 2015. doi:10.1093/comjnl/bxv048.

[11] E. Di Giacomo, W. Didimo, M. van Kreveld, G. Liotta, and B. Speckmann.
Matched drawings of planar graphs. J. Graph Alg. Appl., 13(3):423–445,
2009.

http://dx.doi.org/10.7155/jgaa.00250
http://arxiv.org/abs/http://arxiv.org/abs/1204.5853
http://arxiv.org/abs/http://arxiv.org/abs/1204.5853
http://dx.doi.org/10.1007/s00454-008-9125-3
http://dx.doi.org/10.1016/j.comgeo.2006.05.006
http://dx.doi.org/10.1016/j.comgeo.2006.05.006
http://dx.doi.org/10.7155/jgaa.00218
http://dx.doi.org/10.1137/130924172
http://dx.doi.org/10.1016/j.comgeo.2008.05.003
http://dx.doi.org/10.1093/comjnl/bxv048


1002 Barba et al. Column planarity and PSGE
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