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Abstract
Storyline visualizations help visualize encounters of the characters in a story

over time. Each character is represented by an x-monotone curve that goes
from left to right visualizing progression of time. A meeting is represented by
having the characters that participate in the meeting run close together for some
time. In order to keep the visual complexity low, rather than just minimizing
pairwise crossings of curves, we propose to count block crossings, that is, pairs
of intersecting bundles of lines. In a block crossing, two blocks of parallel lines
intersect each other, which is less distracting than the same number of individual
crossings being spread over the drawing.

In this paper, we show that minimizing the number of block crossings is NP-
hard, even if all meetings are of size 2. For this special case, we present a greedy
heuristic, which we evaluate experimentally. We show that the general case is
fixed-parameter tractable. Our main results is a constant-factor approximation
algorithm for meetings of bounded size. The algorithm is based on (approximately)
solving a hyperedge deletion problem on hypergraphs that may be of independent
interest.
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1 Introduction

A storyline visualization is a convenient abstraction for visualizing the complex
narrative of interactions among people, objects, or concepts. The motivation
comes from the setting of a movie, novel, or play where the narrative develops as
a sequence of interconnected scenes, each involving a subset of characters. See
Fig. 1 for an example.

The storyline abstraction of characters and events occurring over time can
be used as a metaphor for visualizing other situations, from physical events
involving groups of people meeting in corporate organizations, political leaders
managing global affairs, and groups of scholars collaborating on research to
abstract co-occurrences of “topics” such as a global event being covered on the
front pages of multiple leading news outlets, or different organizations turning
their attention to a common cause.

A storyline visualization maps a set of characters of a story to a set of curves
in the plane and a sequence of meetings between the characters to regions in the
plane where the corresponding curves come close to each other. While Minard’s
visualization of Napoleon’s Russian campaign [11] can be seen as an early (and
extremely stark) form of storyline visualization (combining time and location on
a map), the current form of storyline visualizations seems to have been invented
by Munroe [14] (compare Fig. 1), who used it to visualize, in a compact way,
which subsets of characters meet over the course of a movie. Each character is
shown as an x-monotone curve. Meetings occur at certain times from left to
right. A meeting corresponds to a point in time where the characters that meet
are next to each other with only small gaps between them. Munroe highlights
meetings by underlying them with a gray shaded region, while we use a vertical
line for that purpose. Hence, a storyline visualization can be seen as a drawing
of a hypergraph whose vertices are represented by the curves and whose edges
come in at specific points in time.

A natural objective for the quality of a storyline visualization is to minimize
unnecessary crossings among the character lines. The number of crossings
alone, however, is a poor measure: two blocks of “locally parallel” lines crossing
each other are far less distracting than an equal number of crossings randomly
scattered throughout the drawing. Therefore, instead of pairwise crossings, we

Figure 1: Storyline visualization for Jurassic Park by xkcd [14] with several
block crossings (one of which we highlighted by a bold green ellipse).
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focus on minimizing the number of block crossings; each block crossing involves
two arbitrarily large sets of locally parallel lines forming a crossbar, with no
other line in the crossing area; see Fig. 1 for an example.

Previous Work. The InfoVis community has quickly embraced Munroe’s
effective visualization technique. Kim et al. [8] used storylines to visualize
genealogical data; meetings correspond to marriages and special techniques are
used to indicate child–parent relationships. Tanahashi and Ma [15] computed
storyline visualizations automatically and showed how to adjust the geometry
of individual lines to improve the aesthetics of their visualizations. Muelder
et al. [13] visualized clustered, dynamic graphs as storylines, summarizing the
behavior of local networks that surround user-selected foci.

Only recently, a more theoretical and principled study was initiated by Kos-
titsyna et al. [10], who considered the problem of minimizing pairwise crossings
(that is, not block crossings) in storylines. They proved that the problem is
NP-hard in general, and showed that it is fixed-parameter tractable (FPT)
with respect to the (total) number of characters. Their FPT algorithm runs in
time O(k!2k log k + k!2n) and uses space O(k!2 + n), where k is the number of
characters and n is the number of meetings. For the special case of 2-character
meetings without repetitions where the meeting graph—whose edges describe the
meetings of pairs of characters—is a tree, they showed that Θ(k log k) crossings
always suffice and are sometimes necessary.

Very recently, Gronemann et al. [7] formulated an integer linear program
that minimizes the total number of crossings for storylines with meetings of
arbitrary cardinality. Their approach can solve instances with 10–20 characters
and up to about 50 meetings optimally in a few seconds. Due to the nature of
integer linear programming, however, their approach becomes unusable for large
instances.

Our work builds on the problem formulation of Kostitsyna et al. [10] but we
considerably extend their results by designing (approximation) algorithms for
general meetings—for a different optimization goal: we minimize the number of
block crossings rather than the number of pairwise line crossings. Block crossings
were introduced by Fink et al. [5] for visualizing metro maps; in their setting,
block crossings happen between metro lines that run on top of an embedded
graph, the metro network.

Problem Definition. While a block crossing is visually easily recognizable
by a human reader, we start by carefully defining the problem. In the course of
doing so, we will already gain further insight in what minimizing the number of
block crossings amounts to. A storyline S is a pair (C,M) where C = {1, . . . , k}
is a set of characters and M = [m1,m2, . . . ,mn] with mi ⊆ C and |mi| ≥ 2 for
i = 1, 2, . . . , n is a sequence of meetings of at least two characters. We call any set
g ⊆ C of characters that has at least one meeting, a group (i.e., g = mi for some
1 ≤ i ≤ n). We define the group hypergraph H = (C,Γ) as follows: its vertices
are the characters and its hyperedges are the groups. This hypergraph does
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Figure 2: Block crossing (a, b, c)

not include the temporal aspect of the storyline—it models only the structure
of groups participating in the storyline. Each group is represented by a single
hyperedge, even if it meets multiple times. The group hypergraph can be built
by sorting M and filtering the multiply-occurring meetings. This can be done in
O(nk) time by representing the meetings as bitsets and using radix sort.

Note that we do not encode the exact times of the meetings: in a given
visualization, at any time t, there is a unique vertical order πt of the characters.
Without changing πt by crossings, we can increase or decrease vertical gaps
between lines. If a group g forms a contiguous interval in πt, then we can bring
the lines in g within a short vertical distance δgroup without any crossing, and also
make sure that all other lines are at a distance of δsep > δgroup; see Fig. 12. Since
any group must be supported at a time just before its meeting starts, computing
an output drawing consists mainly of changing the permutation of characters over
time so that during a meeting its group is supported by the current permutation.
We therefore focus on changing the permutation by crossings over time, and
only have to be concerned about the order of meetings; the final drawing can be
obtained by a simple post-processing from this discrete set of permutations.

Suppose that we locally renumber the characters from top to bottom from 1
to k. Then we can define, for a ≤ b < c, a block crossing (a, b, c) to be
the exchange of the two consecutive blocks 〈a, . . . , b〉 and 〈b + 1, . . . , c〉. This
exchange maps the permutation 〈1, . . . , a, . . . , b, . . . , c, . . . , k〉 to the permutation
〈1, . . . , a− 1, b+ 1, . . . , c, a, . . . , b, c+ 1, . . . , k〉; see Fig. 2 for an illustration. The
same definition was used by Fink et al. [5].

A meeting m fits a permutation π (or a permutation π supports a meeting m)
if the characters participating in m form an interval in π. In other words, there is
a permutation of m that is part of π. If we apply a sequence B of block crossings
to a permutation π in the given order, we denote the resulting permutation
by B(π).

Problem 1 (Storyline Block Crossing Minimization (SBCM)) Given a
storyline instance (C,M) with M = [m1,m2, . . . ,mn], find a solution consisting
of a start permutation π0 of C and a sequence B = (B1, B2, . . . , Bn) of (possibly
empty) sequences of block crossings such that the total number of block crossings
is minimized and πi = Bi(πi−1) supports mi for 1 ≤ i ≤ n.
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Note that in our problem definition no characters arrive after the start of the
drawing or disappear before the end; this is different in the example in Fig. 1.
We also consider d-SBCM, a special case of SBCM where meetings involve groups
of size at most d, for an arbitrary constant d. For example, 2-SBCM allows only
2-character meetings, a setting that was also studied by Kostitsyna et al. [10].

Our Results. We observe that a storyline has a crossing-free visualization if
and only if its group hypergraph is an interval hypergraph, that is, if there exists
a permutation of the character set such that each hyperedge corresponds to a
contiguous block of characters in this permutation. This is equivalent to the
hypergraph having path support [1]. A hypergraph can be tested for the interval
property in O(n2) time, where n is the number of hyperedges. We show that
2-SBCM is NP-hard (see Sect. 3) and that SBCM is fixed-parameter tractable
with respect to k (Sect. 4). One of our FPT algorithms can be modified to
handle pairwise crossings instead of block crossings. The modified algorithm is
faster than the algorithm of Kostitsyna et al. [10] by a factor of k!. We carry out
some experiments evaluating this algorithm and other approaches in a follow-up
paper [18].

The case of size-2 meetings is of interest; recall that Kim et al. [8] have used
a storyline-like visualization to trace genealogical data. We investigate structural
properties and present a greedy algorithm for 2-SBCM that runs in O(k3n) time
for k characters. For k = 3, the greedy algorithm yields optimal solutions. We
experimentally compare greedy solutions to optimal solutions; see Sect. 5. One
main result is a constant-factor approximation algorithm for d-SBCM for the
case that d is bounded and that meetings cannot be repeated; see Sect. 6.

Our algorithm is based on a solution for the following NP-complete hypergraph
problem, which may be of independent interest: given a hypergraph H, delete the
minimum number of hyperedges so that the remainder is an interval hypergraph.
For this problem, we develop a (d+ 1)-approximation algorithm, where d is the
maximum cardinality of a hyperedge in H; see Sect. 7. Finally, we list some
open problems in Sect. 8.

2 Preliminaries and Basic Observations

First, we consider the special case where every meeting consists of two characters.
For these restricted instances, any meeting can be realized from any permutation
by a single block crossing.

Observation 1 Given an instance of 2-SBCM, there is a solution with at most
one block crossing before each of the meetings. In particular, there is a solution
with at most n block crossings in total.

Proof: Let π′ be an arbitrary permutation, and let m = {c, c′} ∈M be the next
meeting. Let i and j be the positions of the characters c and c′, respectively, in
the permutation π′, that is, π′(i) = c and π′(j) = c′. Without loss of generality,
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Figure 3: Optimal solution for S from the proof of Lemma 1.

assume i < j. If π′ does not support m, we can realize it using the block crossings
(i, i, j − 1), that is, moving the line of c directly above that of c′. �

Observation 1 shows that there is a solution with at most one block crossing
before any meeting. This raises the question whether there is also an optimal
solution that fulfills this condition. The answer is negative.

Lemma 1 There is an instance S of 2-SBCM and a start permutation π0 such
that there is no optimal solution (π0, B) of S that starts with π0 and uses at most
one block crossing before the first and between each pair of consecutive meetings.

Proof: We prove the claim by contradiction. Consider the instance S = (C,M)
with

C = {1, 2, 3, 4, 5, 6, 7, 8} and
M = [{6, 3}, {7, 2}, {1, 5}, {5, 6}, {6, 3}, {3, 4}, {4, 8}, {8, 7}].

Let π0 = 〈1, 2, 3, 4, 5, 6, 7, 8〉 be the start permutation. There is a solution
with only two block crossings, namely (π0, B) with B = [(2, 4, 7), (4, 5, 8)]; see
Fig. 3. Let π1 be the permutation after the first block crossing of B on π0, and
π2 the permutation after both block crossings. The permutation π2 supports
all meetings in M . The first meeting {6, 3} in M fits neither π0 nor π1, that is,
both block crossings must occur before the first meeting.

Now assume that there is another solution (π0, B
′) with |B′| ≤ 2 that has

at most one block crossing before each meeting. Starting from π0 there are
exactly nine feasible block crossings that allow the first meeting. They yield the
following permutations (where the bars indicate the crossing blocks):
• 〈1, 2, 4, 5, 6, 3, 7, 8〉

• 〈1, 2, 5, 6, 3, 4, 7, 8〉

• 〈1, 2, 6, 3, 4, 5, 7, 8〉

• 〈4, 5, 1, 2, 3, 6, 7, 8〉

• 〈1, 4, 5, 2, 3, 6, 7, 8〉

• 〈1, 2, 4, 5, 3, 6, 7, 8〉

• 〈1, 2, 3, 6, 4, 5, 7, 8〉

• 〈1, 2, 3, 6, 7, 4, 5, 8〉

• 〈1, 2, 3, 6, 7, 8, 4, 5〉
None of these permutations supports the second meeting {7, 2}. So we need

the second block crossing before this meeting. This second block crossing needs
to prepare all of the remaining meetings because otherwise |B′| > 2. These
meetings can only be supported by the permutation σ = 〈1, 5, 6, 3, 4, 8, 7, 2〉 or
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Figure 4: Optimal solution for S from the proof of Theorem 1.

its reverse permutation σR. It remains to show that none of the permutations
yielded by the feasible first block crossing can be transformed to σ or σR by one
additional block crossing. All permutations containing 〈3, 6〉 as a subsequence
are infeasible because there is only one block crossing that swaps two neighboring
characters and it does not produce σ. For permutations starting with 〈1, 2〉,
there is only one possible block crossing to bring character 2 to the end of the
permutation while character 1 stays at the first position, which also does not
yield σ. Similarly, we can show that there is also no block crossing after any of
the feasible block crossings for the first step that leads to σR. �

Now we modify this instance such that we do not need to prescribe the start
permutation.

Theorem 1 There is an instance S of 2-SBCM such that there is no optimal
solution (π0, B) of S that uses at most one block crossing between each pair of
consecutive meetings.

Proof: We prove the claim by constructing an example. Consider the instance
S = (C,M) depicted in Fig. 4. The instance has no solution with less than
two block crossings, but there is a solution with two block crossings, namely
(π0, B) with start permutation π0 = 〈1, 2, 3, 4, 5, 6, 7, 8〉 and block crossings
B = [(2, 4, 7), (4, 5, 8)]; see Fig. 4. Let π1 be the permutation after the first block
crossing of B on π0, and let π2 = 〈1, 5, 6, 3, 4, 8, 7, 2〉 be the permutation after
the second block crossing in B. The permutation π2 supports all meetings in
the right half of M . The first occurrence of meeting {6, 3} in M (right after the
third dashed line in Fig. 4) fits neither π0 nor π1, that is, both block crossings
occur before that meeting.

Now we argue that there is no solution with two block crossings that are
separated by at least one meeting. Let m be the third occurrence of meeting
{1, 2} (right before the first dashed line in Fig. 4). At some point in time
before m, either permutation π0 or πR

0 must occur, otherwise we would need at
least two block crossings to realize the meetings before m and at least one block
crossing after m to realize the last seven meetings (because the permutation
at m is not π2 or πR

2 ).
We distinguish three cases for the two block crossings.
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a) Both crossings occur before m: This is not possible because the remaining
meetings cannot be realized with characters 1 and 2 being adjacent.

b) Both crossings occur after m: Then the start permutation needs to be π0
or πR

0 , which is exactly the case handled in Lemma 1.

c) The first crossing is beforem, the second one afterm. Since we must realize
the last seven meetings with only one block crossing, the final permutation
is π2 or πR

2 . Assume that it is π2. Then going backwards from π2, we
have to realize m by one block crossing. There are exactly nine such block
crossings yielding the following permutations:

• 〈5, 6, 3, 4, 8, 7, 2, 1〉
• 〈6, 3, 4, 8, 7, 2, 1, 5〉
• 〈3, 4, 8, 7, 2, 1, 5, 6〉

• 〈4, 8, 7, 2, 1, 5, 6, 3〉
• 〈8, 7, 2, 1, 5, 6, 3, 4〉
• 〈7, 2, 1, 5, 6, 3, 4, 8〉

• 〈2, 1, 5, 6, 3, 4, 8, 7〉
• 〈1, 2, 5, 6, 3, 4, 8, 7〉
• 〈5, 6, 3, 4, 8, 7, 1, 2〉

It is easy to check that none of them contains as a subinterval what we
call a triplet ; three consecutive numbers in their natural (or inverted)
order (for instance, 〈3, 4, 5〉 or 〈5, 4, 3〉). Recall that at some point in
time before m, permutation π0 or πR

0 must occur. Now note that any
permutation reachable from π0 or πR

0 by one block crossing contains a
triplet (since we have eight characters). Thus we obtain a contradiction.
The case when the final permutation is πR

2 can be treated similarly. �

Detecting Crossing-Free Storylines. If a storyline admits a crossing-free
visualization, then the vertical permutation of the character lines remains the
same over time, and all meetings involve groups that form contiguous subsets
in that permutation. (The visualization can be obtained by placing characters
along a vertical line in the correct permutation and for each meeting bringing its
lines together for the duration of the meeting and then separating them apart
again.) In other words, a single permutation supports each group of H = (C,Γ).
This holds if and only if H is an interval hypergraph. Recall that this is the case
if there exists a permutation π = 〈v1, . . . , vk〉 of C such that each hyperedge
e ∈ Γ corresponds to a contiguous block of characters in this permutation.

Note that a graph is an interval hypergraph if and only if all of the graph’s
connected components are paths. Hence, a graph being an interval hypergraph
is not the same property as being an interval graph.

An interval hypergraph can be visualized by placing all of its vertices on a
line, and drawing each hyperedge e as an interval that includes all vertices of e
and no vertex of V \ e. Checking whether a k-vertex hypergraph is an interval
hypergraph takes O(k2) time [16]. Recall that we can build H in O(nk log n)
time.

Theorem 2 Given the group hypergraph H of an instance of SBCM with k
characters, we can check in O(k2) time whether a crossing-free solution exists.
If this is the case, a permutation realizing a crossing-free solution can also be
found within the same time bound.
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For 2-SBCM we only need to check (in O(k) time) whether H is a collection of
vertex-disjoint paths; this is dominated by the time (O(n)) for building H, as
long as k = O(n).

3 NP-Completeness of SBCM
In this section we prove that SBCM is NP-complete. This is known for the
problem Block Crossing Minimization (BCM), introduced by Fink et al. [5].
But SBCM is not simply a generalization of BCM because in SBCM we can
choose an arbitrary start permutation. Therefore, the idea of our hardness proof
is to force a certain start permutation by adding some characters and meetings.
We reduce from Sorting by Transpositions (SBT), which has also been used
to show the hardness of BCM [5]. In SBT, one is given a permutation π and an
integer k, and the task is to decide whether there is a sequence of transpositions
(which are equivalent to block crossings) of length at most k that transforms π
to the identity. SBT was recently shown NP-hard by Bulteau et al. [2].

We show hardness for 2-SBCM, which implies that SBCM is NP-hard, too.
It is easy to see that the decision version of SBCM is in NP: Obviously, the
maximum number of block crossings needed for any number of characters and
meetings is bounded by a polynomial in k and n. Therefore also the size of
a possible certificate is bounded by a polynomial. To test the feasibility of a
solution efficiently, we simply test whether the permutations between the block
crossings support the meetings in the right order from left to right. We will use
the following obvious fact.

Observation 2 If permutation π needs c block crossings to be sorted, any
permutation containing π as a subsequence needs at least c block crossings to be
sorted.

Theorem 3 2-SBCM is NP-complete.

Proof: It remains to show the NP-hardness. We reduce from SBT. Given an
instance of SBT, that is, a permutation π of {1, . . . , k}, we show how to construct
a corresponding instance of 2-SBCM.

We extend the set of characters {1, 2, . . . , k} to C = {1, . . . , k, c1, c2, . . . , c2k}.
Correspondingly, we extend the permutation π = 〈π(1), π(2), . . . , π(k)〉 to π′ =
〈c1, . . . , c2k, π(1), . . . , π(k)〉 and ι to ι′ = 〈c1, c2, . . . , c2k, 1, 2, . . . , k〉. Let Mπ′

and Mι′ be the sequences of meetings of all neighboring pairs in π′ and ι′,
respectively. Let M1 and M2 be the concatenations of k + 1 copies of Mπ′ and
Mι′ , respectively. This yields the instance S = (C,M) of 2-SBCM, where M is
the concatenation of M1 and M2; see Fig. 5.

We show that the number of block crossings needed for the 2-SBCM instance S
equals the number of transpositions to solve instance π of SBT, that is, to
transform π to the identity ι = 〈1, 2, . . . , k〉. Note that π can be sorted by
at most k block crossings. So k is an upper bound for an optimal solution of
instance π of SBT.
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Figure 5: Solution for the 2-SBCM instance S corresponding to a solution B of
instance π of SBT. The box B represents the block crossings.

First, let B be a shortest sequence of block crossings to sort π. Then, (π′, B)
is a feasible solution for S. The start permutation π′ supports all meetings in
M1 without any block crossing. Using B, the lines are sorted to ι′, and this
permutation supports all meetings in M2 without any further block crossings;
see Fig. 5. Hence, the number of block crossings in any solution of π is an upper
bound for the minimum number of block crossings needed for S.

For the other direction, let (π∗, B∗) be an optimal solution for S. In the
input of SBCM, we do not fix a certain order of the characters. So any solution
of 2-SBCM gives rise to a symmetric solution that is obtained by reversing the
order of the characters. In the following, without loss of generality, we assume
that π′ (rather than the reverse permutation π′R) occurs in M , that is, there is
a time t in the visualization such that the vertical order of the characters at t is
described by π′.

Next, we show that the start permutation π′ occurs somewhere in M1 and
that ι′ occurs somewhere in M2. If there is a sequence Mπ′ of meetings between
which there is no block crossing, the permutation at this position can only be
the start permutation π′ or its reverse. For a contradiction, assume that π′ does
not occur during M1 in the layout induced by (π∗, B∗). Then there is no such
sequence without any block crossing in it. As this sequence is repeated k + 1
times, the solution would need at least k + 1 block crossings. This contradicts
our upper bound, which is k. Analogously, we can show that the permutation ι′
or its reverse occurs in M2.

We now want to show that the unreversed version of ι′ occurs in M2. For
a contradiction, assume the opposite. We forget about the lines 1, . . . , k and
only consider the sequence π′′ = 〈c1, . . . , c2k〉 in π′ which is reversed to ι′′R =
〈c2k, . . . , c1〉 in ι′R. Eriksson et al. [4] showed that we need d(l + 1)/2e block
crossings to reverse a permutation of l elements. This implies that we need k+ 1
block crossings to transform π′′ to ι′′R. As π′ and ι′R contain these sequences
as subsequences, Observation 2 implies that the transformation from π′ to ι′R
also needs at least k + 1 block crossings. As the optimal solution uses at most
k block crossings, we know that we cannot reach ι′R and thus the sequence of
permutations contains π′ and ι′.
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The sequence of block crossings that transforms π′ to ι′ yields a sequence B
of block crossings of the same length that transforms π to ι. Therefore the length
of a solution for S is an upper bound for the length of an optimal solution of
the corresponding SBT instance π. Thus, the two lengths are equal. �

Hardness Without Repetitions. With arbitrarily large meetings, we can
slightly modify our hardness proof, and show that minimizing the number of
block crossings is also hard without repeating the same meeting many times. The
idea to change our reduced SBCM instance, is to replace the repeated sequence
of 2-character meetings so that in each repetition the group size is increased by
one for all meetings; see Fig. 6.

Due to the overlapping structure of the groups in a single sequence, they can
only be all supported at the same time if also the 2-character meetings that they
replaced are supported. The only thing that we have to be careful about is that
when the groups get larger than 3k/2, that is, half of the number of characters,
there is a growing set of characters in π′ (or ι′) that are contained in exactly
the same groups, and their relative order does not matter for the meetings; see
Fig. 6(a). We will avoid this situation in the following way (shown in Fig. 6(b)).

Since we have k + 1 sequences of repeated meetings at the beginning as well
as at the end of the timeline, and we keep increasing the group sizes, we have
groups of 2k+ 3 characters in the end. We replace c1, . . . , c2k by a new sequence
c1, . . . , c10k of characters without changing the structure further. Then, we can
increase the group size up to 2k + 3 while in the end still less than half of all
characters are involved in each group. Since the growing meetings completely
simulate the desired 2-character meetings, the rest of the reduction and its proof
stay the same, and we get the following result.

Theorem 4 SBCM is NP-hard even if meetings are not repeated.

Note that in this reduction (different from Theorem 3) we use meetings whose
size depends on the input. So for this variant without repeated meetings we do
not show hardness for d-SBCM for any fixed d.

(a) Instance in which the groups are too
large for the number of characters. The
area highlighted in gray shows the charac-
ters involved in all meetings of a certain
size. Therefore, the relative order of these
characters does not matter anymore.

(b) By adding characters (and the corre-
sponding meetings), we avoid characters
being involved in every meeting.

Figure 6: We simulate repeated 2-character meetings by using groups of increasing
size.
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4 Exact Algorithms

We present two exact algorithms for SBCM. Conceptually, both build up a
sequence of block crossings while keeping track of how many meetings have
already been accomplished. The first uses polynomial space; the second improves
the runtime at the cost of exponential space. The latter generalizes to improve a
result by Kostitsyna et al. [10] about minimizing pairwise crossings (rather than
block crossings).

We start with a data structure to keep track of permutations, block crossings
and meetings. It is initialized with a given permutation and has two opera-
tions. The Check operation returns whether a given meeting fits the current
permutation. The BlockMove operation performs a given block crossing on
the permutation and then returns whether the most-recently Checked meeting
now fits.

Lemma 2 A sequence of arbitrarily interleaved BlockMove and Check op-
erations can be performed in O(β + µ) time, where β is the number of calls to
BlockMove and µ is sum of cardinalities of the meetings given to Check.
The space usage is O(k), where k is the number of characters.

Proof: Represent the permutation as a doubly-linked list.1 First consider a 2-
meeting. It takes constant time to check whether it fits: check the previous/next
pointers. Since a block crossing changes at most 6 adjacencies, BlockMove
can update the linked list in constant time. (This requires giving out pointers
into the linked-list representation, since we need to find the characters at the
edges of the block in constant time.) Note that all possible block crossings can
be enumerated in constant time each.

Now we look at a meeting of cardinality m. Interpret the linked list as a
path and consider the subgraph induced by the nodes in the meeting. If the
meeting fits the permutation, this subgraph is connected and, being a path, has
m − 1 edges; if the meeting does not fit, this subgraph has more components
and therefore fewer edges. The Check operation on a meeting of size m can be
performed in O(m) time by counting at every node in the meeting whether zero,
one or two of its neighbors are also in the meeting. For the amortized runtime
over a sequence of operations, remember this count: BlockMove can update it
in constant time, since again at most six adjacencies change.

In terms of space, there is only the doubly linked list and the count. �

Now we provide an output-sensitive algorithm for SBCM, the runtime of which
depends on the number of block crossings required by the optimum.

Theorem 5 An instance S = (C,M) of SBCM can be solved in O(k! · (k
3−k
6 )β ·

(β+µ)) time and O(βk) working space if a solution with β block crossings exists,
where µ =

∑
m∈M |m|.

1We assume that the meetings given to Check are represented by references to the nodes
in this list; if necessary, this representation can be constructed efficiently in preprocessing.
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Proof: Consider a branching algorithm that starts from a permutation of the
characters and keeps trying all possible block crossings. The instance of SBCM
is solved by finding the shortest sequence of block crossings that supports the
meetings.

A block crossing can be represented by indices (a, b, c) with 1 ≤ a ≤ b < c ≤ k.
The number of possible block crossings is given by adding the number of block
crossings with a = b and the number of block crossings with a 6= b; hence, there
are

(
k
2

)
+
(
k
3

)
= k3−k

6 distinct block crossings on a permutation of length k. We
can enumerate these in constant time each by enumerating all appropriate triples
(a, b, c).

We use depth-first iterative-deepening search [9] from all possible start
permutations, applying block crossings, until we find a sequence of permutations
that fulfills all meetings. While searching, the algorithm keeps track of how many
meetings fit the current sequence of permutations using the data structure from
Lemma 2. Correctness follows from the iterative deepening of the search, since
we want an (unweighted) shortest sequence of block crossings. The runtime and
space bounds follow from the standard analysis of iterative-deepening search,
observing that a node uses O(k) space and it takes O(β + µ) time in total to
evaluate a path from root to leaf. �

Note that µ is O(kn): there are n meetings and each consists of at most k
characters.

At the cost of exponential space, we can improve the runtime and get rid
of the dependence on β, showing the problem to be fixed parameter linear for
k. The following algorithm can easily be adapted to optimize pairwise crossings
rather than block crossings. In that case we improve upon the algorithm of
Kostitsyna et al. [10] by a factor of roughly k!, in terms of both running time and
space consumption: recall that their FPT algorithm runs in O(k!2k log k + k!2n)
time and uses O(k!2 + n) space.

Theorem 6 An instance of SBCM can be solved in O(k! · k3 · n) time and
O(k! · k · n) space.

Proof: The algorithm is based on the following question: how many block
crossings are required for the first ` meetings given that we end on permutation
π? Formally, let f(π, `) be the optimal number of block crossings in a solution to
the given instance when restricted to the first ` meetings and to have π as its final
permutation. Note that by definition the solution for the actual instance is given
by minπ∗ f(π∗, n), where the minimum ranges over all possible permutations.
As a base case, f(π, 0) = 0 for all π, since the empty set of meetings is supported
by any permutation. Let π and π′ be permutations that are one block crossing
apart and let 0 ≤ ` ≤ `′. If the meetings {m`+1, . . . ,m`′} all fit π′, then we have
f(π′, `′) ≤ f(π, `) + 1: if we can support the first ` meetings and end on π, then
with one additional block crossing we can support the first `′ meetings and end
on π′.

We now model the above observation in a graph. Let G be an unweighted
directed graph on nodes (π, `), where π is a permutation of characters and
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0 ≤ ` ≤ n. Call a node start node if ` = 0. There is an arc from (π, `) to (π′, `′)
if and only if

• π and π′ are one block crossing apart,

• ` ≤ `′, and
• the meetings {m`+1, . . . ,m`′} fit π′.

Note that we allow ` = `′ since we may need to allow block crossings that do
not immediately achieve an additional meeting (cf. Proposition 1), so G is not
acyclic. By construction we have that f(π, `) equals the minimum graph distance
from a start node to the node (π, `). Call a path from a start node that realizes
this distance optimal.

In G, consider any length-3 path [(π1, `1), (π2, `2), (π3, `3)] with strict inequal-
ity `3 > `2. If meeting `2 + 1 fits π2, then [(π1, `1), (π2, `2 + 1), (π3, `3)] is also a
path. Repeating this transformation shows that for all π, the node (π, n) has
an optimal path in which every arc maximally increases `. Let G′ be the graph
where we drop all arcs from G that do not maximally increase `. Note that G′
still contains a path that corresponds to the global optimum.

The graph G′ has O(k! · n) nodes. Each node has outdegree O(k3), since any
block crossing contributes at most one out-arc to a node. Then a breadth-first
search from all start nodes to any node (π∗, n) achieves the claimed time and
space bounds, assuming we can enumerate the outgoing arcs of a node in constant
time each.

For a given node (π, `) we can enumerate all possible block crossings in
constant time each, as before. To generate its outgoing arcs in G′, we also need
to know the maximum `′ such that all meetings `+ 1 up to `′ fit π′, where π′ is
the permutation resulting from the block crossing. Note that `′ only depends on
` and π′; in particular, it does not depend on π. We can therefore precompute a
table M(π′, `) that gives this value. Computing M(π′, `) for a given π′ and all `
takes a total of O(kn) time: first compute for every mi whether it fits π′, then
compute the implied ‘forward pointers’ using a linear scan. So using O(k! · kn)
preprocessing time and O(k! · n) space, we have an efficient implementation of
the breadth-first search. The theorem follows. �

5 A Greedy Heuristic

In this section we develop an O(kn)-time greedy algorithm to quickly draw good
storyline visualizations for 2-SBCM. Given an instance S = (C,M), we reserve a
list B = [ ] that the algorithm will use to store the block crossings. The algorithm
starts with an arbitrary permutation π0 of the characters. In every step the
algorithm removes all meetings from the beginning of M that are supported by
the current permutation πi. Subsequently, the algorithm picks a block crossing b
such that the resulting permutation πi+1 = b(πi) supports the maximum number
of meetings from the beginning of M , and b is appended to the list B. This
process repeats until M is empty. The algorithm returns the solution (π0, B).
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(b) Optimal solution

Figure 7: The greedy algorithm is not optimal.

Recall that, from any particular permutation, there are O(k3) block crossings.
To find the appropriate block crossings, the algorithm could simply check all of
them. However, most of those will result in permutations that do not even support
the next meeting, which cannot be the greedy choice described above. Hence,
our algorithm enumerates only the relevant block crossings in the following sense:
block crossings yielding a permutation that supports the upcoming meeting. Let
{c, c′} be the next meeting in M . If x and y are the positions of c and c′ in the
current permutation (i.e., πi(x) = c and πi(y) = c′; without loss of generality,
assume x < y), the relevant block crossings are:

{(z, x, y−1) : 1 ≤ z ≤ x}∪{(x, z, y) : x ≤ z < y}∪{(x+1, y−1, z) : y ≤ z ≤ k}.

We see that the number of relevant block crossings in each step is k + 1. Let
ni be the maximum number of meetings at the beginning of M we can support
by one of these block crossings. We use the data structure in Lemma 2 and
check for each relevant block crossing how many meetings can be done with this
permutation. Hence, we can identify a block crossing achieving the maximum
number in O(kni) time since we have to check k + 1 options, each lasting up to
ni meetings each. The numbers of meetings ni in each iteration of the algorithm
sum up to n and therefore the algorithm runs in O(kn) total time.

In the description above, this greedy algorithm starts with an arbitrary
permutation. Instead, we could start with a permutation that supports the
maximum number of meetings before the first block crossing needs to be done.
In other words, we could to find a maximal prefix M ′ of M such that (C,M ′)
can be represented without any block crossings. We can find M ′ in O(kn) time:
start with an empty graph on the characters and successively add edges for the
meetings. After each addition we check whether the graph is still a collection
of paths, which can be done in O(k) time. After this process terminates, we
construct a permutation that supports all meetings in M ′, which is easy given
the collection of paths. See Fig. 7 for an example that uses the heuristic start
permutation. While this is a sensible heuristic, we do not prove that it reduces
the total number of block crossings. Indeed, we experimentally observe that,
while this heuristic for the start permutation is generally good, it is not always
the best; this is discussed in the experimental evaluation later in this section.

The greedy algorithm actually yields optimal solutions for special cases of
2-SBCM. For the following lemma, we assume that no two subsequent meetings
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in the input are the same. We call an instance normal if this is the case. An
instance can be normalized by simply dropping the repeated meetings. This
does not affect the optimal number of block crossings or the behavior of the
greedy algorithm, but note that it does lower n.

Lemma 3 A normal instance of 2-SBCM with k = 3 can be solved using at
most dn/2e − 1 block crossings.

Proof: Note that there are only three possible meetings, namely {1, 2}, {1, 3},
and {2, 3}. Any permutation supports precisely two of these and not the third,
and is equivalent in this sense to its reverse. For example, the permutation
〈1, 2, 3〉 and its reverse both support the meetings {1, 2} and {2, 3}, but not
{1, 3}. Let π and π′ be distinct permutations. Case distinction shows that it is
always possible with a single block crossing to get from π to either π′ or to the
reverse of π′.

For the analysis, we partition the sequence of meetings into epochs as follows.
We start from the first meeting and keep going until the third distinct meeting
occurs: these meetings form the first epoch. That is, an epoch alternates between
two different meetings. Repeating this process partitions the entire sequence of
meetings into epochs, possibly with a single remaining meeting as final epoch. A
solution can choose the start permutation π0 that supports the first epoch. After
that it can always get to a permutation that supports the entire next epoch with
one block crossing. (Note that the greedy algorithm uses exactly this strategy.)
In the worst case all epochs have length 2, and we need dn/2e−1 block crossings.

�

Since the greedy algorithm can choose an arbitrary start permutation it does
not need to perform a block crossing for the first sequence of meetings because it
can build a start permutation using the same strategy as described above. This
leaves us with at most dn/2− 1e block crossings.

Theorem 7 For k = 3, the greedy algorithm produces optimal solutions.

Proof: We look at the epochs from Lemma 3 again. The greedy algorithm
produces one block crossing fewer than the number of epochs.

Consider any epoch except the last one and include the meeting after it. By
construction, this is the third distinct meeting and therefore these meetings
together cannot fit a single permutation. Then in any solution to the problem, a
block crossing must occur after at least one of the meetings in the epoch. This
holds for all epochs except the last one and since they are disjoint, the number
of epochs reduced by one is a lower bound for the optimum number of block
crossings. The result of the greedy algorithm realizes this bound. �

We note here that the greedy algorithm does not sensibly generalize to SBCM with
arbitrary meetings. Consider the step that finds a block crossing that supports
the maximum number of subsequent meetings. With arbitrary meetings (as
opposed to only cardinality-2 meetings), it may be the case that this maximum
is zero—that is, there may not exist any single block crossing that supports the
next meeting. In this case our algorithm has no greedy way make progress.
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Figure 8: Runtime of the exact algorithm of Theorem 5 on random instances
with k = 4(?), 5(+), 6(×), 7(•). Each data point is the average of 50 random
instances.

Experimental Evaluation. In this section, we report on some preliminary
experimental results for 2-SBCM. We have generated random instances as follows.
Given n and k, we pick n pairs of characters as meetings, uniformly at random
using rejection sampling to ensure that consecutive meetings are different. (This
means that the generated instances are normal in the sense of Lemma 3.)

First, we consider the exact algorithm of Theorem 5. As expected, its runtime
depends heavily on k (Fig. 8). Perhaps somewhat unexpectedly, we observe
exponential runtime in n. This is actually a property of our random instances,
in which β tends to increase linearly with n. Note that this experiment does
not invalidate the algorithm since in practical applications we may be interested
mainly in instances for which β is indeed small.

We have also generated instances with small solutions as follows. Pick k,
n and β, then sample a uniformly-random start permutation and β uniformly-
random block crossings. Consider the sequence of permutations resulting from
these block crossings. We randomly sample n meetings by picking, for each
one independently, one of the permutations at random and then two adjacent
characters from this permutation. An instance constructed in this way might
have a solution with fewer than β block crossings, but by construction the
optimum is at most β. On these instances, the runtime of the algorithm of
Theorem 5 scales as expected. Since the construction of these instances is
somewhat complicated and arbitrarily, we now return to the more natural first
type of random instances.

The exact algorithm is feasible only for rather small instances, so we now
shift our focus to the greedy algorithm. Recall that it starts with an arbitrary
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Figure 9: Histogram of the number of block crossings used by the greedy
algorithm for all k! different start permutations, on a single random instance
with n = 100 and k = 8. The best greedy solution uses 45 block crossings; the
average is 51.2, with standard deviation 2.39.
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Figure 10: Left: histogram of HeuristicGreedy minus BestGreedy, 200
instances with with k = 7 and n = 100. Right: histogram of RandomGreedy
minus HeuristicGreedy, 1000 instances with k = 30 and n = 200.

permutation and proceeds greedily. The histogram in Fig. 9 shows the number
of block crossings used by the greedy algorithm for each of the k! possible
start permutations, for a single fixed instance. This bell curve is typical for
instances generated by our random model, and is shown for illustration. We see,
qualitatively, that there indeed exist “rare” start permutations that do noticeably
better than almost all others (here with 45 block crossings). Indeed, for the
reported instance, a random start permutation does 7.2 block crossings worse
in expectation than the best possible start permutation, while the number of
block crossings for different start permutations for this instance has standard
deviation of 2.4.

We call the best possible result of the greedy algorithm over all start permu-
tations BestGreedy, which we calculate by brute force. This is deterministic
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Figure 11: Left: Heuristic-greedy minus OPT with k = 5 and n = 12, 1000 runs.
Right: the same, except k = 6 and 100 runs.

given the instance. Let RandomGreedy be the result of the greedy algorithm
starting with a permutation chosen uniformly at random, and let Heuristic-
Greedy be the result of starting with the heuristic permutation that we have
described above. The histogram in Fig. 10 (left) shows how many more block
crossings HeuristicGreedy uses than BestGreedy on random instances.
This distribution is heaviest near zero (meaning the heuristic is often close to
optimal), but there are instances where the difference is large. On average
the heuristic is 4.1 block crossings worse than best possible start permutation
on these instances, which is an improvement over random start permutations;
see Fig. 10, right. Note that we do not know how to compute BestGreedy
efficiently, but this experiment demonstrates that there is room for improvement
within the greedy algorithm by picking a good start permutation.

Lastly, we compare the greedy algorithm to the optimum, which (because of
runtime) we only do for small k and n. On 1000 random instances with k = 5
and n = 12, HeuristicGreedy gave an optimal solution 56% of the time. It
needed sometimes one (38%), two (5%), or three (1%) block crossings more, but
never more than that. With k = 6, we get similar numbers; see Fig. 11. This
is a promising behavior, but clearly cannot be extrapolated verbatim to larger
instances.

Based on these experiments, we recommend HeuristicGreedy as an effi-
cient, reasonable heuristic for the 2-SBCM problem when it arises. We have not
run experiments to visualize real storylines (movies, books, et cetera) since the
restriction to cardinality-2 meetings is too severe. The genealogical visualizations
of Kim et al. [8] do fit this restriction, but require further visualization work
on top of solving the SBCM instance, which we have not performed. Instead,
we have focused these experiments on some combinatorial properties of random
instances.
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Figure 12: Meeting {c, c1, c2, c3}

6 Approximation Algorithm
We now develop a constant-factor approximation algorithm for d-SBCM where d
is a constant. We initially assume that each group meeting occurs exactly once,
but later show how to extend our results to the setting where the same group
can meet a bounded number of times.

Overview. Our approximation algorithm has the following three main steps.

1. Reduce the input group hypergraph H = (C,Γ) to an interval hypergraph
Hf = (C, Γ \ Γp) by deleting a subset Γp ⊆ Γ of the edges of H.

2. Choose a permutation π0 of the characters that supports all groups of
this interval hypergraph Hf . Thus, π0 is the order of characters at the
beginning of the timeline.

3. Incrementally create support for each deleted meeting of Γp in order of
increasing time, as follows. We arbitrarily fix one character c of the meeting
and move the other characters of the meeting next to it. After the meeting
we move the characters back to their original positions; see Fig. 12.

Step 2 is straightforward: Section 2 shows how to find a permutation supporting
all the groups for an interval hypergraph. The main technical parts of the
algorithm are Step 1 and an analysis to charge at most a constant number of
block crossings in Step 3 to a block crossing in the optimal visualization. Step 1
requires solving a hypergraph problem; this is technically the most challenging
part, and consumes the entire Section 7.

Bounds and Analysis. We call the edges in Γp paid edges, and the edges in
Γf = Γ \ Γp free edges. Intuitively, a free edge can be realized without a block
crossing because Hf is an interval hypergraph, while each edge e ∈ Γp must be
charged to block crossings of the optimal drawing. We initialize the drawing by
placing the characters in the vertical order π0, which supports all the groups
in Γf . Now we consider the paid edges in left-to-right order. Suppose that the
next meeting involves a group g ∈ Γp. We have |g| ≤ d and fix one character
of g. To bring the remaining characters of g in this character’s vicinity, we need
at most (d − 1) block crossings, one per line. When the meeting is over, we
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again use up to (d− 1) block crossings to revert the lines back to their original
position prescribed by π0; see Fig. 12.

We do this for each paid hyperedge, giving rise to at most 2(d− 1)|Γp| block
crossings. We now prove that this bound is within a constant factor of optimal.
We first establish a lower bound on the optimal number of block crossings
assuming a fixed start permutation.

Lemma 4 Let π be a permutation of the characters, let Γf be the set of groups
supported by π, and let Γp = Γ \ Γf . Any storyline visualization with start
permutation π needs at least 2|Γp|/(3d2) block crossings.

Proof: Let g ∈ Γp. Since g is not supported by π, the optimal drawing does
not contain the characters of g as a contiguous block initially. However, in order
to support this meeting, these characters must eventually become contiguous
before the meeting starts. The order changes only through (block) crossings;
we bound the number of groups that can become supported after each block
crossing.

After a block crossing, at most three pairs of lines that were not neighbors
before can become neighbors in the permutation: after the blocks C1, C2 ⊆ C
cross, there is one position in the permutation where a line of C1 is next to a
line of C2, and two positions with a line of C1 (C2, respectively) and a line of
C \ (C1 ∪ C2). Any group that was not supported, but is supported after the
block crossing, must contain one of these pairs. We can describe each such group
in the new permutation by specifying the new pair and the numbers d1 and d2
of characters of the group above and below the new pair in the permutation.
Since the group size is at most d, we have d1 + d2 ≤ d. For any d1 ≥ 1, there
are d− d1 possible choices for d2. Together with d1, d2 ≥ 1 (since the new pair
is included), we get at most

∑d−1
d1=1(d − d1) =

∑d−1
d1=1 d1 = d(d − 1)/2 ≤ d2/2

possible groups for each new pair. Thus, the total number of newly supported
groups after a block crossing is at most 3d2/2, which shows that the optimal
number of block crossings is at least 2|Γp|/(3d2), completing the proof. �

We now bound the loss of optimality caused by not knowing the initial
permutation used by the optimal solution. The key idea here is to use a constant-
factor approximation for the problem Interval Hypergraph Edge Deletion:
delete the minimum number of hyperedges from H so that H becomes an interval
hypergraph. We prove the following theorem in Section 7.

Theorem 8 We can find a (d+ 1)-approximation for Interval Hypergraph
Edge Deletion on group hypergraphs with m hyperedges of rank d in O(m2)
time.

With the help of Theorem 8, we can show the main result of this paper.

Theorem 9 d-SBCM admits a (3d2(d2− 1))-approximation algorithm that runs
in O(kn) time.
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Proof: Let Γp be the set of paid edges in our algorithm, and let ΓOPT be the
set of paid edges in the optimal solution, that is, the set of edges that are not
supported by the initial permutation of the optimal solution. By Theorem 8, we
have |Γp| ≤ (d+ 1)|ΓOPT|, since even ΓOPT cannot be smaller than an optimum
solution for the interval hypergraph edge deletion problem.

Let ALG and OPT be the numbers of block crossings for our algorithm
and the optimal solution, respectively. Our algorithm ensures that ALG ≤
2(d − 1)|Γp| ≤ 2(d − 1)(d + 1)|ΓOPT|. On the other hand, by Lemma 4, we
have OPT ≥ 2|ΓOPT|/(3d2), which gives |ΓOPT| ≤ 3d2/2 ·OPT. Combining the
previous inequalities, we get ALG ≤ 3d2(d2 − 1) ·OPT as desired.

Now we analyze the time complexity. We have to consider the permutation
(of length k) of characters before and after each of the n meetings, as well as
after each of the O(n) block crossings. This results in O(kn) time for the last
part of the algorithm, but this is dominated by the time (O(n2)) needed for
finding Γp and for determining the start permutation.

We can improve the running time to O(kn) by a slight modification: using
the approximation algorithm for Interval Hypergraph Edge Deletion is
only necessary for sparse instances. If H has sufficiently many edges, any start
permutation will yield a good approximation. Since no meeting involves more
than d characters, no start permutation can support more than dk meetings. If
n ≥ 2dk, then even the optimal solution must therefore remove at least half of
the edges. Hence, taking an arbitrary start permutation yields an approximation
factor of at most 2 < d+ 1.

We now change the algorithm to use an arbitrary start permutation if n ≥ 2dk
and only use the approximation for Interval Hypergraph Edge Deletion
otherwise. In particular, we use the approximation only if there are n ∈ O(k)
edges. Hence, for sparse instances we have O(n2) ⊆ O(kn), and for dense
instances, we skip the costly O(n2)-time step mentioned above. This yields the
desired running time of O(kn), which is worst-case optimal since the output
complexity is of the same order. �

Remark. We assumed that each group meets only once, but we can extend
the result if each group can meet α times, for constant α. Our algorithm then
yields a (α · 3d2(d2 − 1))-factor approximation; each repetition of a meeting may
trigger a constant number of block crossings not present in the optimal solution.

Improvements for 2-SBCM. By using specific structures for 2-character
meetings we can improve approximation factor and runtime; note that the general
algorithm yields a 36-approximation.

For 2-character meetings the group hypergraph is a graph; an interval hyper-
graph in this setting is a collection of vertex-disjoint paths. Our algorithm for
Interval Hypergraph Edge Deletion for d = 2 yields a 3-approximation.
We develop a better approximation using the following observation. Consider
a character c in the collection of paths supported in the beginning of some
solution. If c has two neighbors c1 and c2 in its path, but c’s first meeting is with
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a character c3 /∈ {c1, c2}, then at the beginning of that meeting c can only be
neighbor to one of the two, say, to c1, even in an optimal solution; the meeting
with c2 then must later be reconstructed by block crossings. Hence, the effective
set of meetings supported in the beginning is in fact a collection of paths with
the additional restriction that each character is adjacent to at most one character
except for the one he meets first. Without changing the rest of the analysis, we
can approximate this new problem for finding the start permutation with an
approximation factor of 2.

We first consider, for each vertex c, all edges incident to c except for the
one describing c’s first meeting. If there are ` ≥ 2 such edges, we know that
even the optimal solution can support at most one of them and, hence, has to
remove `− 1 of them. We remove all ` of them, which preserves the intended
approximation factor of 2 as `/(`− 1) ≤ 2. Eventually, all vertices have degree 2
or less and the connected components are paths and cycles. For each cycle, we
remove one arbitrary edge, so that we end up with a collection of paths. This
second step does not change the approximation factor since the optimal solution
has to remove at least one edge per cycle as well. This part of the algorithm
easily runs in linear time, which yields a total running time of O(kn).

Theorem 10 We can find a 24-approximate solution for 2-SBCM without repe-
titions in O(kn) time.

For 2-SBCM, too, the approximation algorithm generalizes to the case where
each group of characters can meet up to α times for a constant α; the approxi-
mation factor then is 12α.

7 Interval Hypergraph Edge Deletion

We now describe the main missing piece from our approximation algorithm:
how to approximate the minimum number of edges whose deletion reduces a
hypergraph to an interval hypergraph, i.e., how to solve the following problem.

Problem 2 (Interval Hypergraph Edge Deletion) Given a hyper-
graph H = (V,E) find a smallest set Ep ⊆ E such that Hf = (V,E \ Ep) is an
interval hypergraph.

For standard graphs, both vertex and edge deletion problems for different
graph properties have been considered in the past. Recall that a hereditary
property is a property that is preserved while deleting any vertex from a given
graph satisfying that property. The vertex deletion problem for a property
asks for theminimum number of vertices whose deletion results in an induced
subgraph satisfying that property. By a famous result of Yannakakis [19], all
vertex deletion problems for hereditary properties are NP-hard. This implies
that interval hypergraph vertex deletion is NP-hard.

A seemingly related class graph is that of standard interval graphs, the
intersection graphs of intervals on the real line. For this graph class, edge deletion
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Figure 13: List of patterns that are forbidden in interval hypergraphs: none of
these can occur as a subhypergraph of an interval hypergraph. Line segments
represent hyperedges of size 2, whereas ellipses represent larger hyperedges. Note
that each hyperedge may contain further vertices of the full graph that are not
shown since they are not part of the pattern. The names of the vertices are used
in the runtime analysis and in Algorithms 1–4.

is known to be NP-hard [6]. Note, however, that this result for interval graphs
does not imply anything about interval hypergraphs since the two properties are
entirely different. Still, it is easy to see that interval hypergraph edge deletion is
NP-hard as follows.

A graph is an interval hypergraph if and only if all its connected components
are paths. In particular, an n-vertex graph with n − 1 edges is an interval
hypergraph if and only if it is a path (note that this is not true for interval
graphs!). Since a graph contains a Hamiltonian path if and only if one can
remove all but n− 1 edges so that a single path remains, our problem is hard
even for graphs.

Theorem 11 Interval Hypergraph Edge Deletion is NP-hard.

We now present a (d+ 1)-approximation algorithm for rank-d hypergraphs, that
is, where each hyperedge has at most d vertices.

For our algorithm, we use the following known characterization: a hypergraph
is an interval hypergraph if and only if it contains none of the hypergraphs shown
in Fig. 13 as a subhypergraph [16, 12]. Cycles are the only arbitrarily large
forbidden subhypergraphs in our setting: the families Fk and Mk are finite since
we consider only bounded-rank hypergraphs. (Fd−2 and Md−1 are the largest
relevant members of these families.) From now on, let

F = {O1, O2, F1, . . . , Fd−2,M1, . . . ,Md−1, C3, . . . , Cd+1} .

We call the elements of F patterns, and we say that a hypergraph is F-free if it
does not contain any pattern as a subhypergraph.

There are various definitions of cycles in hypergraphs; we use the following
(fairly common) option. A cycle C in a hypergraph is a sequence of ` ≥ 3



JGAA, 21(5) 873–913 (2017) 897

v

v1
v2

v3

e1

e2

e3

(a) three edges form M1

e3e1
e2

(b) three edges consecutive on C

ee1 e2

e′

v

v′

v1 v2

(c) four edges form O1

Figure 14: Illustrations for the proof of Lemma 5.

hyperedges e1, . . . , e` with the property that there are vertices v1, . . . , v` such
that, for 2 ≤ i ≤ `, (i) vi ∈ ei−1 ∩ ei (and v1 ∈ e` ∩ e1), and (ii) edge ei contains
no vertex of v1, . . . , v` except for vi and vi+1 (and e1 contains only v` and v1).
As usual, the length of the cycle C is the number ` of hyperedges. We write
V (C) =

⋃
e∈C e for the vertex set of C.

Our approximation algorithm consists of two steps. First, we search for
patterns from F , and remove all edges involved in these hypergraphs. In
the second step, we break remaining (longer) cycles by removing some more
hyperedges based on the structure of connected components. We analyze the
approximation ratio as follows. Any pattern in F consists of at most d +
1 hyperedges. A given optimal solution must remove at least one of these
hyperedges; we remove all of them instead, which yields a ratio of at most d+ 1.
The second step will not negatively affect this approximation ratio.

Intuitively, allowing long cycles while forbidding patterns of F results in a
generalization of interval hypergraphs where the vertices may be placed on a
cycle rather than a vertical line. This is not exactly true, but we will see that,
after the first step, the connected components have a structure similar to this,
which will help us find a small set of edges whose removal destroys all remaining
long cycles.

The following lemma shows that, in an F-free hypergraph, any vertex is
contained in at most three hyperedges of a cycle, where the case of three
hyperedges with a common vertex occurs only if a hyperedge is contained in the
union of its two neighbors in the cycle.

Lemma 5 Let H = (V,E) be an F-free hypergraph and let C be a cycle in H.
Then two edges of C can have a common vertex only if they are either consecutive
in C or if they share a common neighbor in C.

Proof: According to the definition of a cycle, no edge of C can fully contain
another edge of C. Let e1, e2, e3 ∈ C be three edges of C, and assume that there
is a vertex v with v ∈ e1∩e2∩e3. If there are “private” vertices v1 ∈ e1 \ (e2∪e3),
v2 ∈ e2 \ (e1 ∪ e3), and v3 ∈ e3 \ (e1 ∪ e2), the three hyperedges form pattern M1

(with v1, v2, v3, and v serving as vertices); see Fig. 14(a).
On the other hand, if one of the three edges does not have a private vertex,

say e2, we have e2 ⊆ e1 ∪ e3, and one easily checks that this can only be the case
if the three edges are consecutive on the cycle; see Fig. 14(b).
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e1 e1 ∩ e2 e1 ∩ e2 ∩ e3 e2 ∩ e3 e2 ∩ e3 ∩ e4 e3 ∩ e4 e4 e4 ∩ e5 e5

e1 e2 e3 e3 e5

Figure 15: Cycle-sets and their relative order. The gray band represents all
vertices of the cycle while the ellipses represent hyperedges of the cycle. Note
that hyperedges not included in an intersection are meant to be excluded; e.g.,
e1 ∩ e2 stands for (e1 ∩ e2) \ (e3 ∪ e4 ∪ e5).

Now, assume that there are two edges that are neither consecutive nor have
a common neighboring hyperedge in C, but share a vertex v ∈ e ∩ e′. Due to
the observations in the first part of the lemma, v cannot be contained in any
of the neighbors of e and e′ in C. Let e1 and e2 be the neighbors of e in C. If
either of the two intersects with e′, we find pattern C3, a contradiction.

Hence, each of e′, e1, and e2 has a private vertex (v′, v1, and v2 in Fig. 14(c),
respectively). Together with vertices in the intersections with e (that is, vertices
in e∩ e′, e∩ e1, and e∩ e2), the private vertices form pattern O1 with respect to
edge e. This again contradicts H being F-free. �

Let e1, e2, and e3 be three consecutive edges of a cycle C. If all three edges
are present in an interval representation for some of the edges of H, we know
that we will encounter vertices in the following order: first vertices that are
contained only in e1, then vertices that are in (e1∩e2)\e3, then vertices that are
in e1 ∩ e2 ∩ e3, followed by vertices of (e2 ∩ e3) \ e1, and vertices of e3 \ (e1 ∪ e2).
Some of the sets (except for the pairwise intersections) may be empty. We do
not know the relative order of vertices within one set, but we know the relative
order of any pair of vertices of different sets; see Fig. 15. By generalizing this to
the whole cycle, we get a cyclic order—describing the local order in a possible
interval representation—of sets defined by containment in one, two, or three
hyperedges. We call these sets cycle-sets and their cyclic order the cycle-order
of C.

The following lemma effectively shows that, given two cycles, their vertex
sets are either identical or disjoint.

Lemma 6 Let H = (V,E) be an F-free hypergraph, and let C be a cycle in H.
Then, for any hyperedge e ∈ E, it holds that either e ⊆ V (C) or e ⊆ V \ V (C).

Proof: Assume to the contrary that there is a hyperedge e with e 6⊆ V (C) but
e ∩ V (C) 6= ∅. If e contains at least one vertex that lies in the intersection of
two edges of C, then we find pattern Mk (for some k ∈ {1, . . . , d− 1}) as follows.
Assume that v′ ∈ e∩ e1 ∩ e2 with edges e1 and e2 consecutive on C. From v′ on,
we follow C in both directions as long as we find vertices in the intersection of
consecutive cycle edges that also belong to e. This process must stop eventually
since e can contain at most d− 1 vertices of cycle edges whereas C has length at
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e1 e2
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Figure 16: If edge e contains vertices of cycle C and vertices beyond C, pat-
tern Mk occurs.

least d+ 2 (due to the fact that H is F -free). Together with two vertices of the
next intersections of cycle edges (that are not in e), we have found a path that,
together with e and v, forms pattern Mk; see Fig. 16.

Now, we know that e cannot contain a vertex that lies in two cycle edges,
but there could still be an edge e′ of C with a vertex v′ ∈ e ∩ e′. This, however,
would represent pattern O1 with respect to e, e′, and the two neighbors of e′
in C (see Fig. 14(c)) and would again contradict H being F-free. �

Due to Lemma 6 two cycles have either identical or disjoint vertex sets. Therefore
any connected component of an F -free hypergraph is either acyclic or forms the
ground set for a set of cycles. We now consider the structure of cycles on such a
connected component in order to break all remaining cycles optimally.

If two cycles share their vertex sets, we can analyze how an edge of one
cycle relates to the structure—the cycle sets and their order—of the other cycle.
Recall that we know the relative order of the cycle-sets, but not the internal
order of vertices within the same cycle-set. Another edge can contain a cycle-set
completely, can be disjoint from it, or can contain only some of its vertices. We
call a consecutive sequence of cycle-sets contained in edge e—potentially starting
and ending with cycle-sets partially contained in e—an interval of e on C. The
following lemma shows that every edge forms only a single interval on a given
cycle.

Lemma 7 Let H = (V,E) be an F-free hypergraph, let C be a cycle in H, and
let e ∈ E be a hyperedge with e ⊆ V (C). If e intersects two cycle-sets of C,
then e must fully contain the vertices of all cycle-sets of C in between the two
cycle-sets, in one of the two directions along cycle C.

Proof: Assume that the claim is not true, that is, e consists of a collection of
at least two intervals of (partially) contained cycle-sets, where any two such
intervals are separated by a vertex that lies in a cycle-set but not in e. We
distinguish cases similar to the proof of the previous lemma.

1. First, assume that one of the intervals contains a vertex that is part of
two consecutive edges of the cycle. We follow the cycle in both directions
from that vertex, as long as we find a vertex of e in the intersection of the
current edge with the next edge along the cycle. We call these vertices
internal vertices. Since e has at most d vertices but C has length at least
d+ 2, this process will eventually stop, thus forming a path of at most d
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(b) M1 as a pattern.
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(c) O2 as a pattern.

Figure 17: Vertex v′ /∈ e in a gap between two intervals of e.

vertices in e and at most d− 1 edges in C. At both ends of this path, we
add a vertex from the two incident edges in C, which are not in e (due
to the maximality of the path we constructed). Thus, we get a path Π
of length at least two and at most d + 1. The intersection of every pair
of consecutive edges of Π contains at least one vertex of e. The first and
the last edge of Π both contain at least one vertex that is not in e and
private to them; they do not contain vertices of e that are private to them
among the edges of Π. (Note that Π cannot be a cycle since this would be
pattern Ck for some k ∈ {3, . . . , d+ 1}.)

(a) Now, assume that e has a private vertex v ∈ e \ V (Π). Then, this
yields pattern Mk for some k ∈ {1, . . . , d− 1}; see Fig. 16.

(b) Hence, e does not have such a private vertex. Then, if the path Π
has length 2, the union of its two edges e1, e2 contains e. It is easy
to check that our assumption fails in this case: The only violation to
the interval property would be that there is a vertex v′ ∈ e1 ∩ e2 ∩ e
and vertices v1 ∈ e1 ∩ e \ e2 and v2 ∈ e2 ∩ e \ e1. However, in this case
the edges form the forbidden pattern C3 with v′, v1, v2 as defining
vertices.
If Π has length at least 3, then there are at least two internal vertices,
all of which belong to e by construction. If, for each pair of consecutive
internal vertices, all cycle-sets separating the two are fully contained
in e, then e forms a single interval. Hence, there must be a vertex
v′ 6∈ e in a cycle-set separating two consecutive internal vertices v1
and v2 (connected by an edge e′) of Π; see Fig. 17(a).

i. If none of the neighbors of v1 and v2 along the cycle lies in e, we
have found pattern M2 as in Fig. 17(a).

ii. If the neighbor of only one of them, say, v1 is in e but the neighbor
of v2 isn’t, then by disregarding v1 we find pattern M1 centered
at v2; see Fig. 17(b).

iii. On the other hand, if both neighbors lie in e, then we have
pattern O2; see Fig. 17(c).

2. If e does not contain any vertex that lies in the intersection of two consec-
utive cycle edges, then we take vertices v ∈ e and v′ ∈ e from two different
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intervals; v ∈ e1 and v′ /∈ e1 for a cycle edge e1. Let e0 and e2 be the
neighbors of e1 in C. We have v′ /∈ e0 ∪ e2 since otherwise there would be
a triangle, that is, pattern C3. But then e0, e1, e2, and e (via v′) form
pattern O1. �

Since e forms only a single interval of cycle-sets, we know that by opening the
cycle at a single position within a cycle-set not contained in e, C + e forms
an interval hypergraph. Edge e adds further information on the relative order
within some cycle-sets: if only some of the vertices of a cycle-set are contained
in e and also vertices of the next cycle-set in one direction, we know that the
vertices of e in the first cycle-set should be next to the second cycle-set.

We use this to refine the cycle-sets to a cyclic order of cells, the cell order. A
cell is a set of vertices that should be contiguous in the cyclic order prescribed by
hyperedges. Initially, the cells are the cycle-sets. Then, in each step we refine the
cell-order by inserting an edge containing vertices of more than one cell, possibly
splitting two cells into two subcells each. If after refining the cell order, it is still
true that each remaining edge forms a single interval, then this results in a final
refined cell order, where each remaining edge of the connected component must
be fully contained in one of the cells.

Lemma 8 For any time in the refinement process and any connected compo-
nent K of overlapping hyperedges that do not form a cycle on the cell order at
that time, there is another edge overlapping with the connected component.

Proof: Assume there were a connected component K for which the claim is not
true, that is, there is no currently inserted hyperedge overlapping with K. Then,
K must be fully contained in a single cycle-set of C; especially, no edge of C
participates in K. No, consider the edge e of K that was inserted first. Since e
is no edge of C, at the point of insertion of e, there must have existed an edge
overlapping with e, otherwise e would not have been inserted. Either e overlaps
with K, or K fully contains e. In the latter case, we extend K with e (as the
new oldest edge) and continue the search. This process must evenutally stop
since there is only a finite number of inserted edges. The last edge of the process
must therefore overlap with K. �

The following lemma shows that, during the process of refinements, the
interval property is indeed preserved as an invariant.

Lemma 9 Let H = (V,E) be an F-free hypergraph, and let C be a cycle in H.
We initialize the cell order with the cycle-sets of C. Then, we iteratively refine
the structure by considering an edge that contains vertices of at least two different
cells (our insertion criterion). Then, the following interval property holds at any
refinement step for any hyperedge e ∈ E with e ⊆ V (C):

If e intersects two cells, then e must fully contain the vertices of all cells
lying in between the two cells in one of the two directions along the cyclic order.

Proof: We show the interval property by induction on the number of insertions.
Due to Lemma 7 the property holds in the beginning. Now, assume that the
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ẽ
e′

e

c cr

(a) C3 in case 1.1.1.

v2
v1

e′ẽ ēc
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Figure 18: Edges e and e′ overlapping in cell c from the same direction (I).

property holds for the cell order after inserting a set of edges. We show that
after refining the cells by considering another edge e′, the property still holds.

Assume to the contrary that for the refined cells the interval property does
not hold for some edge e. Since the property did hold for the cells of the previous
step, the only problem can occur in a cell c of the previous step that is only
partially contained by both e and e′. Let cr and cl be the cells right and left of
c, respectively. Without loss of generality, we can assume that e′ also contains
elements of cr. Let c1 = c \ e′ and c2 = c∩ e′ be the (nonempty) cells that result
from splitting c. There are two basic cases in which the interval property could
be violated for e.

1. First, if e contains also elements of cr, then we have a violation only if there
are vertices v1 ∈ c1 ∩ e and v2 ∈ c2 \ e. We distinguish cases based on the
right boundary of cell c, which—from left to right—can either be closing or
opening at least one hyperedge ẽ.

1.1. First assume that the right boundary of c is closing ẽ, that is, ẽ contains c
and cl, but is disjoint from cr.

1.1.1. If there is a common vertex of e and e′ in cr, then we find pattern C3

with respect to e, e′, and ẽ; see Fig. 18(a).
1.1.2. Otherwise, there are vertices in cr that are unique for e and e′,

respectively.
Since we never inserted an edge completely contained in cells (due
to our insertion criterion), this must also have hold for ẽ. Therefore,
there must be an edge ē (apart from e and e′) containing some (but
not all) cells of ẽ and cells either to the left or to the right of ẽ.

1.1.2.1. If ē contains cells to the right, then in particular it must contain
cells c and cr. Together with a vertex in ẽ \ ē, this is pattern O2;
see Fig. 18(b).

1.1.2.2. On the other hand, if ē contains cells of ẽ and cells to the left
of ẽ, then we have pattern O1, using a vertex in ẽ ∩ ē (not in c)
and a vertex in ē \ ẽ; see Fig. 18(c).

1.2. Now, assume that ẽ is opening on the right boundary of c, that is, ẽ
contains no vertex of c, but all of cr.

1.2.1. If cr contains no common element of e and e′, the situation is
symmetric to the one we had before by swapping the roles of c
and cr; see Fig. 19(a).
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Figure 19: Edges e and e′ overlapping in cell c from the same direction (II).

1.2.2. Otherwise, there is an element of e ∩ e′ in cr.
1.2.2.1. If ẽ contains an element not in e ∪ e′, then we have found

pattern M1; see Fig. 19(b).
1.2.2.2. If ẽ contains no such vertex then, due to the insertion criterion,

we know that there must be at least one previously inserted
hyperedge ē overlapping ẽ.

1.2.2.2.1. Assume that ē is overlapping ẽ from the left.
1.2.2.2.1.1. If there is a vertex of e∩e′ in ẽ\ ē, we have found pattern C3;

see Fig. 19(c).
1.2.2.2.1.2. Otherwise, there must be a vertex in ẽ \ ē that is contained

in only one of e and e′, say, in e, and we find pattern F1;
see Fig. 20(a).

1.2.2.2.2. Now, assume that ē is overlapping with ẽ coming from the
right.

1.2.2.2.2.1. If ẽ ∩ ē contains a vertex of only one of the edges, say e,
we argue as follows. If there is a vertex not in e (and not
in e′), we have found pattern M2; see Fig. 20(b); if ẽ ∩ ē
contains a vertex of e ∩ e′, we find pattern M1 instead.

1.2.2.2.2.2. Otherwise,—that is, if ẽ ∩ ē ⊆ e ∩ e′—we can continue to
explore more edges since ẽ ∪ ē must overlap with at least
one more edge. As long as there is a hyperedge overlapping
with the hyperedges ẽ ∪ ē ∪ . . . to the right, we choose the
one ending rightmost, thus forming a path of hyperedges
that is extending to the right.

1.2.2.2.2.2.1. If this process eventually finds a vertex that is neither in
e nor in e′, we find pattern Mk; see Fig. 20(c).

1.2.2.2.2.2.2. If we do not reach a vertex not in e or e′ with the path
because there are no more edges overlapping from the
right, we know that there must be an edge ē′ overlapping
the whole path from the left; otherwise, the edges of the
path would not have been inserted before; see Lemma 8.

1.2.2.2.2.2.2.1. Now, if there is a vertex of e ∩ e′ not contained in ē′,
we have found pattern C3; see Fig. 21(a).
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Figure 20: Edges e and e′ overlapping in cell c from the same direction (III).
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Figure 21: Edges e and e′ overlapping in cell c from the same direction (IV).

1.2.2.2.2.2.2.2. Otherwise, the part of the path outside of ē′ contains
a vertex that is only in one of the hyperedges, say, in e.
Then, the pattern that we find is Fk with ē′ and e as
the big hyperedges; see Fig. 21(b).

2. Now, we consider the second case in which we get a contradiction to the
interval property after inserting e′: again, let e′ split cell c into c1 = c \ e′
and c2 = c ∩ e′. Then, e contains vertices from cell cl of c, at least one
vertex v2 of c2, but there is also a vertex v1 ∈ c1 \e, i.e., e does not completely
contain c1. We know that there must be at least one edge containing cell c.

2.1. First, assume that such an edge ẽ as well as vertices v ∈ e \ ẽ and
v′ ∈ e′ \ ẽ exist. Then, we find pattern M1; see Fig. 22(a).

2.2. If no such ẽ with vertices v ∈ e \ ẽ and v′ ∈ e′ \ ẽ exists, we know that
any edge containing c must fully contain at least one of e and e′ as a
subset. On the other hand, we know that there must be at least one
edge overlapping with e and one edge overlapping with e′ (and by now,
these two edges must be different; otherwise, we would be in the previous
case).

2.2.1. Assume that there are edges ẽ overlapping with e and fully containing
e′ and ē overlapping with e′ and fully containing e. Then we find
pattern F1; see Fig. 22(b).

2.2.2. Now, assume that there is only a hyperedge ẽ overlapping with e
and fully containing e′; among these edges let ẽ be the one starting
rightmost and (among the ones starting rightmost) the shortest one,
that is, the one with the smallest extension to the left. We know
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Figure 22: Edges e and e′ overlapping in cell c from different directions (I).
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Figure 23: Edges e and e′ overlapping in cell c from different directions (II).

that there must be at least one edge overlapping with e′, but no
such edge can go to the left (and contain c), otherwise we would be
in one of the previous cases. Let ē be the hyperedge overlapping
with e′ and starting rightmost.

2.2.2.1. If ē contains a vertex not contained in ẽ, then we have found
pattern M2; see Fig. 23(a).

2.2.2.2. Otherwise, we continue searching the rightmost hyperedge that
overlaps ē. This yields a path of hyperedges reaching to the
right—similar to case 1.2.2.2.2.2..

2.2.2.2.1. If eventually we reach a vertex not contained in ẽ, then we
have found pattern Mk; see Fig. 23(b).

2.2.2.2.2. On the other hand, if the path ends before reaching out of ẽ,
by considering the union of the path hyperedges ending with ē,
we know that there must be a hyperedge e? overlapping this
union from the left. Due to the choice of ẽ, e? may or may
not overlap with e, but it must contain an element of e that
is not contained in ẽ; otherwise, this would violate our choice
of ẽ as starting rightmost. Therefore, we find pattern Fk; see
Fig. 24(a).

2.2.3. In the remaining case, each edge containing cell c must fully contain
both e and e′. Let ẽ be the edge containing c that is shortest and
ends rightmost. Both for e and e′ we know that there is at least one
edge previously inserted that overlaps with them. Similarly to the
argument before, we can start with the rightmost overlapping for
e′ and the leftmost for e and build paths of overlapping edges into
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Figure 24: Edges e and e′ overlapping in cell c from different directions (III).
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Figure 25: Edges e and e′ overlapping in cell c from different directions (IV).

these directions until we reach a vertex outside of ẽ, or we find no
further hyperedge to extend the path.

2.2.3.1. If both paths leave ẽ, we find pattern Mk; see Fig. 24(b).
2.2.3.2. Now, assume that only the one for e reaches out of ẽ, but the

one for e′ doesn’t (the other case is symmetric). Since the
hyperedges of the path for e′ have been inserted, there must
still be a hyperedge overlapping with them. The only remaining
possibility is then that this hyperedge ē extends to the left,
contains c, and fully contains both e and e′. Due to the choice
of ẽ as being the shortest hyperedge containing c, ē must also
contain at least one cell left of ẽ. Hence, we find pattern Fk; see
Fig. 25(a).

2.2.3.3. The remaining case is that neither path reaches out of ẽ. Then,
apart from ē, with the symmetric argument (again using that ẽ
was chosen shortest) we find a hyperedge ē′ that overlaps with
the path for e, fully contains e and e′, and reaches out of ẽ to
the right. By using ē′ in place of ẽ, we again find pattern Fk;
see Fig. 25(b). This completes the proof. �

The lemma shows that we can keep refining the cell structure by inserting
edges that contain vertices of at least two different cells. We end up with a
cyclic order of cells so that each edge of the connected component that we did
not insert lies completely within a single cell. Several edges can lie within the
same cell, sharing vertices, and forming a small hypergraph that imposes further
restrictions on the relative order of vertices within the cell. However, the cell



JGAA, 21(5) 873–913 (2017) 907

contains fewer than d vertices, so this small hypergraph cannot contain any long
cycle. Since we removed all other patterns, it must be an interval hypergraph.

With this cell structure, we can show that the following strategy to make
the connected component an interval hypergraph is optimal (see the following
Lemmas 10, 11 and 12): for each pair of adjacent cells determine the number of
edges containing both cells, select the pair minimizing that number, and remove
all edges containing both. The cell order then yields an order of the connected
component’s vertices that supports all remaining edges. Since this last step of
the algorithm is done optimally, the approximation ratio of d+ 1 is not affected:
we never remove more than d+ 1 edges for at least one edge that the optimal
solution removes.

Lemma 10 If for each pair of two adjacent cells there is at least one hyperedge
containing the vertices of both cells, we can find a cycle.

Proof: We start at an arbitrary cell c. There must be a hyperedge e1 containing
both c and the next cell in clockwise order. We iteratively form a path by
considering the rightmost cell explored so far and finding a hyperedge that
contains that cell as well as the cell right of it. Since the number of cells is finite,
we eventually reach the first cell. By dropping edges fully contained in other
edges found, if necessary, we have a complete cycle. �

Lemma 11 In any interval hypergraph that is obtained from the connected com-
ponent, there is at least one pair of neighboring cells so that all edges containing
both cells have been removed.

Proof: The lemma is a direct corollary from the previous Lemma 10: if there
were no such pair of adjacent cells, the condition of that lemma would hold, and
there would be a cycle. �

Lemma 12 Given a cyclic cell-order, let c and c′ be a neighboring pair of cells
in clockwise order. Removing all edges that contain both c and c′ results in an
interval hypergraph.

Proof: We number the cells c′ = c1, c2, . . . , ck = c in clockwise order. Next, we
place the vertices on a straight line so that vertices of each cell form an interval
on the line and the cells appear as c1, . . . , ck from top to bottom. Since the
edges falling completely within a cell form an interval hypergraph, we put the
vertices within a cell into an order that supports this interval hypergraph; recall
that this is an interval hypergraph of constant size. Hence, each edge falling
within a cell is supported.

Now consider an edge e that spans several cells. If the interval that e
spans consists of cells ci, . . . , cj with 1 ≤ i < j ≤ k, it is supported by our
order of vertices. On the other hand, if the cyclic interval of e is of the type
cj . . . , ck, c1, . . . , ci with 1 ≤ i < j ≤ k, then e also contains the cells c = ck and
c′ = c1 and, therefore, has been removed. �
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Lemma 11 shows that any solution must have a pair of adjacent cells for which all
hyperedges containing both must be removed. On the other hand, by Lemma 12,
a single pair of adjacent cells with this property suffices. Hence, the strategy of
using the pair with the minimum number of common hyperedges is optimal.

Runtime. By trying all ordered subsets of up to d + 2 vertices and then
checking whether we find hyperedges connecting the vertices such that a given
pattern is formed, we can search for any pattern in O(mnd+2) time. This clearly
leads to a polynomial time algorithm for bounded rank; however, with a more
careful implementation, we can get rid of the exponential dependency on d,
resulting in an implementation that runs in O(m2) time for m hyperedges, as
we will now see.

The first phase of our algorithm consists mainly of searching for given patterns.
The theory of fixed-parameter hardness tells us that searching for a pattern of
size k is hard to achieve in time no(k) since our problem generalizes the clique
problem parameterized by size [3]. However, the structure of our problem allows
us to do the search in O(m2) time as follows. First, we check for cycles by
considering any edge e, choosing any pair v1, v2 of its up to d vertices (we have
to try every pair), removing all edges containing both vertices, and then trying
to find a shortest path from v1 to v2 using breadth-first search. If there is such
a path of length k ≤ d, we have found Ck+1, and we remove all its edges. Since
any edge has to be considered only once—it is then either removed or cannot be
part of a short cycle—this part takes O(m2) time.

For destroying the remaining types of patterns, we make use of the fact that
each of them contains a specific large edge that contains all but one (O2 and Fk),
two (Mk), or three (O1) vertices of the pattern. Hence, we test for every edge e
whether it can play the role of the large edge in the corresponding pattern. Since
e has at most d vertices (a constant), we can test any combination of its vertices
as vertices of the large edge as shown in Fig. 13. Since there are only up to three
more vertices not in e required, we could try all combinations for these and end
up with an O(m2n3)-time algorithm. However, we can get rid of the factor n3 as
follows. Suppose that there are vertices v1, v2 ∈ e and hyperedges e1, e2 so that
v1 ∈ e1, v2 ∈ e2 but v1 /∈ e2 and v2 /∈ e1. If there is a vertex v ∈ (e1 ∩ e2) \ e
in the intersection of e1 and e2 outside of e, then vertices v, v1, and v2 with
hyperedges e, e1, and e2 form pattern C3. However, we have already removed
short cycles: a contradiction.

Now, consider the search for O1. If for each of the three involved vertices in
the larger hyperedge e we find a hyperedge containing vertices not in e, then we
must have found O1, otherwise the above argument yields C3; see Algorithm 1.
For the other patterns, we must additionally check whether there is at least one
hyperedge realizing exactly each of the necessary pairwise adjacencies within
e. For Mk, k ≤ d− 1, this suffices to check for an occurrence; see Algorithm 2.
For O2 we must also check whether there is a hyperedge containing the two
nonadjacent vertices of e and an element not in e; see Algorithm 3.

For Fk, k ≤ d − 2, we need a vertex in the intersection of a hyperedge e′
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foreach hyperedge e do
foreach triplet V ′ = {v1, v2, v3} ⊆ e do

if ∃e1 : V ′ ∩ e1 = {v1}, e1 \ e 6= ∅ and
∃e2 : V ′ ∩ e2 = {v2}, e2 \ e 6= ∅ and
∃e3 : V ′ ∩ e3 = {v3}, e3 \ e 6= ∅ then
return true

return false

Algorithm 1: Searching for O1.

foreach hyperedge e do
foreach V ′ = {v1, . . . , vk, ṽ} ⊆ e do

if ∃e0 : V ′ ∩ e0 = {v1}, e0 \ e 6= ∅ and
∃ek : V ′ ∩ ek = {vk}, ek \ e 6= ∅ then
if ∃e1 : e1 ∩ V ′ = {v1, v2} and . . . and
∃ek−1 : ek−1 ∩ V ′ = {vk−1, vk} then
return true

return false

Algorithm 2: Searching for Mk with k ≤ d− 1.

foreach hyperedge e do
foreach V ′ = {v0, v1, v2, v3} ⊆ e do

if ∃ẽ : ẽ ∩ V ′ = {v1, v2} and ẽ \ e 6= ∅ then
if ∃e1 : e1 ∩ V ′ = {v0, v1} and ∃e2 : e2 ∩ V ′ = {v2, v3} then

return true

return false

Algorithm 3: Searching for O2.

foreach hyperedge e do
foreach V ′ = {v0, . . . , vk, ṽ} ⊆ e do

if ∃e0 : e0 ∩ V ′ = {v0, v1} and . . . and
∃ek−1 : ek−1 ∩ V ′ = {vk−1, vk} then
foreach hyperedge ẽ with ẽ ∩ V ′ = {v1, . . . , vk, ṽ} do

mark all vertices of ẽ \ e as red

foreach hyperedge e′ with e′ ∩ V ′ = {vk} do
if e′ contains a red vertex then

return true

return false

Algorithm 4: Searching for Fk, k ≤ d− 2.
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connecting the rightmost path-vertex to something outside of e with the second
hyperedge ẽ containing k + 2 vertices. This can be checked in O(m) time by
searching all feasible hyperedges and marking vertices outside of e if they lie in
one such edge. Note that no hyperedge realizing one of the pairwise adjacencies
of Fk can contain such a vertex of e′ ∩ ẽ \ e since our above argument yields C3

in that case; see Algorithm 4.
Summing up, we can test in O(m) time whether a given edge is the large

edge—the edge of highest cardinality—of any pattern. After considering an edge
it is either removed or we know that it is not contained as the large edge in any
pattern, so we can make H F-free in O(m2) time.

Then, we determine the connected components in linear time, find a cycle
for each of them and initialize the cell order, in O(n + m) time in total. For
all components, the stepwise refinement can be done in O(m2) time in total.
Counting the numbers of hyperedges between adjacent cells, determining the
optimum splitting point, as well as finding the final order, can all be done in
linear time (since the size of edges is constant). Therefore, the overall runtime is
quadratic in the number of hyperedges.

Theorem 8 We can find a (d+ 1)-approximation for Interval Hypergraph
Edge Deletion on hypergraphs with m hyperedges of rank d in O(m2) time.

8 Conclusion and Open Problems

We have considered the storyline visualization problem in connection with block
crossings whose minimization helps to make such visualizations more readable.
We have shown that minimizing the number of block crossings is NP-hard
even for the case that all meetings involve only pairs of characters. Then, we
have developed exact algorithms for the general case and a greedy heuristic
for meetings of pairs. Our main result is a constant-factor approximation for
minimizing block crossings for the case that each meeting is of bounded size. As
a subproblem, we have considered the Interval Hypergraph Edge Deletion
Problem, for which, too, we presented a constant-factor approximation on
constant-rank hypergraphs.

While our paper yields insight into various aspects of SBCM, several inter-
esting problems remain open.

• Does the greedy algorithm yield an approximation for 2-SBCM? Can it be
reasonably generalized to more than two characters per meeting? Can we
find an optimal starting permutation in polynomial time?

• Our experiments strongly suggest some relation between n, k, and the
optimum in random instances, but we have not investigated this.

• Can we obtain approximation algorithms with better approximation ratios
for any variant of the problem if we consider the start permutation part of
the input and fixed?
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• Can similar approximation results be obtained for simple crossings rather
than block crossings? Since our analysis and algorithms heavily depend
on the extended powers of block crossings, it seems hard to adjust our
approach.
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